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Foreword to the third edition

The foreword to the second edition of this book identified increasing computer
power and availability as especially significant influences in optical coating
design. This has continued to the point where any description I might give of
current computing speed and capacity would be completely out of date by the time
this work is in print. Software for coating design (and for other tasks) is now so
advanced that commercial packages have almost completely replaced individually
written programs. I have often heard it suggested that this removes all need for
skill or even knowledge from the act of coating design. I firmly believe that the
need for skill and understanding is actually increased by the availability of such
powerful tools. The designer who knows very well what he or she is doing is
always able to achieve better results than the individual who does not. Coating
design still contains compromises. Some aspects of performance are impossible
to attain. The results offered by an automatic process that is attempting to reach
impossible goals are usually substantially poorer than those when the goals are
realistic. The aim of the book, therefore, is still to improve understanding.

During the years since publication of the second edition, the energetic
processes, and particularly ion-assisted deposition, have been widely adopted.
There are several consequences. The improved stability of optical constants of
the materials has enabled the reliable production of coatings of continuously
increasing complexity. We even see coatings produced now purely for their
aesthetic appeal. Then the enormous improvement in environmental stability
has opened up new applications, especially in communications. Unprecedented
temperature stability of optical coatings can now be achieved. Specially designed
coatings have simplified the construction of ultrafast lasers. Banknotes of
many countries inhibit counterfeiting by carrying patches exhibiting the typical
iridescence of optical coatings. Coatings to inhibit the effects of glare are now
integral parts of visual display units.

I mentioned in my previous foreword the difficulty I experienced in bringing
the earlier edition up to date. This time the task has been even more difficult. The
volume of literature has expanded to the extent that it is almost impossible to keep
up with all of it. The pressure on workers to publish has in many cases reached
almost intolerable levels. I regret I do not remember exactly who introduced the
idea of the half-life of a publication after which it sinks into obscurity but it is
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xiv Foreword to the third edition

clear that the half-life has become quite short. Comprehensively to review this
vast volume of material that has appeared and continues to appear would have
changed completely the style of the book. The continuing demand for the now
out-of-print second edition of the book suggests that it is used much more as a
learning tool than a research reference and so my aim has been to try to keep it
so. There have been few fundamental changes that affect our basic understanding
of optical coatings and so this third edition reflects that.

I appreciate very much the help of various organizations and individuals who
provided material. Many are named in the foreword to the second edition and in
the apologia to the first. Additional names include Shincron Company Ltd, Ion-
Tech Inc, Applied Vision Ltd, Professor Frank Placido of the University of Paisley
and Roger Hunneman of the Department of Cybernetics, University of Reading.

Again I am grateful for all the helpful comments and suggestions from all
my friends and colleagues. The enormous list of names is beyond what can be
reproduced here but I must mention my debt to my old friend Professor Lee
Cheng-Chung who took the trouble to work completely through the book and
provided me with what has to be the most detailed list of misprints and mistakes
and Professor Shigetaro Ogura who was instrumental in the translation of the
second edition into Japanese. The people at Adam Hilger must be the most patient
people on earth. I think finally it was my shame at so trying the endurance of
Kathryn Cantley who simply responded with encouragement and understanding
that drove me to complete the work.

My eternal and grateful thanks to my wife. She did not write the book but
she made sure that I did.

Angus Macleod
Tucson 1999



Foreword to the second edition

A great deal has happened in the subject of optical coatings since the first edition
of this book. This is especially true of facilities for thin-film calculations.
In 1969 my thin-film computing was performed on an IBM 1130 computer
that had a random access memory of 10 kbytes. Time had to be booked in
advance, sometimes days in advance. Calculations remote from this computer
were performed either by slide rule, log tables or electromechanical calculator.
Nowadays my students scarcely know what a slide rule is, my pocket calculator
accommodates programs that can calculate the properties of thin-film multilayers
and I have on my desk a microcomputer with a random access memory of
0.5 Mbytes, which I can use as and when I like. The earlier parts of this revision
were written on a mechanical typewriter. The final parts were completed on
my own word processor. These advances in data processing and computing are
without precedent and, of course, have had a profound and irreversible effect
on many aspects of everyday life as well as on the whole field of science and
technology.

There have been major developments, too, in the deposition of thin-film
coatings, and although these lack the spectacular, almost explosive, character of
computing programs, nevertheless important and significant advances have been
made. Electron-beam sources have become the norm rather than the exception,
with performance and reliability beyond anything available in 1969. Pumping
systems are enormously improved, and the box-coater is now standard rather than
unusual. Microprocessors control the entire operation of the pumping system
and, frequently, even the deposition process. We have come to understand that
many of our problems are inherent in the properties of our thin films rather than
in the complexity of our designs. Microstructure and its influence on material
properties is especially important. Ultimate coating performance is determined
by the losses and instabilities of our films rather than the accuracy and precision
of our monitoring systems.
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xvi Foreword to the second edition

My own circumstances have changed too. I wrote the first edition in industry.
I finish the second as a university professor in a different country.

All this change has presented me with difficult problems in the revision of
this book. I want to bring it up to date but do not want to lose what was useful in
the first edition. I believe that in spite of the great advances in computers, there
is still an important place for the appreciation of the fundamentals of thin-film
coating design. Powerful synthesis and refinement techniques are available and
are enormously useful, but an understanding of thin-film coating performance
and the important design parameters is still an essential ingredient of success.
The computer frees us from much of the previous drudgery and puts in our
hands more powerful tools for improving our understanding. The availability of
programmable calculators and of microcomputers implies easy handling of more
complex expressions and formulae in design and performance calculations. The
book, therefore, contains many more of these than did the first edition. I hope
they are found useful. I have included a great deal of detail on the admittance
diagram and admittance loci. I use them in my teaching and research and have
taken this opportunity to write them up. SI units, rather than Gaussian, have
been adopted, and I think chapter 2 is much the better for the change. There is
more on coatings for oblique incidence including the admittance diagram beyond
the critical angle, which explains and predicts many of the resonant effects that
are observed in connection with surface plasmons, effects used by Greenland
and Billington (Chapter 8, reference 12) in the late 1940s and early 1950s for
monitoring thin-film deposition.

Inevitably, the first edition contained a number of mistakes and misprints
and I apologise for them. Many were picked up by friends and colleagues who
kindly pointed them out to me. Perhaps the worse mistake was in figure 9.4 on
uniformity. The results were quoted as for a flat plate but, in fact, referred to
a spherical work holder. These errors have been corrected in this edition and I
hope that I have avoided making too many fresh ones. I am immensely grateful
to all the people who helped in this correction process. I hope they will forgive
me for not including the huge list of their names here. My thanks are also due to
J J Apfel, G DeBell, E Pelletier and W T Welford who read and commented on
various parts of the manuscript.

To the list in the foreword of the first edition of organisations kindly
providing material should be added the names Leybold-Heraeus GmbH, and
Optical Coating Laboratory Inc. Airco-Temescal is now known as Temescal, a
Division of the BOC Group Inc., and the British Scientific Instrument Research
Association as Sira Institute.

My publisher is still the same Adam Hilger, but now part of the Institute
of Physics. I owe a very great debt to Neville Goodman who was responsible
for the first edition and who also persuaded and encouraged me into the second.
He retired while it was still in preparation, and the task of extracting the final
manuscript from me became Jim Revill’s. Ian Kingston and Brian McMahon did
a tremendous job on the manuscript at a distance of 3000 miles. Their patience
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with me in the delays I have caused them has been amazing.
My wife and family have once again been a great source of support and

encouragement.

Angus Macleod
Newcastle-Upon-Tyne

and
Tucson

1985





Apologia to the first edition

When I first became involved with the manufacture of thin-film optical filters,
I was particularly fortunate to be closely associated with Oliver Heavens, who
gave me invaluable help and guidance. Although I had not at that time met him,
Dr L Holland also helped me through his book, The Vacuum Deposition of Thin
Films. Lacking, however, was a book devoted to the design and production of
multilayer thin-film optical filters, a lack which I have since felt especially when
introducing others to the field. Like many others in similar situations I produced
from time to time notes on the subject purely for my own use. Then in 1967,
I met Neville Goodman of Adam Hilger, who had apparently long been hoping
for a book on optical filters in general. I was certainly not competent to write a
book on this wide subject, but, in the course of conversation, the possibility of
a book solely on thin-film optical filters arose. Neville Goodman’s enthusiasm
was infectious, and with his considerable encouragement, I dug out my notes and
began writing. This, some two years and much labour later, is the result. I have
tried to make it the book that I would like to have had myself when I first started
in the field, and I hope it may help to satisfy also the needs of others. It is not
in any way intended to compete with the existing works on optical thin films, but
rather to supplement them, by dealing with one aspect of the subject which seems
to be only lightly covered elsewhere.

It will be immediately obvious to even the most causal of readers that a very
large proportion of the book is a review of the work of others. I have tried to
acknowledge this fully throughout the text. Many of the results have been recast
to fit in with the unified approach which I have attempted to adopt throughout the
book. Some of the work is, I fondly imagine, completely my own, but at least a
proportion of it may, unknown to me, have been anticipated elsewhere. To any
authors concerned I humbly apologise, my only excuse being that I also thought
of it. I promise, as far as I can, to correct the situation if ever there is a second
edition. I can, however, say with complete confidence that any shortcomings of
the book are entirely my own work.

Even the mere writing of the book would have been impossible without the
willing help, so freely given, of a large number of friends and colleagues. Neville
Goodman started the whole thing off and has always been ready with just the right
sort of encouragement. David Tomlinson, also of Adam Hilger, edited the work
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and adjusted it where necessary so that all sounded just as I had meant it to, but
had not quite managed to achieve. The drawings were the work of Mrs Jacobi.
At Grubb Parsons, Jim Mills performed all the calculations, using an IBM 1130
(he appears in the frontispiece for which I am also grateful), Fred Ritchie kindly
gave me permission to quote many of his results and helped considerably by
reading the manuscript, and Helen Davis transformed my almost illegible first
manuscript into one which could be read without considerable strain. Stimulating
discussion with John Little and other colleagues over the years has also been
invaluable. Desmond Smith of Reading University kindly gave me much material
especially connected with the section on atmospheric temperature sounding which
he was good enough to read and correct. John Seeley and Alan Thetford, both of
Reading University, helped me by amplifying and explaining their methods of
design. Jim Ring, of Imperial College, read and commented on the section on
astronomical applications and Dr J Meaburn kindly provided the photographs for
it. Dr A F Turner gave me much information on the early history of multiple half-
wave filters. It is impossible to mention by name all those others who have helped
but they include: M J Shadbolt, S W Warren, A J N Hope, H Bucher and all the
authors who led the way and whose work I have used and quoted.

Journals, publishers and organisations which provided and gave permission
for the reproduction of material were:

Journal of the Optical Society of America(The Optical Society of America)
Applied Optics(The Optical Society of America)
Optica Acta(Taylor and Francis Limited)
Proceedings of the Physical Society(The Institute of Physics and the
Physical Society)
IEEE Transactions on Aerospace(The Institute of Electrical and Electronics
Engineers, Inc.)
Zeitshrift f̈ur Physik(Springer Verlag)
Bell System Technical Journal(The American Telephone and Telegraph Co.)
Philips Engineering Technical Journal(Philips Research Laboratories)
Methuen & Co. Ltd
OCLI Optical Coatings Limited
Standard Telephones and Cables Limited
Balzers Aktiengesellschaft für Hochvacuumtechnik und dünne Schichten
Edwards High Vacuum Limited
Airco Temescal (A Division of Air Reduction Company Inc.)
Hawker Siddeley Dynamics Limited
System Computers Limited
Ferranti Limited
British Scientific Instrument Research Association
And lastly, but far from least, the management of Sir Howard Grubb, Parsons
& Co. Ltd, particularly Mr G M Sisson and MR G E Manville, for much
material, for facilities and for permission to write this book.
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To all these and to all the others, who are too numerous to name and who I hope
will excuse me for not attempting to name them, I am truly grateful.

I should add that my wife and children have been particularly patient with
me during the long writing process which has taken up so much of the time that
would normally have been theirs. Indeed my children eventually began to worry if
ever I appeared to be slacking and, by their comments, prodded me into redoubled
efforts.

H A Macleod
Newcastle-Upon-Tyne

May 1969





Symbols and abbreviations

The following table gives those more important symbols used in at least several
places in the text. We have tried as far as possible to create a consistent set
of symbols but there are several well known and accepted symbols that are
universally used in the field for certain quantities and changing them would
probably lead to even greater confusion than would retaining them. This has
meant that in some cases the same symbol is used in different places for different
quantities. The table should make it clear. Less important symbols defined and
used only in very short sections have been omitted.

A Absorptance—the ratio of the energy absorbed in the structure
to the energy incident on it.

A A quantity used in the calculation of the absorptance of
dielectric assemblies. It is equivalent to (1 − ψ).

B One of the elements of the characteristic matrix of a thin-film
assembly. It can be identified as a normalised electric field
amplitude.

C One of the elements of the characteristic matrix of a thin-film
assembly. It can be identified as a normalised magnetic field
amplitude.

dq The physical thickness of the qth layer in a thin-film assembly.
EEE The electric vector in the electromagnetic field.
E The amplitude of the tangential component of electric field, that

is the field parallel to a boundary.
E The equivalent admittance. See also ηE.
E The electric amplitude.
F A function used in the theory of the Fabry–Perot interferometer.
F Finesse—the ratio of the separation of adjacent fringes to the

fringe halfwidth in the Fabry–Perot interferometer.

xxiii



xxiv Symbols and abbreviations

g g = λ0/λ = ν/ν0 sometimes called the relative wavelength
of the relative wavenumber or the wavelength ratio. λ 0 and
ν0 are usually chosen to be the wavelength or wavenumber,
respectively, at which the optical thicknesses of the more
important layers in the assembly are quarter-waves. The phase
thickness, δ, of quarter-wave layers is given by δ = (π/2)g.

H The magnetic amplitude.
HHH The magnetic vector in the electromagnetic field.
H The amplitude of the tangential component of magnetic field,

that is the field parallel to a boundary.
H Represents a quarter-wave of high index.
I The intensity of the wave. A measure of the energy per unit

area per unit time carried by the wave.
k The extinction coefficient. The complex refractive index is

given by N = n − ik. A finite value of k for a medium denotes
the presence of absorption. See also the absorption coefficient
α.

L Represents a quarter-wave of low index.
M Represents a quarter-wave of intermediate index.
Ma A symbol denoting the elements of the characteristic matrix of

layer a.
N The complex refractive index. N = n − ik.
n The real part of the refractive index.
n∗ The effective index, that is the index of an equivalent layer that

shifts in wavelength by the same amount as a narrowband filter
when tilted with respect to the incident light.

p Packing density of a film.
p Indicates the plane of polarisation in which the electric vector

is parallel to the plane of incidence. Equivalent to TM.
R The reflectance. The ratio at a boundary of the reflected

intensity to the incident intensity. At oblique incidence the
components normal to the boundary are used.

4 Indicates the plane of polarisation in which the electric vector is
normal to the plane of incidence. (From the German senkrecht).
Equivalent to TE.

T The transmittance. The ratio at a boundary of the transmitted
intensity to the incident intensity. At oblique incidence the
components normal to the boundary are used.

TE Transverse electric. The plane of polarisation in which the
electric vector is normal to the plane of incidence. Equivalent
to s-polarisation.

TM Transverse magnetic. The plane of polarisation in which the
magnetic vector is normal to the plane of incidence. Equivalent
to p-polarisation.
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x, y, z The three axes defining the orientation of a thin-film assembly.
z is normally taken normal to the interfaces and with positive
direction in the sense of the propagation of the incident wave,
x and y in the plane of the interfaces with x also in the plane of
incidence. x, y and z form a right-handed set.

X + iZ The optimum exit admittance for a metal layer in order to
achieve the maximum potential transmittance.

Y The admittance of free space.
y The admittance of a medium. In SI units y is measured in

siemens. y = NY and so is numerically equal to the refractive
index if measured in free space units.

Y The admittance of a surface or multilayer. It is given by C/B.
y0 The admittance of the incident medium.
ym (ysub or ys) The admittance of the substrate upon which the film system is

deposited.
α The absorption coefficient. The inverse of the distance along

the direction of propagation in which the intensity of a wave
falls to 1/e times its original value. α = 4πk/λ where k is the
extinction coefficient.

α A symbol used to represent 2πnd/λ.
α, β, γ The three direction cosines.
(α − iβ) Symbols used to represent the admittance of a metal. Similar to

n − ik.
β A symbol used to represent 2πkd/λ.
γ The equivalent phase thickness of a symmetrical assembly.
�q (ηp/ηs) where ηp and ηs are modified admittances. This is a

quantity used in the design of polarisation-free coatings.
ε Indicates a small error or a departure from a reference value of

a number.
ε The permittivity of a medium.
η The tilted optical admittance.
ηm The tilted admittance of the substrate. See ym.
ηE The equivalent admittance of a symmetrical assembly. See also

E.
θ The angle of incidence in a medium.
θ0 The angle of incidence in the incident medium.
λ The wavelength of the light, usually the wavelength in free

space.
λ0 The reference wavelength. See g.
ν0 The reference wavenumber. ν0 = 1/λ0. See g.
ρ The amplitude reflection coefficient.
ρ The electric charge density.
γ The amplitude transmission coefficient.
φ The phase shift on reflection.
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ψ Potential transmittance. ψ = T/(1 − R).
ψ Used in some limited calculations to represent 2δ p/δq.



Chapter 1

Introduction

This book is intended to form an introduction to thin-film optical filters for both
the manufacturer and the user. It does not pretend to present a detailed account of
the entire field of thin-film optics, but it is hoped that it will form a supplement
to those works already available in the field and which only briefly touch on the
principles of filters. For the sake of a degree of completeness, it has been thought
desirable to repeat again some of the information that will be found elsewhere in
textbooks, referring the reader to more complete sources for greater detail. The
topics covered are a mixture of design, manufacture, performance and application,
including enough of the basic mathematics of optical thin films for the reader to
carry out thin-film calculations. The aim has been to present, as far as possible,
a unified treatment, and there are some alternative methods of analysis which are
not discussed.

When the book was first written there were just a few books available that
covered aspects of the field. Now the situation has changed somewhat and there
is an array of relevant books. Some of these are listed in the bibliography at the
end of this chapter. However, the half-life of a work these days is so short that
knowledge can actually disappear. It is well worthwhile taking the time to go back
to some of the earlier books. Heavens [1], Holland [2], Anders [3], Knittl [4] are
just some of those that will repay study, and they are listed in the bibliography
along with some more recent volumes.

In a work of this size, it is not possible to cover the entire field of thin-film
optical devices in the detail that some of them may deserve. The selection of
topics is due, at least in part, to the author’s own preferences and knowledge.
Optical filters have been interpreted fairly broadly to include such items as
antireflection and high-reflectance coatings.

1.1 Early history

The earliest of what might be called modern thin-film optics was the discovery by
Robert Boyle and Robert Hooke, independently, of the phenomenon now known
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2 Introduction

as ‘Newton’s rings’. The explanation of this is nowadays thought to be a very
simple matter, being due to interference in a single thin film of varying thickness.
However, at that time, the theory of the nature of light was not sufficiently far
advanced, and the explanation of this, and a number of similar observations made
in the same period by Sir Isaac Newton on thin films, eluded scientists for almost a
further 150 years. Then, on 12 November 1801, in a Bakerian Lecture to the Royal
Society, Thomas Young enunciated the principle of the interference of light and
produced the first satisfactory explanation of the effect. As Henry Crew [5] has
put it, ‘This simple but tremendously important fact that two rays of light incident
upon a single point can be added together to produce darkness at that point is, as
I see it, the one outstanding discovery which the world owes to Thomas Young.’

Young’s theory was far from achieving universal acceptance. Indeed Young
became the victim of a bitter personal attack, against which he had the greatest
difficulty defending himself. Recognition came slowly and depended much on
the work of Augustin Jean Fresnel [6] who, quite independently, also arrived at a
wave theory of light. Fresnel’s discovery, in 1816, that two beams of light which
are polarised at right angles could never interfere, established the transverse na-
ture of light waves. Then Fresnel combined Young’s interference principle and
Huygens’s ideas of light propagation into an elegant theory of diffraction. It was
Fresnel who put the wave theory of light on such a firm foundation that it has
never been shaken. For the thin-film worker, Fresnel’s laws, governing the ampli-
tude and phase of light reflected and transmitted at a single boundary, are of major
importance. Knittl [7] has reminded us that it was Fresnel who first summed an in-
finite series of rays to determine the transmittance of a thick sheet of glass and that
it was Simeon Denis Poisson, in correspondence with Fresnel, who included inter-
ference effects in the summation to arrive at the important results that a half-wave
thick film does not change the reflectance of a surface, and that a quarter-wave
thick film of index (n0n1)

1/2 will reduce to zero the reflectance of a surface be-
tween two media of indices n1 and n0. Fresnel died in 1827, at the early age of 39.

In 1873, the great work of James Clerk Maxwell, A Treatise on Electricity
and Magnetism[8], was published, and in his system of equations we have all the
basic theory for the analysis of thin-film optical problems.

Meanwhile, in 1817, Joseph Fraunhofer had made what were probably the
first ever antireflection coatings. It is worth quoting his observations at some
length because they show the considerable insight that he had, even at that early
date, into the physical causes of the effects that were produced. The following is
a translation of part of the paper as it appears in the collected works [9].

Before I quote the experiments which I have made on this I will give the
method which I have made use of to tell in a short time whether the glass
will withstand the influence of the atmosphere. If one grinds and then
polishes, as finely as possible, one surface of glass which has become
etched through long exposure to the atmosphere, then wets one part of
the surface, for example half, with concentrated sulphuric or nitric acid



Early history 3

and lets it work on the surface for 24 hours, one finds after cleaning
away the acid that that part of the surface on which the acid was, reflects
much less light than the other half, that is it shines less although it is not
in the least etched and still transmits as much light as the other half, so
that one can detect no difference on looking through. The difference in
the amount of reflected light will be most easily detected if one lets the
light strike approximately vertically. It is the greater the more the glass
is liable to tarnish and become etched. If the polish on the glass is not
very good this difference will be less noticeable. On glass which is not
liable to tarnish, the sulphuric and nitric acid does not work. Through
this treatment with sulphuric or nitric acid some types of glasses get on
their surfaces beautiful vivid colours which alter like soap bubbles if
one lets the light strike at different angles.

Then, in an appendix to the paper added in 1819:

Colours on reflection always occur with all transparent media if they are
very thin. If for example, one spreads polished glass thinly with alcohol
and lets it gradually evaporate, towards the end of the evaporation,
colours appear as with tarnished glass. If one spreads a solution of
gum-lac in a comparatively large quantity of alcohol very thinly over
polished warmed metal the alcohol will very quickly evaporate, and
the gum-lac remains behind as a transparent hard varnish which shows
colours if it is thinly enough laid on. Since the colours, in glasses
which have been coloured through tarnishing, alter themselves if the
inclination of the incident light becomes greater or smaller, there is no
doubt that these colours are quite of the same nature as those of soap
bubbles, and those which occur through the contact of two polished
flat glass surfaces, or generally as thin transparent films of material.
Thus there must be on the surface of tarnished glass which shows
colours, a thin layer of glass which is different in refractive power from
the underlying. Such a situation must occur if a component is partly
removed from the surface of the glass or if a component of the glass
combines at the surface with a related material into a new transparent
product.

It seems that Fraunhofer did not follow up this particular line into the
development of an antireflection coating for glass, perhaps because optical
components were not, at that time, sufficiently complicated for the need for
antireflection coatings to be obvious. Possibly the important point that, not only
was the reflectance less, but the transmittance also greater had escaped him.

In 1886, Lord Rayleigh reported to the Royal Society an experimental
verification of Fresnel’s reflection law at near-normal incidence [10]. In order to
attain a sufficiently satisfactory agreement between measurement and prediction,
he had found it necessary to use freshly polished glass because the reflectance
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of older material, even without any visible signs of tarnish, was too low. One
possible explanation which he suggested was the formation, on the surface, of
a thin layer of different refractive index from the underlying material. He was
apparently unaware of the earlier work of Fraunhofer.

Then, in 1891, Dennis Taylor published the first edition of his famous book
On the Adjustment and Testing of Telescopic Objectivesand mentioned [11, 12]
that ‘as regards the tarnish which we have above alluded to as being noticeable
upon the flint lens of an ordinary objective after a few years of use, we are very
glad to be able to reassure the owner of such a flint that this film of tarnish,
generally looked upon with suspicion, is really a very good friend to the observer,
inasmuch as it increases the transparency of his objective’.

In fact, Taylor went on to develop a method of artificially producing the
tarnish by chemical etching [13]. This work was followed up by Kollmorgen,
who developed the chemical process still further for different types of glasses
[14].

At the same time, in the nineteenth century, a great deal of progress was
being made in the field of interferometry. The most significant development, from
the thin-film point of view, was the Fabry–Perot interferometer [15] described in
1899, which has become one of the basic structures for thin-film filters.

Developments became much more rapid in the 1930s, and indeed it is in
this period that we can recognise the beginnings of the modern thin-film optical
coating. In 1932, Rouard [16] observed that a very thin metallic film reduced
the internal reflectance of a glass plate, although the external reflectance was
increased. In 1934, Bauer [17], in the course of fundamental investigations
of the optical properties of halides, produced reflection-reducing coatings, and
Pfund [18] evaporated zinc sulphide layers to make low-loss beam splitters for
Michelson interferometers, noting, incidentally, that titanium dioxide could be
a better material. In 1936, John Strong [19] produced antireflection coatings by
evaporation of fluorite to give inhomogeneous films which reduced the reflectance
of glass to visible light by as much as 89%, a most impressive figure. Then, in
1939, Geffcken [20] constructed the first thin-film metal–dielectric interference
filters. A fascinating account of Geffcken’s work is given by Thelen [21] who
describes Geffcken’s search for improved antireflection coatings and his creation
of the famous quarter–half–quarter design.

The most important factor in this sudden expansion of thin-film optical
coatings was the manufacturing process. Although sputtering was discovered
around the middle of the nineteenth century, and vacuum evaporation around the
beginning of the twentieth, they were not considered as useful manufacturing
processes. The main difficulty was the lack of really suitable pumps, and it was
not until the early 1930s that the work of C R Burch on diffusion pump oils made
it possible for this process to be used satisfactorily. Since then, tremendous strides
have been made, particularly in the last few years. Filters with greater than 100
layers are not uncommon and uses have been found for them in almost every
branch of science and technology.
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Figure 1.1. A single thin film.

1.2 Thin-film filters

To understand in a qualitative way the performance of thin-film optical devices,
it is necessary to accept several simple statements. The first is that the amplitude
reflectance of light at any boundary between two media is given by (1−ρ)/(1+ρ),
where ρ is the ratio of the optical admittances at the boundary, which, in the
optical region, is also the ratio of the refractive indices. The reflectance (the ratio
of irradiances or intensities) is the square of this quantity. The second is that
there is a phase shift of 180◦ when the reflectance takes place in a medium of
lower refractive index than the adjoining medium, and zero if the medium has
a higher index than the one adjoining it. The third is that if light is split into
two components by reflection at the top and bottom surfaces of a thin film, then
the beams will recombine in such a way that the resultant amplitude will be the
difference of the amplitudes of the two components if the relative phase shift is
180◦, or the sum of the amplitudes if the relative phase shift is either zero or a
multiple of 360◦. In the former case, we say that the beams interfere destructively
and in the latter constructively. Other cases where the phase shift is different will
be intermediate between these two possibilities.

The antireflection coating depends for its operation on the more or less
complete cancellation of the light reflected at the upper and lower of the two
surfaces of the thin film. Let the index of the substrate be n sub, that of the film
n1, and that of the incident medium, which will in almost all cases be air, n0.
For complete cancellation of the two beams of light, the amplitudes of the light
reflected at the upper and lower boundaries of the film should be equal, which
implies that the ratios of the refractive indices at each boundary should be equal,
i.e. n0/n1 = n1/nsub, or n1 = (n0nsub)

1/2. This shows that the index of the
thin film should be intermediate between the indices of air, which may be taken
as unity, and of the substrate, which may be taken as at least 1.52. At both the
upper and lower boundaries of the antireflection film, the reflection takes place in
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Figure 1.2. A multilayer.

Figure 1.3. A Fabry–Perot filter showing multiple reflections in the spacer layer.

a medium of lower refractive index than the adjoining medium. Thus, to ensure
that the relative phase shift is 180◦ so that the beams cancel, the optical thickness
of the film should be made one quarter wavelength.

A simple antireflection coating should, therefore, consist of a single film of
refractive index equal to the square root of that of the substrate, and of optical
thickness one quarter of a wavelength. As will be explained in the chapter
on antireflection coatings, there are other improved coatings covering wider
wavelength ranges involving greater numbers of layers.

Another basic type of thin-film structure is a stack of alternate high- and
low-index films, all one quarter wavelength thick (see figure 1.2). Light reflected
within the high-index layers will not suffer any phase shift on reflection, while that
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reflected within the low-index layers will suffer a change of 180 ◦. It is fairly easy
to see that the various components of the incident light produced by reflection at
successive boundaries throughout the assembly will reappear at the front surface
all in phase so that they will recombine constructively. This implies that the
effective reflectance of the assembly can be made very high indeed, as high as
may be desired, merely by increasing the number of layers. This is the basic
form of the high-reflectance coating. When such a coating is constructed, it is
found that the reflectance remains high over only a limited range of wavelengths,
depending on the ratio of high and low refractive indices. Outside this zone,
the reflectance changes abruptly to a low value. Because of this behaviour, the
quarter-wave stack is used as a basic building block for many types of thin-film
filters. It can be used as a longwave-pass filter, a shortwave-pass filter, a bandstop
filter, a straightforward high-reflectance coating, for example in laser mirrors,
and as a reflector in a thin-film Fabry–Perot interferometer (figure 1.3), which is
another basic filter type described in some detail in chapters 5 and 7. Here, it is
sufficient to say that it consists of a spacer or cavity layer which is usually half
a wavelength thick, bounded by two high-reflectance coatings. Multiple-beam
interference in the spacer or cavity layer causes the transmission of the filter to
be extremely high over a narrow band of wavelengths around that for which the
spacer is a multiple of one half wavelength thick. It is possible, as with lumped
electric circuits, to couple two or more Fabry–Perot filters in series to give a more
rectangular pass band.

In the great majority of cases the thin films are completely transparent, so that
no energy is absorbed. The filter characteristic in reflection is the complement
of that in transmission. This fact is used in the construction of such devices
as dichroic beam splitters for colour primary separation in, for example, colour
television cameras.

This brief description has neglected the effect of multiple reflections in most
of the layers and, for an accurate evaluation of the performance of a filter, these
extra reflections must be taken into account. This involves extremely complex
calculations and an alternative, and more effective, approach has been found in
the development of entirely new forms of solution of Maxwell’s equations in
stratified media. This is, in fact, the principal method used in chapter 2 where
basic theory is considered. The solution appears as a very elegant product of
2 × 2 matrices, each matrix representing a single film. Unfortunately, in spite
of the apparent simplicity of the matrices, calculation by hand of the properties
of a given multilayer, particularly if there are absorbing layers present and a
wide spectral region is involved, is an extremely tedious and time-consuming
task. The preferred method of calculation is to use a computer. This makes
calculation so rapid and straightforward that it makes little sense to use anything
else. Even pocket calculators, especially the programmable kind, can be used to
great effect. However, in spite of the enormous power of the modern computer
it is still true that skill and experience play a major part in successful coating
design. The computer brings little in the way of understanding. Understanding
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is the emphasis in the bulk of this book. There are many techniques that date
back to times when computers were expensive, cumbersome and scarce, and
alternatives, usually approximate, were required. These would not be used for
calculation today but they bring an insight that straightforward calculation cannot
deliver, even if it is very fast. Thus we include many such techniques and it
is convenient to introduce them often in a historical context. The matrix method
itself brings many advantages. For example, it has made possible the development
of exceedingly powerful design techniques based on the algebraic manipulation
of the matrices themselves. These are also included. Graphical techniques are of
considerable usefulness in visualisation of the properties of coatings. There are
many such techniques but in this book we pay particular attention to one such
method known as the admittance diagram. This is one that the author has found
of considerable assistance over the years. It is an accurate technique in the sense
that it contains no approximations other than those involved perhaps in sketching
it, but it is used normally as an aid to understanding rather than as a calculation
tool.

In the design of a thin-film multilayer, we are required to find an arrangement
of layers which will give a performance specified in advance, and this is much
more difficult than straightforward calculation of the properties of a given
multilayer. There is no analytical solution to the general problem. The normal
method of design is to arrive at a possible structure for a filter, using techniques
which will be described, and which consist of a mixture of analysis, experience
and the use of well-known building blocks. The evaluation is then completed
by calculating the performance on a computer. Depending on the results of the
computations, adjustments to the proposed design may be made, then recomputed,
until a satisfactory solution is found. This adjustment process can itself be
undertaken by a computer and is often known by the term ‘refinement’. A related
term is synthesis, which implies an element of construction as well as adjustment.
The ultimate in synthesis would be the complete construction of a design with
no starting information beyond the performance specification, but, at the present
state of the art it is normal to provide some starting information, such as materials
to be used, total thickness of coating and, perhaps, a very rough starting design.

The successful application of refinement techniques depends largely on a
starting solution that has a performance close to that required. Under these
conditions it has been made to work exceedingly well. The operation of a
refinement process involves the adjustment of the parameters of the system to
minimise a merit coefficient (in some less common versions a measure of merit
may be maximised) representing the gap between the performance achieved by
the design at any stage and the desired performance. The main difference between
the various techniques is in the details of the rules used to control and adjust
the design. A major problem is the enormous number of parameters that can
potentially be involved. Refinement is usually kept within bounds by limiting
the search to small changes in an almost acceptable starting design. In synthesis
with no starting design, the possibilities are virtually infinite, and so the rules
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governing the search procedure have to be very carefully organised. The most
effective techniques incorporate two elements, an effective refinement technique
that operates until it reaches a limit and a procedure for complicating the design
that is then applied. These two elements alternate as the design is gradually
constructed. Automatic design synthesis is undoubtedly increasing in importance
in step with developments in computers, but it is still true that in the hands of a
skilled practitioner the achievements of both refinement and synthesis are much
more impressive than when no skill is involved. Someone who knows well what
he or she is doing will succeed much better than someone who does not. This
branch of the subject is much more a matter of computing technique rather than
fundamental to the understanding of thin-film filters, and so it is largely outside
the scope of this book. The book by Liddell [22] and the more recent text
by Furman and Tikhonravov [23] give good accounts of various methods. The
real limitation to what is, at the present time, possible in optical thin-film filters
and coatings is the capability of the manufacturing process to produce layers of
precisely the correct optical constants and thickness, rather than any deficiency in
design techniques.

The common techniques for the construction of thin-film optical coatings can
be classified as physical vapour deposition. They are vacuum processes where a
solid film condenses from the vapour phase. The most straightforward and the
traditional method is known as thermal evaporation and this is still much used.
Because of defects of solidity possessed by thermally evaporated films there has,
in recent years, been a shift, now accelerating, towards what are described as the
energetic processes. Here, mechanical momentum is transferred to the growing
film, either by deliberate bombardment or by an increase in the momentum of the
arriving film material, and this added momentum drives the outermost material
deeper into the film, increasing its solidity. These processes are described briefly
in the later chapters of the book but much more information will be found in the
books listed in the bibliography at the end of this chapter.
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Chapter 2

Basic theory

This next part of the book is a long and rather tedious account of some basic theory
which is necessary in order to make calculations of the properties of multilayer
thin-film coatings. It is perhaps worth reading just once, or when some deeper
insight into thin-film calculations is required. In order to make it easier for
those who have read it to find the basic results, or for those who do not wish
to read it at all to proceed with the remainder of the book, the principal results are
summarised, beginning on page 46.

2.1 Maxwell’s equations and plane electromagnetic waves

For those readers who are still with us we begin our attack on thin-film problems
by solving Maxwell’s equations together with the appropriate material equations.
In isotropic media these are:

curlH = j + ∂D/∂ t (2.1)

curlE = − ∂B/∂ t (2.2)

divD = ρ (2.3)

divB = 0 (2.4)

j = σE (2.5)

D = εE (2.6)

B = µH . (2.7)

In anisotropic media, equations (2.1) to (2.7) become much more complicated
with σ , ε and µ being tensor rather than scalar quantities. Anisotropic media are
covered by Yeh [1] and Hodgkinson and Wu [2].

The International System of Units (SI) is used as far as possible throughout
this book. Table 2.1 shows the definitions of the quantities in the equations
together with the appropriate SI units.

12
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Table 2.1.

Symbol for
Symbol Physical quantity SI unit SI unit

E Electric field strength volts per metre V m−1

D Electric displacement coulombs per square metre C m−2

H Magnetic field strength amperes per metre A m−1

j Electric current density amperes per square metre A m−2

B Magnetic flux density or
magnetic induction tesla T

ρ Electric charge density coulombs per cubic metre C m−3

σ Electric conductivity siemens per metre S m−1

µ Permeability henries per metre H m−1

ε Permittivity farads per metre F m−1

Table 2.2.

Symbol Physical quality Value

c Speed of light in a vacuum 2.997925 × 108 m s−1

µ0 Permeability of a vacuum 4π × 10−7 H m−1

ε0 Permittivity of a vacuum (= µ−1
0 c−2) 8.8541853 × 10−12 F m−1

To the equations we can add

ε = εrε0 (2.8)

µ = µrµ0 (2.9)

ε0 = 1/(µ0c2) (2.10)

where ε0 and µ0 are the permittivity and permeability of free space, respectively.
εr and µr are the relative permittivity and permeability, and c is a constant that
can be identified as the velocity of light in free space. ε0, µ0 and c are important
constants, the values of which are given in table 2.2.

The following analysis is brief and incomplete. For a full, rigorous treatment
of the electromagnetic field equations the reader is referred to Born and Wolf [3].

divD = 0

and, solving forE

∇2E = εµ
∂2E

∂ t2
+ µσ

∂E

∂ t
. (2.11)
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A similar expression holds for H .
First of all we look for a solution of equation (2.11) in the form of a plane-

polarised plane harmonic wave, and we choose the complex form of this wave,
the physical meaning being associated with the real part of the expression.

E = EEE exp[iω(t − x/v)] (2.12)

represents such a wave propagating along the x axis with velocity v. EEE is the
vector amplitude and ω the angular frequency of this wave. The advantage of the
complex form of the wave is that phase changes can be dealt with very readily
by including them in a complex amplitude. If we include a relative phase, ϕ, in
(2.12) then it becomes

E = EEE exp[i{ω(t − x/v)+ ϕ}] = EEE exp(iϕ) exp[iω(t − x/v)] (2.13)

where EEE exp(iϕ) is the complex vector amplitude. The complex scalar amplitude
is given by E exp(iϕ) where E = |EEE|. Equation (2.13), which has phase ϕ relative
to expression (2.12), is simply expression (2.12) with the amplitude replaced by
the complex amplitude.

For equation (2.12) to be a solution of equation (2.11) it is necessary that

ω2/v2 = ω2εµ− iωµσ. (2.14)

In a vacuum we have σ = 0 and v = c, so that from equation (2.14)

c2 = 1/ε0µ0 (2.15)

which is identical to equation (2.10). Multiplying equation (2.14) by
equation (2.15) and dividing through by ω 2, we obtain

c2

v2
= εµ

ε0µ0
− i

µσ

ωε0µ0
,

where c/v is clearly a dimensionless parameter of the medium, which we denote
by N:

N2 = εrµr − i
µrσ

ωε0
. (2.16)

This implies that N is of the form

N = c/v = n − ik. (2.17)

There are two possible values of N from (2.16), but for physical reasons we
choose that which gives a positive value of n. N is known as the complex
refractive index, n as the real part of the refractive index (or often simply as the
refractive index because N is real in an ideal dielectric material) and k is known
as the extinction coefficient.
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From equation (2.16)

n2 − k2 = εrµr (2.18)

2nk = µrσ

ωε0
. (2.19)

Equation (2.12) can now be written

E = E exp[iωt − (2πN/λ)x], (2.20)

where we have introduced the wavelength in free space, λ (= 2πc/ω).
Substituting n − ik for N in equation (2.20) gives

E = E exp[−(2πk/λ)x] exp[iωt − (2πn/λ)x] (2.21)

and the significance of k emerges as being a measure of absorption in the medium.
The distance λ/(2πk) is that in which the amplitude of the wave falls to 1/eof its
original value. The way in which the power carried by the wave falls off will be
considered shortly.

The change in phase produced by a traversal of distance x in the medium
is the same as that produced by a distance nx in a vacuum. Because of this,
nx is known as the optical distance, as distinct from the physical or geometrical
distance. Generally, in thin-film optics one is more interested in optical distances
and optical thicknesses than in geometrical ones.

Equation (2.16) represents a plane-polarised plane wave propagating along
the x axis. For a similar wave propagating in a direction given by direction
coefficient (α, β, γ ) the expression becomes

E = E exp[iωt − (2πN/λ)(αx + βy + γ z)]. (2.22)

This is the simplest type of wave in an absorbing medium. In an assembly of
absorbing thin films, we shall see that we are occasionally forced to adopt a
slightly more complicated expression for the wave.

There are some important relationships for this type of wave which can be
derived from Maxwell’s equations. Let the direction of propagation of the wave
be given by unit vector ŝ where

ŝ = αi+ βj + γk

and where i, j and k are unit vectors along the x, y and z axes, respectively. From
equation (2.22) we have

∂E/∂ t = iωE

and from equations (2.1), (2.5) and (2.6)

curlH = σE + ε∂E/∂ t

= (σ + iωε)E

= i
ωN2

c2µ
E.
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Now

curl =
(
∂

∂x
i+ ∂

∂y
j + ∂

∂z
k

)
×

where × denotes the vector product. But

∂

∂x
= − i

2πN

λ
α = −i

ωN

c
α,

∂

∂y
= − i

ωN

c
β,

∂

∂z
= −i

ωN

c
γ

so that

curlH = −i
ωN

c
(ŝ×H).

Then

−i
ωN

c
(ŝ×H) = i

ωN2

c2µ
E,

i.e.

(ŝ×H) = − N

cµ
E (2.23)

and similarly
N

cµ
(ŝ×E) = H . (2.24)

For this type of wave, therefore,E,H and ŝ are mutually perpendicular and
form a right-handed set. The quantityN/cµ has the dimensions of an admittance
and is known as the characteristic optical admittance of the medium, written y. In
free space it can be readily shown that the optical admittance is given by

Y = (ε0/µ0)
1/2 = 2.6544 × 10−3 S. (2.25)

Now

µ = µrµ0 (2.26)

and at optical frequencies µr is unity so that we can write

y = NY (2.27)

and

H = y(ŝ×E) = NY(ŝ ×E). (2.28)
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2.1.1 The Poynting vector

An important feature of electromagnetic radiation is that it is a form of energy
transport, and it is the energy associated with the wave which is normally
observed. The instantaneous rate of flow of energy across unit area is given by
the Poynting vector

S = E ×H . (2.29)

The direction of the vector is the direction of energy flow.
This expression is nonlinear (E is multiplied by H) and so we cannot use

directly the complex form of the wave, which is not valid for nonlinear operations.
Either the real or the imaginary part of the wave expression should be inserted.
The instantaneous value of the Poynting vector oscillates at twice the frequency
of the wave and it is its mean value which is significant. This is defined as the
irradiance or, in the older systems of units, intensity. In the SI system of units it is
measured in watts per square metre. An unfortunate feature of the SI system,
for our purposes, is that the symbol for irradiance is E. Use of this symbol
would make it very difficult for us to distinguish between irradiance and electric
field. Since both are extremely important in almost everything we do we must be
able to differentiate between them, and so we adopt a nonstandard symbol, I , for
irradiance. For a harmonic wave we find that we can derive a very attractive and
simple expression for the irradiance using the complex form of the wave. This is

I = 1

2
Re(E ×H∗), (2.30)

where ∗ denotes complex conjugate. It should be emphasised that the complex
form must be used in equation (2.30). The irradiance I is written in (2.30) as a
vector quantity, when it has the same direction as the flow of energy of the wave.
The more usual scalar irradiance I is simply the magnitude of I. Since E andH
are perpendicular, equation (2.30) can be written

I = 1

2
Re(E H∗), (2.31)

where E and H are the scalar magnitudes.
It is important to note that the electric and magnetic vectors in

equation (2.30) should be the total resultant fields due to all the waves which
are involved. This is implicit in the derivation of the Poynting vector expression.
We will return to this point when calculating reflectance and transmittance.

For a single, homogeneous, harmonic wave of the form (2.22):

H = y(ŝ×E)

so that

I = Re

(
1

2
yEE∗ŝ

)

= 1

2
nYEE∗ŝ. (2.32)
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Now, from equation (2.22), the magnitude of E is given by

E = E exp[i{ωt − (2π[n − ik]/λ)(αx + βy + γ z)}]
= E exp[−(2πk/λ)(αx + βy + γ z)] exp[i{ωt − (2πn/λ)(αx + βy + γ z)}]

implying

EE∗ = EE∗ exp[−(4πk/λ)(αx + βy + γ z)]

and

I = 1

2
nY
∣∣E∣∣2 exp[−(4πk/λ)(αx + βy + γ z)].

The expression (αx + βy + γ z) is simply the distance along the direction
of propagation, and thus the irradiance drops to 1/e of its initial value in a
distance given by λ/4πk. The inverse of this distance is defined as the absorption
coefficient α, that is

α = 4πk/λ. (2.33)

The absorption coefficient α should not be confused with the direction cosine.
However, ∣∣E∣∣ exp[−(2πk/λ)(αx + βy + γ z)]

is really the amplitude of the wave at the point (x, y, z) so that a much simpler
way of writing the expression for irradiance is

I = 1

2
nY(amplitude)2 (2.34)

or
I ∝ n × (amplitude)2. (2.35)

This expression is a better form than the more usual

I ∝ (amplitude)2. (2.36)

The expression will frequently be used for comparing irradiances, in calculating
reflectance or transmittance, for example, and if the media in which the two waves
are propagating are of different index; errors will occur unless n is included as
above.

2.2 The simple boundary

Thin-film filters usually consist of a number of boundaries between various
homogeneous media and it is the effect which these boundaries will have on an
incident wave which we will wish to calculate. A single boundary is the simplest
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Figure 2.1. Plane wavefront incident on a single surface.

case. First of all we consider absorption-free media, i.e. k = 0. The arrangement
is sketched in figure 2.1. At a boundary, the tangential components of E and
H , that is, the components along the boundary, are continuous across it. In this
case, the boundary is defined by z = 0, and the tangential components must be
continuous for all values of x, y and t .

Let us retain our plane-polarised plane harmonic form for the incident wave;
we can be safe in assuming that this wave will be split into a reflected wave and
a transmitted wave at the boundary, and our objective is the calculation of the
parameters of these waves. Without specifying their exact form for the moment,
we can, however, be certain that they will consist of an amplitude term and a phase
factor. The amplitude terms will not be functions of x, y or r , any variations due
to these being included in the phase factors.

Let the direction cosines of the ŝ vectors of the transmitted and reflected
waves be (αt, βt, γt) and (αr, βr, γr) respectively. We can then write the phase
factors in the form:

Incident wave exp{i[ωit − (2πn0/λi)(x sinϑ0 + zcosϑ0)]}
Reflected wave exp{i[ωrt − (2πn0/λr)(αrx + βry + γrz)]}

Transmitted wave exp{i[ωtt − (2πn1/λt)(αtx + βty + γtz)]}.
The relative phases of these waves are included in the complex amplitudes. For
waves with these phase factors to satisfy the boundary conditions for all x, y, t at
z = 0 implies that the coefficients of these variables must be separately identically
equal:

ω ≡ ωr ≡ ωt

that is, there is no change of frequency in reflection or refraction and hence
no change in free space wavelength either. This implies that the free space
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wavelengths are equal:

λ ≡ λr ≡ λt.

Next

0 ≡ n0βr ≡ n1βt

that is, the directions of the reflected and transmitted or refracted beams are
confined to the plane of incidence. This, in turn, means that the direction cosines
of the reflected and transmitted waves are of the form

α = sinϑ γ = cosϑ. (2.37)

Also

n0 sinϑ0 ≡ n0αr ≡ n1αt

so that if the angles of reflection and refraction are ϑ r and ϑt, respectively, then

ϑ0 = ϑr (2.38)

that is, the angle of reflection equals the angle of incidence, and

n0 sinϑ0 = n1 sinϑt.

The result appears more symmetrical if we replace ϑ t by ϑ1, giving

n0 sinϑ0 = n1 sinϑ1 (2.39)

which is the familiar relationship known as Snell’s law. γ r and γt are then given
either by equation (2.37) or by

α2
r + γ 2

r = 1 and α2
t + γ 2

t = 1. (2.40)

Note that for the reflected beam we must choose the negative root of (2.40) so that
the beam will propagate in the correct direction.

2.2.1 Normal incidence

Let us limit our initial discussion to normal incidence and let the incident wave
be a plane-polarised plane harmonic wave. The coordinate axes are shown in
figure 2.2. The xy plane is the plane of the boundary. The incident wave we can
take as propagating along the z axis with the positive direction of the E vector
along the x axis. Then the positive direction of the HHH vector will be the y axis.
It is clear that the only waves which satisfy the boundary conditions are plane
polarised in the same plane as the incident wave.
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Figure 2.2. Convention defining positive directions of the electric and magnetic vectors
for reflection and transmission at an interface at normal incidence.

A quoted phase difference between two waves travelling in the same
direction is immediately meaningful. A phase difference between two waves
travelling in opposite directions is absolutely meaningless, unless a reference
plane at which the phase difference is measured is first defined. This is simply
because the phase difference between oppositely propagating waves of the same
frequency has a term (±4πns/λ) in it where s is a distance measured along the
direction of propagation. Before proceeding further, therefore, we need to define
the reference point for measurements of relative phase between the oppositely
propagating beams.

Then there is another problem. The waves have electric and magnetic fields
that with the direction of propagation form right-handed sets. Since the direction
of propagation is reversed in the reflected beam, the orientation of electric and
magnetic fields cannot remain the same as that in the incident beam, otherwise
we would no longer have a right-handed set. We need to decide on how we are
going to handle this. Since the electric field is the one that is most important from
the point of view of interaction with matter, we will define our directions with
respect to it.

The matter of phase references and electric field directions are what we
call conventions because we do have complete freedom of choice, and any self-
consistent arrangement is possible. We must simply ensure that once we have
made our choice we adhere to it. A good rule, however, is never to make things
difficult when we can make them easy, and so we will normally choose the rule
that is most convenient and least complicated. We define the positive direction of
E along the x axis for all the beams that are involved. Because of this choice,
the positive direction of the magnetic vector will be along the y axis for the
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incident and transmitted waves, but along the negative direction of the y axis
for the reflected wave.

We are now in a position to apply the boundary conditions. Since we have
already made sure that the phase factors are satisfactory, we have only to consider
the amplitudes, and we will be including any phase changes in these.

(a) Electric vector continuous across the boundary:

Ei + Er = Et. (2.41)

(b) Magnetic vector continuous across the boundary:

Hi −Hr = Ht

where we must use a minus sign because of our convention for positive directions.
The relationship between magnetic and electric field through the characteristic
admittance gives

y0Ei − y0Er = y1Et. (2.42)

This can also be derived using the vector relationship (2.28) and (2.41). We can
eliminate Et to give

y1(Ei + Er) = y0 (Ei − Er),

i.e.
Er

Ei
= y0 − y1

y0 + y1
= n0 − n1

n0 + n1
(2.43)

the second part of the relationship being correct only because at optical
frequencies we can write

y = nY .

Similarly, eliminating Er,

Et

Ei
= 2y0

y0 + y1
= 2n0

n0 + n1
. (2.44)

These quantities are called the amplitude reflection and transmission coefficients
and are denoted by ρ and τ respectively. Thus

ρ = y0 − y1

y0 + y1
= n0 − n1

n0 + n1
(2.45)

τ = 2y0

y0 + y1
= 2n0

n0 + n1
. (2.46)

In this particular case, all y real, these two quantities are real. τ is always a
positive real number, indicating that according to our phase convention there is
no phase shift between the incident and transmitted beams at the interface. The
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behaviour of ρ indicates that there will be no phase shift between the incident and
reflected beams at the interface provided n0 > n1, but that if n0 < n1 there will
be a phase change of π because the value of ρ becomes negative.

We now examine the energy balance at the boundary. Since the boundary
is of zero thickness, it can neither supply energy to nor extract energy from
the various waves. The Poynting vector will therefore be continuous across the
boundary, so that we can write:

net irradiance = Re

[
1

2
(Ei + Er)(y0Ei − y0Er)

∗
]

= Re

[
1

2
Ei(y1Et)

∗
]

[using Re( 1
2E ×H∗) and equations (2.41) and (2.42)]. Now

Er = ρEi and Et = τEi,

i.e.

net irradiance = 1

2
y0EiE

∗
i (1 − ρ2) = 1

2
y0EiE

∗
i (y1/y0)τ

2. (2.47)

Now, (1/2)y0EiE
∗
i is the irradiance of the incident beam I i. We can identify

ρ2(1/2)y0EiE
∗
i = ρ2 Ii as the irradiance of the reflected beam I r and (y1/y0) ×

τ 2(1/2)y0EiE
∗
i = (y1/y0)τ

2 Ii as the irradiance of the transmitted beam I t. We
define the reflectance R as the ratio of the reflected and incident irradiances and
the transmittance T as the ratio of the transmitted and incident irradiances. Then

T = It

Ii
= y1

y0
τ 2 = 4y0y1

(y0 + y1)2
= 4n0n1

(n0 + n1)2

R = Ir

Ii
= ρ2 =

(
y0 − y1

y0 + y1

)2

=
(

n0 − n1

n0 + n1

)2

.

(2.48)

From equation (2.47) we have, using equations (2.48),

(1 − R) = T. (2.49)

Equations (2.47), (2.48) and (2.49) are therefore consistent with our ideas of
splitting the irradiances into incident, reflected and transmitted irradiances which
can be treated as separate waves, the energy flow into the second medium being
simply the difference of the incident and reflected irradiances. Remember that
all this, so far, assumes that there is no absorption. We shall shortly see that the
situation changes slightly when absorption is present.

2.2.2 Oblique incidence

Now let us consider oblique incidence, still retaining our absorption-free media.
For any general direction of the vector amplitude of the incident wave we quickly
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find that the application of the boundary conditions leads us into complicated and
difficult expressions for the vector amplitudes of the reflected and transmitted
waves. Fortunately there are two orientations of the incident wave which lead to
reasonably straightforward calculations: the vector electrical amplitudes aligned
in the plane of incidence (i.e. the xy plane of figure 2.1) and the vector electrical
amplitudes aligned normal to the plane of incidence (i.e. parallel to the y axis in
figure 2.1). In each of these cases, the orientations of the transmitted and reflected
vector amplitudes are the same as for the incident wave. Any incident wave of
arbitrary polarisation can therefore be split into two components having these
simple orientations. The transmitted and reflected components can be calculated
for each orientation separately and then combined to yield the resultant. Since,
therefore, it is necessary to consider two orientations only, they have been given
special names. A wave with the electric vector in the plane of incidence is known
as p-polarised or, sometimes, as TM (for transverse magnetic) and a wave with the
electric vector normal to the plane of incidence as s-polarised or, sometimes, TE

(for transverse electric). The p and s are derived from the German parallel and
senkrecht (perpendicular). Before we can actually proceed to the calculation of
the reflected and transmitted amplitudes, we must choose the various reference
directions of the vectors from which any phase differences will be calculated.
We have, once again, complete freedom of choice, but once we have established
the convention we must adhere to it, just as in the normal incidence case. The
conventions which we will use in this book are illustrated in figure 2.3. They
have been chosen to be compatible with those for normal incidence already
established. In some works, an opposite convention for the p-polarised reflected
beam has been adopted, but this leads to an incompatibility with results derived
for normal incidence, and we prefer to avoid this situation. (Note that for reasons
connected with consistency of reference directions for elliptically polarised light,
the normal convention in ellipsometric calculations is opposite to that of figure 2.3
for reflected p-polarised light. When ellipsometric parameters are compared with
the results of the expressions we shall use, it will usually be necessary to introduce
a shift of 180◦ in the p-polarised reflected results.)

We can now apply the boundary conditions. Since we have already ensured
that the phase factors will be correct, we need only consider the vector amplitudes.

2.2.2.1 p-polarised light

(a) Electric component parallel to the boundary, continuous across it:

Ei cosϑ0 + Er cosϑ0 = Et cosϑ1. (2.50)

(b) Magnetic component parallel to the boundary and continuous across it. Here
we need to calculate the magnetic vector amplitudes, and we can do this either by
using equation (2.28) to operate on equation (2.50) directly, or, since the magnetic
vectors are already parallel to the boundary we can use figure 2.3 and then convert,



The simple boundary 25

Figure 2.3. (a) Convention defining the positive directions of the electric and magnetic
vectors for p-polarised light (TM waves). (b) Convention defining the positive directions of
the electric and magnetic vectors for s-polarised light (TE waves).

sinceH = yE :
y0Ei − y0Er = y1Et. (2.51)

At first sight it seems logical just to eliminate first Et and then Er from these two
equations to obtain Er/Ei and Et/Ei

Er

Ei
= y0 cosϑ1 − y1 cosϑ0

y0 cosϑ1 + y1 cosϑ0

Et

Ei
= 2y0 cosϑ0

y0 cosϑ1 + y1 cosϑ0

(2.52)

and then simply to set

R =
(
Er

Ei

)2

and T = y1

y0

(
Et

Ei

)2

but when we calculate the expressions which result, we find that R + T �= 1. In
fact, there is no mistake in the calculations. We have computed the irradiances
measured along the direction of propagation of the waves and the transmitted
wave is inclined at an angle which differs from that of the incident wave. This
leaves us with the problem that to adopt these definitions will involve the rejection
of the (R + T = 1) rule.

We could correct this situation by modifying the definition of T to include
this angular dependence, but an alternative, preferable and generally adopted
approach is to use the components of the energy flows which are normal to
the boundary. The E and H vectors that are involved in these calculations are
then parallel to the boundary. Since these are those that enter directly into the
boundary it seems appropriate to concentrate on them when we are dealing with
the amplitudes of the waves.
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The thin-film approach to all this, then, is to use the components of E
and H parallel to the boundary, what are called the tangential components,
in the expressions ρ and τ that involve amplitudes. Note that the normal
approach in other areas of optics is to use the full components of E and H
in amplitude expressions but to use the components of irradiance in reflectance
and transmittance. The amplitude coefficients are then known as the Fresnel
coefficients. The thin-film coefficients are not the Fresnel coefficients except at
normal incidence, although the only coefficient that actually has a different value
is the amplitude transmission coefficient for p-polarisation.

The tangential components of E and H , that is, the components parallel to
the boundary, have already been calculated for use in equations (2.50) and (2.51).
However, it is convenient to introduce special symbols for them: E and H .

Then we can write

Ei = Ei cosϑ0 Hi = Hi = y0Ei = y0

cosϑ0
Ei (2.53)

Er = Er cosϑ0 Hr = y0

cosϑ0
Er (2.54)

Et = Et cosϑ1 Ht = y1

cosϑ1
Et. (2.55)

The orientations of these vectors are exactly the same as for normally incident
light.

Equations (2.50) and (2.51) can then be written as follows.
(a) Electric field parallel to the boundary:

Ei + Er = Et

(b) Magnetic field parallel to the boundary:

y0

cosϑ0
Hi − y0

cosϑ0
Hr = y1

cosϑ1
Ht

giving us, by a process exactly similar to that we have already used for normal
incidence,

ρp = Er

Ei
=
(

y0

cosϑ0
− y1

cosϑ1

)/(
y0

cosϑ0
+ y1

cosϑ1

)
(2.56)

τp = Et

Ei
=
(

2y0

cosϑ0

)/(
y0

cosϑ0
+ y1

cosϑ1

)
(2.57)

Rp =
[(

y0

cosϑ0
− y1

cosϑ1

)/(
y0

cosϑ0
+ y1

cosϑ1

)]2

(2.58)

Tp =
(

4y0y1

cosϑ0 cosϑ1

)/(
y0

cosϑ0
+ y1

cosϑ1

)2

, (2.59)
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where y0 = n0Y and y1 = n1Y and the (R + T = 1) rule is retained. The suffix
p has been used in the above expressions to denote p-polarisation.

It should be noted that the expression for τp is now different from that
in equation (2.52), the form of the Fresnel amplitude transmission coefficient.
Fortunately, the reflection coefficients in equations (2.52) and (2.58) are identical,
and since much more use is made of reflection coefficients confusion is rare.

2.2.2.2 s-polarised light

In the case of s-polarisation the amplitudes of the components of the waves
parallel to the boundary are

Ei = Ei Hi = Hi cosϑ0 = y0 cosϑ0Ei

Er = Er Hr = Hr cosϑ0 = y0 cosϑ0Er

Et = Et Ht = y1 cosϑ1Et

and here we have again an orientation of the tangential components exactly as for
normally incident light, and so a similar analysis leads to

ρs = Er

Ei
= (y0 cosϑ0 − y1 cosϑ1)/(y0 cosϑ0 + y1 cosϑ1) (2.60)

τs = Et

Ei
= (2y0 cosϑ0)/(y0 cosϑ0 + y1 cosϑ1) (2.61)

Rs = [(y0 cosϑ0 − y1 cosϑ1)/(y0 cosϑ0 + y1 cosϑ1)]2 (2.62)

Ts = (4y0 cosϑ0y1 cosϑ1)/(y0 cosϑ0 + y1 cosϑ1)
2 (2.63)

where once again y0 = n0Y and y1 = n1Y and the (R + T = 1) rule is retained.
The suffix s has been used in the above expressions to denote s-polarisation.

2.2.3 The optical admittance for oblique incidence

The expressions which we have derived so far have been in their traditional
form (except for the use of the tangential components rather than the full vector
amplitudes) and they involve the characteristic admittances of the various media,
or their refractive indices together with the admittance of free space, Y . However,
the notation is becoming increasingly cumbersome and will appear even more so
when we consider the behaviour of thin films.

Equation (2.28) gives H = y(ŝ × E) where y = NY is the optical
admittance. We have found it convenient to deal with E and H, the components of
E andH parallel to the boundary, and so we introduce a tilted optical admittance
η which connects E and H as

η = H
E
. (2.64)
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At normal incidence η = y = nY while at oblique incidence

ηp = y

cosϑ
= nY

cosϑ
(2.65)

ηs = y cosϑ = nY cosϑ (2.66)

where the ϑ and the y in (2.65) and (2.66) are those appropriate to the particular
medium. In particular, Snell’s law, equation (2.39), must be used to calculate ϑ .
Then, in all cases, we can write

ρ =
(
η0 − η1

η0 + η1

)
τ =

(
2η0

η0 + η1

)
(2.67)

R =
(
η0 − η1

η0 + η1

)2

T = 4η0η1

(η0 + η1)2
. (2.68)

These expressions can be used to compute the variation of reflectance of
simple boundaries between extended media. Examples are shown in figure 2.4
of the variation of reflectance with angle of incidence. In this case, there is no
absorption in the material and it can be seen that the reflectance for p-polarised
light (TM) falls to zero at a definite angle. This particular angle is known as the
Brewster angle and is of some importance. There are many applications where the
windows of a cell must have close to zero reflection loss. When it can be arranged
that the light will be linearly polarised a plate tilted at the Brewster angle will be
a good solution. The light that is reflected at the Brewster angle is also linearly
polarised with electric vector normal to the plane of incidence. This affords a way
of identifying the absolute direction of polarisers and analysers—very difficult in
any other way.

The expression for the Brewster angle can be derived as follows. For the
p-reflectance to be zero, from equation (2.58)

y0

cosϑ0
= n0Y

cosϑ0
= y1

cosϑ1
= n1Y

cosϑ1
.

Snell’s law gives another relationship between ϑ0 and ϑ1:

n0 sinϑ0 = n1 sinϑ1.

Eliminating ϑ1 from these two equations gives an expression for ϑ0

tanϑ0 = n1/n0. (2.69)

Note that this derivation depends on the relationship y = nY valid at optical
frequencies.

Nomograms which connect the angle of incidence ϑ referred to an incident
medium of unity refractive index, the refractive index of a dielectric film and the
optical admittance of the film at ϑ are reproduced in figure 2.5.
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Figure 2.4. Variation of reflectance with angle of incidence for various values of refractive
index. p-Reflectance (TM) to be zero, from equation (2.37).

2.2.4 Normal incidence in absorbing media

We must now examine the modifications necessary in our results in the presence
of absorption. First we consider the case of normal incidence and write

N0 = n0 − ik0

N1 = n1 − ik1

y0 = N0Y = (n0 − ik0)Y

y1 = N1Y = (n1 − ik1)Y .

The analysis follows that for absorption-free media. The boundary conditions are,
as before:
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Figure 2.5. (a) Nomogram giving variation of optical admittance with angle of incidence
for s-polarised light (TE waves). (b) Nomogram giving variation of optical admittance with
angle of incidence for p-polarised light (TM waves).

(a) Electric vector continuous across the boundary:

Ei + Er = Et.

(b) Magnetic vector continuous across the boundary:

y0Ei − y0Er = y1Et

and eliminating first Et and then Er we obtain the expressions for the amplitude
coefficients

ρ = Er

Ei
= y0 − y1

y0 + y1
= (n0 − ik0)Y − (n1 − ik1)Y

(n0 − ik0)Y + (n1 − ik1)Y

= (n0 − n1)− i(k0 − k1)

(n0 + n1)− i(k0 + k1)
(2.70)

τ = Et

Ei
= 2y0

y0 − y1
= 2(n0 − ik0)Y

(n0 − ik0)Y + (n1 − ik1)Y

= 2(n0 − ik0)

(n0 + n1)− i(k0 + k1)
. (2.71)

Our troubles begin when we try to extend this to reflectance and transmittance. We
remain at normal incidence. Following the method for the absorption-free case,
we compute the Poynting vector at the boundary in each medium and equate the
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two values obtained. In the incident medium the resultant electric and magnetic
fields are

Ei + Er = Ei(1 + ρ)

and

Hi −Hr = y0(1 − ρ)Ei,

respectively, where we have used the notation for tangential components, and
in the second medium the fields are τE i and y1τEi respectively. Then the net
irradiance on either side of the boundary is

Medium 0: I = Re

{
1

2
[Ei(1 + ρ)][y∗

0 (1 − ρ∗)E∗
i ]

}

Medium 1: I = Re

{
1

2
[τEi][y∗

1τ
∗E∗

i ]

}
.

We then equate these two values which gives, at the boundary,

Re

[
1

2
y∗

0EiE
∗
i (1 + ρ − ρ∗ − ρρ∗)

]
= 1

2
Re(y1)ττ

∗EiE
∗
i

1

2
Re(y∗

0 )EiE
∗
i − 1

2
Re(y∗

0 )ρρ
∗EiE

∗
i + 1

2
Re[y∗

0 (ρ − ρ∗)]EiE
∗
i

= 1

2
Re(y1)ττ

∗EiE
∗
i . (2.72)

We can replace the different parts of the expression (2.72) with their normal
interpretations to give

Ii − RIi + 1

2
Re[y∗

0 (ρ − ρ∗)]EiE
∗
i = T Ii, (2.73)

where (ρ − ρ∗) is imaginary. This implies that if y0 is real the third term in
(2.73) is zero. The other terms then make up the incident, the reflected and the
transmitted irradiances, and these balance. If y0 is complex then its imaginary part
will combine with the imaginary (ρ − ρ ∗) to produce a real result that will imply
that T + R �= 1. The irradiances involved in the analysis are those actually at
the boundary, which is of zero thickness, and it is impossible that it should either
remove or donate energy to the waves. Our assumption that the irradiances can be
divided into separate incident, reflected and transmitted irradiances is therefore
incorrect. The source of the difficulty is a coupling between the incident and
reflected fields which occurs only in an absorbing medium and which must be
taken into account when computing energy transport. The expressions for the
amplitude coefficients are perfectly correct. The explanation has been given by a
number of people. The account by Berning [4] is probably the most accessible.
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The extra term is of the order of (k2/n2). For any reasonable experiment
to be carried out the incident medium must be sufficiently free of absorption for
the necessary comparative measurements to be performed with acceptably small
errors. Although we will certainly be dealing with absorbing media in thin-film
assemblies, our incident media will never be heavily absorbing and it will not be
a serious lack of generality if we assume that our incident media are absorption-
free. Since our expressions for the amplitude coefficients are valid, then any
calculations of amplitudes in absorbing media will be correct. We simply have
to ensure that calculations of reflectances are carried out in a transparent medium.
With this restriction, then, we have

R =
(

y0 − y1

y0 + y1

)(
y0 − y1

y0 + y1

)∗
(2.74)

T = 4y0Re(y1)

(y0 + y1)(y0 + y1)∗
(2.75)

where y0 is real.
We have avoided the problem connected with the definition of reflectance in

a medium with complex y0 simply by not defining it unless the incident medium
is sufficiently free of either gain or absorption. Without a definition of reflectance,
however, we have trouble with the meaning of antireflection and there are cases
such as the rear surface of an absorbing substrate where an antireflection coating
would be relevant. We do need to deal with this problem and although we have not
yet discussed antireflection coatings it is most convenient to include the discussion
here where we already have the basis for the theory. The discussion was originally
given by Macleod [5].

The usual purpose of an antireflection coating is the reduction of reflectance,
but frequently the objective of the reflectance reduction is the corresponding
increase in transmittance. Although an absorbing or amplifying medium will
rarely present us with a problem in terms of a reflectance measurement, we
must occasionally treat a slab of such material on both sides to increase overall
transmittance. In this context, therefore, we define an antireflection coating as one
that increases transmittance and in the ideal case maximises it. But to accomplish
this we need to define what we mean by transmittance.

We have no problem with the measurement of irradiance at the emergent side
of our system, even if the emergent medium is absorbing. The incident irradiance
is more difficult. This we can define as the irradiance if the transmitting structure
were removed and replaced by an infinite extent of incident medium material.
Then the transmittance will simply be the ratio of these two values, i.e.

Iinc = 1

2
Re(y0)EiE

∗
i ,

and then

T =
1
2 Re(y1)EtE

∗
t

1
2 Re(y0)EiE

∗
i

.
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This is completely consistent with (2.73), that is, with a slight manipulation,

T = 1 − ρρ∗ + Re[y∗
0 (ρ − ρ∗)]
Re(y0)

. (2.76)

An alternative form uses

Et = 2y0

(y0 + y1)
Ei

so that

T = 4y0y∗
0 Re(y1)

Re(y0) · [(y0 + y1)(y0 + y1)∗]
. (2.77)

Now let the surface be coated with a dielectric system so that it presents the
admittance Y. Then, since, in the absence of absorption, the net irradiance
entering the thin-film system must also be the emergent irradiance,

T = 4y0y∗
0 Re(Y)

Re(y0) · [(y0 + Y)(y0 + Y)∗]
. (2.78)

Let Y = α + iβ then

T = 4α(n2
0 + k2

0)

n0[(n0 + α)2 + (k0 − β)2]

and T can readily be shown to be a maximum when

Y = α + iβ = n0 + ik0 = (n0 − ik0)
∗. (2.79)

The matching admittance should therefore be the complex conjugateof the
incident admittance. For this perfect matching the transmittance becomes

T =
(

1 + k2
0

n2
0

)

and this is greater than unity. This is not a mistake but rather a consequence
of the definition of transmittance. Irradiance falls by a factor of roughly 4πk 0
in a distance of one wavelength, rather larger than any normal value of k 2

0/n2
0,

so that the effect is quite small. It originates in a curious pattern in the otherwise
exponentially falling irradiance. It is caused by the presence of the interface and is
a cyclic fluctuation in the rate of irradiance reduction. Note that the transmittance
is unity if the coating is designed to match n0 − ik0 rather than its complex
conjugate.

A dielectric coating that transforms an admittance of y1 to an admittance of
y∗

0 will also, when reversed, exactly transform an admittance of y0 to y∗
1 . This

is dealt with in more detail later when induced transmission filters are discussed.
Thus, the optimum coating to give highest transmittance will be the same in both
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directions. This implies that an absorbing substrate in identical dielectric incident
and emergent media should have exactly similar antireflection coatings on both
front and rear surfaces.

Although also a little premature, it is convenient to mention here that the
calculation of the properties of a coated slice of material involves multiple beams
that are combined either coherently or incoherently. The coherent case is simply
the usual interference calculation and we will return to that when we deal with
induced transmission filters. We will see then that as the absorbing film becomes
thicker, the matching rules for an induced transmission filter tend to (2.79). The
incoherent case is at first sight less obvious. An estimate of the reflected beam
is necessary for a multiple beam calculation. Such calculations imply that the
absorption is not sufficiently high to eliminate completely a beam that suffers two
traversals of the system. This implies, in turn, a negligible absorption in the space
of one wavelength, in other words 4πk0 is very small. The upper limit on the
size of the effect under discussion is k2

0/n2
0 and this will be still less significant.

For an incoherent calculation to be appropriate there must be a jumbling of phase
that washes out its effect. We can suppose for this discussion that the jumbling
comes from a variation in the position of the reflecting surface over the aperture.
The variation of the extra term in (2.79) is locked for its phase to the reflecting
surface and so at any exactly plane surface that may be chosen as a reference, an
average of the extra term is appropriate and this will be zero because ρ will have
a phase that varies throughout the four quadrants. For multiple beam calculations,
therefore, the reflectance can be taken simply as ρρ ∗. Where k2

0/n2
0 is significant,

the absorption will be very high and certainly enough for the influence of the
multiple beams to be automatically negligible.

2.2.5 Oblique incidence in absorbing media

Remembering what we said in the previous section, we limit this to a transparent
incident medium and an absorbing second, or emergent, medium. Our first aim
must be to ensure that the phase factors are consistent. Taking advantage of some
of the earlier results, we can write the phase factors as:

incident: exp{i[ωt − (2πn0/λ)(x sinϑ0 + zcosϑ0)]}
reflected: exp{i[ωt − (2πn0/λ)(x sinϑ0 − zcosϑ0)]}
transmitted : exp{i[ωt − (2π{n1 − ik1}/λ)(αx + γ z)]},

where α and γ in the transmitted phase factors are the only unknowns. The phase
factors must be identically equal for all x and t with z = 0. This implies

α = n0 sinϑ0

(n1 − ik1)

and, since α2 + γ 2 = 1

γ = (1 − α2)1/2.
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There are two solutions to this equation and we must decide which is to be
adopted. We note that it is strictly (n1 − ik1)α and (n1 − ik1)γ that are required:

(n1 − ik1)γ = [(n1 − ik1)
2 − n2

0 sin2 ϑ0]1/2

= [n2
1 − k2

1 − n2
0 sin2 ϑ0 − i2n1k1]1/2.

The quantity within the square root is in either the third or fourth quadrant and so
the square roots are in the second quadrant (of the form −a+ ib) and in the fourth
quadrant (of the form a− ib). If we consider what happens when these values are
substituted into the phase factors, we see that the fourth quadrant solution must
be correct because this leads to an exponential fall-off with z amplitude, together
with a change in phase of the correct sense. The second quadrant solution would
lead to an increase with z and a change in phase of the incorrect sense, which
would imply a wave travelling in the opposite direction. The fourth quadrant
solution is also consistent with the solution for the absorption-free case. The
transmitted phase factor is therefore of the form

exp{i[ωt − (2πn0 sinϑ0x/λ)− (2π/λ)(a − ib)z]}
= exp(−2πbz/λ) exp{i[ωt − (2πn0 sinϑ0x/λ)− (2πaz/λ)]}

where

(a − ib) = [n2
1 − k2

1 − n2
0 sin2 ϑ0 − i2n1k1]1/2.

A wave which possesses such a phase factor is known as inhomogeneous.
The exponential fall-off in amplitude is along the z axis, while the propagation
direction in terms of phase is determined by the direction cosines, which can be
extracted from

(2πn0 sinϑ0x/λ)+ (2πaz/λ).

The existence of such waves is another good reason for our choosing to consider
the components of the fields parallel to the boundary and the flow of energy
normal to the boundary.

We should note at this stage that provided we include the possibility of
complex angles, the formulation of the absorption-free case applies equally well
to absorbing media and we can write

(n1 − ik1) sinϑ1 = n0 sinϑ0

α = sinϑ1

γ = cosϑ1

(a − ib) = (n1 − ik1) cosϑ1.

The calculation of amplitudes follows the same pattern as before. However, we
have not previously examined the implications of an inhomogeneous wave. Our
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main concern is the calculation of the tilted admittance connected with such a
wave. Since the x, y and t variations of the wave are contained in the phase
factor, we can write

curl ≡
(
∂

∂x
i+ ∂

∂x
j + ∂

∂x
k

)
×

≡
(

−i
2πN

λ
αi− i

2πN

λ
γk

)
×

and

∂

∂ t
≡ iω,

where the k is a unit vector in the z direction and should not be confused with the
extinction coefficient k.

For p-waves the H vector is parallel to the boundary in the y direction and
so H = Hyj. The component of E parallel to the boundary will then be in the x
direction, Exi. We follow the analysis leading up to equation (2.23) and as before

curlH = σE + ε
∂E

∂ t
= (σ + iωε)E

= iωN2

c2µ
E.

Now the tangential component of curl H is in the x direction so that

−i
2πN

λ
γ (k × j)Hy = i

ωN2

c2µ
Exi.

But

−(k × j) = i

so that

ηp = Hy

Ex
= ωNλ

2πc2µγ
= N

cµγ

= NY

γ
= y

γ
.

For the s-waves we use

curlE = −∂B

∂ t
= −µ∂H

∂ t
.
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E is now along the y axis and a similar analysis to that for p-waves yields

ηs = Hx

Ey
= NYγ = yγ.

Now γ can be identified as cosϑ , provided that ϑ is permitted to be complex, and
so

ηp = y/ cosϑ

(2.80)

ηs = y cosϑ.

Thus the amplitude and irradiance coefficients become as before

ρ = η0 − η1

η0 + η1
(2.81)

τ = 2η0

η0 + η1
(2.82)

R =
(
η0 − η1

η0 + η1

)(
η0 − η1

η0 + η1

)∗
(2.83)

T = 4η0Re(η1)

(η0 + η1)(η0 + η1)∗
. (2.84)

These expressions are valid for absorption-free media as well.

2.3 The reflectance of a thin film

A simple extension of the above analysis occurs in the case of a thin, plane,
parallel film of material covering the surface of a substrate. The presence of two
(or more) interfaces means that a number of beams will be produced by successive
reflections and the properties of the film will be determined by the summation of
these beams. We say that the film is thin when interference effects can be detected
in the reflected or transmitted light, that is, when the path difference between the
beams is less than the coherence length of the light, and thick when the path
difference is greater than the coherence length. The same film can appear thin
or thick depending entirely on the illumination conditions. The thick case can
be shown to be identical with the thin case integrated over a sufficiently wide
wavelength range or a sufficiently large range of angles of incidence. Normally,
we will find that the films on the substrates can be treated as thin while the
substrates supporting the films can be considered thick. Thick films and substrates
will be considered towards the end of this chapter. Here we concentrate on the
thin case.

The arrangement is illustrated in figure 2.6. At this stage it is convenient to
introduce a new notation. We denote waves in the direction of incidence by the
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Figure 2.6. Plane wave incident on a thin film.

symbol + (that is, positive-going) and waves in the opposite direction by − (that
is, negative-going).

The interface between the film and the substrate, denoted by the symbol b,
can be treated in exactly the same way as the simple boundary already discussed.
We consider the tangential components of the fields. There is no negative-going
wave in the substrate and the waves in the film can be summed into one resultant
positive-going wave and one resultant negative-going wave. At this interface,
then, the tangential components of E and H are

Eb = E+
1b + E−

1b

Hb = η1E+
1b − η1E−

1b,

where we are neglecting the common phase factors and where E b and Hb
represent the resultants. Hence

E+
1b = 1

2
(Hb/η1 + Eb) (2.85)

E−
1b = 1

2
(−Hb/η1 + Eb) (2.86)

H+
1b = η1E+

1b = 1

2
(Hb + η1Eb) (2.87)

H−
1b = − η1E−

1b = 1

2
(Hb − η1Eb). (2.88)

The fields at the other interface a at the same instant and at a point with identical
x and y coordinates can be determined by altering the phase factors of the waves
to allow for a shift in the z coordinate from 0 to −d. The phase factor of the
positive-going wave will be multiplied by exp(iδ) where

δ = 2πN1d cosϑ1/λ

and ϑ1 may be complex, while the negative-going phase factor will be multiplied
by exp(−iδ). We imply that this is a valid procedure when we say that the film
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is thin. The values of E and H at the interface are now, using equations (2.85) to
(2.88),

E+
1a = E+

1beiδ = 1

2
(Hb/η1 + Eb)e

iδ

E−
1a = E−

1be−iδ = 1

2
(−Hb/η1 + Eb)e

−iδ

H+
1a = H+

1beiδ = 1

2
(Hb + η1Eb)e

iδ

H−
1a = H−

1be−iδ = 1

2
(Hb − η1Eb)e

−iδ

so that

Ea = E+
1a + E−

1a

= Eb

(
eiδ + e−iδ

2

)
+ Hb

(
eiδ − e−iδ

2η1

)

= Eb cos δ + Hb
i sin δ

η1

Ha = H+
1a + H−

1a

= Ebη1

(
eiδ − e−iδ

2

)
+ Hb

(
eiδ + e−iδ

2

)
= Ebiη1 sin δ + Hb cos δ.

This can be written in matrix notation as[
Ea
Ha

]
=
[

cos δ (i sin δ)/η1
iη1 sin δ cos δ

] [
Eb
Hb

]
. (2.89)

Since the tangential components of E and H are continuous across a boundary,
and since there is only a positive-going wave in the substrate, this relationship
connects the tangential components of E and H at the incident interface with
the tangential components of E and H which are transmitted through the final
interface. The 2 × 2 matrix on the right-hand side of equation (2.89) is known as
the characteristic matrix of the thin film.

We define the input optical admittance of the assembly by analogy with
equation (2.64) as

Y = Ha/Ea (2.90)

when the problem becomes merely that of finding the reflectance of a simple
interface between an incident medium of admittance η0 and a medium of
admittance Y, i.e.

ρ = η0 − Y

η0 + Y
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Figure 2.7. Notation for two films on a surface.

(2.91)

R =
(
η0 − Y

η0 + Y

)(
η0 − Y

η0 + Y

)∗
.

We can normalise equation (2.89) by dividing through by E b to give[
Ea/Eb
Ha/Eb

]
=
[

B
C

]
=
[

cos δ (i sin δ)/η1
iη1 sin δ cos δ

] [
1
η2

]
(2.92)

and B and C, the normalised electric and magnetic fields at the front interface,
are the quantities from which we will be extracting the properties of the thin-film
system. Clearly, from (2.90) and (2.92), we can write

Y = Ha

Ea
= C

B
= η2 cos δ + iη1 sin δ

cos δ + i(η2/η1) sin δ
(2.93)

and from (2.93) and (2.91) we can calculate the reflectance.[
B
C

]

is known as the characteristic matrix of the assembly.

2.4 The reflectance of an assembly of thin films

Let another film be added to the single film of the previous section so that the final
interface is now denoted by c, as shown in figure 2.7. The characteristic matrix of
the film nearest the substrate is[

cos δ2 (i sin δ2)/η2
iη2 sin δ2 cos δ2

]
(2.94)

and from equation (2.89)[
Eb
Hb

]
=
[

cos δ2 (i sin δ2)/η2
iη2 sin δ2 cos δ2

] [
Ec
Hc

]
.
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We can apply equation (2.89) again to give the parameters at interface a, i.e.[
Ea
Ha

]
=
[

cos δ1 (i sin δ1)/η1
iη1 sin δ1 cos δ1

] [
cos δ2 (i sin δ2)/η2

iη2 sin δ2 cos δ2

] [
Ec
Hc

]

and the characteristic matrix of the assembly, by analogy with equation (2.92) is,[
B
C

]
=
[

cos δ1 (i sin δ1)/η1
iη1 sin δ1 cos δ1

] [
cos δ2 (i sin δ2)/η2

iη2 sin δ2 cos δ2

] [
1
η3

]
.

Y is, as before, C/B, and the amplitude reflection coefficient and the reflectance
are, from (2.91),

ρ = η0 − Y

η0 + Y
(2.95)

R =
(
η0 − Y

η0 + Y

)(
η0 − Y

η0 + Y

)∗
.

This result can be immediately extended to the general case of an assembly
of q layers, when the characteristic matrix is simply the product of the individual
matrices taken in the correct order, i.e.

[
B
C

]
=
{ q∏

r=1

[
cos δr (i sin δr )/ηr

iηr sin δr cos δr

]}[
1
ηm

]
, (2.96)

where

δr = 2πNr dr cosϑr

λ

ηr = YNr cosϑr for s-polarisation (TE)

ηr = YNr / cosϑr for p-polarisation (TM)

and where we have now used the suffix m to denote the substrate or emergent
medium

ηm = YNm cosϑm for s-polarisation (TE)

ηm = YNm/ cosϑm for p-polarisation (TM).

If ϑ0, the angle of incidence, is given, the values of ϑ r can be found from Snell’s
law, i.e.

N0 sinϑ0 = Nr sinϑr = Nm sinϑm. (2.97)

The expression (2.96) is of prime importance in optical thin-film work and
forms the basis of almost all calculations.
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A useful property of the characteristic matrix of a thin film is that the
determinant is unity. This means that the determinant of the product of any
number of these matrices is also unity.

It avoids difficulties over signs and quadrants if, in the case of absorbing
media, the arrangement used for computing phase thicknesses and admittances is:

δr = (2π/λ)dr (n
2
r − k2

r − n2
0 sin2 ϑ0 − 2inr kr )

1/2, (2.98)

the correct solution being in the fourth quadrant. Then

ηr s = Y(n2
r − k2

r − n2
0 sin2 ϑ0 − 2inr kr )

1/2 (2.99)

also in the fourth quadrant, and

ηr p = y2
r

ηr s
= Y2(nr − ikr )

2

ηr s
. (2.100)

It is useful to examine the phase shift associated with the reflected beam. Let
Y = a + ib. Then with η0 real

ρ = η0 − a − ib

η0 + a + ib

= (η2
0 − a2 − b2)− i(2bη0)

(η0 + a)2 + b2
,

i.e.

tanϕ = (−2bη0)

(η2
0 − a2 − b2)

, (2.101)

where ϕ is the phase shift. This must be interpreted, of course, on the basis of
the sign convention we have already established in figure 2.3. It is important
to preserve the signs of the numerator and denominator separately as shown,
otherwise the quadrant cannot be uniquely specified. The rule is simple. It is
the quadrant in which the vector associated with ρ lies and the following scheme
can be derived by treating the denominator as the x coordinate and the numerator
as the y coordinate.

Numerator + + − −
Denominator + − + −
Quadrant 1st 2nd 4th 3rd

Note that the reference surface for the calculation of phase shift on reflection
is the front surface of the multilayer.
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2.5 Reflectance, transmittance and absorptance

Sufficient information is included in equation (2.96) to allow the transmittance
and absorptance of a thin-film assembly to be calculated. For this to have a
physical meaning, as we have already seen, the incident medium should be
transparent, that is, η0 must be real. The substrate need not be transparent, but
the transmittance calculated will be the transmittance into, rather than through,
the substrate.

First of all, we calculate the net irradiance at the exit side of the assembly,
which we take as the kth interface. This is given by

Ik = 1

2
Re(EkH∗

k),

where, once again, we are dealing with the component of irradiance normal to the
interfaces.

Ik = 1

2
Re(Ekη

∗
mE∗

k)

(2.102)

= 1

2
Re(η∗

m)EkE∗
k.

If the characteristic matrix of the assembly is[
B
C

]

then the net irradiance at the entrance to the assembly is

Ia = 1

2
Re(BC∗)EkE∗

k. (2.103)

Let the incident irradiance be denoted by I i, then equation (2.103) represents the
irradiance actually entering the assembly, which is (1 − R)I i:

(1 − R)I i = 1

2
Re(BC∗)EkE∗

k,

i.e.

Ii = Re(BC∗)EkE∗
k

2(1 − R)
.

Equation (2.102) represents the irradiance leaving the assembly and entering the
substrate and so the transmittance T is

T = Ik

Ii
= Re(ηm)(1 − R)

Re(BC∗)
. (2.104)
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The absorptance A in the multilayer is connected with R and T by the relationship

1 = R + T + A

so that

A = 1 − R − T = (1 − R)

(
1 − Re(ηm)

Re(BC∗)

)
. (2.105)

In the absence of absorption in any of the layers it can readily be shown that the
above expressions are consistent with A = 0 and T + R = 1, for the individual
film matrices will have determinants of unity and the product of any number of
these matrices will also have a determinant of unity. The product of the matrices
can be expressed as [

α iβ
iγ δ

]

where αδ+γβ = 1 and, because there is no absorption, α, β, γ and δ are all real.[
B
C

]
=
[
α iβ
iγ δ

] [
1
ηm

]
=
[
α + iβηm

δηm + iγ

]

Re(BC∗) = Re[(α + iβηm)(δηm − iγ )] = (αδ + γβ)Re(ηm)

= Re(ηm)

and the result follows.
We can manipulate equations (2.104) and (2.105) into slightly better forms.

From equation (2.91)

R =
(
η0 B − C

η0 B + C

)(
η0 B − C

η0 B + C

)∗
(2.106)

so that

(1 − R) = 2η0(BC∗ + B∗C)

(η0 B + C)(η0 B + C)∗
. (2.107)

Inserting this result into equation (2.104) we obtain

T = 4η0Re(ηm)

(η0 B + C)(η0 B + C)∗
(2.108)

and in equation (2.105)

A = 4η0Re(BC∗ − ηm)

(η0 B + C)(η0 B + C)∗
. (2.109)

Equations (2.106), (2.108) and (2.109) are the most useful forms of the
expressions for R, T and A.
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An important quantity which we shall discuss in a later section of this chapter
is T/(1 − R), known as the potential transmittance ψ . From equation (2.104)

ψ = T

(1 − R)
= Re(ηm)

Re(BC∗)
. (2.110)

The phase change on reflection (equation (2.101)) can also be put in a form
compatible with equations (2.106) to (2.109).

ϕ = arctan

(
Im[ηm(BC∗ − C B∗)]
(η2

mB B∗ − CC∗)

)
. (2.111)

The quadrant of ϕ is given by the same scheme of signs of numerator and
denominator as equation (2.101). The phase change on reflection is measured
at the front surface of the multilayer.

Phase shift on transmission is sometimes important. This can be obtained
in a way similar to the phase shift on reflection. We denote the phase shift by
ζ and we define it as the difference in phase between the resultant transmitted
wave as it enters the emergent medium and the incident wave exactly at the front
surface, that is as it enters the multilayer. The electric field amplitude at the
emergent surface has been normalised to unity and so the phase may be taken as
zero. Then we simply have to find the expression, which will involve B and C,
for the incident amplitude. These are the normalised total tangential electric and
magnetic fields. So we can write

Ei + Er = B

η0Ei − η0Er = C.

Then we eliminate Er to give

Ei = 1

2

(
B + C

η0

)

and the amplitude transmission coefficient as

τ = 2η0

(η0 B + C)
= 2η0(η0 B + C)∗

(η0 B + C)(η0 B + C)∗

so that

ζ = arctan

[−Im(η0 B + C)

Re(η0 B + C)

]
. (2.112)

Again it is important to keep the signs of the numerator and the denominator
separate. The quadrant is then given by the same arrangement of signs as
equation (2.101).
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2.6 Units

We have been using the International System of Units (SI) in the work so far.
In this system y, η and Y are measured in siemens. Much thin-film literature has
been written in Gaussian units. In Gaussian units, Y , the admittance of free space,
is unity and so, since y = NY , y (the optical admittance) and N (the refractive
index) are numerically equal at normal incidence, although N is a number without
units. The position is different in SI units, where Y is 2.6544×10 −3 S. We could,
if we choose, measure y and η in units of Y siemens, which we can call free
space units, and in this case y becomes numerically equal to N, just as in the
Gaussian system. This is a perfectly valid procedure, and all the expressions for
ratioed quantities, notably reflectance, transmittance, absorptance and potential
transmittance, are unchanged This applies particularly to equations (2.96) and
(2.106)–(2.110). We must simply take due care when calculating absolute rather
than relative irradiance and also when deriving the magnetic field. In particular,
equation (2.89) becomes[

Ea
Ha/Y

]
=
[

cos δ (i sin δ)/η1
iη1 sin δ cos δ

] [
Eb

Hb/Y

]
, (2.113)

where η is now measured in free space units. In most cases in this book,
either arrangement can be used. In some cases, particularly where we are using
graphical techniques, we shall use free space units, because otherwise the scales
become quite cumbersome.

2.7 Summary of important results

We have now covered all the basic theory necessary for the understanding of the
remainder of the book. It has been a somewhat long and involved discussion and
so we now summarise the principal results. The statement numbers refer to those
in the text where the particular quantities were originally introduced.

Refractive index is defined as the ratio of the velocity of light in free space
c to the velocity of light in the medium v. When the refractive index is real it is
denoted by n but it is frequently complex and then is denoted by N.

N = c/v = n − ik. (2.17)

N is often called the complex refractive index, n the real refractive index (or often
simply refractive index) and k the extinction coefficient. N is always a function
of λ.

k is related to the absorption coefficient α by

α = 4πk/λ. (2.33)

Light waves are electromagnetic and a homogeneous, plane, plane- polarised
harmonic (or monochromatic) wave may be represented by expressions of the
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form
E = E exp[iωt − (2πN/λ)x + ϕ], (2.20)

where x is the distance along the direction of propagation,E is the electric field,
E the electric amplitude and ϕ an arbitrary phase. A similar expression holds for
H , the magnetic field:

H = H exp[iωt − (2πN/λ)x + ϕ ′], (2.114)

where ϕ, ϕ ′ and N are not independent. The physical significance is attached to
the real parts of the above expressions.

The phase change suffered by the wave on traversing a distance d of the
medium is, therefore,

−2πNd

λ
= −2πnd

λ
+ i

2πkd

λ
(2.115)

and the imaginary part can be interpreted as a reduction in amplitude (by
substituting in equation (2.20)).

The optical admittance is defined as the ratio of the magnetic and electric
fields

y = H/E (2.23)–(2.28)

and y is usually complex. In free space, y is real and is denoted by Y :

Y = 2.6544 × 10−3 S. (2.116)

The optical admittance of a medium is connected with the refractive index by

y = NY . (2.117)

(In Gaussian units Y is unity and y and N are numerically the same. In SI units
we can make y and N numerically equal by expressing y in units of Y , i.e. free
space units. All expressions for reflectance, transmittance etc involving ratios
will remain valid, but care must be taken when computing absolute irradiances,
although these are not often needed in thin-film optics, except where damage
studies are involved.)

The irradiance of the light, defined as the mean rate of flow of energy per
unit area carried by the wave, is given by

I = 1

2
Re(E H∗). (2.31)

This can also be written

I = 1

2
nYE E∗, (2.118)

where ∗ denotes the complex conjugate.
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At a boundary between two media, denoted by suffix 0 for the incident
medium and by suffix 1 for the exit medium, the incident beam is split into a
reflected beam and a transmitted beam. For normal incidence we have

ρ = Er

Ei
= y0 − y1

y0 + y1
= (n0 − ik0)Y − (n1 − ik1)Y

(n0 − ik0)Y + (n1 − ik1)Y

= (n0 − n1)− i (k0 − k1)

(n0 + n1)− i (k0 + k1)
(2.70)

τ = Et

Ei
= 2y0

y0 − y1
= 2 (n0 − ik0)Y

(n0 − ik0)Y + (n1 − ik1)Y

= 2 (n0 − ik0)

(n0 + n1)− i (k0 + k1)
, (2.71)

where ρ is the amplitude reflection coefficient and τ the amplitude transmission
coefficient.

There are fundamental difficulties associated with the definitions of
reflectance and transmittance unless the incident medium is absorption-free, i.e.
N0 and y0 are real. For that case

R = ρρ∗ =
(

y0 − y1

y0 + y1

)(
y0 − y1

y0 + y1

)∗
(2.74)

T = 4y0Re(y1)

(y0 + y1)(y0 + y1)∗
. (2.75)

Oblique incidence calculations are simpler if the wave is split into two plane-
polarised components, one with the electric vector in the plane of incidence,
known as p-polarised (or TM, for transverse magnetic field) and one with the
electric vector normal to the plane of incidence, known as s-polarised (or TE,
for transverse electric field). The propagation of each of these two waves can
be treated quite independently of the other. Calculations are further simplified
if only energy flows normal to the boundaries and electric and magnetic fields
parallel to the boundaries are considered, because then we have a formulation
which is equivalent to a homogeneous wave.

We must introduce the idea of a tilted optical admittance η, which is given
by

ηp = NY

cosϑ
(for p-waves)

ηs = NY cosϑ (for s-waves),

(2.80)

where N and ϑ denote either N0 and ϑ1 or N1 and ϑ1 as appropriate. ϑ1 is given
by Snell’s law, in which complex angles may be included:

N0 sinϑ0 = N1 sinϑ1. (2.119)
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Denoting ηp or ηs by η we have, for either plane of polarisation,

ρ = η0 − η1

η0 + η1
(2.81)

τ = 2η0

η0 + η1
. (2.82)

If η0 is real, we can write

R =
(
η0 − η1

η0 + η1

)(
η0 − η1

η0 + η1

)∗
(2.83)

T = 4η0Re(η1)

(η0 + η1)(η0 + η1)∗
. (2.84)

The phase shift experienced by the wave as it traverses a distance d normal to the
boundary is then given by −2πNd cosϑ/λ.

The reflectance of an assembly of thin films is calculated through the concept
of optical admittance. We replace the multilayer by a single surface which
presents an admittance Y, which is the ratio of the total tangential magnetic and
electric fields and is given by

Y = C/B, (2.120)

where [
B
C

]
=
{ q∏

r=1

[
cos δr (i sin δr )/ηr

iηr sin δr cos δr

]}[
1
ηm

]
, (2.96)

δr = 2πNd cosϑ/λ and ηm = substrate admittance.
The order of multiplication is important. If q is the layer next to the substrate

then the order is [
B
C

]
= [M1][M2] . . . [Mq]

[
1
ηm

]
. (2.121)

M1 indicates the matrix associated with layer 1, and so on. Y and η are in the
same units. If η is in siemens then so also is Y, or if η is in free space units
(i.e. units of Y) then Y will be in free space units also. As in the case of a single
surface, η0 must be real for reflectance and transmittance to have a valid meaning.
With that proviso, then

R =
(
η0 B − C

η0 B + C

)(
η0 B − C

η0 B + C

)∗
(2.106)

T = 4η0Re (ηm)

(η0 B + C) (η0B + C)∗
(2.108)

A = 4η0Re (BC∗ − ηm)

(η0 B + C) (η0B + C)∗
(2.109)

ψ = potential transmittance = T

(1 − R)
= Re (ηm)

Re (BC∗)
. (2.110)
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Phase shift on reflection, measured at the front surface of the multilayer, is
given by

ϕ = arctan

(
Im
[
ηm (BC∗ − C B∗)

]
(
η2

mB B∗ − CC∗)
)

(2.111)

and that on transmission, measured between the emergent wave as it leaves the
multilayer and the incident wave as it enters, by

ζ = arctan

[−Im (η0B + C)

Re (η0 B + C)

]
. (2.112)

The signs of the numerator and denominator in these expressions must be
preserved separately. Then the quadrants are given by the arrangement in the
table:

Numerator + + − −
Denominator + − + −
Quadrant 1st 2nd 4th 3rd

In spite of the apparent simplicity of expression (2.96), numerical
calculations without some automatic aid are tedious in the extreme. Even with
the help of a calculator, the labour involved in determining the performance of an
assembly of more than a very few transparent layers at one or two wavelengths
is completely discouraging. At the very least, a programmable calculator of
reasonable capacity is required. Extended calculations are usually carried out
on a computer.

However, insight into the properties of thin-film assemblies cannot easily
be gained simply by feeding the calculations into a computer, and insight is
necessary if filters are to be designed and if their limitations in use are to be
fully understood. Studies have been made of the properties of the characteristic
matrices and some results which are particularly helpful in this context have been
obtained. Approximate methods, especially graphical ones, have also been found
useful.

2.8 Potential transmittance

The potential transmittance of a layer or an assembly of layers is the ratio of
the irradiance leaving by the rear, or exit, interface to that entering by the front
interface. The concept was introduced by Berning and Turner [6] and we will
make considerable use of it in designing metal–dielectric filters and in calculating
losses in all-dielectric multilayers. Potential transmittance is denoted by ψ and is
given by

ψ = Iexit

Ienter
= T

(1 − R)
, (2.122)
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Figure 2.8. (a) An assembly of thin films. (b) The potential transmittance of an assembly
of thin film consisting of a number of subunits.

that is the ratio between the irradiance leaving the assembly and the net irradiance
actually entering. For the entire system, the net irradiance actually entering is the
difference between the incident and reflected irradiances.

The potential transmittance of a series of subassemblies of layers is simply
the product of the individual potential transmittances. Figure 2.8 shows a series
of film subunits making up a complete system. Clearly

ψ = Ie

Ii
= Id

Ia
= Ib

Ia

Ic

Ib

Ib

Ic
= ψ1ψ2ψ3. (2.123)

The potential transmittance is fixed by the parameters of the layer, or
combination of layers, involved, and by the characteristics of the structure
at the exit interface, and it represents the transmittance which this particular
combination would give if there were no reflection losses. Thus, it is a measure of
the maximum transmittance which could be expected from the arrangement. By
definition, the potential transmittance is unaffected by any transparent structure
deposited over the front surface—which can affect the transmittance as distinct
from the potential transmittance—and to ensure that the transmittance is equal to
the potential transmittance the layers added to the front surface must maximise the
irradiance actually entering the assembly. This implies reducing the reflectance of
the complete assembly to zero or, in other words, adding an antireflection coating.
The potential transmittance is, however, affected by any changes in the structure
at the exit interface and it is possible to maximise the potential transmittance of a
subassembly in this way.

We now show that the parameters of the layer, or subassembly of layers,
together with the optical admittance at the rear surface, are sufficient to define the
potential transmittance. Let the complete multilayer performance be given by[

B
C

]
= [M1][M2] . . . [Ma][Mb][Mc] . . . [Mp][Mq]

[
1
ηm

]
,

where we want to calculate the potential transmittance of the subassembly
[Ma][Mb][Mc]. Let the product of the matrices to the right of the subassembly
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be given by [
Be
Ce

]
.

Now, if [
Bi
Ci

]
= [Ma][Mb][Mc]

[
Be
Ce

]
, (2.124)

then

ψ = Re(BeC∗
e )

Re(BiC∗
i )
. (2.125)

By dividing equation (2.124) by Be we have[
B′

i
C′

i

]
= [Ma][Mb][Mc]

[
1
Ye

]
,

where Ye = Ce/Be, B′
1 = B1/Be, C′

1 = C1/Ce and the potential transmittance is

ψ = Re(Ye)

Re(B′
iC

′∗
i )

= Re(Ce/Be)

Re[(Bi/Be)(C∗
i /B∗

e )]
= BeB∗

e Re(Ce/Be)

Re(BiC∗
i )

= Re(B∗
e Ce)

Re(BiC∗
i )

= Re(BeC∗
e )

Re(BiC∗
i )
,

which is identical to equation (2.125). Thus the potential transmittance of any
subassembly is determined solely by the characteristics of the layer or layers of
the subassembly together with the optical admittance of the structure at the exit
interface.

Further expressions involving potential transmittance will be derived as they
are required.

2.9 Quarter- and half-wave optical thicknesses

The characteristic matrix of a dielectric thin film takes on a very simple form if
the optical thickness is an integral number of quarter- or half-waves. That is, if

δ = m(π/4) m = 0, 1, 2, 3 . . .

For m even, cos δ = ±1 and sin δ = 0, so that the layer is an integral number of
half wavelengths thick, and the matrix becomes

±
[

1 0
0 1

]
.
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This is the unity matrix and can have no effect on the reflectance or transmittance
of an assembly. It is as if the layer were completely absent. This is a particularly
useful result and, because of it, half-wave layers are sometimes referred to as
absentee layers. In the computation of the properties of any assembly, layers
which are an integral number of half wavelengths thick can be omitted completely
without altering the result. Of course this is true only at the wavelength for which
the layers are half-waves.

For m odd, sin δ = ±1 and cos δ = 0, so that the layer is an odd number of
quarter wavelengths thick, and the matrix becomes

±
[

0 i/η
iη 0

]
.

This is not quite as simple as the half-wave case, but such a matrix is still easy to
handle in calculations. In particular, if a substrate or combination of thin films
has an admittance of Y, then addition of an odd number of quarter-waves of
admittance η alters the admittance of the assembly to η2/Y. This makes the
properties of a succession of quarter-wave layers very easy to calculate. The
admittance of, say, a stack of five quarter-wave layers is

Y = η2
1η

2
3η

2
5

η2
2η

2
4ηm

,

where the symbols have their usual meanings.
Because of the simplicity of assemblies involving quarter- and half-wave

optical thicknesses, designs are often specified in terms of fractions of quarter-
waves at a reference wavelength. Usually only two, or perhaps three, different
materials are involved in designs and a convenient shorthand notation for quarter-
wave optical thicknesses is H , M or L where H refers to the highest of the three
indices, M the intermediate and L the lowest. Half-waves are denoted by H H ,
M M , LL or 2H , 2M and so on.

2.10 A theorem on the transmittance of a thin-film assembly

The transmittance of a thin-film assembly is independent of the direction of
propagation of the light. This applies regardless of whether or not the layers
are absorbing.

A proof of this result, due to Abelès [7, 8], who was responsible for the
development of the matrix approach to the analysis of thin films, follows quickly
from the properties of the matrices.

Let the matrices of the various layers in the assembly be denoted by

[M1], [M2], . . . [Mq]
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and let the two massive media on either side be transparent. The two products of
the matrices corresponding to the two possible directions of propagation can be
written as

[M] = [M1][M2][M3], . . . [Mq]

and

[M ′] = [Mq][Mq−1] . . . [M2][M1].

Now, because the form of the matrices is such that the diagonal terms are equal,
regardless of whether there is absorption or not, we can show that if we write

[M] = [ai j ] and [M ′] = [a′
i j ]

then

ai j = a′
i j (i �= j ), a11 = a′

22 and a22 = a′
11.

This can be proved simply by induction.
We denote the medium on one side of the assembly by η0 and on the other by

ηm, where η0 is next to layer 1. In the case of the first direction the characteristic
matrix is given by (equation (2.96))[

B
C

]
= [M]

[
1
ηm

]
and

B = a11 + a12ηm C = a21 + a22ηm.

In the second case

B = a′
11 + a′

12η0 = a22 + a12η0

C = a′
21 + a′

22η0 = a21 + a11η0.

The two expressions for the transmittance of the assembly are then, from
equation (2.108),

T = 4η0ηm

|η0 (a11 + a12ηm)+ a21 + a22ηm|2

T ′ = 4ηmη0

|ηm (a22 + a12η0)+ a21 + a11η0|2
which are identical.

This rule does not, of course, apply to the reflectance of an assembly, which
will necessarily be the same on both sides of the assembly only if there is no
absorption in any of the layers.

Amongst other things, this expression shows that the one-way mirror, which
allows light to travel through it in one direction only, cannot be constructed from
simple optical thin films. The common so-called one-way mirror has a high
reflectance with some transmittance and relies for its operation on an appreciable
difference in the illumination conditions existing on either side.
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2.11 Admittance loci

This section is devoted to the admittance diagram. The admittance diagram in
common with the Smith chart and the reflection circle diagram, described later,
is a graphical technique based on an exact solution of the appropriate equations.
We imagine that the multilayer is gradually built up on the substrate layer by
layer, immersed all the time in the final incident medium. As each layer in turn
increases from zero thickness to its final value, the admittance of the multilayer at
that stage of its construction is calculated and the locus is plotted. Alternatively,
we may imagine the multilayer as already constructed and then a reference plane
is slid continuously through the layers and the locus of admittance of the structure
up to that plane plotted. Either of these views is equally valid and the results
are identical. (Note that only the first possibility applies to the reflection circle
diagram and only the second to the Smith chart.) The loci for dielectric layers take
the form of a series of circular arcs or even complete circles, each corresponding
to a single layer, which are connected at points corresponding to the interfaces
between the different layers. Perfect metals are also represented by arcs of
circles. Absorbing materials give spiral loci. Although the technique can be used
for quantitative calculation it cannot compete even with a small programmable
calculator, and its great value is in the visualisation of the characteristics of a
particular multilayer.

As the reference plane moves from the surface of the substrate to the front
surface of the multilayer, let us calculate and plot the variation of the input optical
admittance at the reference plane.

Equation (2.96) is

[
B
C

]
=
{ q∏

r=1

[
cos δr (i sin δr )/ηr

iηr sin δr cos δr

]}[
1
ηm

]
,

where Y = C/B is the input optical admittance of the assembly. For the r th layer
we can write [

B
C

]
=
[

cos δr (i sin δr )/ηr

iηr sin δr cos δr

] [
B′
C′
]

and since it is optical admittance we are interested in we can divide throughout
by B′ to give [

B/B′
C/B′

]
=
[

cos δr (i sin δr )/ηr

iηr sin δr cos δr

] [
1
Y′
]
,

where Y′ = C/B′ represents the admittance of the structure at the exit side of the
layer. We now find the locus of the input admittance

Y = C

B
= C/B′

B/B′ .
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Let

Y = x + iy

and

Y′ = α + iβ

and let the layer in question be dielectric so that ηr and δr are both real. Then

Y = x + iy = (α + iβ) cos δr + iηr sin δr

cos δr + (α + iβ)(i sin δr )/ηr

= α cos δr + i(β cos δr + ηr sin δr )

[cos δr − (β/ηr ) sin δr ] + i(α/ηr ) sin δr
.

Equating real and imaginary parts

x[cos δr − (β/ηr ) sin δr ] − (yα/ηr ) sin δr = α cos δr (2.126)

y[cos δr − (β/ηr ) sin δr ] + (xα/ηr ) sin δr = β cos δr + ηr sin δr . (2.127)

Eliminating δr yields

x2 + y2 − x[(α2 + β2 + η2
r )/α] + η2

r = 0 (2.128)

which is the equation of a circle with centre ((α2+β2+η2
r )/2α, 0), i.e. on the real

axis and with radius such that it passes through the point (α, β), i.e. its starting
point. The circle is traced out in a clockwise direction, which can be shown by
setting β = 0 in equation (2.127).

We can plot the locus in the complex plane in the same way as the locus of
the amplitude reflection coefficient (section 2.15.5).

The scale of δr can also be plotted on the diagram. Let β = 0 and then, from
equations (2.126) and (2.127),

x − (yα/ηr ) tan δr = α

y + (xα/ηr ) tan δr = ηr tan δr .

Eliminating α, we have

x2 + y2 − y(tan δr − 1/ tan δr )− η2
r = 0. (2.129)

This is a circle with centre

(0, (ηr /2)(tan δr − 1/ tan δr )),

i.e. on the imaginary axis and passing through the point (η r , 0). The simplest
contours of equal δr are δr = 0, π/2, π , 3π/2, . . . , which coincide with the real
axis, and δr = π/4, 3π/4, 5π/4, . . . , which is the circle with centre the origin
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and which passes through the point (ηr , 0). For layers which start at a point not on
the real axis, the same set of contours of equal δ r will still apply, with a correction
to the value of δr that each represents.

Figure 2.9(a) shows the locus of a film that is deposited on a transparent
substrate of admittance α. The starting point is (α, 0) and, as the thickness
is increased to a quarter-wave, a semicircle is traced out clockwise which
reintersects the real axis at the point (η2

r /α, 0). A second quarter-wave completes
the circle. We could have had any point on the locus as a starting point without
changing its form. The only difference would have been an offset in the scale of
δr .

We could add isoreflectance contours to the diagram if we wished. These are
circles with centres on the real axis, centres and radii being given by

(η0(1 + R)/(1 − R), 0) and 2η0 (R)
1/2 / (1 − R) , (2.130)

respectively, where η0 is the admittance of the incident medium.
The phase of the reflectance can also be important and isophase contours are

not unlike the contours of constant δ r . We can carry through a similar procedure
to determine the contours and the most important ones are 0, π/2, π , and 3π/2,
that is, the boundaries between the quadrants. The boundary between the first and
fourth and between the second and third is simply the real axis, while that between
the first and second and the third and fourth is a circle with centre the origin which
passes through the point (η0, 0). These contours are shown in figure 2.9(b) where
the various quadrants are labelled.

For the purpose of drawing an admittance diagram, it is most convenient to
set η in units of Y , the admittance of free space. The optical admittances will then
have the same numerical value as the refractive indices (at normal incidence only,
of course).

The method can be illustrated by the same example to be used in the
amplitude reflection coefficient loci of figure 2.23

Air|H L|Glass

where glass has index 1.52, air 1.0, and H and L are quarter-waves of zinc
sulphide (n = 2.35) and cryolite (n = 1.35), respectively.

In free space units, the starting admittance is simply 1.52, the admittance
of glass. The termination of the first layer, since it is a quarter-wave, will be at
an admittance of 2.352/1.52 = 3.633 on the real axis, and of the second, which
is also a quarter-wave, at 1.352/3.633 = 0.5016 on the real axis. The circles
are traced out clockwise and each is a semicircle with centre on the real axis.
Figure 2.10 shows the complete locus.

Metal and other absorbing layers can also be included, although we find
the calculations sufficiently involved to require the assistance of a computer.
Figure 2.11 shows two loci applying to metal layers, one starting from an
admittance of 1.0 and the other from 1.52 (free space units). The higher the
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Figure 2.9. (a) Admittance locus of a single dielectric film. The locus is a circle centred on
the real axis and described clockwise. The film of characteristic admittance y is assumed
to be deposited over a substrate or structure with real admittance α. Note that the product
of the admittance of the two points of intersection of the locus with the real axis is always
y2, the square of the characteristic admittance of the film. Equi-phase thickness contours
have also been added to the diagram. (b) Contours of constant phase shift on reflection
ϕ can be added to the admittance diagram. These contours are all circles with centres
on the imaginary axis and passing through the point on the real axis corresponding to the
admittance η0 of the incident medium. The four most important contours correspond to 0,
π/2, π , 3π/2, and these are represented by portions of the real axis and the circle centred
on the origin and passing through the point η0. These are indicated on the diagram and the
regions corresponding to the various quadrants of ϕ are marked.
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Figure 2.10. The admittance of the coating: Air|H L|Glass, with L a quarter-wave of index
1.35, H of 2.35. The indices of air and glass are 1.00 and 1.52, respectively. This is the
same coating as in figure 2.23; note the similarity in shape to that figure.

Figure 2.11. Admittance loci corresponding to a metal such as chromium with
n − ik = 2 − i3. Loci are shown for starting points 1.00 and 1.52, corresponding to air
and glass respectively. Note that the initial direction towards the lower right of the diagram
implies that in the case of the internal reflectance of the film deposited on glass (i.e. air as
substrate and glass as incident medium and the left of the two loci) the reflectance initially
falls and then rises, whereas the external reflectance (glass as substrate and air as incident
medium and the right of the two admittance loci) always increases, even for very thin
layers. When the layers are very thick, they terminate at the point 2 − i3, so that the film is
optically indistinguishable from the bulk material.
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ratio k/n for the metal, the nearer the locus is to a circle with centre the origin.
In the case of figure 2.11 the locus is somewhat distorted from the ideal case,
with a loop bowing out along the direction of the real axis. If we were to add
isoreflectance contours to the diagram, corresponding to admittances of 1.52 for
the starting admittance of 1.0, and of 1.0 for the starting admittance of 1.52, so
that the loci correspond to internal and external reflection from such a metal layer
on glass in air, we would see that the observed reduction in internal reflectance
when the metal is very thin is predicted by the diagram as well as the constantly
increasing external reflectance for the same range of thicknesses (we can see such
an effect in figure 4.7). Metals with still lower ratios of k/n depart still further
from the ideal circle and in fact those starting at 1.0 can initially loop into the first
quadrant so that they actually cut the real axis again, even sometimes at the point
1.52 to give zero internal reflectance.

We have gained much in simplicity by choosing to deal in terms of optical
admittance throughout the assembly. It has not affected in any way our ability to
calculate either the amplitude reflection coefficient or reflectance. Transmittance
is another matter. Strictly we need to preserve the values of B and C in
the matrix calculation; the optical admittance is not sufficient. For dielectric
assemblies, we know that the transmittance is given by (1− R), but for assemblies
containing absorbing layers, subsidiary calculations are necessary. For many
purposes, reflectance is sufficient and, since the graphical technique is used for
visualisation rather than calculation, a lack of transmission information is not a
serious defect. Nevertheless there are concepts that do yield useful information
about transmittance and about losses in layers, directly from the admittance
diagram. These are dealt with in the following section.

2.12 Electric field and losses in the admittance diagram

The optical properties of any material are determined largely by the electrons
and their interaction with electromagnetic disturbances. Any optical material is
made up of atoms or molecules consisting of heavy positively charged masses
surrounded by negatively charged electrons. These electrons are light and mobile
compared with the heavy positively charged nuclei. An electric field can exert a
force on a charged particle even while it is stationary, but a magnetic field can
interact only when the charged particle moves, and for any significant interaction,
the particle must be moving at an appreciable fraction of the speed of light. At
the very high frequencies of optical waves the magnetic interaction is virtually
zero. We have already used the fact that the relative permeability is unity in
setting up the basic theory. The interaction between light and a material is,
therefore, entirely through the electric field. Where the electric field amplitude
is high the potential for interaction is high. When thin-film optical coatings are
illuminated by light, standing wave patterns form which can exhibit considerable
variations in electric field amplitude both in terms of wavelength and position



Electric field and losses in the admittance diagram 61

within the coating. The admittance diagram permits a simple technique for
assessing these amplitude variations and from them deductions about losses can
be made, sometimes with surprising results.

In this discussion we limit ourselves to normal incidence. Oblique incidence
represents only a very slight extension.

The basic matrix technique for the calculation of the properties of an
optical coating actually already contains the electric field and so only a slight
modification is required to extract it. The matrix expression, with the usual
meaning for the symbols, is[

B
C

]
=
[

cos δ i sinδ
y

iy sin δ cos δ

] [
1

yexit

]
.

In this expression B and C and the corresponding terms in the other column
matrix are normalised total tangential electric and magnetic fields. The
admittances, too, are normalised so that they are in free space units rather than
SI units. The first thing we do, therefore, is to restore the expressions to their
fundamental form. [

E′
H ′
]

=
[

cos δ i sin δ
y

iy sin δ cos δ

] [
Eexit
Hexit

]
.

Here y is in free space units and so to change it to SI units we must write

y = (n − ik)Y,

where Y is the admittance of free space. E and H indicate the complex tangential
amplitudes which include the relative phase.

To have absolute values for the total tangential electric field amplitude
through the multilayer, it remains simply to give an absolute value to one of the
Es. This can be done in a number of ways. The easiest is to put a value on the
final tangential component at the emergent interface, that is the interface with the
substrate. This is related to the incident irradiance through the transmittance. If
the incident irradiance is I inc then

1

2
Re(Eexit · H ∗

exit) = T · Iinc

but

Hexit = yexit Eexit

and so

1

2
Re(Eexit · y∗

exit E
∗
exit) = T · Iinc.

Now

E · E∗ = E2
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giving, with a little manipulation,

Eexit = Eexit =
√

2T · I inc

yexit
,

where yexit must be in SI units, that is siemens.
If the multilayer system is completely free of absorption then there is a

simple connection between the variation of admittance through the multilayer,
which is the quantity we plot in the admittance diagram, and the electric field
amplitude.

The admittance at any point in the multilayer is simply the ratio of the total
tangential magnetic and electric fields. These total tangential fields also yield the
total net irradiance transmitted by the multilayer. Since this multilayer is free of
losses, the transmitted irradiance is constant through the multilayer. Putting all
this together gives

Iout = 1

2
Re(E · H ∗)

= 1

2
Re(E · Y∗E∗)

= 1

2
E2 · Re(Y)

i.e.

E =
√

2Iout

Re(Y)
=
√

2T · I inc

Re(Y)
∝ 1√

Re(Y)
. (2.131)

Contours of constant electric field are therefore lines, normal to the real axis in
the admittance diagram. If we put Y in free space units then (2.131) becomes:

E = 27.46

√
T · Iinc

Re(Y)
V m−1. (2.132)

Now let us consider a very thin slice of absorbing material embedded in a
multilayer. What can we say about the absorption of this slice? The result is
contained in the expression:

[
E′
H ′
]

=
[

cos δ i sinδ
y

iy sin δ cos δ

] [
E
H

]
,

where the input and exit irradiances are given by

Iin = 1

2
Re
(
E′ · H ′∗) and Iexit = 1

2
Re
(
E · H ∗) .
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Figure 2.12. Lines of constant electric field amplitude for dielectric materials in the
admittance diagram. The figures are in volts per metre if the transmitted irradiance is
1 W m−2.

The irradiance lost by absorption in the layer is the difference between these two
quantities. Now let the layer be extremely thin. Since the layer is absorbing, δ is
given by

δ = 2π (n − ik) d

λ
= α − iβ. (2.133)

Equation (2.133) defines the quantities α and β. By extremely thin, we mean
that d/λ should be sufficiently small to make both α and β vanishingly small,
whatever the size of either n or k. Then,

[
E′
H ′
]

=
[

cos(α − iβ) i sin(α−iβ)
y

iy sin(α − iβ) cos(α − iβ)

] [
E
H

]

=
[

1 i(α−iβ)
(n−ik)Y

i(α − iβ)(n − ik)Y 1

] [
E
H

]

=
[

E + i(α−iβ)H
(n−ik)Y

i(α − iβ)(n − ik)YE + H

]
,

where we are including terms up to the first order only in α and β.
The irradiance at the entrance to this thin layer will then be given by

Iin = 1

2
Re

[{
E + i (α − iβ) H

(n − ik)Y

}
· {i (α − iβ) (n − ik)YE + H }∗

]

= 1

2
Re
[
E · H ∗ + E · {−i (α + iβ) (n + ik)YE∗}] (2.134)

+ 1

2
Re

[
i (α − iβ) H.H ∗

(n − ik)Y

]
.
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The second of the two terms in (2.134) simplifies to

1

2
Re

[
i (α − iβ) H.H ∗

(n − ik)Y

]
= 1

2
Re

[
i (α − iβ) (n + ik) H.H ∗(

n2 + k2
)
Y

]

= 1

2
Re

[
{βn − αk + i (αn + βk)} H.H ∗(

n2 + k2
)
Y

]

= 1

2

[
(βn − αk) H.H ∗(

n2 + k2
)
Y

]
.

However,

βn − αk = 2πkd

λ
n − 2πnd

λ
k = 0.

The first term gives

Iin = 1

2
Re
[
E · H ∗ + E · {−i (α + iβ) (n + ik)YE∗}]

= 1

2
Re
[
E · H ∗]+ 1

2

[
(αk + βn)YE · E∗]

where

αk + βn = 4πnkd

λ
and E · E∗ = E2.

The irradiance that has been absorbed is therefore given by the difference between
the irradiance incident on the thickness element, I in, and that emerging on the exit
side, Iexit, and this is

Iabsorbed = 2πnkd

λ
· Y · E2. (2.135)

The magnitude of the absorbed energy is directly proportional to the product of n
and k. Both must be nonzero for absorption to occur. The absorption will be small
both for a metal with vanishingly small n and a dielectric with vanishingly small
k. The factor involving n and k may be thought of as a phase thickness multiplied
by k or as a quantity β multiplied by n.

Now we need to consider the contribution to the absorption A of the
multilayer. This is a little more difficult and we need to introduce a further concept
that will be used in subsequent chapters.

Potential transmittance, ψ , of any element of a coating system is defined as
the ratio of the output to the input irradiances, the input being the net irradiance
rather than the incident. Potential transmittance has several advantages over
transmittance when dealing with absorbing systems because it completely avoids
any problems associated with the mixed Poynting vector in absorbing media.
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The potential transmittance of a complete system is simply the product of the
individual potential transmittances.

ψ = Iexit

Iin

ψsystem = ψ1 · ψ2 · ψ3 · ψ4 · ψ5 . . . ψq

with the eventual overall transmittance given by

T = (1 − R) · ψsystem.

The potential transmittance of the thin elemental film is given by

ψ = Iexit

Iin
= 1 − Iabsorbed

Iin
= 1 −A,

where A is the potential absorptance. But

Iin = 1

2
Y · Re (Y) · E2

where Y is given in free space units. Then

ψ = 1 −A = 1 − 2πnkd

λ
· 2

Re(Y)
. (2.136)

This result allows interpretation of an admittance locus in terms of potential
absorption.

To move from potential absorption to absorption is straightforward when
the absorption is confined to a very thin layer, the rest of the multilayer being
essentially transparent. Then the absorption, A, is given by:

A = (1 − R)A.

If, however, the absorption is distributed through the layer then the calculation
is rather more involved. Normally the absorption would be calculated by the
normal matrix expression for the entire film and would be completely accurate.
We, however, are looking for a way of estimating the absorption and its variation
through a layer given the locus in the admittance diagram or the electric field
distribution. Let us assume that the absorption is rather small. The layer may
be considered as a succession of slices of equal optical thickness and extinction
coefficient, and so the first factor in the expression for A is a constant. Each slice
has a potential absorptance that depends on the real part of the optical admittance
following equation (2.136). The potential transmittance is given by the product
of the individual potential transmittances,

ψ = ψ1 · ψ2 · ψ3 · ψ4 . . .

= (1 −A1) · (1 −A2) · (1 −A3) . . .

= 1 − (A1 +A2 +A3 +A4 + . . .)+A1A2 + . . . .
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Provided the potential absorptances are small enough the product terms can be
neglected and then the total potential absorptance is given by the sum of the
individual absorptances,

A = A1 +A2 +A3 +A4 + . . . . (2.137)

In terms of an integral this can be written as

A =
∑

j

A j =
∫
δ

2k

Re (Y)
dδ =

∫
β

2n

Re (Y)
dβ. (2.138)

If an accurate answer is required we will always turn to the computer and a very
simple rapid calculation. For understanding the result, usually we would like to
know what to do either to increase or decrease the absorptance or to find sensitive
regions where contamination or scattering roughness is especially to be avoided.
To answer such questions usually a rough answer that shows trends is all that is
needed.

2.13 The vector method

The vector method is a valuable technique, especially in design work associated
with antireflection coatings. Two assumptions are involved: first, that there is no
absorption in the layers, and second, that the behaviour of a multilayer can be
determined by considering one reflection of the incident wave at each interface
only. The errors involved in using this method can, in some cases, be significant,
especially where high overall reflectance from the multilayer exists, but they are
small in most types of antireflection coating.

Consider the assembly sketched in figure 2.9. If there is no absorption in the
layers, then Nr = nr and kr = 0. The amplitude reflection coefficient at each
interface is given by

ρ = nr−1 − nr

nr−1 + nr

which may be positive or negative depending on the relative magnitudes of n r−1
and nr .

The phase thicknesses of the layers are given by δ1, δ2, . . . , where

δr = 2πnr dr /λ.

A quarter-wave optical thickness is represented by 90◦ and a half-wave by 180◦.
As the diagram shows, the resultant amplitude reflection coefficient is given

by the vector sum of the coefficients for each interface, where each is associated
with the appropriate phase lag corresponding to the passage of the wave from the
front surface to the interface and back to the front surface again.

ρ = ρa + ρb exp (−2iδ1) + ρc exp [−2i (δ1 + δ2)]

+ ρd exp [−2i (δ1 + δ2 + δ3)] + . . . .
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The sum can be found analytically, or, as is more usual, graphically. The graphical
case is easier because the angles between successive vectors are merely 2δ1, 2δ2,
2δ3, and so on.

The calculation of the angles for any wavelength is simplified if, as is usual,
the optical thicknesses of the layers are given in terms of quarter-wave optical
thicknesses at a reference wavelength λ0. If the optical thickness of the r th layer
is tr quarter-waves at λ0, then the value of δr at λ is just δr = (90◦tr λ0/λ) degrees
of arc.

In practice it will be found extremely easy to confuse angles and directions,
particularly where negative reflectances are involved. The task of drawing the
vector diagram is greatly eased by plotting first the vectors with directions on
a polar diagram and then transferring the vectors to a vector polygon rather
than attempting to draw the vector polygon straight away. An important point
to remember is that the resultant vector represents the amplitude reflection
coefficient and its length must be squared in order to give the reflectance.

A typical arrangement is shown in figure 2.13. The vector method is used to
a considerable extent in chapter 3, which deals with antireflection coatings.

2.14 Incoherent reflection at two or more surfaces

So far, we have treated substrates as being one-sided slabs of material of infinite
depth. In almost all practical cases, the substrate will have finite depth with
rear surfaces that reflect some of the energy and affect the performance of the
assembly.

The depth of the substrate will usually be much greater than the wavelength
of the light and variations in the flatness and parallelism of the two surfaces will
be appreciable fractions of a wavelength. Generally the incident light will not
be particularly well collimated. Under these conditions it will not be possible
with a finite aperture to observe interference effects between light reflected at
the front and rear surfaces of the substrate, and because of this the substrate is
known as thick. The waves reflected successively at the front and back surfaces
add incoherently instead of coherently. The resultant is the sum of the various
intensities instead of the vector sum of the amplitudes. It can be shown that
incoherent addition yields the same result as the averaging of the coherent result
over any moderate geometrical area or wavelength interval, or range of angles of
incidence, such that an appreciable number of fringes is included in the interval.

The symbols used are illustrated in figure 2.14. Waves are reflected
successively at the front and rear surfaces. The sums of the irradiances are given
by

R = R+
a + T+

a R+
b T−

a

[
1 + R−

a R+
b + (

R−
a R+

b

)2 + . . .
]

= R+
a + [

T+
a R+

b T−
a /
(
1 − R−

a R+
b

)]
,
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Figure 2.13. The vector method. The lengths of the vectors and the phase angles are given
by

ρa = (n0 − n1) / (n0 + n1) δ1 = 2πn1d1/λ

ρb = (n1 − n2) / (n1 + n2) δ2 = 2πn2d2/λ

etc. Note that the sign of the expression for the vector lengths is important and must be
included. In the diagram ρa, ρc and ρe, are shown as of negative sign. Note also that the
angles between successive vectors are phase lags, so that the sense of all the angles in the
polar diagram, δ1, δ2, etc, is also negative.

i.e. since T+ and T− are always identical

T+
a = T−

a = Ta

and so

R = R+
a + R+

b

(
T2

a − R−
a R+

b

)
1 − R−

a R+
b

.

If there is no absorption in the layers,

R+
a = R−

a = Ra and 1 = Ra + Ta
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Figure 2.14. Symbols used in calculation of incoherent reflection at two or more surfaces.

so that

R = Ra + Rb − 2Ra Rb

1 − Ra Rb
.

Similarly

T = T+
a T+

b

[
1 + R−

a R+
b + (

R−
a R+

b

)2 + . . .
]

= TaTb

1 − R−
a R+

b

and again, if there is no absorption,

T = TaTb

1 − Ra Rb
(2.139)

or

T =
(

1

Ta
+ 1

Tb
− 1

)−1

(2.140)

since

Ra = 1 − Ta Rb = 1 − Tb.

A nomogram for solving equation (2.140) can easily be constructed. Two
axes at right angles are laid out on a sheet of graph paper and, taking the point of
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Figure 2.15. A nomogram for calculating the overall transmittance of a thick transparent
plate given the transmittance of each individual surface.

intersection as the zero, two linear equal scales of transmittance are marked out
on the axes. One of these is labelled Ta and the other Tb. The angle between Ta
and Tb is bisected by a third axis which is to have the T scale marked out on it. To
do this, a straight edge is placed so that it passes through the 100% transmittance
value on, say, the Ta axis and any chosen transmittance on the Tb axis. The value
of T to be associated with the point where the straight edge crosses the T axis is
then that of the intercept with the Tb axis. The entire scale can be marked out in
this way. A completed nomogram of this type is shown in figure 2.15

In the absence of absorption, the analysis can be very simply extended to
further surfaces. Consider the case of two substrates, i.e. four surfaces. These we
can label Ta, Tb, Tc and Td. Then, from equation (2.140), we have for the first
substrate

T1 =
(

1

Ta
+ 1

Tb
− 1

)−1

,

i.e.

1

T1
= 1

Ta
+ 1

Tb
− 1
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Figure 2.16. Symbols defining two successive coatings with intervening medium in a
stack.

and similarly for the second

1

T2
= 1

Tc
+ 1

Td
− 1.

The transmittance through all four surfaces is then obtained by applying
equation (2.140) once again:

1

T
= 1

T1
+ 1

T2
− 1,

i.e.

T =
(

1

Ta
+ 1

Tb
+ 1

Tc
+ 1

Td
− 3

)−1

. (2.141)

The iterative nature of these calculations can be clumsy when dealing with a
succession of surfaces. A technique based on a study by Baumeister et al [9]
yields a rather more useful matrix form of the calculation. The emphasis is placed
on the flows of irradiance. Absorption in the media between the coated surfaces
is supposedly sufficiently small so that the coupling problem mentioned earlier is
negligible. The symbols are defined in figure 2.16.

The direction of the light is denoted by the usual plus and minus signs. a and
b are two coatings separated by a medium m with internal transmittance Tmint.
The final medium will be the emergent medium and there, the negative-going
irradiance will be zero. The procedure to be outlined will derive the values of I +

ma
and I −

ma from I +
(m+1) b and I −

(m+1) b. The rest is straightforward.
The irradiances on either side of the coating with label b are related through

the equations

I +
(m+1) b = Tb I +

mb + R−
b I −

(m+1) b

I −
mb = R+

b I +
mb + Tb I −

(m+1) b.
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These can be manipulated into the form

I −
mb = 1

Tb

{
R+

b I +
(m+1) b +

(
T2

b − R−
b R+

b

)
I −
(m+1) b

}

I +
mb = 1

Tb

{
I +
(m+1) b − R−

b I −
(m+1) b

}
and in matrix form this is[

I −
mb

I +
mb

]
=
[ (

T2
b −R−

b R+
b

)
Tb

R+
b

Tb
−R−

b
Tb

1
Tb

][
I −
(m+1) b

I +
(m+1) b

]
. (2.142)

The conversion through the medium is given by[
I −
ma

I +
ma

]
=
[

Tm int 0
0 1

Tm int

] [
I −
mb

I +
mb

]
. (2.143)

Equations (2.142) and (2.143) can be applied to the various coatings and
intervening media in succession.

2.15 Other techniques

Great progress was made in the subject of thin-film optics well before computers
became both exceedingly powerful and generally available. Many techniques
for assisting in the creation and assessment of designs were developed at a
time when accurate extended calculations were so time consuming as to be
out of the question. Their usefulness has not ceased with the advent of the
personal computer because they bring an insight that is completely lacking in pure
numerical calculations. Some of these techniques we will use from time to time
in the remainder of the book. Others are commonly encountered in the literature
of the subject. The fact that we collect a number of them together under the
appellation of ‘other’ should not be taken as an indication of a reduced usefulness
or ranking but rather as an admission that there is a limit to the size of this book.
There are many others that we have simply been completely unable to include.

2.15.1 The Herpin index

An extremely important result for filter design is derived in chapter 6, which deals
with edge filters. Briefly, this is the fact that any symmetrical product of three
thin-film matrices can be replaced by a single matrix which has the same form
as that of a single film and which therefore possesses an equivalent thickness and
an equivalent optical admittance. Of course, this is a mathematical device rather
than a case of true physical equivalence, but the result is of considerable use in
giving an insight into the properties of a great number of filter designs which
can be split into a series of symmetrical combinations. The method also allows
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Figure 2.17. Parameters in the multiple beam summation.

the replacement, under certain conditions, of a layer of intermediate index by
a symmetrical combination of high- and low-index material. This is especially
useful in the design of antireflection coatings, which frequently require quarter-
wave thicknesses of unobtainable intermediate indices. These difficult layers can
be replaced by symmetrical combinations of existing materials with the additional
advantage of limiting the total number of materials required for the structure.

The equivalent admittance is frequently known as the Herpin index, after the
originator, and the symmetrical combination as an Epstein period, after the author
of two of the most important early papers dealing with the application of the result
to the design of filters.

The detailed derivation of the relevant formulae is left until chapter 6, which
will make considerable use of the concept.

2.15.2 Alternative method of calculation

The success of the vector method prompts one to ask whether it can be made
more accurate by considering second and subsequent reflections at the various
boundaries instead of just one. In fact, an alternative solution of the thin-film
problem can be obtained in this way and this was the earlier way of formulating
film properties dating back to Poisson (chapter 1). It is simpler to consider normal
incidence only. The expressions can be adapted for non-normal incidence quite
simply when the materials are transparent and with some difficulty when they are
absorbing. We consider first the case of a single film. Figure 2.17 defines the
various parameters.

The resultant amplitude reflection coefficient is given by

ρ+ = ρ+
a + τ+

a ρ
+
b τ

−
a e−2iδ + τ+

a ρ
+
b ρ

−
a ρ

+
b τ

−
a e−4iδ

+ τ+
a ρ

+
b ρ

−
a ρ

+
b ρ

−
a ρ

+
b τ

−
a e−6iδ

= ρ+
a + ρ+

b τ
+
a τ

−
a e−2iδ

1 − ρ+
b ρ

−
a e−2iδ

.
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However,

τ+
a τ

−
a = 4N0 N1

(N0 + N1)
2 = 1 − ρ

and ρ−
a = − ρ+

a so that

ρ+ = ρ+
a + ρ+

b e−2iδ

1 + ρ+
b ρ

+
a e−2iδ

. (2.144)

Similarly

τ+ = τ+
a τ

+
b ρ

+
b e−iδ + τ+

a ρ
+
b ρ

−
a τ

+
b e−3iδ + τ+

a ρ
+
b ρ

−
a ρ

+
b ρ

−
a τ

+
b e−5iδ

which reduces to

τ+ = τ+
a τ

+
b e−iδ

1 − ρ−
a ρ

+
b e−2iδ

= τ+
a τ

+
b e−iδ

1 + ρ+
a ρ

+
b e−2iδ

. (2.145)

These expressions can be used in calculations of assemblies of more than
one film by applying them successively, first to the final two interfaces which can
then be replaced by a single interface with the resultant coefficients, and then to
this equivalent interface and the third last interface, and so on.

The resultant amplitude transmission and reflection coefficients τ + and ρ+
can be converted into transmittance and reflectance using the expressions

R = (
ρ+) (ρ+)∗

T = n2

n0

(
τ+) (τ+)∗ .

n2 and n0 are the refractive indices of the substrate, or exit medium, and the
incident medium, respectively. For these expressions to be meaningful we must,
as before, restrict the incident medium to be transparent so that N0 = n0. No such
restriction applies to the exit medium which can have complex N2 = n1 − ik2, the
real part being used in the above expression for T .

It is also possible to develop a matrix approach along these lines. The electric
field vectors E+

0 and E−
0 in medium 0 at interface a can be expressed in terms of

E+
1 and E−

1 in film 1 at interface b (see figure 2.18).[
E+

0
E−

0

]
= 1

τ+
a

[
eiδ1 ρ+

a e−iδ1

ρ+
a eiδ1 e−iδ1

] [
E+

1
E−

1

]
. (2.146)

If E+
2 is the tangential component of amplitude in medium 2, then, since there is

only a positive-going wave in that medium[
E+

1
E−

1

]
= 1

τ+
b

[
1
ρ+

b

]
E+

2 . (2.147)
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Figure 2.18. The positive- and negative-going waves at the two interfaces.

Equations (2.146) and (2.147) can be extended in the normal way to cover
the case of many layers. The only point to watch is that ρ+

a and τ+
a must

refer to the coefficients of the boundary in the correct medium. That is, all
the reflection coefficients ρ, and transmission coefficients τ , must be calculated
for the boundaries as they exist in the multilayer. Thus, if we take an existing
multilayer and add an extra layer, not only do we add an extra interface but we
alter the amplitude reflection and transmission coefficients of what now becomes
the second last interface. Thus two layers must be recomputed and not just one.

If absorption is included, the formulae remain the same but the parameters
ρ, τ and δ become complex.

2.15.3 Smith’s method of multilayer design

In 1958, Smith [10], then of the University of Reading, published a useful design
method based on equation (2.145). The technique is also known as the method
of effective interfaces. It consists of choosing any layer in the multilayer and
then considering multiple reflections within it, the reflection and transmission
coefficients at its boundaries being the resultant coefficients of the complete
structures on either side. The method of summing multiple beams is, of course,
quite old and the novel feature of the present technique is the way in which it is
applied. Although the technique described by Smith was principally concerned
with dielectric multilayers, it can be extended to deal with absorbing layers. As
before, we limit ourselves, in the derivation, to normal incidence. When the layers
are transparent, the expressions can be extended to oblique incidence without
major difficulty. The notation is illustrated in figure 2.19.

From equation (2.145)

τ+ = τ+
a τ

+
b e−iδ

1 − ρ−
a ρ

+
b e−2iδ

where

δ = 2πNd/λ.

Now N = n − ik and we can write δ as

δ = 2π(n − ik)d/λ = α + iβ
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Figure 2.19. The quantities associated with the effective interfaces in Smith’s technique.

and

e−iδ = e−βe−iα

where α = 2πnd/λ, the phase thickness of the layer, and β = 2πkd/λ. Now

T = nm

n0

(
τ+) (τ+)∗ ,

where nm is the real part of the exit medium index and n0 is the refractive index
of the incident medium.

T = nm

n0

(
τ+

a

) (
τ+

a

)∗ (
τ+

b

) (
τ+

b

)∗
e−2β(

1 − ρ−
a ρ

+
b e−2βe−2iα

) (
1 − ρ−

a ρ
+
b e−2βe−2iα

)∗ .
Now, let

τ+
a = ∣∣τ+

a

∣∣ eiϕ′
a ρ−

a = ∣∣ρ−
a

∣∣ eiϕa

τ+
b = ∣∣τ+

b

∣∣ eiϕ′
b ρ+

b = ∣∣ρ+
b

∣∣ eiϕb .

Then,

T = nm

n0
×

∣∣τ+
a

∣∣2 ∣∣τ+
b

∣∣2 e−2β(
1 − ∣∣ρ−

a
∣∣2 ∣∣ρ+

b

∣∣2 ei(ϕa+ϕb)e−2βe−2iα
) (

1 − ∣∣ρ−
a
∣∣2 ∣∣ρ+

b

∣∣2 e−i(ϕa+ϕb)e−2βe2iα
) ,

i.e.

T = nm

n0

∣∣τ+
a

∣∣2 ∣∣τ+
b

∣∣2 e−2β[
1 − ∣∣ρ−

a
∣∣2 ∣∣ρ+

b

∣∣2 e−4β − 2
∣∣ρ−

a
∣∣ ∣∣ρ+

b

∣∣ e−2β cos (ϕa + ϕb − 2α)
] .

(2.148)
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A marginally more convenient form of the expression can be obtained by
substituting 1 − 2 sin2[(ϕa + ϕb)/2 − α] for cos(ϕa + ϕb − 2α), and with some
rearrangement

T = nm

n0

∣∣τ+
a

∣∣2 ∣∣τ+
b

∣∣2 e−2β(
1 − ∣∣ρ−

a
∣∣ ∣∣ρ+

b

∣∣ e−2β
)2 ·

[
1 + 4

∣∣ρ−
a

∣∣ ∣∣ρ+
b

∣∣ e−2β(
1 − ∣∣ρ−

a
∣∣ ∣∣ρ+

b

∣∣ e−2β
)2

× sin2
(
ϕa + ϕb

2
− 2πnd

λ

)]−1

. (2.149)

If there is no absorption in the chosen layer, i.e. β = 0, then the restrictions on
reflectances in absorbing media no longer apply and we can write

Ta = n

n0

∣∣τ+
a

∣∣2 R−
a = ∣∣ρ−

a

∣∣2
Tb = nm

n

∣∣τ+
b

∣∣2 R−
a = ∣∣ρ+

b

∣∣2

T = TaTb[
1 − (

R−
a R+

b

)1/2
]2

·
[

1 + 4R−
a R+

b[
1 − (

R−
a R+

b

)1/2
]2

× sin2
(
ϕa + ϕb

2
− 2πnd

λ

)]−1

(2.150)

which is the more usually quoted version.
The usefulness of this method is mainly in providing an insight into the

properties of a particular type of filter, and it is of considerable value in design.
It is certainly not the easiest method of determining the performance of a given
multilayer—this is best tackled by a straightforward application of the matrix
method. What equations (2.149) or (2.150) do is to make it possible to isolate a
layer, or a combination of several layers, and to examine the influence which these
layers and any changes in them have on the performance of the filter as a whole.
Smith’s original paper includes a large number of examples of this approach and
repays close study.

2.15.4 The Smith chart

The Smith chart is one of a number of different devices of the same broad type
that were originally intended to simplify calculation. The Smith chart is the one
which appears most frequently in the literature and so it is included here, although
little use is made of it in the remainder of the book. The method depends on three
properties of a thin-film structure.

1. Since the tangential components of E and H are continuous across a
boundary, so also is the equivalent admittance. This has been implied in the
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Figure 2.20. Parameters used in the Smith chart description.

section dealing with the matrix method, but has not, perhaps, been explicitly
stated there.

2. In any thin film, for example layer q in figure 2.20, the amplitude
reflectance ρ at any plane within the layer is related to that at the edge of the
layer remote from the incident wave ρm by

ρ = ρme−2iδ, (2.151)

where δ is the phase thickness of that part of the layer between the far boundary
m and the plane in question.

This second point is almost self-evident, but may be shown by putting
ρ+

a = 0 in equation (2.145), since the boundary under consideration is an
imaginary one between two media of identical admittance.

3. The amplitude reflection coefficient of any thin-film assembly, with
optical admittance at the front surface of Y, is given by equation (2.144), i.e.

ρ = η0 − Y

η0 + Y
= 1 − Y/η0

1 + Y/η0
, (2.152)

where η0 is the admittance of the incident medium. Y/η0 is sometimes known as
the reduced admittance.

The procedure for calculating the effect of any layer in a thin-film assembly
by using these properties is as follows.

(i) ρm, the amplitude reflection coefficient at the boundary of the layer remote
from the side of incidence, is given.
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(ii) The amplitude reflection coefficient within the layer just inside boundary l is
then given by equation (2.151):

ρ = ρme−2iδq . (2.153)

(iii) The optical admittance just inside boundary l is given by equation (2.152):

ρ = 1 − Y/ηq

1 + Y/ηq
, (2.154)

i.e.
Y

ηq
= 1 − ρ

1 + ρ
. (2.155)

(iv) The optical admittance on the incident side of boundary l is still Y because
of condition 1 above. The reduced admittance is Y/ηq−1 where

Y

ηq−1
= ηq

ηq−1
· Y

ηq
. (2.156)

(v) The amplitude reflection coefficient ρ l on the incident side of boundary l is
given by

ρl = 1 − Y/ηq−1

1 + Y/ηq−1
. (2.157)

Calculation of the amplitude reflection coefficient of any thin-film assembly
is merely the successive application of equations (2.153)–(2.157) to each layer in
the system, starting with that at the end of the assembly remote from the incident
wave.

The calculation can be carried out in any convenient way, and can even
be used as the basis for a computer program. The problem is similar to one
found in the study of high-frequency transmission lines and a simple graphical
approach has been devised. The most awkward parts of the calculation are in
equations (2.155) and (2.157). A chart connecting values of X and Z, where

X = 1 − Z

1 + Z
(2.158)

is shown in figure 2.21 and is known as a Smith chart after the originator P H
Smith (not to be confused with the S D Smith of the previous section). Z is plotted
in polar coordinates on the diagram and the corresponding real and imaginary
parts of X are read off from the sets of orthogonal circles. A slide rule is capable
of the other part of the calculation, the multiplication by ηq/ηq−1.

A scale is provided around the outside of the chart to enable the calculation
involved in equation (2.153) to be very simply carried out by rotating the point
corresponding to ρm around the centre of the chart through the appropriate angle
2δq. The scale is calibrated in terms of optical thickness measured in fractions of
a wavelength, taking into account that the angle is actually 2 × δq.
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Figure 2.21. The Smith chart. Dashed circles are circles of constant amplitude reflection
coefficient ρ. From the smallest to the largest they correspond to ρ = 0.2, 0.4, 0.6, 0.8
and 1.0, the outer solid circle. Solid circles are circles of constant real part and constant
imaginary part of the reduced optical admittance. Note: an optical thickness of 0.25λ
corresponds to a phase thickness of 90◦. (This Smith chart was constructed using the
details given in Jackson W 1951 High Frequency Transmission Lines3rd edn (London:
Methuen) pp 129 and 146.)

2.15.5 Reflection circle diagrams

This technique, sometimes referred to simply as a circle diagram, was described
by Berning [4] and its use in coating design was considerably developed and
described in much detail by Apfel [11]. According to Apfel, Frank Rock
originated this technique in the mid-1950s. The technique results in diagrams
that have an appearance similar to that of the admittance diagram.

The scale and shape of the diagram is similar to that of the Smith chart and,
indeed, the identical set of coordinates and prepared graph paper may be used for
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Figure 2.22. Quantities in the method of reflection circles.

both. This leads to a confusion of the two techniques with the name Smith chart
being applied to the circle diagram. They are really quite different. The Smith
chart slides a reference plane through an already existing multilayer and plots the
net amplitude reflection coefficient at the plane. There are discontinuities in the
locus, therefore, when an interface is crossed. Dielectric loci are circles centred
at the origin. The circle diagram assumes that the multilayer is under construction
so that the incident medium for the amplitude reflection coefficient is the incident
medium for the entire multilayer. This results also in circles but there are no
discontinuities in the resulting locus and the individual dielectric circles are no
longer centred at the origin.

Equation (2.144) gives an expression for calculating the change in amplitude
reflection coefficient resulting from the addition of a single layer:

ρ+ = ρ+
a + ρ+

b e−2iδ

1 + ρ+
b ρ

+
a e−2iδ

.

We can calculate the properties of a multilayer by successive applications of this
formula, as has already been indicated. Let us imagine that we have arrived at the
pth layer in the calculation. The quantities involved are indicated in figure 2.22.
ρ+

f is the amplitude reflection coefficient of the (p − 1)th layer at the outer
interface, which we have labelled f.

ρ+
f = ηp−1 − ηp

ηp−1 + ηp
.

ρ′ in figure 2.22 is the resultant amplitude reflection coefficient at the inner
interface of the pth layer due to the entire structure on that side and is not to
be confused with ρq, the amplitude reflection coefficient of the qth interface. The



82 Basic theory

resultant amplitude reflection coefficient ρ at the f th interface is given by

ρ = ρ+
f + ρ′e−2iδ

1 + ρ+
f ρ

′e−2iδ
. (2.159)

Provided we are dealing with dielectric materials ρ+
f will be real. ρ ′ may be

complex but we can include any phase angle due to ρ ′ in the factor e−2iδ . Let us
plot the locus of ρ in the complex plane as δ varies. To simplify the analysis, we
can replace ρ by x + iy and ρ ′e−2iδ by α + iβ, where(

α2 + β2
)1/2 = ∣∣ρ′∣∣ .

Then

x + iy = ρ+
f + α + iβ

1 + ρ+
f (α + iβ)

.

Multiplying both sides by the denominator of the right-hand side and then
equating real and imaginary parts of the resulting expressions yields

x
(
1 + ρ+

f α
)− yρ+

f β = ρ+
f + α

y
(
1 + ρ+

f α
)+ xρ+

f β = β,

i.e. (
x − ρ+

f

) = αx
(
1 − xρ+

f

) + βyρ+
f

y = − αyρ+
f + β

(
1 − xρ+

f

)
.

To find the locus, we square and add these equations to give(
x − ρ+

f

)2 + y2 =
(
α2 + β2

) [(
1 − xρ+

f

)2 + (
ρ+

f y
)2]

= ∣∣ρ′∣∣2 [(1 − xρ+
f

)2 + (
ρ+

f y
)2]

which can be manipulated to

x2
(

1 − ∣∣ρ′∣∣2 ρ+
f

2
)
+ y2

(
1 − ∣∣ρ′∣∣2 ρ+

f
2
)
−2xρ+

f

(
1 − ∣∣ρ′∣∣2)+ρ+

f
2 − ∣∣ρ′∣∣2 = 0.

(2.160)
This is the equation of a circle with centre(

ρ+
f (1 − |ρ ′|2)

(1 − |ρ ′|2ρ+
f

2
)
, 0

)
,

i.e. on the real axis, and radius ∣∣ρ′∣∣ (1 − ρ+
f

2
)

(
1 − |ρ′|2 ρ+

f
2
) .
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The locus of the reflection coefficient, as the layer thickness is allowed to increase
steadily from zero, is therefore a circle. A half-wave layer traces out a complete
circle, while a quarter-wave layer, if it starts on the real axis, will trace out a
semicircle; otherwise it will be slightly more or less than a semicircle, depending
on the exact starting point. In all cases, the circle is traced clockwise.

The locus corresponding to a single layer is straightforward. The plotting of
the locus corresponding to two or more layers is slightly more complicated. The
form of the locus of each layer is an arc of a circle traced from the terminal point
of the previous layer. The complication arises from the subsidiary calculation
which must be performed each time to calculate the current value of ρ ′ from the
terminal value of the previous layer. An example will serve to illustrate the point.

Let us consider a glass substrate of index 1.52, on which is deposited first a
layer of zinc sulphide of index 2.35 and thickness of one quarter-wave, followed
by a layer of cryolite of index 1.35 and of thickness also one quarter-wave. Air,
of index 1.0, is the incident medium.

Calculation of the circles is most easily performed by using equation (2.159)
to calculate the terminal points. The starting point is known and that, together
with the fact that the centre is on the real axis, completes the specification of the
circles.

The values of ρ+
f and ρ ′ for the first layer are

ρ+
f = 1.0 − 2.35

1.0 + 2.35
= −0.4030

ρ′ = 2.35 − 1.52

2.35 + 1.52
= 0.2144.

The starting point for the layer is

ρ = ρ+
f + ρ′

1 + ρ+
f ρ

′ = −0.2063

which corresponds to the amplitude reflection coefficient of bare glass in air.
For a quarter-wave layer e−2iδ = −1 and so the terminal value of ρ is given

by

ρ = ρ+
f − ρ′

1 − ρ+
f ρ

′ = −0.5683

and the locus up to this point is a semicircle. This value of ρ corresponds to the
amplitude reflection coefficient of a quarter-wave of zinc sulphide on glass in air.
To continue the locus into the next layer, we need new values of ρ +

f and ρ ′.
(ρ+

f )new is straightforward, being the external reflection coefficient at an air–
cryolite boundary:

(
ρ+

f

)
new = 1.0 − 1.35

1.0 + 1.35
= −0.1489.
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Figure 2.23. Reflection circles, or amplitude reflection locus, for the coating:
Air|L H |Glass, where L indicates a quarter-wave of index 1.35, H of 2.35, and the indices
of air and glass are 1.00 and 1.52, respectively.

(ρ′)new is more difficult. This is the amplitude reflection coefficient which the
substrate plus a quarter-wave of zinc sulphide will have, no longer in a medium
of air, but in one of cryolite. It can be calculated either using the normal matrix
method or simply by inverting the equation

ρ = (ρ)old =
(
ρ+

f

)
new + (

ρ′)
new

1 + (
ρ+

f

)
new (ρ

′)new

which must be satisfied if the start of the new layer is to coincide with (ρ)old, the
termination of the old.

(
ρ′)

new = (ρ)old − (
ρ+

f

)
new

1 − (ρ)old
(
ρ+

f

)
new

and in this case (ρ)old is −0.5683, so that

(
ρ′)

new = −0.5683 − (−0.1489)

1 − (−0.5683) (−0.1489)
= −0.4582.

The new locus, which is another semicircle, then starts at the point −0.5683 on
the real axis and terminates at

ρ =
(
ρ+

f

)
new − (

ρ′)
new

1 − (
ρ+

f

)
new (ρ

′)new
= 0.3319.

The loci are shown in figure 2.23.
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The advantage of the technique over the Smith chart is especially that the
locus is a continuous one, since the termination of each layer is the starting
point for the next. All possible loci corresponding to a particular refractive index
form a set of nested circles centred on the real axis of the diagram. Enough of
these circles can be drawn to form a separate template or overlay for each of the
materials involved in a design and these can considerably ease the task of drawing
the diagram.

Since the method of the Smith chart is based on the real and imaginary axes
of the amplitude reflection coefficient, the loci can actually be drawn on the same
diagram as a Smith chart. Strictly, in that case, the chart should not be referred to
as a Smith chart because it is not being used in that way.

Many examples of the use of this technique in design are given by Apfel [11]
who has also extended it to include absorbing layers such as metals.
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Chapter 3

Antireflection coatings

As has already been mentioned in chapter 1, antireflection coatings were the
principal objective of much of the early work in thin-film optics. Of all the
possible applications, antireflection coatings have had the greatest impact on
technical optics, and even today, in sheer volume of production, they still exceed
all other types of coating. In some applications, antireflection coatings are simply
required for the reduction of surface reflection. In others, not only must surface
reflection be reduced, but the transmittance must also be increased. The crown
glass elements in a compound lens have a transmittance of only 96% per untreated
surface, while the flint components can have a surface transmittance as low as
90%. The net transmittance of even a modest number of untreated elements in
series can therefore be quite low. Additionally, part of the light reflected at the
various surfaces eventually reaches the focal plane, where it appears as ghosts or
as a veiling glare, thus reducing the contrast of the images. This is especially true
of the zoom lenses used in television or photography, where 20 or more elements
may be included, and which would be completely unusable without antireflection
coatings.

Antireflection coatings can range from a simple single layer having virtually
zero reflectance at just one wavelength, to a multilayer system of more than a
dozen layers, having virtually zero reflectance over a range of several octaves.
The type used in any particular application will depend on a variety of factors,
including the substrate material, the wavelength region, the required performance
and the cost.

In the visible region, crown glass, which has a refractive index of around
1.52, is most commonly used. As we shall see, this presents a very different
problem from infrared materials, which can have very much higher refractive
indices. It is convenient, therefore, to split what follows into antireflection
coatings for low-index substrates and antireflection coatings for high-index
substrates, corresponding roughly to the visible and infrared. Since, from the
point of view of design, antireflection coatings for high-index substrates are more
straightforward, they are considered first.

86
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There is no systematic method for the design of antireflection coatings.
Trial and error, assisted by approximate techniques (frequently one or other of
the graphical methods mentioned in chapter 2) backed up by accurate computer
calculation, are frequently employed. Very promising designs can be further
improved by computer refinement. Several different approaches are used in this
chapter, partly to illustrate their use and partly because they are complementary.
All the performance curves have been computed by application of the matrix
method. In most cases, the materials are considered to be completely transparent.

The vast majority of antireflection coatings are required for matching an
optical element into air. Air has an index of around 1.0003 at standard temperature
and pressure which, for practical purposes, can be considered as unity. The
earliest antireflection coatings were on glass for use in the visible region of the
spectrum. As shall become apparent later, a single-layer antireflection coating
on glass, for the centre of the visible region, has a distinct magenta tinge when
examined visually in reflection. This gives an appearance not unlike tarnish, and
indeed in chapter 1 we mentioned the beneficial effects of the tarnish layer on aged
flint objectives, and so the term ‘bloom’, in the sense of tarnish, has been used in
this connection. The action of applying the coating is referred to as ‘blooming’
and the element is said to be ‘bloomed’.

3.1 Antireflection coatings on high-index substrates

The term high index in this context cannot be defined precisely in the sense of a
range with a definite lower bound. It simply means that the substrate has an index
sufficiently higher than the available thin-film materials to enable the design of
high-performance antireflection coatings consisting entirely, or almost entirely, of
layers with indices lower than that of the substrate. These high-index substrates
are principally of use in the infrared. Semiconductors, such as germanium, with
an index of around 4.0, giving a reflection loss of around 36% per surface, and
silicon, with an index around 3.5 and reflection loss of 31%, are common, and it
would be completely impossible to use them in the vast majority of applications
without some form of antireflection coating. For many purposes, the reduction of
a 30% reflection loss to one of a few per cent would be considered adequate. It is
only in a limited number of applications where the reflection loss must be reduced
to less than 1%.

3.1.1 The single-layer antireflection coating

The simplest form of antireflection coating is a single layer. Consider figure 3.1.
Here we have a vector diagram which, since two interfaces are involved, contains
two vectors, each representing the amplitude reflection coefficient at an interface.

If the incident medium is air, then, provided the index of the film is lower
than the index of the substrate, the reflection coefficient at each interface will be
negative, denoting a phase change of 180 ◦. The resultant locus is a circle with a



88 Antireflection coatings

Figure 3.1. Vector diagram of a single-layer antireflection coating.

minimum at the wavelength for which the phase thickness of the layer is 90 ◦, that
is, a quarter-wave optical thickness, when the two vectors are completely opposed.
Complete cancellation at this wavelength, that is, zero reflectance, will occur if
the vectors are of equal length. This condition, in the notation of figure 3.1, is

y0 − y1

y0 + y1
= y1 − ym

y1 + ym

which requires

y1

y0
= ym

y1

or
y1 = (y0ym)

1/2 , (3.1)

which at optical frequencies can also be written

n1 = (n0nm)
1/2 .

At oblique incidence, the admittances, y, in (3.1) should be replaced by the
appropriate tilted values, η.

Although this result was derived by an approximate technique, the result
is exactly correct. We recall that in chapter 2 it was shown that the optical
admittance of a substrate coated with a quarter-wave optical thickness is

Y = y2
1/ym,

where y1 is the admittance of the film material and ym that of the substrate. The
reflectance is therefore given by

R =
(

y0 − Y

y0 + Y

)2

=
(

y0 − y2
1/ym

y0 + y2
1/ym

)2

.
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This is an exact result and clearly the reflectance is zero if y1 is given by (3.1).
The condition for a perfect single-layer antireflection coating is, therefore,

a quarter-wave optical thickness of material with optical admittance equal to
the square root of the product of the admittances of substrate and medium. It
is seldom possible to find a material of exactly the optical admittance which is
required. If there is a small error, ε, in y1 such that

y1 = (1 + ε) (y0ym)
1/2

then

R =
(

−2ε − ε2

2 + 2ε + ε2

)2

≈ ε2

provided that ε is small. A 10% error in y1, therefore, leads to a residual
reflectance of 1%.

Zinc sulphide has an index of around 2.2 at 2 µm and 2.15 at 15 µm. It
has sufficient transparency for use as a quarter-wave antireflection coating over
the range 0.4–25 µm. Germanium, silicon, gallium arsenide, indium arsenide
and indium antimonide can all be treated satisfactorily by a single layer of zinc
sulphide. The procedure to be followed for hard, rugged zinc sulphide films is
described in a paper by Cox and Hass [1]. The substrate should be maintained
at around 150 ◦C during coating and cleaned by a glow discharge immediately
before coating. The transmittance of a germanium plate with a single-layer zinc
sulphide antireflection coating is shown in figure 3.2.

Zinc sulphide, even deposited under the best conditions, can deteriorate after
prolonged exposure to humid atmospheres. Somewhat harder and more robust
coatings are produced with cerium oxide or silicon monoxide. Cerium oxide,
when deposited at a substrate temperature of 200 ◦C or more, forms very hard
and durable films of refractive index 2.2 at 2 µm. Unfortunately, in common
with many other materials it displays a slight absorption band at 3 µm owing
to adsorbed water vapour. Silicon monoxide does not show this water vapour
band to the same degree, and so Cox and Hass have recommended this material
as the most satisfactory for coating germanium and silicon in the near infrared.
The index of silicon monoxide evaporated in a good vacuum at a high rate is
around 1.9. The transmittance of a silicon plate coated on both sides with silicon
monoxide is shown in figure 3.3.

So far, we have considered only normal incidence in the numerical
calculations which we have made. At angles of incidence other than normal,
the behaviour is similar, but the effective phase thickness of the layer is reduced
as the incidence increases due to the cosine term in the phase thickness

δ = (2πndcosϑ) /λ

and so the optimum wavelength is shorter. For the optical admittance we must use
the appropriate ηp or ηs, and, as these are different, polarisation effects become
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Figure 3.2. Transmittance of a germanium plate bloomed on both sides with zinc sulphide
for 8 µm. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

Figure 3.3. Transmittance of a 1.5-mm thick silicon plate with and without antireflection
coatings of silicon monoxide, a quarter-wavelength thick at 1.7 µm. (After Cox and
Hass [1].)

evident. For high-index substrates and coatings the effects are much less than for
the low-index coatings for the visible region, as we shall see later. Figure 3.4
shows the calculated variation with angle of incidence of the performance of a
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Figure 3.4. Calculated performance at various angles of incidence of a zinc sulphide
coating (n = 2.2) on a germanium substrate (n = 4.0).

zinc sulphide coating (n = 2.2) on a germanium substrate (n = 4.0).
Such calculations are relatively straightforward. If we use the matrix method,

the characteristic matrix of a single film on a substrate is given by[
B
C

]
=
[

cos δ1
i sinδ1
η1

iη1 sin δ1 cos δ1

] [
1
ηm

]
,

i.e. [
B
C

]
=
[

cos δ1 + i (ηm/η1) sin δ1
ηm cos δ1 + iη1 sin δ1

]
,

where the symbols have the meanings, defined in chapter 2,

ηp = y/ cosϑ
ηs = y cosϑ

}
for each material

δ1 = (2πn1d1 cosϑ1) /λ

and where

n0 sinϑ0 = n1 sinϑ1 = nm sinϑm.

If λ0 is the wavelength for which the layer is a quarter-wave optical thickness at
normal incidence, then n1d1 = λ0/4 and

δ1 = π

2

(
λ0

λ

)
cosϑ1
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so that the new optimum wavelength is λ0 cosϑ1.
The amplitude reflection coefficient is

ρ = η0 − Y

η0 + Y
= η0 − C/B

η0 + C/B

= (η0 − ηm) cos δ1 + i [(η0ηm/η1)− η1] sin δ1

(η0 + ηm) cos δ1 + i [(η0ηm/η1)+ η1] sin δ1
(3.2)

and the reflectance

R = (η0 − ηm)
2 cos2 δ1 + i [(η0ηm/η1)− η1]2 sin2 δ1

(η0 + ηm)
2 cos2 δ1 + i [(η0ηm/η1)+ η1]2 sin2 δ1

. (3.3)

This expression is deceptively simple. An increase in the number of layers or a
move to an absorbing system immediately increases the complexity to a degree
that is completely discouraging.

It is instructive to prepare an admittance diagram (figure 3.5) for the single-
layer coating. We recall that admittance loci were discussed in chapter 2. We
consider normal incidence only and use free space units for the admittances so that
they are numerically equal to the refractive indices. The locus for a single layer is
a circle and in this case it begins at the point 4.0 on the real axis, corresponding
to the admittance of the germanium substrate. The centre of the circle is on the
real axis and the circle cuts the real axis again at the point 2.22/4.0 = 1.21,
corresponding to a quarter-wave optical thickness. Note especially that since the
two points of intersection with the real axis are defined we do not need to calculate
the position of the centre. We can mark a scale of δ1 along the locus. Since
δ1 = 2πn1d1/λ, we can either assume λ constant and replace the scale with one
of optical thickness, or, provided that we assume that the refractive index remains
constant with wavelength, for a given layer optical thickness we can mark the
scale in terms of g (= λ0/λ). These various scales have been added. The scale of
g assumes that λ0 is the wavelength for which the layer has an optical thickness
of one quarter-wave.

This is a particularly simple admittance locus and it is included principally
to illustrate the method. We will make some use of admittance diagrams in this
chapter. Normally these will be drawn for one value of wavelength and for one
value of optical thickness for each layer.

3.1.2 Double-layer antireflection coatings

The disadvantage of the single-layer coating, as far as the design is concerned,
is the limited number of adjustable parameters. We can see from the admittance
locus of figure 3.5 that only where the locus passes through the point (1, 0) will
zero reflectance be obtained (or more generally when the locus passes through the
point (y0, 0)) and this must correspond to a semicircle or a quarter-wave optical
thickness (or, strictly, an odd integral multiple thereof). The refractive index, or
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Figure 3.5. Admittance diagram for a single-layer zinc sulphide (n = 2.2) coating on
germanium (n = 4.0).

optical admittance, of the layer is also uniquely determined as y1 = (y0ym)
1/2.

There is thus no room for manoeuvre in the design of a single-layer coating.
In practice, the refractive index is not a parameter that can be varied at will.
Materials suitable for use as thin films are limited in number and the designer has
to use what is available. A more rewarding approach, therefore, is to use more
layers, specifying obtainable refractive indices for all layers at the start, and to
achieve zero reflectance by varying the thickness. Then, too, there is the limitation
that the single-layer coating can give zero reflectance at one wavelength only
and low reflectance over a narrow region. A wider region of high performance
demands additional layers.

Much of this design work nowadays is carried out by automatic methods
and this is a perfectly sensible and efficient development. Automatic methods
are briefly described elsewhere in this book. They are particularly valuable
for antireflection coatings and are strongly recommended. Here, however, we
are concerned also with the understanding of the structures of the coatings
and particularly with the parts played by the individual layers. Without such
understanding we are completely vulnerable when things go wrong and the results
are not as expected. Also, automatic design techniques function more efficiently
when they are furnished with good starting designs. We therefore spend much
time in this chapter with some of the traditional design techniques, not so much
because all are still used in actual design work, but because they require a
knowledge of the structure and working of the coatings, and because they are
interesting.
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Figure 3.6. Vector diagram for a double-layer antireflection coating. The thickness of the
layers can be chosen to close the vector triangle and give zero reflectance in two ways, (a)
and (b).

We will consider first the problem of ensuring zero reflectance at one single
wavelength and we shall attempt to achieve this with a two-layer coating. Since
we are dealing with high-index substrates we look initially at combinations of
layers having refractive indices lower than that of the substrate. A vector diagram
of one possibility is shown in figure 3.6. Provided the vectors are not such that
any one is greater in length than the sum of the other two, then there are two
sets of thicknesses for which zero reflectance can be obtained at one wavelength.
The thinner combination, as in figure 3.6(a), will give the broadest characteristic
and should normally be chosen. In some ways, it is easier to visualise the
design using an admittance plot. As usual, we plot admittance in free space
units so that it is numerically the same as the refractive index. Two possible
arrangements are shown in figure 3.7, which can be obtained simply by drawing
the circle corresponding to index n1, passing through the point n0, and the circle
corresponding to index n2 passing through the point nm. Provided these circles
intersect, then it is possible to use them as an antireflection coating. The two sets
of thicknesses correspond to the two points of intersection.

This is a very important coating with wider implications than just the
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Figure 3.7. Admittance diagram for the double-layer antireflection coating. The two
possible solutions are shown in (a) and (b).

blooming of a high-index substrate and so it is worth examining in greater detail.
We use the matrix method and follow an analysis by Catalan [2], changing the
notation to agree with the system used here. The characteristic matrix of the
assembly is[

B
C

]
=
[

cos δ1
i sin δ1

y1
iy1 sin δ1 cos δ1

] [
cos δ2

i sinδ2
y2

iy2 sin δ2 cos δ2

] [
1
ym

]

=
[

cos δ1 [cos δ2+i (ym/y2) sin δ2]+i sin δ1 (ym cos δ2+iy2 sin δ2) /y1
iy1 sin δ1 [cos δ2+i (ym/y2) sin δ2]+cos δ1 (ym cos δ2+iy2 sin δ2)

]
.

The reflectance will be zero if the optical admittance Y is equal to y0, i.e.

iy1 sin δ1 [cos δ2 + i (ym/y2) sin δ2] + cos δ1 (ym cos δ2 + iy2 sin δ2)

= y0 {cos δ1 [cos δ2 + i (ym/y2) sin δ2] + i sin δ1 (ym cos δ2 + iy2 sin δ2) /y1} .
The real and imaginary parts of these expressions must be equated separately
giving

− (y1ym/y2) sin δ1 sin δ2 + ym cos δ1 cos δ2

= y0 cos δ1 cos δ2 − (y0y2/y1) sin δ1 sin δ2
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and

y1 sin δ1 cos δ2 + y2 cos δ1 sin δ2

= (y0ym/y2) cos δ1 sin δ2 + (y0ym/y1) sin δ1 cos δ2

i.e.

tan δ1 tan δ2 = (ym − y0)[(y1ym/y2)− (y0y2/y1)]

= y1y2(ym − y0)(y
2
1 ym − y0y2

2) (3.4)

and
tan δ2/ tan δ1 = y2(y0ym − y2

1)/[y1(y
2
2 − y0ym)] (3.5)

giving

tan2 δ1 = (ym−y0)
(
y2

2−y0 ym
)
y2

1(
y2

1 ym−y0 y2
2

)(
y0 ym−y2

1

)

tan2 δ2 = (ym−y0)
(
y0 ym−y2

1

)
y2

2(
y2

1 ym−y0 y2
2

)(
y2

2−y0 ym
) .

(3.6)

The values of δ1 and δ2 found from these equations must be correctly paired and
this is most easily done either by ensuring that they also satisfy the two preceding
equations or by sketching a rough admittance diagram.

For solutions to exist, or, putting it in another way, for the circles in the
admittance diagram to intersect, the right-hand sides of equations (3.6) must be
positive. δ1 and δ2 are then real. This requires that, of the expressions

(y2
2 − y0ym) (3.7)

(y2
1 ym − y0y2

2) (3.8)

(y0ym − y2
1) (3.9)

either all three must be positive or any two are negative and the third positive.
This can be summarised in a useful diagram (figure 3.8) known as a Schuster
diagram after one of the originators [3]. The bottom right-hand part of the diagram
corresponds to the validity conditions given in figure 3.7.

One useful coating is given by the area at the top left-hand edge of the
diagram where y1 ≥ (y0ym)

1/2 ≥ y2. For germanium at normal incidence in air,
(y0ym)

1/2 = 2.0. There is no upper limit to the magnitude of y1, which can be
conveniently chosen to be germanium with index 4.0, while y2 can be magnesium
fluoride with index 1.38, didymium fluoride with index 1.57, cerium fluoride with
index 1.59, or any other similar material. The advantage of this arrangement is
that the low-index film, which tends to be less robust, is protected by the high-
index layer. Germanium layers are particularly good in this respect. Figure 3.9
gives an example of this type of coating. Generally, the total thickness, as in the
example, is rather thinner than a quarter-wave, which adds to the durability. Cox
[4] has discussed a number of different possibilities along these lines.
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Figure 3.8. The construction of a Schuster diagram. (a), (b) and (c) are combined in one
diagram in (d) and the shaded areas are those in which real solutions exist.

Figure 3.9. Transmittance of a germanium plate with two-layer antireflection coatings of
MgF2, (nd = λ/4 at 1.03 µm) and germanium (nd = λ/4 at 0.61 µm), the germanium
being the outermost layer. (After Cox [4].)

Unfortunately, this type of double-layer coating tends to have rather narrower
useful ranges than the single-layer coating, which may itself not be broad enough
for certain applications. It is possible to broaden the region of reflectance by using
two, or even more, layers. A common approach is to choose layer thicknesses
which are whole numbers of quarter-waves, and then to determine the refractive
indices which should be used to give the desired performance.

An effective coating is one consisting of two quarter-wave layers (see
figure 3.10). The appearances of the vector diagram at three different wavelengths
is shown in (a), (b) and (c). At λ = (3/4)λ0 and λ = (3/2)λ0 the three vectors
in the triangle are inclined at 60◦ to each other. Provided the vectors are all of
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equal length, the triangles will be closed and the reflectance will be zero at these
wavelengths. This condition can be written

y1

y0
= y2

y1
= ym

y2

and solved for y1 and y2:
y3

1 = y2
0 ym

y3
2 = y0y2

m.

(3.10)

The reflectance at the reference wavelength λ0 where the layers are quarter-waves
is given by

R =
(

y0 − (
y2

1/y2
2

)
ym

y0 + (
y2

1/y2
2

)
ym

)2

=
(

1 − (ym/y0)
1/3

1 + (ym/y0)
1/3

)2

,

a considerable improvement over the bare substrate.
For germanium of refractive index 4.0 in air, at normal incidence, the values

required for the indices are n1 = 1.59 and n2 = 2.50 and the reflectance at λ0 is
5.6%. The theoretical curve of this coating is shown in figure 3.11(a). Theoretical
and measured curves of a similar coating on arsenic trisulphide and triselenide are
given in figure 3.11(b) and (c).

The coating just described is a special case of a general coating where the
layers are of equal thickness. To compute the general conditions it is easiest to
return to the analysis leading up to equations (3.6).

Let δ1 be set equal to δ2 and denoted by δ, where we recall that if λ0 is the
wavelength for which the layers are quarter-waves then

δ = π

2

(
λ0

λ

)
.

From equation (3.5)

y2(y0ym − y2
1) = y1(y

2
2 − y0ym),

i.e.

y0ym = y1y2

which is a necessary condition for zero reflectance.
From equation (3.4) we find the wavelengths λ corresponding to zero

reflectance

tan2 δ = y1y2 (ym − y0)

y2
1 ym − y0y2

2

= y0ym (ym − y0)

y2
1 ym − y0y2

2

.
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Figure 3.10. Vector diagrams for quarter–quarter antireflection coatings on a high-index
substrate.

If δ is the solution in the first quadrant then there are two solutions

δ = δ′ or δ = π − δ′

and the two values of λ are

λ =
(
π/2

δ

)
λ0.
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Figure 3.11. Double-layer antireflection coatings for high-index substrates. (a)
Theoretical transmittance of a quarter–quarter coating on germanium (single surface). (b)
Theoretical and measured transmittance of a similar coating on arsenic trisulphide glass
(double surface). (c) Theoretical and measured transmittance of a similar coating on
arsenic triselenide glass (double surface). ((b) and (c) by courtesy of Barr and Stroud
Ltd.)

In all practical cases, ym will be greater than y0 and the above equation for tan2 δ

will have a real solution provided

y2
1 ym − y0y2

2 ≥ 0.
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Figure 3.12. A Schuster diagram showing possible values of film indices for a
quarter–quarter coating on germanium.

The left-hand side of this inequality is identical to expression (3.8).
Figure 3.12 gives the allowed values of y1 and y2 for germanium in air

plotted on a Schuster diagram assuming normal incidence. The form of the
characteristic curve of the coating is similar to that of figure 3.11. The reflectance
rises to a maximum value at the reference wavelength λ0 situated between the
two zeros. The reflectance at λ0 can be found quite simply. At this wavelength,
δ = π/2 and the layers are quarter-waves. The optical admittance is given,
therefore, by

y2
1

y2
2

ym

and the reflectance by

R =
(

y0 − (
y2

1/y2
2

)
ym

y0 + (
y2

1/y2
2

)
ym

)2

. (3.11)

We are considering cases where ym is large. For y1 = y2, the reflectance at λ0
is that of the bare substrate. If y1 > y2 the reflectance is even higher. Thus, for
the solution to be at all useful, y1 should be less than y2 and the region where this
condition holds is indicated on the diagram.
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3.1.3 Multilayer coatings

Figure 3.13 shows a vector diagram for a three-layer coating on germanium. Each
layer is a quarter-wave thick at λ0. If ym > y3 > y2 > y1 > y0 then the
vectors will oppose each other, as shown, at (2/3)λ0, λ0 and 2λ0, and, provided
the vectors are all of equal length, will completely cancel at these wavelengths,
giving zero reflectance.

This coating is similar to the quarter–quarter coating of figure 3.10, but
where the two zeros of the two-layer coating are situated at (3/4)λ 0 and (3/2)λ0,
those of this three-layer coating stretch from (2/3)λ0 to 2λ0, a much broader
region.

The condition for the vectors to be of equal length is

y1

y0
= y2

y1
= y3

y2
= ym

y3

which with some manipulation becomes

y4
1 = y3

0 ym

y4
2 = y2

0 y2
m (3.12)

y4
3 = y0y3

m.

For germanium in air at normal incidence

n0 = 1.00 nm = 4.00

and the refractive indices required for the layers are

n1 = 1.41

n2 = 2.00

n3 = 2.83.

A coating which is not far removed from these theoretical figures is silicon,
next to the substrate, of index 3.3, followed by cerium oxide of index 2.2, followed
by magnesium fluoride, index 1.35. The performance of such a coating with
λ0 = 3.5 µm is shown in figure 3.14. This coating, along with other one- and
two-layer coatings for the infrared, is described by Cox et al [5]. The exact theory
of this coating may be developed in the same way as that of the two-layer coating,
but the calculations are more involved.

It is relatively easy to extend the vector method to deal with four layers,
where the zeros of reflectance are found at (5/8)λ0, (5/6)λ0, (5/4)λ0 and
(5/2)λ0, an even broader region than the three-layer coating. Five layers are
equally straightforward. Whether or not such coatings are of practical value
depends very much on the application. For many purposes the two-layer coating
is quite adequate.
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Figure 3.13. Vector diagram for a quarter–quarter–quarter coating on a high-index
substrate.

The addition of an extra layer makes the exact theory of the three-layer
coating very much more involved than that of the two-layer. The number of
possible groups of designs is enormous. It therefore becomes profitable to employ
techniques which, rather than calculate performance in detail, simply indicate
arrangements which are likely to be capable of acceptable performance and
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Figure 3.14. Measured transmittance of a germanium plate with coatings consisting of
MgF2 + Ce02 + Si (n1d1 = n2d2 = n3d3 = λ/4 at 3.5 µm). (After Cox et al [5].)

eliminate those which are not. Performance can then be accurately calculated
by the procedures of chapter 2.

A particularly useful technique of this type has been developed by Musset
and Thelen [6]. It is based on Smith’s method, that is, the method of effective
interfaces. We recall from chapter 2 that this involves the breaking down of
the assembly into two subsystems. These we can label a and b. The overall
transmittance of the multilayer is then given by

T =

 TaTb(

1 − R1/2
a R1/2

b

)2




×

1 + 4R1/2

a R1/2
b(

1 − R1/2
a R1/2

b

)2 sin2
(
ϕa + ϕb − 2δ

2

)
−1

. (3.13)

We assume that there is no absorption, so that Ta = 1 − Ra and Tb = 1 − Rb.
Both of the expressions multiplied together on the right-hand side of

equation (3.13) have maximum possible values of unity, and for maximum
transmittance, therefore, both must be separately maximised. The first expression

TaTb(
1 − R1/2

a R1/2
b

)2

will be unity if, and only if, Ra = Rb, while the second,


1 + 4R1/2

a R1/2
b(

1 − R1/2
a R1/2

b

)2 sin2
(
ϕa + ϕb − 2δ

2

)
−1
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will be unity if, and only if,

sin2
(
ϕa + ϕb − 2δ

2

)
= 0.

The conditions for a perfect antireflection coating are then

Ra = Rb

called the amplitude condition by Musset and Thelen, and

ϕa + ϕb − 2δ

2
= mπ

called the phase condition. The amplitude condition is a function of the two
subsystems. The phase condition can be satisfied by adjusting the thickness
of the spacer layer. The amplitude condition can, using a method devised by
Musset and Thelen, be satisfied for all wavelengths, but it is difficult to satisfy
the phase condition except at a limited number of discrete wavelengths. At other
wavelengths the performance departs from ideal to a varying degree.

The transmittance and reflectance of a multilayer remain constant when
the optical admittances are all multiplied by a constant factor or when they are
all replaced by their reciprocals, in both cases keeping the optical thicknesses
constant. These properties can readily be demonstrated from the structure of
the characteristic matrices [7]. They enable the design of pairs of substructures
having identical reflectance so that only the phase condition need be satisfied for
perfect antireflection. We can, following Musset and Thelen, imagine a multilayer
consisting of two subsections, a and b, as shown in figure 3.15, with a medium of
admittance yi in between. At this stage we put no restrictions on this medium in
terms either of refractive index or thickness but, as we shall see, they will become
defined at a later stage. Subsection a is bounded by ym on one side and yi on
the other, while b is bounded in the same way by yi and y0. We can now apply
the appropriate rules for ensuring that the amplitude condition is satisfied. We set
up any subsystem a and then convert it into subsystem b by retaining the optical
thicknesses and either multiplying the admittances by a constant multiplier, or
taking the reciprocals of the admittances and multiplying them by a constant
multiplier. Systems derived by the former procedure are classified by Musset
and Thelen as type I, those by the latter as type II.

For type I systems we must have

ym f = yi

yi f = y0

so that

yi = (y0ym)
1/2
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Figure 3.15. Multilayer antireflection coating consisting of two subsystems, a and b,
separated by a central layer.

and

f = (y0/ym)
1/2 .

In this way, any ya gives a corresponding yb of ya(y0/ym)
1/2.

Type II systems, on the other hand, convert so that

f/ym = y0

f/yi = yi

f/ya = yb,

i.e.

yi = (y0ym)
1/2 and f = y0ym

so that any ya gives a corresponding yb of y0ym/ya.
There are no restrictions on layer thickness or on the number of layers in each

subsystem except that they must be equal in number, and it is simpler if quarter-
wave layers are used. Once the individual subsystems a and b are established, the
amplitude condition is automatically satisfied at all wavelengths and it remains
to satisfy the phase condition. This involves the coupling arrangement. It is
impossible to meet the phase condition at all wavelengths and the problem is
so complex that it is best to take the easy way out and adopt a layer of admittance
yi with thickness zero, in which case the layer is omitted, or a quarter-wave, like
the remaining layers of the assembly.

The method can be illustrated by application to the antireflection of
germanium at normal incidence. In this case, n0 = 1.00 and nm = 4.00. Hence
ni = (n0nm)

1/2 = 2.0 in both type I and II systems. First of all we take, for
subsystem a, a straightforward single quarter-wave matching the substrate to the
coupling medium:

n1 na nm

(ninm)
1/2

2.0 2.826 4.0.
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Subsystem b is then, for both type I and II systems

n0 nb ni
1.0 1.414 2.0.

Putting the two subsystems together, we have either a two-layer coating if we
permit the thickness of the coupling layer to shrink to zero, or a three-layer coating
if the coupling layer is a quarter-wave. In the former case we have the design:

Air 1.414 2.282 Ge
1.0 0.25λ0 0.25λ0 4.0

and in the latter

Air 1.414 2.0 2.282 Ge
1.0 0.25λ0 0.25λ0 0.25λ0 4.0.

The first design gives a single minimum. The second, which is similar to the three-
layer design already obtained by the vector method, has a broad three-minimum
characteristic (figure 3.16).

The subsystems need not be perfect matching systems for nm to ni and ni to
n0. We could, for instance, use

n0 = 1.0

nb = (1.0 × 4.0)1/3 = 1.587

nm = 2.0

from the two-layer coating derived by the vector method. This gives complete
two- and three-layer coatings, as follows.

Type I

Air 1.587 3.174 Ge
1.0 0.25λ0 0.25λ0 4.0

Air 1.587 2.0 3.174 Ge
1.0 0.25λ0 0.25λ0 0.25λ0 4.0.

Type II

Air 1.587 2.520 Ge
1.0 0.25λ0 0.25λ0 4.0

Air 1.587 2.0 2.520 Ge
1.0 0.25λ0 0.25λ0 0.25λ0 4.0.

The first of the type II designs is identical to the vector method coating.
Performance curves are given in figure 3.17.

Analytical expressions for calculating the positions of the zeros and the
residual reflectance maxima of two- and three-layer coatings of the above types



108 Antireflection coatings

Figure 3.16. Theoretical performance of antireflection coatings on germanium designed
by the method of Mussett and Thelen [6].

Two layers: Air 1.414 2.828 Ge
1.00 0.25λ0 0.25λ0 4.00

Three layers: Air 1.414 2.00 2.828 Ge
1.00 0.25λ0 0.25λ0 0.25λ0 4.00.

are given by Musset and Thelen. The method can be readily extended to four and
more layers.

Young [8] has developed alternative techniques for coatings consisting of
quarter-wave optical thicknesses based on the correspondence between the theory
of thin-film multilayers and that of microwave transmission lines. He gives a
useful set of tables for the design of multilayer coatings where all thicknesses are
quarter-waves. Given the bandwidth and the maximum permissible reflectance it
is possible quickly to derive the coating which meets the specification with the
least number of layers. The method, of course, takes no account of the possibility
of achieving the given indices in practice, as with many of the other methods we
have been discussing, but the optimum solution is a very useful point of departure
in the design of coatings using real indices.

3.2 Antireflection coatings on low-index substrates

Although the theory developed for antireflection coatings on high-index materials
applies equally well to low-index materials, the problem is made much more
severe by the lack of any rugged thin-film materials of very low index.
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Figure 3.17. (a) Theoretical performance of type I antireflection coatings on germanium
designed by the method of Mussett and Thelen [6].

Two layers: Air 1.587 3.174 Ge
1.00 0.25λ0 0.25λ0 4.00

Three layers: Air 1.587 2.00 3.174 Ge
1.00 0.25λ0 0.25λ0 0.25λ0 4.00.

(b) Theoretical performance of type II antireflection coatings on germanium designed by
the method of Mussett and Thelen [6].

Two layers: Air 1.587 2.520 Ge
1.00 0.25λ0 0.25λ0 4.00

Three layers: Air 1.587 2.00 2.520 Ge
1.00 0.25λ0 0.25λ0 0.25λ0 4.00.
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Magnesium fluoride, with an index of around 1.38, represents the lowest practical
index that can be achieved. This immediately makes the manufacture of designs
arrived at by the straightforward application of the techniques so far discussed
largely impossible. Design techniques for antireflection coatings on low-index
materials are less well organised and involve much more intuition and trial and
error than those for high-index materials.

A very common low-index material is crown glass, and coatings are most
frequently required for the visible region of the spectrum, which extends from
around 400 nm to around 700 nm. Plastic materials of similar or higher refractive
index are increasing in use, especially in lenses for spectacles. For the purposes
of most of the coatings which we will discuss here, we will assume glass of
index of 1.52, although this varies somewhat with the particular glass and also
with wavelength. Although much of what follows is applied directly to the
antireflection coating of crown glass, the techniques apply equally well to the
coating of other low-index materials. We begin with the simplest coating, a single
layer.

3.2.1 The single-layer antireflection coating

We can make use of the expressions already developed for high-index materials.
The optimum single-layer coating is a quarter-wave optical thickness for the

central wavelength λ0 with optical admittance given by

y1 = (y0ym)
1/2 . (3.14)

For crown glass in air, this represents

y1 = (1.0 × 1.52)1/2 = 1.23.

As already mentioned, the lowest useful film index which can be obtained at
present is that of magnesium fluoride, around 1.38 at 500 nm. While not ideal, this
does give a worthwhile improvement. The reflectance at the minimum is given by

R =
(

y0 − y2
1/ym

y0 + y2
1/ym

)2

, (3.15)

i.e. 1.3% per surface.
At angles of incidence other than normal, the phase thickness of the layer

is reduced, so that for a given layer thickness the wavelength corresponding to
the minimum becomes shorter. The optical admittance appropriate to the angle
of incidence and the plane of polarisation should also be used in calculating the
reflectance. Figure 3.18 indicates the way in which the reflectance of a single
layer of magnesium fluoride on a substrate of index 1.52 can be expected to vary
with angle of incidence.
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Figure 3.18. The computed reflectance at various angles of incidence of a single surface
of glass of index 1.52 coated with a single layer of magnesium fluoride of index 1.38 and
optical thickness at normal incidence one quarter-wave at 600 nm.

3.2.2 Two-layer antireflection coatings

The single-layer coating cannot achieve zero reflectance even at the minimum
because of the absence of suitable low-index materials. Instinct suggests that a
thin layer of high-index material placed next to the substrate might make it appear
to have a higher index so that a subsequent layer of magnesium fluoride would be
more effective. This proves to be the case. Two-layer coatings have already been
considered with regard to high-index substrates and a complete analysis has been
derived.

We can study the Schuster diagram (figure 3.8) for coatings on glass of index
1.52, and this is reproduced as figure 3.19. We can assume 1.38 as the lowest
possible index, while a realistic upper bound to the range of possible indices is
2.45. Possible solutions are then limited to the shaded area of the diagram. This
area is bounded by the lines

y1 = 1.38 y2 = 2.45 y1 = y2 (y0/ym)
1/2 .

Solutions on the line

y1 = y2 (y0/ym)
1/2

will consist of two quarter-wave layers. Solutions elsewhere will consist of two
layers of unequal thickness, one greater and the other less than a quarter-wave.
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Figure 3.19. A Schuster diagram for two-layer coatings on glass (n = 1.52) in air
(n = 1.0). Possible layer indices are assumed to be limited to the range 1.38–2.45.

The thicknesses are given by the expressions

tan2 δ1 = (ym − y0)(y2
2 − y0ym)y2

1

(y2
1 ym − y0y2

2)(y0ym − y2
1 )

tan2 δ2 = (ym − y0)(y0ym − y2
1)y

2
2

(y2
1 ym − y0y2

2)(y
2
2 − y0ym)

.

(3.16)

As an example, we can take a value of 2.2 for the high-index layer,
corresponding to, say, cerium oxide, and of 1.38 for the low-index layer,
corresponding to magnesium fluoride. The two possible solutions are then

δ1/2π = 0.3208 δ2/2π = 0.058 77

and

δ1/2π = 0.1792 δ2/2π = 0.4412,

respectively.
These two solutions are plotted in figure 3.20 and it can be clearly seen that

the characteristic of the coating is a single minimum with a narrower bandwidth
than the single layer, and that the broader of the two possible solutions is
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Figure 3.20. Two-layer antireflection coatings for glass.

(a) Air 1.38 2.20 Glass
1.00 0.321λ0 0.0588λ0 1.52

(b) Air 1.38 2.20 Glass
1.00 0.179λ0 0.441λ0 1.52.

(a), the broader characteristic, is usually selected. Because of the characteristic single
minimum the coating is often known as a V-coat.

associated with the thinner high-index layer. The coating is also an effective one
for other values of substrate index. The higher the index of the substrate, the
thinner the high-index layer need be and the broader is the characteristic of the
coating.

We can follow Catalan [2] and plot curves showing how the values of δ 1
and δ2 vary with the index of the layer next to the substrate. Such curves are
shown in figure 3.21 and from them several points of interest emerge. First, as
already predicted by the Schuster plot, there is a region in which no solution is
possible. Second, and more important, the curves flatten out as the index of the
layer increases, and changes in refractive index are accompanied by only small
changes in optical thickness. One of the problems in manufacturing coatings is
the control of the refractive index of the layers, particularly of the high-index
layers, and the curves indicate good stability of the performance of the coating in
this respect.

The equations are not limited to normal incidence. Catalan has also
computed, for various angles of incidence, values of reflectance of a two-layer
coating consisting of bismuth oxide, with index 2.45, and magnesium fluoride,
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Figure 3.21. Optimum thicknesses of the layers in a double-layer antireflection coating at
normal incidence. δ1 and δ2, the optical phase thicknesses given by equations (3.7) and
(3.8), are plotted against n2, the refractive index of the high-index layer. The low-index
layer is assumed to be magnesium fluoride of index 1.38 and the coating is deposited on
glass of index 1.50. Two pairs of solutions of (3.7) and (3.8) are possible for each set of
refractive indices and are denoted by δ′1 and δ′2 and δ′′1 and δ′′2 . The value, 2.45, of refractive
index, shown by the dashed line, corresponds to bismuth oxide and was used by Catalan in
his calculations. (After Catalan [2].)

with index 1.38, on glass of index 1.5. Curves showing the variation of reflectance
with angle of incidence are given in figures 3.22 and 3.23. The performance is
very good up to an angle of incidence of 20 ◦ but beyond that it begins to fall off.

It may also be necessary to design coatings for angles of incidence other
than normal. Turbadar [9] has considered this problem and published designs
for angle of incidence of 45◦. The materials were once again bismuth oxide and
magnesium fluoride, of indices 2.45 and 1.38, respectively, on glass of index 1.5.
Four possible solutions were given, which are reproduced as table 3.1 where the
bismuth oxide is next to the glass.

A large number of performance curves of the various designs under different



Antireflection coatings on low-index substrates 115

Figure 3.22. Theoretical p-reflectance (TM) as a function of wavelength ratio g (= λ0/λ)
of a double-layer antireflection coating. n0 = 1.00, n1 = 1.38, n2 = 2.45, nm = 1.50.
(After Catalan [2].)

Figure 3.23. Theoretical s-reflectance (TE) as a function of wavelength ratio g (= λ0/λ)
of a double-layer antireflection coating. n0 = 1.00, n1 = 1.38, n2 = 2.45, nm = 1.50.
(After Catalan [2].)

conditions, including the effect of errors, were produced. Today this is something
we can do at great speed on a desktop computer. At the time this was not possible
and the plots that were included of equireflectance contours over a grid of angle
of incidence against wavelength were particularly valuable. The fact that they
can now be more readily created does not reduce their usefulness and so they are
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Table 3.1.

Bismuth oxide Magnesium fluoride

s-polarisation S′ 0.065λ0 0.376λ0
(TE wave) S′′ 0.457λ0 0.206λ0

p-polarisation P′ 0.021λ0 0.382λ0
(TM wave) P′′ 0.501λ0 0.201λ0

given in figure 3.24.
It is useful to consider an admittance plot for a two-layer coating, which

can be a great help in visualising performance. The plot consists of two circles,
the first corresponding to the low-index layer y1 which passes through the point
(y0, 0) if the reflectance is to be zero and which must, therefore, also pass through
the point (y2

1/y0, 0). The second circle corresponds to the high-index layer y2,
which must pass through the point (ym, 0) corresponding to the substrate and,
therefore, also through the point (y2

2/ym, 0). Provided that these two circles
intersect, then a two-layer antireflection coating of this type is possible. Such
a plot is shown in figure 3.25. There are two possible arrangements of the
admittance circles which will give the required zero reflectance. If we recall that
a semicircle starting and finishing on the real axis corresponds to a quarter-wave,
then we can see that either the high-index layer will be thinner than a quarter-
wave with the low-index layer thicker, or the reverse, just as we have already
established.

The special case where the layers are both quarter-waves can then be seen to
occur when the y2 circle just touches the y1 circle internally. In that case

y2
1/y0 = y2

2/ym

or

y1 = y2 (y0/ym)
1/2

which is the equation of the oblique line in the Schuster plot. The admittance plot
for λ = λ0 and the theoretical performance curve for such a coating are shown in
figure 3.26.

All the two-layer coatings considered so far exhibit one single minimum,
which can be theoretically zero at λ = λ0. On either side of the minimum,
the reflectance rises rather more rapidly than for the single-layer coating. An
alternative two-layer coating makes use of the broadening effects of a half-wave
layer to produce an improvement over the single-layer performance. A half-wave
layer of index higher than the substrate is inserted between the substrate and the
quarter-wave low-index film. If magnesium fluoride, of index 1.38, is once again
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Figure 3.24. (a) Equireflectance contours for double-layer antireflection coatings on
glass. n0 = 1.00, n1 = 1.38, n2 = 2.45, nm = 1.50, with layer thicknesses
optimised for s-polarisation (TE) at 45◦ angle of incidence, given by S′ in table 3.1. Solid
curves s-reflectance (TE); dashed curves p-reflectance (TM). (After Turbadar [9].) (b)
Equireflectance contours for double-layer antireflection coatings on glass. n0 = 1.00,
n1 = 1.38, n2 = 2.45, nm = 1.50, with layer thicknesses optimised for p-polarisation
(TM) at 45◦ angle of incidence, given by P′ in table 3.1. Solid curves p-reflectance (TM);
dashed curves s-reflectance (TE). (After Turbadar [9].)
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Figure 3.25. Admittance diagram showing the two possible double-layer antireflection
coating designs.

chosen for the low-index film, then, for a substrate of index 1.52, the high-index
layer should preferably be in the range 1.7–1.9, while, for a substrate of index
1.7, the range should be increased to 1.9–2.1. The way in which the half-wave
layer acts to improve the performance can readily be understood by sketching an
admittance plot, as in figure 3.27. The opening of the end of the high-index locus
as the value of g decreases from 1.0 partially compensates for the shortening of
the low-index locus. A similar effect exists as g increases from 1.0, when the
lengthening of the low-index locus is compensated by an overlapping with the
high-index locus. The half-wave layer must be of an index higher than that of
the substrate, otherwise the opening of the half-wave circle would pull the low-
index locus even further from the point g = 1.0, hence increasing the reflectance
further and effectively narrowing the characteristic. The important feature of the
arrangement is that, at the reference wavelength, the second quarter-wave portion
of the half-wave layer and the following quarter-wave layer should have loci on
the same side of the real axis.

3.2.3 Multilayer antireflection coatings

There is little further improvement in performance which can be achieved with
two-layer coatings, given the limitations which exist in usable film indices. For
higher performance, further layers are required.

Thetford [10] has devised a technique for designing three-layer antireflection
coatings where the reflectance is zero at two wavelengths and low over a wider
range than in the two-layer coating. The arrangement consists of a layer of
intermediate index next to the substrate, followed by a high-index layer and finally
by a low-index layer on the outside. The indices are chosen at the outset and
the method yields the necessary layer thicknesses. There is an advantage in
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Figure 3.26. Special case of the two-layer antireflection coating where the layers become
quarter-waves and the two solutions of figure 3.25 merge into one. The design is:

Air 1.38 1.70 Glass
1.00 0.25λ0 0.25λ0 1.52

(a) The admittance locus. (b) The theoretical performance curve.

specifying layer indices rather than thicknesses because of the limited range of
materials available. Although the actual design of a coating would probably be
most efficiently tackled by a process of refinement of a likely starting design, our
working through the Thetford method is nevertheless worthwhile because it is an
excellent example of reasoning using the vector diagram and it gives great insight.

The technique is based on both the vector method and Smith’s method (the
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Figure 3.27. The operation of a half-wave flattening layer. The contour AE represents a
low-index quarter-wave coating and in ABA a half-wave layer is inserted between it and
the substrate. In (a) the half-wave is of index higher than the substrate and, as g (= λ0/λ)

varies, the action of the half-wave keeps the end of the quarter-wave near the point E and
the reflectance remains low. ABCF represents the locus with g somewhat less than unity.
g greater than unity would give a similar effect with the point C now above the real axis
and the loci slightly longer than full circle and semicircle. (b) shows the corresponding
diagram for a low-index half-wave. Here the end point is dragged rapidly away from E as
g varies and the reflectance rises rapidly. Flattening is therefore effective in (a) but not in
(b). Note that the reflectance curve for another coating with half-wave flattening layer of
design:

Air 1.38 1.90 Glass
1.00 0.25λ0 0.5λ0 1.52

is shown as curve (a) of figure 3.31. This latter coating is sometimes called a
W-coat because of the shape of the characteristic.

method of effective interfaces). We recall that the transmittance of an assembly
will be unity if, and only if, the reflectances of the structures on either side of the
chosen spacer layer are equal and the thickness of the spacer layer is such that
the phase change suffered by a ray of the appropriate wavelength, after having
completed a round trip in the layer, being reflected once at each of the boundaries,
is zero or an integral multiple of 2π . If the phase thickness of the layer is δ, then
this is equivalent to saying that

ϕ + ϕ′ − 2δ = 2sπ s = 0, ±1, ±2, . . . (3.17)



Antireflection coatings on low-index substrates 121

where ϕ and ϕ ′ are the phases of the amplitude reflection coefficients at the
boundaries of the layer. Thetford split the assembly into two parts on either side
of the middle layer and then computed the two amplitude reflection coefficients
by the vector method, combining the calculations on one diagram. He chose
thicknesses for the layers which made the reflectances equal at a reference
wavelength. He then found expressions for the change in reflectance with
wavelength for each of the two structures, and, from them, a second value of
wavelength, shorter than the first, at which the reflectances were again equal.
The next step was to compute the thickness of the middle layer to satisfy the
phase condition at the first wavelength and hence to give zero reflectance for
the complete coating at that wavelength, and then to check whether or not the
phase condition was also satisfied at the second wavelength. If it was, then the
reflectance of the complete coating was known to be zero at this wavelength and
the design was complete. If it was not, then the procedure was repeated with
slightly different initial conditions at the reference wavelength. This trial-and-
error procedure turned out to be a very quick method of arriving at the final
solution. The only step which remained was the accurate calculation of the
performance of the design as a check.

The three-layer coating is shown in figure 3.28. Thetford’s notation has been
altered to fit in with the practice in this book. The vector diagrams for the two
structures are shown in (b) and (c) and then combined in (d), with vectors in such
a position that the resultant amplitude reflection coefficients ρ and ρ ′ are equal
in length but not necessarily in phase. In the solution shown, both ρ and ρ ′ are
in the fourth quadrant. It is very easy to arrive at this initial condition. All that
is required is a circle with centre the origin which cuts both the loci of vectors
ρa and ρd. This initial condition we can take as corresponding to our reference
wavelength λ0. Figure 3.28(e) shows a second solution for a shorter wavelength
λ1 plotted on top of the first. The values of δ1 and δ3 which correspond to this
solution are given by λ0/λ1 times the values corresponding to λ0, and ρ is now
in the first quadrant while ρ ′ remains in the fourth. To find this second solution,
Thetford has derived approximate expressions for the change in reflectance with
change in wavelength which turn out to give surprisingly accurate results.

The reflectances corresponding to ρ and ρ ′ are given, from the diagram, by

ρ2 = ρ2
a + ρ2

b + 2ρaρb cos 2δ1 (3.18)

and

(ρ′)2 = ρ2
c + ρ2

d + 2ρcρd cos 2δ3. (3.19)

For a reasonably small change in wavelengths we can find the corresponding
change in ρ2 and (ρ ′)2 by differentiating equations (3.18) and (3.19), i.e.

�(ρ2) = − 4ρaρb sin 2δ1 ×�δ1

�[(ρ′)2] = − 4ρcρd sin 2δ3 ×�δ3.
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Now since the two values of (ρ ′)2 in which we are interested are in the fourth
quadrant, and well clear of any turning values, we can apply this approximate
expression directly, giving

�[(ρ′)2] = − 4ρcρd sin 2(δ3)0 ×�δ3

�δ3 =
(
λ0

λ1
− 1

)
(δ3)0

for the change in (ρ ′)2 corresponding to the shift in wavelength from λ0 to λ1,
where (δ3)0 is the value at λ0.

ρ2, however, is not so simple. It passes through a turning value between
the two solutions. Thetford observed that, in figure 3.28(c), the mirror image of
ρ in the horizontal axis would also give the same resultant ρ 2 (although with a
different phase angle), and that this would be fairly near the desired solution. This
new position of ρa has angle 2δ1, with value 2π−2(δ1)0 and a change in this angle
of

�δ1 =
[(

1 + λ0

λ1

)
(δ1)0 − π

]
(3.20)

would swing it round exactly into the correct position. We can therefore find the
change in ρ2 that we want by using the approximate expression, but calculating it
as a change of �δ1 (equation (3.20)) from this fictitious position of ρ a. �(ρ2) is
then given by

�
(
ρ2
)

= − 4ρaρb sin
[
2π − 2 (δ1)0

] [(
1 + λ0

λ1

)
(δ1)0 − π

]

= 4ρaρb sin 2 (δ1)0

[(
1 + λ0

λ1

)
(δ1)0 − π

]
.

We must now set �[(ρ ′)2] = �(ρ2), which permits us to solve for λ1. Next, we
investigate the phase condition and the thickness of the middle layer.

From the vector diagram for the first solution we can find the phase angles
ϕ0 and ϕ ′

0 associated with ρ and ρ ′ and λ0. The necessary phase thickness
of the middle layer to satisfy the condition for zero reflectance is given from
equation (3.17) by

2 (δ2)0 = 2π + ϕ0 + ϕ′
0

where we must remember to include the signs of ϕ0 and ϕ ′
0 (both negative in

figure 3.28(d)) and where we have taken s as +1 to give the thinnest possible
positive value for (δ2)0. Next, from the vector diagram we find the values of
phase angle ϕ1 and ϕ ′

1 associated with λ1. If these satisfy the expression

2 (δ2)0
λ0

λ1
= 2π + ϕ1 + ϕ′

1 (3.21)
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then we know we have a valid solution. The phase angles of the layers at λ 0 are
then given by (δ1)0, (δ2)0 and (δ3)0, respectively, and the optical thicknesses of
the layers in terms of a quarter-wave at λ0 can be found by dividing by π/2. If,
however, the phase condition is not met at λ1 then it is necessary to go back to
the beginning and try a new set of solutions. In fact, a satisfactory solution will
be found quickly, especially if the error in equation (3.21) is plotted against, say,
(δ1)0.

One advantage which Thetford has pointed out for this type of coating is
that once the phase condition has been satisfied at both λ0 and λ1 it will be
approximately satisfied at all wavelengths between them. This means that the
design will possess a broad region of low reflectance without any pronounced
peaks of high reflectance. Some of Thetford’s designs are shown in figure 3.29,
which also demonstrates how the characteristic varies with the index of the middle
layer. This coating is clearly a considerable improvement over the two-layer
coating.

It is not easy to establish analytical expressions for the ranges of n1, n2 and
n3 that will give an acceptable reflectance characteristic. Generally, if the Argand
diagram is not too far removed in appearance from the form of figure 3.28 where
the two positions of ρ are near the minimum, which corresponds to 2δ 1 = π , then
a good antireflection coating will be obtained.

If it should be a requirement that only two values of refractive index rather
than three be used in the construction of the coating, then it is possible to achieve
a similar performance if four layers of alternate high and low index are used.
Thetford [11] has used a similar technique for the design of such a coating. He
split the coating (which has a high-index layer next to the glass) at the high-
index layer nearest the air, so that the high–low combination next to the glass
took the place of the intermediate-index layer of the three-layer design. If the
thicknesses of these two layers are fairly small, then an Argand diagram is
obtained which is not too different from that for the three-layer design. Because
the expressions would be much more complicated in this case, Thetford did not
attempt an analytical solution, but rather arrived at a design which appeared
reasonable, by trial and error. The reflectance characteristic of such a design is
shown in figure 3.30. This solution was then refined by C Butler, using a computer
technique, to give optimum performance. This improved coating is also shown in
figure 3.30.

There are also many coatings which involve layers of either quarter-wave
or half-wave optical thicknesses. A number of these can be looked upon as
modifications of some of the two-layer designs already considered.

First, we take the two-layer coating consisting of a half-wave layer next to
the substrate followed by a quarter-wave layer. This has a peak reflectance in
the centre of the low-reflectance region. This peak corresponds to the minimum
reflectance of a single-layer coating because the inner layer, being a half-wave at
that wavelength, is an absentee. We can reduce the peak but retain to some extent
the flattening effect of the half-wave layer by splitting it into two quarter-waves,
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Figure 3.29. Calculated reflectance of some three-layer antireflection coatings designed
by Thetford. The designs are as follows. (a) n0 = 1.00, n1 = 1.38, n2 = 2.00,
n3 = 1.80, n4 = nm = 1.52, n1d1 = 0.205λ0, n2d2 = 0.336λ0, n3d3 = 0.132λ0.
(b) n0 = 1.00, n1 = 1.38, n2 = 2.10, n3 = 1.80, n4 = nm = 1.52, n1d1 = 0.225λ0,
n2d2 = 0.359λ0, n3d3 = 0.152λ0. (c) n0 = 1.00, n1 = 1.38, n2 = 2.20, n3 = 1.80,
n4 = nm = 1.52, n1d1 = 0.227λ0, n2d2 = 0.338λ0, n3d3 = 0.170λ0. (d) n0 = 1.00,
n1 = 1.38, n2 = 2.40, n3 = 1.80, n4 = nm = 1.52, n1d1 = 0.247λ0, n2d2 = 0.445λ0,
n3d3 = 0.181λ0. (After Thetford [10].)

only slightly different in index. The first layer we can retain as 1.9, although it is
in no way critical, and then if we make the second quarter-wave of slightly higher
index, 2.0, say, the design now becoming

Air 1.38 2.0 1.9 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 1.52

we find a reduction in the reflectance at λ0 from 1.26% to 0.38%. The
characteristic remains fairly broad. Increasing the index of the central layer still
further, to 2.13, i.e. a design

Air 1.38 2.13 1.9 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 1.52
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Figure 3.30. Calculated reflectance of four-layer antireflection coatings on glass showing
the performance before and after the design was refined by computer. The two designs
are as follows. (a) Before refining: n0 = 1.00, n1 = n3 = 1.38, n2 = n4 = 2.10,
n5 = nm = 1.52, n1d1 = 0.21λ0, n2d2 = 0.37λ0, n3d3 = 0.036λ0, n4d4 = 0.070λ0.
(b) After refining: n0 = 1.00, n1 = n3 = 1.38, n2 = n4 = 2.10, n5 = nm = 1.52,
n1d1 = 0.216λ0, n2d2 = 0.458λ0, n3d3 = 0.072λ0, n4d4 = 0.049λ0. (Communicated
by Thetford.)

reduces the reflectance at λ0 to virtually zero, but the width of the coating becomes
much more significantly reduced. The characteristic curves of these two coatings
are shown in figure 3.31.

Yet a further increase in the width of the coating can be achieved by adding
a half-wave layer of low index next to the substrate. The admittance plot is shown
in figure 3.32 and we see the characteristic shape where the final part of the locus
of the half-wave layer and the start of the following layer are on the same side of
the real axis. A half-wave layer in the same position with index higher than the
substrate would be ineffective. A certain amount of trial and error leads to the
designs shown in figure 3.32, that is

Air 1.38 1.905 1.76 1.38 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 0.5λ0 1.52

and
Air 1.38 2.13 1.9 1.38 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 0.5λ0 1.52.

An alternative approach is to broaden the quarter–quarter design of
figure 3.26 by inserting a half-wave layer between the two quarter-waves. In
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Figure 3.31. Progressive changes in an antireflection coating consisting of three quar-
ter-wave layers. (a) The original coating:

Air 1.38 1.90 1.90 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 1.52.

The two 1.90 index layers combine to form a single half-wave layer. This is known as
a W-coat because of the shape of the characteristic. (b) The index of the central layer is
increased to 2.00. (c) The index of the central layer is increased further to 2.13.

order to achieve the broadening effect it must, of course, be of high index, so
that the admittance plot will be of the form shown in figure 3.33. The coating is
frequently referred to as the quarter–half–quarter coating. Coatings that fit into
this general type date back to the 1940s and were described by Lockhart and King
[12]. A systematic design technique explaining the functions of the various layers,
however, was not available until the detailed study of Cox et al [13]. A certain
amount of trial and error leads to the characteristics of figure 3.34. However, good
results are obtained with values of the index of the half-wave layer in the range
2.0–2.4. Cox et alalso investigated the effect of varying the indices of the quarter-
wave layers and found that, for the best results on crown glass, the outermost layer
index should be between 1.35 and 1.45, and the innermost layer index between
1.65 and 1.70. The outermost layer is the most critical in the design.

Figure 3.35 also comes from their paper and shows the measured reflectance
of an experimental coating consisting of magnesium fluoride, index 1.38,
zirconium oxide, index 2.1, and cerium fluoride, which was evaporated rather
too slowly and had an index of 1.63, which accounts for the slight rise in the
middle of the range. Otherwise, the coating is an excellent practical confirmation
of the theory.
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Figure 3.32. (a) The admittance locus of the coating:

Air 1.38 1.905 1.76 1.38 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 0.5λ0 1.52.

(b) The characteristics of (A) the coating of figure 3.32(a) and (B) the coating (c)
of figure 3.31 with a half-wave flattening layer of index 1.38 added next to the substrate.

The effect of variations in angle of incidence has also been, examined. Cox
et al’s results for tilts up to 50◦ of a coating designed for normal incidence are
shown in figure 3.36. The performance of the coating is excellent up to 20 ◦ but
begins to fall off beyond 30◦. The coatings can, of course, be designed for use
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Figure 3.33. Admittance locus of the quarter–half–quarter coating:

Air 1.38 2.15 1.70 Glass
1.00 0.25λ0 0.5λ0 0.25λ0 1.52.

The half-wave layer acts to flatten the performance of the two quarter-waves.

Figure 3.34. The calculated reflectance of the quarter–half–quarter coating shown in
figure 3.33.

at angles of incidence other than normal, and Turbadar [14] has published a full
account of a design for use at 45◦. The particular design depends on whether light
is s- or p-polarised and figure 3.37 shows sets of equireflectance contours for both
designs.

The quarter–half–quarter coating is certainly the most significant of the early
multilayer coatings for low-index glass and it has had considerable influence on
the development of the field.

The success of the broadening effect of the half-wave layer on the quarter–
quarter coating prompts us to consider inserting a similar half-wave in the two-
layer coating of figure 3.25. In this case, there is an advantage in using a layer of
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Figure 3.35. Measured reflectance of a quarter–half–quarter antireflection coating of
MgF2 + ZrO2 + CeF3 on crown glass. λ0 = 550 nm. (After Cox et al [13].)

Figure 3.36. Calculated reflectance as a function of wavelength for quarter–half–quarter
antireflection coatings on glass at various angles of incidence. n0 = 1.00, n1 = 1.38,
n2 = 2.2, n3 = 1.70, nm = 1.51. (After Cox et al [13].)

the same index as that next to the substrate. Here we cannot split the coating at
the interface between the high- and the low-index layers, because the admittance
plot would not show the correct broadening configuration. Instead, we must split
the coating at the point where the low-index locus cuts the real axis so that the
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Figure 3.37. (a) Equireflectance contours for a quarter–half–quarter antireflection coating
designed for use at 45◦ on crown glass. The indices are chosen for best performance with
s-polarisation (TE). n0 = 1.00, n1 = 1.35, n2 = 2.45, n3 = 1.70, nm = 1.50. Solid
curves s-polarisation (TE); dashed curves p-polarisation (TM). (After Turbadar [14].) (b)
Equireflectance contours for a quarter–half–quarter antireflection coating designed for use
at 45◦ on crown glass. The indices are chosen for best performance with p-polarisation
(TM). n0 = 1.00, n1 = 1.40, n2 = 1.75, n3 = 1.58, nm = 1.50. Solid curves
p-polarisation (TM); dashed curves s-polarisation (TE). (After Turbadar [14].)
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Figure 3.38. The two-layer coating of figure 3.25 with the low-index layer split where it
intersects the real axis and a high-index flattening layer inserted.

plot appears as in figure 3.38. The design of the coating is then

Air 1.38 2.30 1.38 2.30 Glass
1.0 0.25λ0 0.5λ0 0.0734λ0 0.0522λ0 1.52

where this time we have used a value of 2.30 for the high index, and the
performance is shown in figure 3.39. There is a considerable resemblance
between this admittance plot and that of the quarter–half–quarter design. This
design approach can be attributed originally to Frank Rock, who used the
properties of reflection circles in deriving it, rather than admittance loci.

Vermeulen [15] arrived independently at an ultimately similar design in a
completely different way. There is a difficulty in achieving the correct value
for the intermediate index in the quarter–half–quarter design in practice and
Vermeulen realised that the deposition of a low-index layer over a high-index
layer of less than a quarter-wave would lead to a maximum turning value in
reflectance rather lower than would have been achieved with a quarter-wave of
high index on its own. He therefore designed a two-layer high–low combination
to give an identical turning value to that which should be obtained with the
1.70 index layer of the quarter–half–quarter coating, and he discovered that good
performance was maintained. The turning value in reflectance must, of course,



Antireflection coatings on low-index substrates 133

Figure 3.39. The performance of the coating of figure 3.38. Although arrived at by way
of the admittance plot of figure 3.38, the design is virtually identical to one published by
Vermeulen whose design technique was quite different (see text).

Figure 3.40. Measured reflectance of a four-layer antireflection coating on crown glass.
The results are for a single surface. (After Shadbolt [16].)

correspond to the intersection of the locus with the real axis, and the rest follows.
We shall return to this coating later.

The quarter–half–quarter coating can be further improved by replacing the
layer of intermediate index by two quarter-wave layers. The layer next to the
substrate should have an index lower than that of the substrate. A practical coating
of this general type is shown in figure 3.40. Trial and error leads to a design

Air 1.38 2.05 1.60 1.45 Glass
1.0 0.25λ0 0.5λ0 0.25λ0 0.25λ0 1.52
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Figure 3.41. The performance of the four-layer coating of design:

Air 1.38 2.05 1.60 1.45 Glass
1.00 0.25λ0 0.5λ0 0.25λ0 0.25λ0 1.52.

the theoretical performance of which is shown in figure 3.41. Similar designs with
slightly different index values are given by Cox and Hass [17] and by Musset and
Thelen [6]. Ward [18] has published a particularly useful version of this coating
with indices chosen to match those of available materials rather than to achieve
optimum performance. Examples of four-layer coatings for substrates of indices
other than 1.52 are also given by Ward and by Musset and Thelen [6].

Yet a further four-layer design can be obtained by splitting the half-wave
layer of the quarter–half–quarter coating into two quarter-waves and adjusting the
indices to improve the performance. A five-layer design (see figure 3.42) derived
in a similar way from the design of figure 3.41 is:

Air 1.38 2.13 2.13 1.38 2.30 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 0.25λ0 0.25λ0 1.52.

The possibilities are clearly enormous and problems are found much more in
the construction of the coatings because not all the required indices are readily
available. One solution is discussed in the next section.

A rather interesting design based on four layers of alternate high and low
index has been published by C Reichert Optische Werke AG [19]. Full details of
the design method are, unfortunately, not given. The thicknesses and materials are
given in table 3.2. Note that the thicknesses are quoted as optical. The reflectance
of this coating, figure 3.43, is slightly better than the unrefined performance of
figure 3.30 but inferior to the refined curve.
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Figure 3.42. A five-layer design derived from figure 3.41 by replacing the half-wave layer
by two quarter-wave layers and adjusting the values of the indices. Design:

Air 1.38 1.86 1.94 1.65 1.47 Glass
1.00 0.25λ0 0.25λ0 0.25λ0 0.25λ0 0.25λ0 1.52.

Table 3.2.

Material Index Optical thickness (nm)

Air 1.00 Massive
MgF2 1.37 161
TiO2 2.28 78.5
MgF2 1.37 56.5
TiO2 2.28 54
Glass 1.52 Massive

Although the Reichert design technique is not described, nevertheless it is
a good exercise to attempt to understand how the coating functions. For this it
is easiest if we simply draw an admittance diagram. Since the coating is clearly
centred on 550 nm we draw the diagram for that wavelength.

The admittance diagram, figure 3.44, shows that the Reichert design can be
considered as derived by applying two Vermeulen equivalents to the W-coat and
its three-layer variations in figure 3.31. A particularly interesting feature of the
Reichert coating is that it is quite thin compared with the W-coat from which it
is derived. This double Vermeulen equivalent is a powerful replacement for a
flattening half-wave in a design. We shall return to this structure later when we
consider buffer layers.

3.3 Equivalent layers

There are great advantages in using a series of quarter-waves or multiples of
quarter-waves in the first stages of the design of antireflection coatings because the
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Reichert four-layer coating
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Figure 3.43. The Reichert four-layer two-material antireflection coating.

Figure 3.44. The admittance locus of the Reichert design at 550 nm.

characteristic curves of such coatings are symmetrical about g = 1.0. However,
problems are presented in construction because the indices which are specified
in this way do not often correspond exactly with indices which are readily
available. Using mixtures of materials of higher and lower indices to produce



Equivalent layers 137

a layer of intermediate index is a technique which has been used successfully
(see chapter 9), but a more straightforward method is to replace the layers by
equivalent combinations involving only two materials, one of high index and
one of low index. These two materials can be well-tried, stable materials, the
characteristics of which have been established over many production runs in
the plant that will be used for, and under the conditions that will apply to, the
production of the coatings. To illustrate the method, we assume two materials
of index 2.30 and 1.38, corresponding approximately to titanium dioxide and
magnesium fluoride, respectively.

The first technique to mention is that of Vermeulen [15] which has already
been referred to. It involves the replacing of a quarter-wave by a two-
layer equivalent. The analysis is exactly that already given for the two-layer
antireflection coating and it is assumed that the quarter-wave to be replaced has
a locus which starts and terminates at predetermined points on the real axis.
The replacement is, therefore, valid for the particular starting and terminating
points used in its derivation only, and for that single wavelength for which
the original layer is a quarter-wave. Under conditions which are increasingly
remote from these ideal ones, the two-layer replacement becomes increasingly
less satisfactory. It is advisable, when calculating the parameters of the layers, to
sketch a rough admittance plot because otherwise there is a real danger of picking
incorrect values of layer thickness. In the particular case we are considering,
the starting admittance is 1.52 on the real axis and the terminating admittance is
1.9044, which will ensure that the outermost 1.38 index quarter-wave layer will
terminate at the point 1.00 on the real axis. Clearly the high-index layer should be
next to the substrate. The thicknesses are then, using equations (3.6) and selecting
the appropriate pair of solutions, 0.052 17 and 0.073 39 full waves for the high-
and low-index layers, respectively. We complete the design by adding a half-wave
of index 2.30 and a quarter-wave of index 1.38. The characteristic curve of this
coating is shown in figure 3.39, which, we recall, was arrived at in a completely
different way.

As already mentioned, the four-layer Reichert coating, table 3.2, can be
thought of as a Vermeulen equivalent of the coatings of figure 3.31. To obtain
a replacement for a quarter-wave that does not depend on the starting point, we
turn to a technique originated by Epstein [20] involving the symmetrical periods
and the Herpin admittance mentioned briefly in chapter 2. We recall that any
symmetrical combination of layers acts as a single layer with an equivalent phase
thickness and equivalent optical admittance. In this particular application we
consider combinations of the form ABA only. We choose for the indices of A and
B those of the two materials from which the coating is to be constructed. Then
for each quarter-wave layer of the coating we construct a three-layer symmetrical
period which has an equivalent thickness of one quarter-wave and an equivalent
admittance equal to that required from the original

To proceed further, we need expressions for the equivalent thickness and
admittance of a symmetrical period. These are derived later in chapter 6. Since
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the symmetrical period is of the form ABA, then

yE = yA

×
(

sin 2δA cos δB + 1
2 [(yB/yA)+ (yA/yB)] cos 2δA sin δB + 1

2 [(yB/yA)− (yA/yB)] sin δB

sin 2δA cos δB + 1
2 [(yB/yA)+ (yA/yB)] cos 2δA sin δB − 1

2 [(yB/yA)− (yA/yB)] sin δB

)1/2

(3.22)

cos γ = cos 2δA cos δB − 1

2
[(yB/yA)+ (yA/yB)] sin 2δA sin δB, (3.23)

where yE is the equivalent optical admittance and γ is the equivalent phase
thickness. The important feature of the symmetrical combination is that it behaves
as a single layer of phase thickness γ and admittance yE regardless of the starting
point for the admittance locus.

In our particular case, the equivalent thickness of the combination should be
a quarter-wave, that is

cos γ = cos(π/2) = 0

= cos 2δA cos δB − 1

2
[(yB/yA)+ (yA/yB)] sin 2δA sin δB

which gives

tan 2δA tan δB = 2yAyB

y2
A + y2

B

. (3.24)

Substituting in equation (3.22) and manipulating the expression we have

yE = yA

(
1 + [(

y2
B − y2

A

)
/
(
y2

B + y2
A

)]
cos 2δA

1 − [(
y2

B − y2
A

)
/
(
y2

B + y2
A

)]
cos 2δA

)1/2

(3.25)

which yields

cos 2δA =
(
y2

B + y2
A

) (
y2

E − y2
A

)
(
y2

B − y2
A

) (
y2

E + y2
A

) . (3.26)

δB is given by equation (3.24), i.e.

tan δB = 2yAyB

y2
A + y2

B

· 1

tan 2δA
(3.27)

and the optical thicknesses are then

nAdA

λ0
= δA

2π
full waves at λ0

nBdB

λ0
= δB

2π
full waves at λ0. (3.28)

If an equivalent combination for a half-wave layer is required, then it is considered
as two quarter-waves in series.
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As an example of the application of this technique we take the four-layer
coating of figure 3.32:

Air 1.38 2.13 1.9 1.38 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 0.25λ0 1.52.

The layers which must be replaced are the quarter-waves with indices 2.13 and
1.90. There are two possible combinations, H L H or L H L, for each of these
layers.

2.13
0.25λ0

→




1.38 2.30 1.38
0.041 28λ0 0.158 61λ0 0.041 28λ0

2.30 1.38 2.30
0.111 98λ0 0.023 02λ0 0.111 98λ0

1.90
0.25λ0

→




1.38 2.30 1.38
0.067 93λ0 0.104 38λ0 0.067 93λ0

2.30 1.38 2.30
0.092 16λ0 0.058 68λ0 0.092 16λ0.

As an indication of the closeness of fit between the symmetrical periods
and the layers they replace, the variation, with g, of equivalent admittance and
equivalent optical thickness is plotted in figure 3.45.

We can now replace the layers in the actual design of the antireflection
coating. There are two possible replacements for each of the relevant layers, but
where H L H and L H L combinations are mixed, there is a tendency towards an
excessive number of layers in the final design, and so we consider two possibilities
only, one based on H L H periods and one on L H L. These are shown in table 3.3.

The spectral characteristics of these coatings along with the original design
are shown in figure 3.46. The replacements have a slightly inferior performance
due to the effective dispersion that can be seen in figure 3.45. The process of
design need not stop at this point, however, because the designs are excellent
starting points for refinement. Figure 3.47 shows the performance of a refined
version of one of the coatings. In practice, the refinement will include an
allowance for the dispersion of the indices of the materials and there will be a
certain amount of adjustment of the coating during the production trials.

If performance over a much wider region is required, then the apparent
dispersion of the equivalent periods may become a problem. This dispersion can
be reduced by using equivalent periods of 1/8-wave thickness instead of a quarter-
wave. Each quarter-wave in the original design is then replaced by two periods
in series. This adds considerably to the number of layers and the solution of the
appropriate equations is no longer simple.

3.4 Antireflection coatings for two zeros

There are occasional applications where antireflection coatings are required which
have zeros at certain well-defined wavelengths rather than over a wide spectral
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Figure 3.45. The equivalent admittances and optical thickness as a function of g (= λ0/λ)

of symmetrical period replacements for a single quarter-wave of index 1.90. The indices
used in the symmetrical replacement are 2.30 for the high index and 1.38 for the low index.
(a) L H L combination. (b) H L H combination. For a perfect match DE and yE should both
be constant at 0.25λ0 and 1.9 respectively, whatever the value of g.

region. One of the most frequent of these applications is frequency doubling,
where antireflection is required at two wavelengths, one of which is twice the
other.
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Table 3.3.

Design based on L H L periods Design based on H L H periods
Layer
number Index Thickness Index Thickness

0 1.0 Incident 1.0 Incident
medium medium

1 1.38 0.291 28λ0 1.38 0.25λ0
2 2.30 0.158 61λ0 2.30 0.111 98λ0
3 1.38 0.109 21λ0 1.38 0.023 02λ0
4 2.30 0.104 38λ0 2.30 0.204 14λ0
5 1.38 0.567 93λ0 1.38 0.058 68λ0
6 1.52 Substrate 2.30 0.092 16λ0
7 1.38 0.5λ0
8 1.52 Substrate

Figure 3.46. The performance of the designs of table 3.3. (a) Five-layer design based on
L H L periods. (b) Seven-layer design based on H L H periods. (c) The original four-layer
design from which (a) and (b) were derived.

The simplest coating that will satisfy this requirement is the quarter–quarter
that has already been considered. We recall that the coating has two zeros at
λ = 3λ0/4 and λ = 3λ0/2, just what is required. The conditions are

n1 = (n2
0nm)

1/3

n2 = (n0n2
m)

1/3.

(3.29)
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Figure 3.47. Refined version of the five-layer design of figure 3.46 and table 3.3. Design:

Air 1.38 2.30 1.38 2.30 1.38 Glass
1.00 0.2973λ0 0.1252λ0 0.1244λ0 0.0874λ0 0.5597λ0 1.52.

The principal problem with this coating is once again the low-index substrate.
With an index of 1.38 as the lowest value for n, the lowest value of substrate
index that can be accommodated, from equation (3.1), is 1.38 3 = 2.63. Thus the
coating is suitable only for high-index substrates.

A common material that requires antireflection coatings at λ and 2λ is
lithium niobate, which has an index of around 2.25. The quarter–quarter coating
should have indices of 1.310 and 1.717. Indices of 1.38 and 1.717 give a reflection
loss of 0.2%, which will probably be adequate for many applications, and indeed
similar performance is obtained with any index between 1.7 and 1.8 for the high-
index layer.

Should this performance be inadequate, then an additional layer can be
added. Provided we keep to quarter-waves and multiples of quarter-waves, we
retain the symmetry about g = 1 and therefore have to consider the performance
at g = 2/3 only, since that at g = 3/4 will be automatically equivalent. From the
point of view of the vector diagram, the problem with the quarter–quarter coating
is ρa, the amplitude reflection coefficient from the first interface, which is too
large. The vectors are inclined at 120◦ to each other and for zero reflectance they
should be of equal length so that they form an equilateral triangle. If an extra
quarter-wave n3 is added, there will be four vectors and the fourth, ρ d, will be
along the same direction as ρa. If ρd is made to be of opposite sense to ρa, that
is if n3 > nm, then it is possible to reduce the resultant of the two vectors to the
same length as the other two. This can be achieved by the design

Air 1.38 1.808 2.368 Lithium niobate
1.0 0.25λ0 0.25λ0 0.25λ0 2.25.
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We can take 2.35, the index of zinc sulphide, for n3, and then any index in the
range 1.75–1.85 for n2, to keep the minimum reflectance at g = 2/3 to below
0.1%.

There are many other possible arrangements. A coating with the first layer
a half-wave, instead of a quarter-wave, can give a similar improvement, this time
through a combination with ρc which means that n2 > n3. Here the ideal design
is

Air 1.38 1.81 1.72 Lithium niobate
1.0 0.5λ0 0.25λ0 0.25λ0 2.25

and once again there is reasonable flexibility in the values of n2 and n3 if the aim
is simply a reflectance of less than 0.1%. It is interesting to note the similarity
between this coating and the quarter–quarter. The quarter–quarter has another
zero at g = 8/3. If the inner quarter-waves in the above design were merged
into a single half-wave of index around 1.75, then the coating would be identical
with the quarter–quarter used at g = 4/3 and g = 8/3. Figure 3.48 shows the
performance of these coatings.

This idea of using the fourth vector to trim the length of one of the other three
so that a low reflectance is obtained can be extended to low-index substrates. The
coating now, of course, departs considerably from the original quarter–quarter
coating. A quarter–quarter–quarter design based on this approach is

Air 1.38 1.808 2.368 Glass
1.0 0.25λ0 0.25λ0 0.25λ0 2.25

and its performance is shown in figure 3.49 where the monitoring wavelength has
been assumed to be 707 nm and the two zeros are situated at 530 nm and 1.06µm.

The method can be extended to four and even more quarter-waves, although
the derivation of the final designs is very much more of a trial-and-error process
because of the rather cumbersome expressions that cannot be reduced to explicit
formulae for the various indices. Indeed, there are now too many parameters for
there to be just one solution and the surplus can be used in an optimising process
for broadening the reflectance minima. A number of interesting designs is given
by Baumeister [21].

Mouchart [22] has also considered the derivation of antireflection coatings
intended to eliminate reflection at two wavelengths. In coatings where all layers
have thicknesses that are specified in advance to be multiples of a quarter-wave
at g = 1, it is possible arbitrarily to choose the indices of all the layers except
the final two, which can then be calculated from the values given to the others.
The calculation involves the solution of an eighth-order equation that can be
set up using expressions derived by Mouchart. The values of ∂ 2 R/∂λ2 at the
antireflection wavelength, which is inversely related to the bandwidth of the
coating, can be used to assist in choosing the more promising designs from the
enormous number that can be produced. Mouchart considers three-layer coatings
of this type in some detail.
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Figure 3.48. The performance of various two-zero 2:1 antireflection coatings on a
high-index substrate such as lithium niobate with n = 2.25. The ideal positions for the
two zeros are g = 0.667 and g = 1.333.

(a) Air 1.38 1.72 Lithium niobate
1.00 0.25λ0 0.25λ0 2.25

(b) Air 1.38 1.808 2.368 Lithium niobate
1.00 0.25λ0 0.25λ0 0.25λ0 2.25

(c) Air 1.38 1.81 1.72 Lithium niobate
1.00 0.25λ0 0.25λ0 0.25λ0 2.25.

3.5 Antireflection coatings for the visible and the infrared

There are frequent requirements for coatings that span the visible region and also
reduce the reflectance at an infrared wavelength corresponding to a laser line.
Such coatings are required in instruments where visual information and laser light
share common elements, such as surgical instruments, surveying devices and the
like. There are very many designs for such coatings and manufacturers seldom
publish them. Design is largely a process of trial and error, and frequently the
final operation is to replace the unobtainable or difficult indices by symmetrical
combinations of better behaved materials and to refine the design so obtained
to take account of the dispersion of the optical constants of real materials and
to compensate for the apparent dispersion that occurs in connection with the
symmetrical periods. In this section we consider the fundamental design process
only, neglecting dispersion and in most cases retaining the ideal values of the
index. We assume that the substrate is always glass of index 1.52 and that, as
usual, the incident medium is air of index 1.0.
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Figure 3.49. A three-layer two-zero 2:1 antireflection coating for a low-index substrate.
Design (λ0 = 707 nm):

Air 1.38 1.585 1.82 Glass
1.00 0.25λ0 0.25λ0 0.25λ0 1.52.

The simplest type of coating that has low reflectance in the visible region
and at a wavelength in the near infrared is a single layer of low- index material
of thickness three quarter-waves. This has low reflectance at both λ 0 and 3λ0.
Unfortunately, the lowest index, of 1.38, corresponding to magnesium fluoride,
gives a residual reflectance of 1.25% at the minima and the performance in the
visible region is rather narrower than that for the single quarter-wave coating,
since the layer is three times thicker. The magnesium fluoride layer could be
considered as an outer quarter-wave over an inner half-wave and a high-index
half-wave flattening layer, of index l.8, could be introduced between them giving
the design:

Air L H H LL Glass.

Unfortunately, the half-wave layer, while it flattens the performance in the visible
region, destroys the performance in the infrared at 3λ 0, where it is two-thirds of
a quarter-wave thick. The solution is to make the layer three half-waves thick in
the visible, so that it is still a half-wave, and therefore an absentee, at 3λ0. The
design then becomes:

Air L6H 2L Glass

and the performance is shown in figure 3.50, where the reference wavelength is
510 nm. The performance in the visible region is indeed flattened in the normal
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Figure 3.50. The performance of the coating:

Air (1.0) L6H2L Glass (1.52)

with L a quarter-wave of index 1.38 and H of 1.8. λ0 is 510 nm.

way, although, because the flattening layer is three times thicker than normal,
the characteristic rises sharply in the blue and red regions. The minimum in the
infrared around 1.53 µm is still present, although slightly skewed because of the
half-wave layer. However, perhaps the most surprising feature is the appearance
of a third and very deep minimum at 840 nm. We use the admittance diagram to
help in understanding the origin of this dip.

Figure 3.51 shows the admittance diagram for the coating at the wavelength
840 nm. Layer 2, the 1.8 index layer, is almost two half-waves thick at this
wavelength and so describes almost two complete revolutions, linking the ends
of the loci of the two 1.38 index layers in such a way that almost zero reflectance
is obtained. The loci of the two low-index layers are not very sensitive to changes
in wavelength and therefore the position of the dip is fixed almost entirely by the
high-index layer. Changes in its thickness will change the position of the dip.
Making it thinner, 1.0 full waves instead of 1.5, for example, will move the dip to
a longer wavelength. The performance characteristic of a coating of design

Air L4H 2L Glass

is shown in figure 3.52. The dip is now fairly near the desired wavelength of
1.06 µm.

A coating that gives good performance over the visible region but has high
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Figure 3.51. The admittance diagram for the coating of figure 3.50 at 840 nm,
corresponding to the unexpected sharp zero, explains the occurrence of the dip.

Figure 3.52. The performance of the coating:

Air (1.0) L4H2L Glass (1.52)

with L a quarter-wave of index 1.38, H of 1.8 and reference wavelength, λ0, 510 nm.
Note that the dip has moved to a longer wavelength than in figure 3.50.



148 Antireflection coatings

reflectance at 1.06 µm is the quarter–half–quarter coating. The admittance
diagram at λ0 for such a coating is shown in figure 3.33. The locus intersects
or crosses the real axis at the points 1.9 and 2.45. It is possible to insert layers of
index 1.9 or 2.45, respectively, at these points in the design without any effect on
the performance at λ0 at all. The loci of these layers, whatever their thicknesses,
would simply be points. Such layers are known as ‘buffer layers’ and were
devised by Mouchart [23]. At the reference wavelength they exert no influence
whatsoever but at other wavelengths, where the starting points of their loci move
away from their reference wavelength positions, the loci appear in the normal way
and can have important effects on performance. They are similar in some respects
to half-wave layers that, by virtue of their precise thickness, are absentees at λ 0
but which have considerable influence on other wavelengths. The index can be
chosen to sharpen or flatten a characteristic. The buffer layer has a precise value
of index, but can have any thickness, which can be chosen to adjust performance
at wavelengths other than λ0. Here we attempt to use buffer layers to alter the
performance at 1.06 µm. One buffer layer is not sufficient and we need to insert
the two possible 1.9 index layers so that the design becomes:

Air L B′H H B′′N Glass

where yL = 1.38, yH = 2.15 and yN = 1.70. B′ and B′′ are buffer layers of
admittance 1.9. Trial and error establishes thicknesses for B ′ of 0.342λ0, and
for B′′ of 0.084λ0. However, although the reflectance at 1.06 µm is reduced
considerably, the buffer layers do distort the performance characteristic somewhat
in the visible region (figure 3.53) and only by refining the design is a completely
satisfactory performance obtained. The final design, also illustrated in figure 3.53,
is:

Air 1.38 1.90 2.15 1.90 1.70 Glass.
1.00 0.2667λ0 0.3085λ0 0.5395λ0 0.1316λ0 0.1796λ0

Many of the designs currently used for the visible and 1.06 µm involve just
two materials of high and low index. Designs of this type can be arrived at in a
number of ways. The arrangements above that use ideal layers can be replaced
by symmetrical periods in the way already discussed. This type of design is
seldom immediately acceptable because the very wide wavelength range makes
it difficult to match exactly the layers with symmetrical periods and they are
therefore usually refined by computer.

Figure 3.54 shows the performance of a six-layer design arrived at by
computer synthesis:

Air 1.38 2.25 1.38 2.25 1.38 2.25 Glass.
1.00 0.3003λ0 0.1281λ0 0.0657λ0 0.6789λ0 0.0718λ0 0.0840λ0

Buffer layers are very useful in such coatings. Half-wave absentee layers
correct performance rapidly as the wavelength moves from that for which they
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Figure 3.53. The performance of the design:

Air (1.0) L B′H H B′′M Glass (1.52)

with L , H , M quarter-waves of indices 1.38, 2.15 and 1.70 respectively. B′ and
B′′ are buffer layers of index 1.9 (see text) and thicknesses 0.342λ0 and 0.084λ0, respec-
tively. λ0 is 510 nm. The design has also been refined to yield the second performance
curve. The refined design is given in the text.

are half-waves. Buffer layers react more slowly and therefore are very helpful
when reflectance must remain low over a wide spectral region. The difficulty
with buffer layers is that their refractive index is fixed by the axis crossings of
the admittance locus of the coating in which they are to be inserted. We normally
have a limited set of indices corresponding to the particular materials we are using
and, in order to employ such layers as buffers, we must engineer an axis crossing
at the appropriate value of admittance. The double Vermeulen structure makes
this possible. In figure 3.44, the axis crossing on the extreme right can be moved
simply by adjusting the thicknesses of the layers making up the structure. It is
straightforward to arrange that the axis crossing should actually coincide with the
index of the high-index layer already used in the design. This has been achieved
with the first of the designs in table 3.4. Note that the thicknesses are optical so
that they can be directly compared with those in table 3.2.

Figure 3.55 shows the admittance locus of the adjusted coating. The axis
crossing has been arranged and the final three layers of the design have been
adjusted to give good performance over the visible region. The performance of
the coating is shown in grey in figure 3.56. The design is given in the first design
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Figure 3.54. The performance of a six-layer design of antireflection coating for the visible
region and 1.06 µm, arrived at purely by computer synthesis. The reference wavelength is
510 nm and the design is given in the text.

Table 3.4.

With buffer
Starting design With buffer and absentee
Optical thickness Optical thickness Optical thickness

Material Index (nm) (nm) (nm)

Air 1.00 Massive Massive Massive
MgF2 1.37 154.47 154.47 140.80
TiO2 2.28 57.96 57.96 50.70
MgF2 1.37 22.66 22.66 17.46
TiO2 2.28 — 247.50 240.84
MgF2 1.37 35.06 35.06 44.31
TiO2 2.28 49.23 49.23 39.99
MgF2 1.37 — — 294.54
Glass 1.52 Massive Massive Massive

column of table 3.4. Then the buffer layer of TiO 2 is added and the appearance of
the admittance locus does not change with buffer layer thickness. Adjustment of
the buffer layer by trial and error gives the improvement shown in figure 3.56.

Addition of a half-wave layer of low index between the coating and the glass
substrate followed by refinement of all layers yields the performance shown in
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Figure 3.55. The admittance locus of the adjusted coating showing the axis crossing at
2.28. A buffer layer has been inserted there.

Six-layer buffer

Wavelength (nm)

R
ef

le
ct

an
ce

(%
)

400 500 600 700 800 900 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3.56. The starting four-layer coating performance is shown in grey. The addition of
the buffer layer makes the coating into a six-layer system. Adjustment of the buffer layer
thickness until just less than a half-wave gives the performance shown by the black line.
The designs are given in table 3.4.
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Seven-layer buffer plus absentee
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Figure 3.57. Performance of the seven-layer coating contained in table 3.4.

figure 3.57. This is as good a performance as we are likely to get with seven
layers of the given indices. Significant improvement in performance demands
more layers.

The major determinant of antireflection-coating performance for low-index
substrates is the lowest index of refraction of the design materials. Magnesium
fluoride is the usual choice but, unfortunately, it is not ideal. It suffers from
high tensile stress and for reasonable durability must be deposited on a heated
substrate. Silicon dioxide is much tougher and more stable and would be preferred
over magnesium fluoride were it not for the fact that the refractive index is rather
higher at around 1.45 compared with magnesium fluoride’s 1.38. In multilayer
coatings therefore it is quite common practice to use silicon dioxide as the low-
index material through the coating but to continue to use magnesium fluoride as
the outermost layer. The layer next to the air is critical. The layers distributed
within the coating are less so.

3.6 Inhomogeneous layers

Inhomogeneous layers are ones in which the refractive index varies through the
thickness of the layer. As we shall see in chapter 9, many of the thin-film
materials which are commonly used give films that are inhomogeneous. This
inhomogeneity is often quite small and the layers can safely be treated as if they
were homogeneous in all but the most precise and exacting coatings. There is,
however, a number of films which show sufficient inhomogeneity to affect the
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performance of an antireflection coating perceptibly. If such a layer is used
instead of a homogeneous one in a well-corrected antireflection coating then a
reduction in performance is the normal result. Provided the inhomogeneity is
not large, an adjustment of the indices of the other layers is usually sufficient
correction and, as Ogura [24] has pointed out, an index that decreases slightly
with thickness associated with the high-index layer in the quarter–half–quarter
coating can actually broaden the characteristic. Zirconium oxide is a much
used material which exhibits an index which increases with film thickness when
deposited at room temperature, but decreases with thickness when deposited at
substrate temperatures above 200 ◦C. Vermeulen [25] has considered the effect of
the inhomogeneity of zirconium oxide on the quarter–half–quarter coating and has
shown how it is possible to correct for the inhomogeneity by varying the index of
the intermediate-index layer which, for virtually complete compensation, should
be of the two-layer composite type [15] already referred to in this chapter. This
type of inhomogeneity is one which is intrinsic and relatively small. By arranging
for the evaporation of mixtures of composition varying with film thickness it is
possible to produce layers which show an enormous degree of inhomogeneity and
which permit the construction of entirely new types of antireflection coating.

Accurate calculation techniques for such layers are reviewed by Jacobsson
[26] and by Knittl [27]. The simplest method involves the splitting of the
inhomogeneous layer into a very large number of thin sublayers. Each sublayer
is then replaced by a homogeneous layer of the same thickness and mean
refractive index so that the smoothly varying index of the inhomogeneous layer
is represented by a series of small steps. Computation can then be carried
out as for a multilayer of homogeneous layers. There is no difficulty, with
modern computers, in accommodating very large numbers of sub-layers so that,
although an approximation, the method can be made to yield results identical
for all practical purposes with those which would have been obtained by exact
calculation (in cases where exact calculation techniques exist).

For our purposes, we can approach the theory of such coatings from the
starting point of the multilayer antireflection coating for high-index substrates.
As more and more layers are added to the coating, the performance, both
from the bandwidth and the maximum reflectance in the low-reflectance region,
steadily improves. In the limit, there will be an infinite number of layers with
infinitesimal steps in optical admittance from one layer to the next. If, as
layers are added, the total optical thickness of the multilayer is kept constant,
the thickness of the individual layers will tend to zero and the multilayers will
become indistinguishable from a single layer of identical optical thickness, but
with optical admittance varying smoothly from that of the substrate to that of the
incident medium.

If there are n layers in the multilayer, then the total optical thickness of the
coating will be nλ0/4 which may be denoted by T . There will be n zeros of
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reflectance extending from a shortwave limit

λS =
(
(n + 1)

n

)
λ0

2

to a longwave limit

λL = [(n + 1)]
λ0

2
.

In terms of T , the total optical thickness, these limits are
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)
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)
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At wavelengths of 2λL or longer, the arrows in the vector diagram are confined
to the third and fourth quadrant so that the antireflection coating is no longer
effective.

If now n tends to infinity but T remains finite, the multilayer tends to a
single inhomogeneous layer, λS tends to zero, and λL tends to 2T . For all
wavelengths between these limits the reflectance of the assembly is zero. Thus
the inhomogeneous film with smoothly varying refractive index is a perfect
antireflection coating for all wavelengths shorter than twice the optical thickness
of the film. At wavelengths longer than this limit the performance falls off, and at
the wavelength given by four times the optical thickness of the film, the coating
is no longer effective.

Of course, in practice there is no useful thin-film material with refractive
index as low as unity and any inhomogeneous thin film must terminate with an
index of around 1.35, say, which, in the infrared, is the index of magnesium
fluoride. The reflectance of such a coated component will be equal to that of a
plate of magnesium fluoride, 2.2% per surface.

Jacobsson and Martensson have actually produced an inhomogeneous
antireflection coating of this type on a germanium plate [28]. The films were
manufactured by the simultaneous evaporation of germanium and magnesium
fluoride, the relative proportions of which were varied throughout the deposition
to give a smooth transition between the indices of the two materials. An example
of the performance attained is shown in figure 3.58. For this particular coating
the physical thickness is quoted as 1.2 µm. To find the optical thickness we
assume that the variation of refractive index with physical thickness is linear
(mainly because any other assumed law of variation would lead to very difficult
calculations, although possibly more accurate results). The optical thickness is
then given by the physical thickness times the mean of the two terminal indices.
For this present film, starting with an index of 4.0 and finishing with 1.35, the
mean is 2.68 and the optical thickness, therefore, 2.68 × 1.2 µm, i.e. 3.2 µm.



Inhomogeneous layers 155

Figure 3.58. Measured transmittance of a germanium plate coated on both sides with an
inhomogeneous Ge–MgF2 film with geometrical thickness 1.2 µm. (After Jacobsson and
Martensson.)

This implies that the coating should give excellent antireflection for wavelengths
out to 6.4 µm, after which it should show a gradually reducing transmission until
a wavelength of 4 × 3.2 µm, i.e. 12.8 µm. The curve of the coated component in
figure 3.58 shows that this is indeed the case.

Berning [29] has suggested the use of the Herpin index concept for the
design of antireflection coatings which are composed of homogeneous layers
of two materials, one of high index and the other of low index, which are step
approximations to the inhomogeneous layer and which, because they involve
homogeneous layers of well-understood and stable materials, might be easier to
manufacture than the ideal inhomogeneous layers. He has suggested designs for
the antireflection coating of germanium consisting of up to 39 alternate layers of
germanium and magnesium fluoride equivalent to 20 quarter-waves of gradually
decreasing index.

As with coatings consisting of homogeneous layers, the most serious
limitation is the lack of low-index materials. A single inhomogeneous layer to
match a substrate to air must terminate at an index of around 1.38, which means
that the best that can be done with such a layer is a residual reflectance of 2.5%.
This limits their direct use to high-index substrates. For low-index substrates it is
likely that their role will remain in the improvement of the performance of designs
incorporating homogeneous materials.
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3.7 Further information

It has not been possible in a single chapter in this book to cover completely the
field of antireflection coatings. Further information will be found in Cox and
Hass [17] and Musset and Thelen [6]. There is also a very useful account of
antireflection coatings in Knittl [27] which contains some alternative techniques.
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Chapter 4

Neutral mirrors and beam splitters

4.1 High-reflectance mirror coatings

Almost as important as the transmitting optical components of the previous
chapter are those whose function is to reflect a major portion of the incident
light. In the vast majority of cases the sole requirement is that the specular
reflectance should be as high as conveniently possible, although, as we shall
see, there are specialised applications where not only should the reflectance be
high, but also the absorption should be extremely low. For mirrors in optical
instruments, simple metallic layers usually give adequate performance and these
will be examined first. For some applications where the reflectance must be higher
than can be achieved with simple metallic layers, their reflectance can be boosted
by the addition of extra dielectric layers. Multilayer all-dielectric reflectors, which
combine maximum reflectance with minimum absorption, and which transmit the
energy which they do not reflect, are reserved for the next chapter.

4.1.1 Metallic layers

The performance of the commonest metals used as reflecting coatings is shown
[1] in figure 4.1.

Aluminium is easy to evaporate and has good ultraviolet, visible and infrared
reflectance, together with the additional advantage of adhering strongly to most
substances, including plastics. As a result it is the most frequently used film
material for the production of reflecting coatings. The reflectance of an aluminium
coating does drop gradually in use, although the thin oxide layer, which always
forms on the surface very quickly after coating, helps to protect it from further
corrosion. In use, especially if the mirror is at all exposed, dust and dirt invariably
collect on the surface and cause a fall in reflectance. The performance of
most instruments is not seriously affected by a slight drop in reflectance, but
in some cases where it is important to collect the maximum amount of light,
as it is difficult to clean the coatings without damaging them, the components

158
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Figure 4.1. Reflectance of freshly deposited films of aluminium, copper, gold, rhodium
and silver as a function of wavelength from 0.2–10 µm (After Hass [1].)

are recoated periodically. This applies particularly to the mirrors of large
astronomical reflecting telescopes. The primary mirrors of these are recoated with
aluminium usually around once a year in coating plants which are installed in the
observatories for this purpose. Because the primaries are very large and heavy
(for example, the 98-inch primary of the Isaac Newton Memorial Telescope of
the Royal Greenwich Observatory weighs some 9000 lb), it is not usual to rotate
them during coating and the uniformity of coating is achieved through the use of
multiple sources.

Silver was once the most popular material of all. It does tarnish when
exposed to the atmosphere, owing mainly to the formation of silver sulphide,
but the initial high reflectance and the extreme ease of evaporation still make it
a common choice for components used only for a short period of time. Silver is
also often used where it is necessary to coat temporarily a component, such as an
interferometer plate, for a test of flatness.

Gold is probably the best material for infrared reflecting coatings. Its
reflectance drops off rapidly in the visible region and it is really useful only
beyond 700 nm. On glass, gold tends to form rather soft, easily damaged films,
but it adheres strongly to a film of chromium or Nichrome, and this is often used
as an underlayer between the gold and the glass substrate.

The reflectance of rhodium and platinum is much less than that of the other
metals mentioned and these metals are used only where stable films very resistant
to corrosion are required. Both materials adhere very strongly to glass.
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4.1.2 Protection of metal films

Most metal films are rather softer than hard dielectric films and can be scratched
easily. Unprotected evaporated aluminium layers, for example, can be badly
damaged if wiped with a cloth, while gold and silver films are even softer. This
is a serious disadvantage, especially when periodic cleaning of the mirrors is
necessary. One solution, as we have seen, is periodic recoating. An alternative,
which improves the ruggedness of the coatings and also protects them from
atmospheric corrosion, is overcoating with an additional dielectric layer. The
behaviour of a single dielectric layer on a metal is a useful illustration of the
calculation techniques of chapter 2. We shall also require some related results
later and so it is useful to spend a little time on the problem.

First of all, the admittance diagram (figure 4.2) gives us a qualitative picture
of the behaviour of the system as the dielectric layer is added. The metal layer
will normally be thick enough for the optical admittance at its front surface to
be simply that of the metal, the substrate optical constants having no effect.
The optical admittance of the metal will always be in the fourth quadrant and
so, as a dielectric layer is added, the reflectance must fall until the locus of the
admittance of the assembly crosses the real axis. (The reflectance associated with
the locus of a dielectric layer of index higher than the incident medium always
falls as the locus is traced out in the fourth quadrant and always rises in the
first—figure 2.11(a).) This minimum of reflectance will occur at a dielectric layer
thickness of less than a quarter-wave. For layer thicknesses of up to twice this
figure, therefore, the reflectance of the protected metal film will be reduced. The
reduction in reflectance depends very much on the particular metal and the index
of the dielectric film.

We can mark the position of the quarter-wave dielectric layer thickness by
a simple construction. We draw the line from the origin to the starting point of
the dielectric locus, that is the metal admittance (α, −β) which lies in the fourth
quadrant. This line makes an angle θ with the real axis. Then, also through the
origin, we draw a line in the first quadrant making the same angle θ with the
real axis. This cuts the dielectric locus in two points. One is the point (α, β),
the image of the starting point in the real axis, and at this point the reflectance
of the assembly is identical to that of the uncoated metal. The second point of
intersection is

(
η2

f α

(α2 + β2)
,

η2
f β

(α2 + β2)

)
i.e.

η2
f

α − iβ

and at this point the layer is one quarter-wave thick.
We can derive straightforward analytical expressions for the various

parameters, and, in particular, the points of intersection of the locus with the
real axis, which we know correspond to the points of maximum and minimum
reflectance.
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Figure 4.2. Admittance diagram of a dielectric layer deposited over a metal. The metal
admittance would usually be much closer to the imaginary axis but has been moved for
greater clarity in the diagram. The dielectric locus starts at the admittance of the uncoated
metal. The construction to find the quarter-wave point is explained in the text, as are the
other parameters.

The characteristic matrix is given by[
B
C

]
=
[

cos δf i(sin δf/ηf)

iηf sin δf cos δf

] [
1

α − i β

]
(4.1)

where α − iβ is the characteristic admittance of the metal, i.e. Y(nm − ikm) at
normal incidence, δf = 2πnfdf cos θf/λ, and ηf is the characteristic admittance of
the film material. Then[

B
C

]
=
[

cos δf + (β sin δf)/ηf + i(α sin δf)/ηf
α cos δf + i(ηf sin δf − β cos δf)

]
.

Now, at the points of intersection of the locus with the real axis, we must have
that the admittance, which we can denote by µ, is real. But

µ = C/B

and, equating real and imaginary parts,

α cos δf = µ[cos δf + (β sin δf)/ηf] (4.2)

ηf sin δf − β cos δf = µ(α sin δf)/ηf. (4.3)

Hence, first eliminating µ,

(α cos δf)(α sin δf)/ηf = (ηf sin δf − β cos δf)[cos δf + (β sin δf)/ηf]
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i.e.

[(α2 + β2 − η2
f )/(2ηf)] sin(2δf) = −β cos(2δf).

Thus

tan(2δf) = 2βηf/(η
2
f − α2 − β2)

so that

δf = 1
2 tan−1[2βηf/(η

2
f − α2 − β2)] + mπ

2
m = 0, 1, 2, 3 . . . (4.4)

or, in full waves,

Df/λ0 = (1/4π) tan−1[2βηf/(η
2
f − α2 − β2)] + m/4 (4.5)

where the arctangent is to be taken in either the first or second quadrant so that δ f
for m = 0 is positive and represents the first intersection with the real axis where
the film is less than, or at the very most, equal to a quarter-wave. A similar result
has been derived by Park [2] using a slightly different technique.

The value ofµ can be found by rearranging equations (4.2) and (4.3) slightly:

(µ− α) cos δf + (βµ/ηf) sin δf = 0

β cos δf + [(µα/ηf)− ηf] sin δf = 0

and, eliminating δf,

(µ− α)[(µα/ηf)− ηf] − β(βµ/ηf) = 0.

The two solutions are

µ = [(α2 + β2 + η2
f )/2α] ± {[(α2 + β2 + η2

f )/4α2] − η2
f }1/2

but this is not the best form for calculation. We know that the two solutions µ 1
and µ2 are related by µ1µ2 = η2

f and so we write

µ1 = 2αη2
f /{(α2 + β2 + η2

f )+ [(α2 + β2 + η2
f )

2 − 4α2η2
f ]1/2} (4.6)

µ2 = [(α2 + β2 + η2
f )/2α] + {[(α2 + β2 + η2

f )/4α2] − η2
f }1/2 (4.7)

and the value which corresponds to the first intersection (m = 0 in equation (4.4))
is

µ1 = 2αη2
f /{(α2 + β2 + η2

f )+ [(α2 + β2 + η2
f )

2 − 4α2η2
f ]1/2}. (4.6)

Often

(α2 + β2 + η2
f )

2 � 4α2η2
f
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Table 4.1.

Dmax
Aluminium Dmin (Full
(0.82 − i5.99) Runcoated (%) Rmin (%) (Full waves) Rmax (%) waves)

Quartz (1.45) 91.63 83.64 0.2128 91.86 0.4628
CeO2 (2.30) 91.63 65.90 0.1925 92.44 0.4425

and in that case
µ1 = αη2

f /(α
2 + β2 + η2

f ) (4.8)

µ2 = (α2 + β2 + η2
f )/α. (4.9)

The limits of reflectance are given by

Rminimum = [(η0 − µ1)/(η0 + µ1)]2 (4.10)

Rmaximum = [(η0 − µ2)/(η0 + µ2)]
2. (4.11)

The higher the index of the dielectric film, the greater is the fall in reflectance
at the minimum. The reflectance rises above that of the bare metal at the
maximum, but, for the metals commonly used as reflectors, the increase is not
great, and so the lower-index films are to be preferred as protecting layers. As
an example, we can consider aluminium, which has a refractive index of 0.82 −
i5.99 at 546 nm [3], with protecting layers of quartz of index 1.45 or a high-index
layer, 2.3, such as cerium oxide. The results in table 4.1 were calculated from
equations (4.5)–(4.7), (4.10) and (4.11). Clearly, if high-index films are used for
protecting metal layers, then the monitoring of layer thickness must be accurate,
otherwise there is a risk of a sharp drop in reflectance.

Aluminium is probably the commonest mirror coating material for the visible
region, and, in addition to the quartz and cerium oxide mentioned above, there is
a large number of materials which can be used for protecting it. Silicon oxide,
SiO, for example, is also a very effective protecting material, but it has strong
absorption at the blue end of the spectrum, where it causes the reflectance of the
composite coating to be rather low. Another useful coating is sapphire Al 2O3.
This can be vacuum deposited, or the aluminium at the surface of the coating
can be anodised by an electrolytic technique [1], forming a very hard layer of
aluminium oxide. Gold and silver are more difficult to protect because of the
difficulty of getting films to stick to them. However, it has been found that
aluminium oxide sticks very well to silver [4, 5]. Aluminium oxide does not
appear to be a very effective barrier against moisture and so it has been used
principally as a bonding layer between the silver and a layer of silicon oxide which
affords good moisture resistance and which, although it adheres only weakly to
silver, adheres strongly to the aluminium oxide. Further details of the coating are
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given by Hass and his colleagues [4]. To reduce the absorption at the blue end
of the spectrum, the silicon oxide should be reactively deposited (see chapter 9)
when the actual oxide which is produced lies between SiO and SiO 2. With such
a coating it is possible to achieve a reflectance greater than 95% over the visible
and infrared from 0.45–20 µm.

Aluminium oxide and silicon oxide are absorbing at wavelengths longer than
8 µm and it has been discovered by Pellicori [6] and confirmed theoretically by
Cox et al [5] that reflectors protected by these materials exhibit a sharp dip in
reflectance at high angles of incidence, that is, 45◦ and above. The dip can be
avoided by the use of a protecting material which does not absorb in this region.
Magnesium fluoride is such a material, but it must be deposited on a hot substrate
(temperatures in excess of 200 ◦C) if it is to be robust. The metals have their best
performance if deposited at room temperature and thus the substrates should only
be heated after they have been coated with the metal.

4.1.3 Overall system performance, boosted reflectance

In optical instruments of any degree of complexity there will be a number of
reflecting components in series, and the overall transmission of the system will
be given by the product of the reflectances of the various elements. Figure 4.3
gives the overall transmission of any system with a number of components in
series, with identical values of reflectance. It is obvious from the diagram that
even with the best metal coatings, the performance with ten elements, say, is
low. If the instrument is to be used over a wide range there is little that can
be done to alleviate the situation. Most spectrometers, for instance, have ten or
more reflections with a consequent severe drop in transmission, but are required
to work over a wide region—possibly as much as a 25:1 variation in wavelength.
The spectrometer designer normally just accepts this loss and designs the rest of
the instrument accordingly.

In cases where the wavelength range is rather more limited, say, to the visible
region or to a single wavelength, it is possible to increase the reflectance of a
simple metal layer by boosting it with extra dielectric layers.

The characteristic admittance of a metal can be written n − ik and the
reflectance in air at normal incidence is

R =
∣∣∣∣1 − (n − ik)

1 + (n − ik)

∣∣∣∣
2

= (1 − n)2 + k2

(1 + n)2 + k2
= 1 − [2n/(1 + n2 + k2)]

1 + [2n/(1 + n2 + k2)]
. (4.12)

On p 53 it was shown that the optical admittance of an assembly Y becomes
n2/Y when a quarter-wave optical thickness of index n, that is admittance in free
space units, is added.

If the metal is overcoated with two quarter-waves of material of indices n 1
and n2, n2 being next to the metal, then the optical admittance at normal incidence
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Figure 4.3. Overall transmittance of an optical system which has a number of reflecting
elements in series.

is (
n1

n2

)2

(n − ik)

and the reflectance in air, also at normal incidence,

R =
∣∣∣∣1 − (n1/n2)

2(n − ik)

1 + (n1/n2)2(n − ik)

∣∣∣∣
2

i.e.

R = [1 − (n1/n2)
2n]2 + (n1/n2)

4k2

[1 + (n1/n2)2n]2 + (n1/n2)4k2

= 1 − [2(n1/n2)
2n]/[1 + (n1/n2)

4(n2 + k2)]

1 + [2(n1/n2)2n]/[1 + (n1/n2)4(n2 + k2)]
. (4.13)

This will be greater than the reflectance of the bare metal, given by
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equation (4.12), if

2(n1/n2)
2n

1 + (n1/n2)4(n2 + k2)
<

2n

1 + n2 + k2 (4.14)

which is satisfied by either

(
n1

n2

)2

> 1

or (4.15)(
n1

n2

)2

<
1

n2 + k2

assuming that n2 + k2 ≥ 1.
The first solution is of greater practical value than the second, which can be

ignored. This shows that the reflectance of any metal can be boosted by a pair
of quarter-wave layers for which (n1/n2) > 1, n1 being on the outside and n2
next to the metal. The higher this ratio, the greater the increase in reflectance. As
an example, consider aluminium at 550 nm with n − ik = 0.92 − i5.99. From
equation (4.12), the untreated reflectance of this is approximately 91.6%.

If the aluminium is covered by two quarter-waves consisting of magnesium
fluoride of index 1.38, next to the aluminium, followed by zinc sulphide of index
2.35, then (n1/n2)

2 = 2.9 and, from equation (4.13), the reflectance jumps to
96.9%.

An approximate result can be obtained very quickly using A = (1 − R).
When the two layers are added, A is reduced roughly to A/(n 1/n2)

2. Inserting
the above figures, for aluminium, A is 8.4% initially, and on addition of the layers
drops to 2.9%, corresponding to a boosted reflectance of 97.1% (instead of the
more accurate figure of 96.9%).

A second similar pair of dielectric layers will boost the reflectance even
higher—to approximately 99%, and greater numbers of quarter-wave pairs may
be used to give an even higher reflectance.

Unfortunately, the region over which the reflectance is boosted is limited.
Outside this zone the reflectance is less than it would be for the bare metal.
Jenkins [7] has measured the reflectance of an aluminium layer overcoated with
six quarter-wave layers of cryolite, of index 1.35, and zinc sulphide of index 2.35.
With layers monitored at 550 nm, the reflectance of the boosted aluminium was
greater than 95% over a region 280 nm wide, and greater than 99% over the major
part.

More robust coatings can be obtained using magnesium fluoride, silicon
dioxide or aluminium oxide as the low-index layers, and cerium oxide or titanium
oxide as the high-index layers. To attain maximum toughness, the dielectric layers
should be deposited on a hot substrate. Aluminium, however, if deposited hot,
tends to scatter badly and so the substrates should be heated only after deposition
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Figure 4.4. Reflectance of evaporated aluminium with (solid curve) and without (dashed
curve) two reflectance-increasing film pairs of MgF2 and CeO2 as a function of wavelength
from 0.4–1.6 µm. (After Hass [1].)

of the aluminium is complete. Figure 4.4 shows the reflectance of aluminium
boosted by four quarter-wave layers, which enhanced the reflectance over the
visible region.

We have already considered more exactly the behaviour of a single dielectric
layer on a metal, and have shown, as did Park [2], that the thickness of the
dielectric layer for minimum reflectance should be

D = {tan−1[2βηf/(η
2
f − α2 − β2)]}[λ0/(4π)]

where (α − iβ) is the admittance of the metal and the angle is in the first or
second quadrant. This is the thickness which the low-index layer next to the metal
should have if the maximum possible increase in reflectance is to be achieved. A
moment’s consideration of the admittance diagram will show that this is indeed
the case. Layers other than that next to the metal will, of course, retain their
quarter-wave thicknesses.

4.1.4 Reflecting coatings for the ultraviolet

The production of high-reflectance coatings for the ultraviolet is a much more
exacting task than for the visible and infrared. A very full review of the topic is
given by Madden [8], supplemented in great detail by a later account by Hass and
Hunter [9]. The following is a very brief summary.

The most suitable material known for the production of reflecting coatings
for the ultraviolet out to around 100 nm is aluminium. To achieve the best results,
the aluminium should be evaporated at a very high rate, 40 nm s −1 or more if
possible, on to a cold substrate, the temperature of which should not be permitted
to exceed 50 ◦C, and at pressures of 10−6 torr or lower. The aluminium should be
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Figure 4.5. Reflectance of evaporated aluminium from 100–200 nm with and without
protective layers of MgF2 of two different thicknesses. (After Canfield et al [11].)

of the purest grade. Hass and Tousey [10] have quoted results which show that
there is a significant improvement (as high as 10% at 150 nm) in the ultraviolet
reflectance of aluminium films if 99.99% pure aluminium is used in preference to
99.5% pure. Aluminium should, in theory, have a much higher reflectance than is
usually achieved in practice, particularly at the shortwave end of the range. This
has been found to be due to the formation of a thin oxide layer on the surface,
and as we have already shown, such a layer must, unless it is very thick, lead
to a reduction in reflectance. This oxidation takes place even at partial pressures
of oxygen below 10−6 torr. Unprotected aluminium films, therefore, inevitably
show a rapid fall in reflectance with time when exposed to the atmosphere. The
reflectance stabilises when the layer is of sufficient thickness to inhibit further
oxidation, but this occurs only when the reflectance at short wavelengths has
fallen catastrophically.

Attempts have been made to find suitable protecting material for aluminium
to prevent oxidation, and very promising results have been obtained with
magnesium fluoride (very robust coatings) and lithium fluoride (less robust),
which in crystal form are very useful window materials for the ultraviolet.
Figures 4.5 and 4.6 show the effect of an extra protecting layer of magnesium
fluoride [11] or lithium fluoride [12] on the reflectance of aluminium. The
increase in reflectance is partly due to the lack of oxide layer, but also to
interference effects.

It is necessary to evaporate the protecting layer immediately after the
aluminium in order that the minimum amount of oxidation should be allowed
to take place. This is usually achieved by running the two sources simultaneously
and arranging for the shutter which covers the aluminium source at the end of the
deposition of the aluminium layer to uncover at the same time the magnesium or
lithium fluoride source. The use of magnesium fluoride overcoated aluminium as
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Figure 4.6. Reflectance of an evaporated aluminium film with a 14-nm thick LiF
overcoating in the region of 90–190 nm. Measurements were begun 10 minutes after the
evaporation was completed. (After Cox et al [12].)

a reflecting coating for the ultraviolet is now becoming standard practice.
The aluminium and magnesium fluoride coating is examined in some detail

by Canfield et al [11]. Amongst other results they show that provided the
magnesium fluoride is thicker than 10 nm the coatings will withstand, without
deterioration, exposure to ultraviolet radiation and to electrons (up to 10 16, 1 MeV
electrons/cm2) and protons (up to 1012, 5 MeV protons/cm2).

4.2 Neutral beam splitters

A device which divides a beam of light into two parts is known as a beam splitter.
The functional part of a beam splitter generally consists of a plane surface coated
to have a specified reflectance and transmittance over a certain wavelength range.
The incident light is split into a transmitted and a reflected portion at the surface,
which is usually tilted so that the incident and reflected beams are separated. The
ideal values of reflectance and transmittance may vary from one application to
another. The beam splitters considered in this section are known as neutral beam
splitters, because reflectance and transmittance should ideally be constant over
the wavelength range concerned.

Neutral beam splitters are usually specified by the ideal values of
transmittance and reflectance expressed as a percentage and written T/R. 50/50
beam splitters are probably the most common.

4.2.1 Beam splitters using metallic layers

Apart from a single uncoated surface, which is sometimes used, the simplest
type of beam splitter consists of a metal layer deposited on a glass plate. Silver,
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Figure 4.7. Reflectance and transmittance curves for a platinum film on glass, calculated
from the optical constants on the bulk metal. (After Heavens [13].)

which has least absorption of all the common metals used in the visible region, is
traditionally the most popular material for this. 50/50 beam splitters are frequently
referred to as being ‘half-silvered’, although commercial beam splitters nowadays
are usually constructed from metals such as chromium which are less prone to
damage by abrasion and corrosion.

All metallic beam splitters suffer from absorption. The transmission of a
metal film is the same, regardless of the direction in which it is measured. This
is not so for reflectance, and that measured at the air side is slightly higher than
that measured at the glass side. This effect does not appear with a transparent
film. Since T + A + R = 1, the reduction in reflectance at the substrate side
means that the absorption from that side must always be higher. Figure 4.7 shows
curves for platinum demonstrating this behaviour [13]. Because of this difference
in reflection, metallic beam splitters should always be used in the manner shown
in figure 4.8 if the highest efficiency is to be achieved.

It is possible to decrease the absorption in metallic beam splitters by adding
an extra dielectric layer. The method has been applied to chromium films by
Pohlack [14] and figure 4.9 gives some of the measurements made.

The first pair of results is for a simple chromium film on glass of index 1.52
measured both from the air side and the glass side. The second pair of results
shows how the absorption in the chromium can be reduced by the presence of
a quarter-wave layer of high refractive index material (zinc sulphide of index
approximately 2.4 in this case) between the metal and the glass. This layer forms
an antireflection coating on the rear surface of the metal, and the effect can be
seen particularly strongly in the results for reflectance and transmission from the
glass side. There, the transmission remains exactly as before, but the reflectance
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Figure 4.8. Correct use of a metallic beam splitter.

Figure 4.9. Values of reflectance, transmittance and absorptance at 550 nm and normal
incidence for semi-reflecting films of chromium on glass showing the effect of adding a
quarter-wave layer of zinc sulphide. (After Pohlack [13].)

is considerably reduced. Results are also given for a chromium layer protected
by a glass cover cemented on the front surface with and without the antireflecting
layer. The metallic absorption again is very much less when the antireflection
layer is on the side of the metal remote from the incident light.

Shkliarevskii and Avdeenko [15] increased the transparency and decreased
the absorption in metallic coatings using an antireflection coating in a similar
manner. The antireflection coating in this case, instead of being dielectric, was
a thin metallic layer. They found that a layer of silver deposited on a substrate
heated to around 300 ◦C increased the transparency of an aluminium coating,
deposited on top of the silver at room temperature, by a factor as high as 3.5 at
1 µm and 2.5 at 700 nm without any decrease in reflectance at the aluminium–air
interface.

If the beam splitter is used correctly, the reduction in reflectance at the glass–
film interface can be useful in reducing the stray light derived from reflection, first
from the back surface of the glass blank and then from the glass–film interface.
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Figure 4.10. A cube beam splitter.

One complication found with beam splitters is a difference in the values of
reflectance for the two planes of polarisation when the beam splitter is tilted. The
TE (or s-) reflectance is higher than the TM (or p-) reflectance. In calculating
the efficiency of a beam splitter this must be taken into account. Anders [16]
describes a method for calculating efficiency and stray light performance.

It is not always possible to use the flat plate beam splitter in some optical
systems. Reflections from the rear surface can be a problem in spite of the
antireflection layer behind the metal film, and in applications where the light
passing through the plate is not collimated, aberrations are introduced. To
overcome these difficulties a beam-splitting cube, as shown in figure 4.10, can be
used, although the absorption in the metal is greater in this configuration because
both surfaces, instead of just one, are now in contact with a medium whose index
is greater than unity. Since the cemented assembly protects the metal layers the
choice of materials is wide. Silver is probably most frequently used, although
chromium, aluminium and gold are also popular.

Chromium gives almost neutral beam splitting over the visible region, with
an absorption of approximately 0.55 for both planes of polarisation, the TE

reflectance being approximately 0.30 and the TM 0.15. Silver varies more with
wavelength, the reflectance falling towards the blue end of the spectrum, but the
absorption is rather less than for chromium, around 0.15 at 550 nm, with TE

reflectance 0.50 and TM 0.30. Curves of the performance of several different
metallic beam splitters are given by Anders [16].

4.2.2 Beam splitters using dielectric layers

There are many optical instruments where the light undergoes a transmission
followed by a reflection, or vice versa, both at the same, or at the same type
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of, beam splitter. In two-beam interferometers, for example, the beams are first
of all separated by one pass through a beam splitter and then combined again
by a further pass either through the same beam splitter, as in the Michelson
interferometer, or through a second beam splitter, as in the Mach–Zehnder
interferometer. The effective transmittance of the instrument is given by the
product of the transmission and the reflectance of the beam splitter, taking into
account the particular polarisation involved. For a perfect beam splitter, T R
would be 0.25; for most metallic beam splitters it is around 0.08 or 0.10. The
absorption in the film is the primary source of loss.

A beam splitter of improved performance, as far as the T R product is
concerned, can be obtained by replacing the metallic layer with a transparent
high-index quarter-wave. At normal incidence the reflectance of a quarter-wave
is given by

R =
(

1 − n2
1/n2

1 + n2
1/n2

)2

.

At 45◦ angle of incidence in air the position of the peak is shifted to a shorter
wavelength, and the appropriate optical admittances must be used in calculating
peak reflectance.

R =
(
η0 − (η2

1/η2)

η0 − (η2
1/η2)

)2

and since η varies with the plane of polarisation, R will have two values, RTE and
RTM.

Figure 4.11 shows the peak reflectance of a quarter-wave of index between
1.0 and 3.0 on glass of index 1.52 for both 45 ◦ incidence and normal incidence.
At 45◦, the peak reflectance for unpolarised light, 1

2 (RTE + RTM), is within 1.5%
of the peak value for normal incidence.

Zinc sulphide, with index 2.35, is a popular material for beam splitters. At
45◦ we have

(T R)TE = (0.46 × 0.54) = 0.248

(T R)TM = (0.185 × 0.815) = 0.151

and

(T R)unpolarised = 1
2 (0.248 + 0.151) = 0.200.

((T R)unpolarised cannot be calculated using Tmean Rmean (= 0.219) because the
light, after having undergone one reflection or transmission, is then partly
polarised.)

If a more robust film is required, cerium oxide, with an index approximately
2.25, is a good choice. Here

(T R)TE = (0.423 × 0.577) = 0.244
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Figure 4.11. Peak reflectance in air of a quarter-wave of index n1 on glass of index 1.52
at normal and 45◦ incidence.

Figure 4.12. Measured transmittance curve of a dielectric 70/30 beam splitter at 45◦ angle
of incidence. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

(T R)TM = (0.158 × 0.842) = 0.133

(T R)unpolarised = 0.189.

Clearly the dielectric beam splitter, even if it does tend to have characteristics
which more nearly correspond to 70/30 rather than 50/50, has a considerably
better performance than the metallic beam splitter. The reflectance curve of a
typical 70/30 beam splitter in figure 4.12 shows how the reflectance varies on
either side of the peak.

Beam splitters with 55/45 characteristics can be made by evaporating pure
titanium in a good vacuum and subsequently oxidising it to TiO 2 by heating at
420 ◦C in air at atmospheric pressure. The titanium oxide thus formed has rutile
structure and a refractive index of 2.8. Titanium films produced in a poor vacuum
oxidise subsequently to the anatase form, having rather lower refractive index.
The production of very large beam splitters, of this type, 17 × 13 inches, is
described in a paper by Holland et al [17].

The single-layer beam splitter suffers from a fall in reflectance on either side
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Figure 4.13. Admittance diagram at λ0 of a two-layer beam splitter. The high-index
quarter-wave layer gives the required high reflectance. The low-index half-wave layer
flattens the performance over the visible region.

Figure 4.14. (a) The performance of the beam splitter shown in figure 4.13. Design: Air
(1.00)|H LL|Glass (1.52) with L a quarter-wave of index 1.35 and H of 2.35. (b) The
performance of a beam splitter of design: Air (1.00)|L H L H LL|Glass (1.52) with indices
as for (a).

of the central wavelength. In the same way that single-layer antireflection coatings
can be broadened by adding a half-wave layer, so the single quarter-wave beam
splitter can be broadened. The same basic pattern of admittance circles can be
achieved either by a low-index half-wave layer between the high-index quarter-
wave and the glass substrate or an even higher index half-wave deposited over the
quarter-wave. Since no suitable materials for the latter solution exist in practice,
the low-index half-wave is the only feasible approach. The admittance diagram is
shown in figure 4.13 and the performance in figure 4.14.
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The technique is effective also for multilayer systems to give a higher
reflectance. Approximately 50% reflectance can be achieved by a four-layer
coating, Air |L H L H | Glass, and this can be flattened by an additional low-
index half-wave at the glass end of the multilayer, that is, Air |L H L H LL| Glass.
Figure 4.14 shows the performance calculated for this design of beam splitter.

A detailed discussion of the role of half-wave layers is given by Knittl [18].
As mentioned above, beam-splitting cubes must be used in some applications

where plate beam splitters are unsuitable. Unfortunately, the main problem
connected with dielectric beam splitters, the low reflectance for TM waves,
becomes even worse with cube beam splitters. The reason for this is simply
that 45◦ incidence in glass is effectively a much greater angle of incidence
than 45◦ in air. Consequently, the polarisation splitting is even greater and the
TM performance becomes so poor that the beam splitter is unusable in most
applications. Metal layers are, therefore, the only ones which can be used
in the straightforward cube beam splitter and combiner. This disadvantage of
the dielectric layer can, however, be turned to advantage in the construction of
polarisers as we shall see in chapter 8.

4.3 Neutral-density filters

A filter which is intended to reduce the intensity of an incident beam of light
evenly over a wide spectral region is known as a neutral-density filter.

The performance of neutral-density filters is usually defined in terms of the
optical density, D:

D = log10(I0/IT)

where I0 is the incident intensity and IT is the transmitted intensity measured
either at one particular wavelength or integrated over a region.

Absorption and absorptance are terms which are not correctly used of
neutral-density filters because they represent the fraction of energy which is
actually absorbed in the film, and in neutral-density filters a proportion of the
incident energy is removed by reflection.

The advantage of using the logarithmic term is that the effect of placing two
or more neutral-density filters in series is easily calculated. The overall density
is simply the sum of the individual densities (provided that multiple reflections
are not permitted to occur between the individual filters, which would affect the
result in the way shown in chapter 2, p 69, equation (2.139)).

Thin-film neutral-density filters consist of single metallic layers with
thicknesses chosen to give the correct transmission values. Rhodium, palladium,
tungsten, chromium, as well as other metals, are all used to some extent, but
the best performance is obtained by the evaporation of a nickel chromium
alloy, approximately 80% nickel and 20% chromium. Chromel A or Nichrome
are standard resistance wires which have this composition and can be readily
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Figure 4.15. Measured transmittance curves of neutral-density filters consisting of
Nichrome films on glass substrates. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

obtained. The method is described by Banning [19]. The Chromel or Nichrome
should be evaporated at 10−4 torr or better from a thick tungsten spiral. Neutral
films, having densities up to around 1.5, corresponding to a transmission of 3%,
can be manufactured in this way. If the films are made thicker, they are not
as neutral and tend to have a higher transmission in the red, owing to excess
chromium. The films are very robust and do not need any protection, especially
if they are heated to around 200 ◦C after evaporation.

Figure 4.15 shows some response curves of neutral-density filters made from
Nichrome on glass. The filters are reasonably neutral over the visible and near
infrared out to 2 µm. In fact, if quartz substrates are used the filters will be good
over the range 0.24–2 µm.
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Chapter 5

Multilayer high-reflectance coatings

The metal reflecting layers of the previous chapter suffer from a considerable
absorption loss which, although unfortunate, still permits a high level of
performance in most simple systems. There are applications where the absorption
in metal layers is too high and the reflectance too low. These include multiple-
beam interferometers and resonators, where the large number of successive
reflections magnifies the effects of absorption, and high-power systems where the
energy absorbed can be sufficient to damage the coating. One way of increasing
the reflectance of an opaque metal coating, as we have seen, is to boost the
reflectance by adding dielectric layers. This also reduces the absorptance, but
the transmittance remains effectively zero. For high-reflecting coatings which
must transmit what they do not reflect, all-dielectric multilayers are required. The
description which follows is built around the most successful of the multiple-
beam interferometers, the Fabry–Perot interferometer. As we shall see later, this
interferometer is also of considerable importance in the development of thin-film
band-pass filters, and this is a further reason for dealing with it in some detail
here.

5.1 The Fabry–Perot interferometer

First described in 1899 by Fabry and Perot [1], the interferometer known by their
names has profoundly influenced the development of thin-film optics. It belongs
to the class of interferometers known as multiple-beam interferometers because a
large number of beams is involved in the interference. The theory of each of the
various types of multiple-beam interferometer is similar. They differ mainly in
physical form. Their common feature is that their fringes are much sharper than
those in two-beam interferometers, thus improving both measuring accuracy and
resolution. Multiple-beam interferometers are described in almost all textbooks
on optics, for example that by Born and Wolf [2].

A Fabry–Perot interferometer consists of two flat plates separated by a
distance ds and aligned so that they are parallel to a very high degree of accuracy.

179



180 Multilayer high-reflectance coatings

Figure 5.1. A Fabry–Perot etalon. The amplitude coefficients in the diagram are converted
to the intensity coefficients of equation (5.1) as shown on p 76.

The separation is usually maintained by a spacer ring made of Invar or quartz, and
the assembly of two plates and a spacer is known as an etalon. The inner surfaces
of the two plates are usually coated to enhance their reflectance.

Figure 5.1 shows an etalon in diagrammatic form. The amplitude reflection
and transmission coefficients are defined as shown. The basic theory has already
been given in chapter 2 (p 76), where it was shown that the transmission for a
plane wave is given by

T = TaTb

[1 − R−
a R+

b )
1/2]2

[
1 + 4(R−

a R+
b )

1/2

[1 − (R−
a R+

b )
1/2]2

sin2
(
φa + φb

2
− δ

)]−1

(5.1)

where δ = (2πnsds cos θs)/λ, ds and ns being the physical thickness and
refractive index of the spacer layer. This is similar to (2.150) except that δ has
been modified to include oblique incidence θ s. In order to simplify the discussion,
let the reflectances and transmittances of the two surfaces be equal, let there by
no phase change on reflection, i.e. let φa = φb = 0, and let ns be unity, i.e. an air
spacer. Then

T = T2
s

(1 − Rs)2

1

1 + [4Rs/(1 − Rs)2] sin2 δ
(5.2)

and, writing

F = 4Rs

(1 − Rs)2
(5.3)

then

T = T2
s

(1 − Rs)2

2

1 + F sin2 δ
. (5.4)

If there is no absorption in the reflecting layers, then

1 − Rs = Ts
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and

T = 1

1 + F sin2 δ
. (5.5)

The form of this function is given in figure 5.2 where T is plotted against
δ. T is a maximum for δ = mπ , where m = 0, ±1, ±2, . . . , and a minimum
halfway between these values. The successive peaks of T are known as fringes
and m is known as the order of the appropriate fringe. As F increases, the widths
of the fringes become very much narrower. The ratio of the separation of adjacent
fringes to the halfwidth (the fringe width measured at half the peak transmission)
is called the ‘finesse’ of the interferometer and is written F . From equation (5.5),
the value of δ corresponding to a transmission of half the peak value is given by

0.5 = 1

1 + F sin2 δ

and if δ is sufficiently small so that we can replace sin2 δ by δ2, then

0.5 = 1

1 + Fδ2

i.e.

δ = 1

F1/2

which is half the width of the fringe. The separation between values of δ
representing successive fringes is π , so that

F = πF1/2

2

or

F = πR1/2
s

(1 − Rs)
. (5.6)

The Fabry–Perot interferometer is used principally for the examination of the
fine structure of spectral lines. The fringes are produced by passing light from the
source in question through the interferometer. Measurement of the fringe pattern
as a function of the physical parameters of the etalon can yield very precise values
of the wavelengths of the various components of the line. The two most common
arrangements are either to have the incident light highly collimated and incident
normally, or at some constant angle, when the fringes can be scanned by varying
the spacer thickness, or it is possible to keep the spacer thickness constant and
scan the fringes by varying θs, the angle of incidence. Possible arrangements
corresponding to these two methods are shown in figure 5.3.

Practical considerations limit the achievable finesse to a maximum normally
of around 25, or perhaps 50 in exceptional cases. This is due mainly to
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Figure 5.2. Fabry–Perot fringes.

Figure 5.3. Two possible arrangements of a Fabry–Perot interferometer.

imperfections in the plates themselves. It is extremely difficult to manufacture
a plate with flatness better than λ/100 at, say 546 nm. Variations in flatness of
the plates give rise to local variations of ds and hence δ, causing the fringes to
shift. These variations should not be greater than the fringe width, otherwise the
luminosity of the instrument will suffer. Chabbal [3] has considered this problem
in great detail, but for our present purpose it is sufficient to assume that, for a
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pair of λ/100 plates (i.e. having errors not greater than ±λ/200 about the mean),
the variation in thickness of the spacer layer will be of the order of ±λ/100
about the mean. This will occur when the defects in the plates are in the form
of either spherical depressions in both plates or else protrusions. This in turn
means a change in δ of ±2π/100 corresponding to a total excursion of 2π/50.
Any decrease in fringe width below this will not increase the resolution of the
system but merely reduce the overall luminosity, so that 2π/50 represents a lower
limit on the fringe width. Since the interval between fringes is π , this condition
is equivalent to an upper limit on finesse of π/(2π/50), i.e. 25. In more general
terms, if the plates are good enough to limit the total thickness variation in the
spacer to λ/p (not quite the same as saying that each plate is good to λ/p), then
the finesse should be not greater than p/2.

The resolution of an optical instrument is normally determined by the
Rayleigh criterion, which is particularly concerned with intensity distributions
of the form

I (δ) =
(

sin δ/2

δ/2

)2

Imax

which are of a type produced by diffraction rather than interference effects.
Two wavelengths are considered just resolved by the instrument if the intensity
maximum of one component falls exactly over the first intensity zero of the other
component. This implies that if the two components are of equal intensity, then,
in the combined fringe pattern, the minimum which will exist between the two
maxima will be of intensity 8/π 2 times that at either of them. In the Fabry–Perot
interferometer the fringes are of rather different form, and the pattern of zeros
and successively weaker maxima associated with the [(sin δ/2)/(δ/2)]2 function
is missing. The Rayleigh criterion cannot, therefore, be applied directly. Born
and Wolf [4] suggest that a suitable alternative form of the criterion, which could
be applied in this case, might be that two equally intense lines are just resolved
when the resultant intensity between the peaks in the combined fringe pattern is
8/π2 that at either peak. On this basis they have shown that the resolving power
of the Fabry–Perot interferometer is

λ

�λ
= 0.97mF

which is virtually indistinguishable from

λ

�λ
= mF

and which is the ratio of the peak wavelength of the appropriate order to the
halfwidth of the fringe. Thus the halfwidth of the fringe is a most useful parameter
because it is directly related to the resolution of the instrument in a most simple
manner. We shall make much use of the concept of halfwidth in chapter 7.
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Since resolution is the product of finesse and order number, a low finesse
does not necessarily mean low resolution, but it does mean that to achieve high
resolution the interferometer must be used in high order. This in its turn means
that the separation of neighbouring orders in terms of wavelength is small—in
high order this is given approximately by λ/m. If steps are not taken to limit the
range of wavelengths accepted by the interferometer then the interpretation of the
fringe patterns becomes impossible. This limiting of the range can be achieved by
using some sort of filter in series with the etalon. This filter could be a thin-film
filter of a type discussed in chapter 7. Another method is to use, in series with
the etalon, other etalons of lower order, and hence resolution, arranged so that
the fringes coincide only at the wavelength of interest and at wavelengths very far
removed. The wide fringe interval or, as it is also called, free spectral range, of the
low-order, low-resolution instrument is thus combined with the high resolution
and narrow free spectral range of the high-order instrument. A simpler and
more convenient method, which is probably that most often employed, involves
a spectrograph and is generally used in conjunction with the second method of
scanning the interferometer: variation of θ s keeping ds constant. The resolution
of the spectrograph need not be high and the entrance slit can be quite broad. It
is usually placed where the photographic plate is in figure 5.3, so that it accepts
a broad strip down the centre of the circular fringe pattern. The plate from the
spectrograph then shows a low-resolution spectrum with a fringe pattern along
each line corresponding to the fine-structure components within the line.

So far in our examination of the Fabry–Perot interferometer we have
neglected to consider absorption in the reflecting coatings. Equation (5.4)
contains the information we need.

T = T2
s

(1 − Rs)2

1

1 + F sin2 δ
. (5.4)

Let As be the absorptance of the coatings; then

1 = Rs + Ts + As

then equation (5.4) becomes

T = T2
s

(Ts + As)2

1

1 + F sin2 δ

i.e.

T = 1

(1 + As/Ts)2

1

1 + F sin2 δ
. (5.7)

Clearly the all-important parameter is As/Ts.
Curves are shown in figure 5.4 which connect the transmission of the etalon

with finesse, given the absorption of the coatings. It is possible on this diagram to
plot the performance of any type of coating if the way in which Rs, Ts and As vary
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Figure 5.4. Etalon transmittance against finesse for various values of absorptance of the
coatings.

is known. This has been done for silver layers at 550 nm and gold at 1.1 µm. The
figures from which these curves were plotted were taken from Mayer [5]. Other
sources of information, particularly on silver films, are available [6, 7] and results
may differ from those plotted in some respects. However, the curves are adequate
for their primary purpose, which is to show that the performance of silver, the
best metal of all for the visible and near infrared, begins to fall off rapidly beyond
a finesse of 20 and is inadequate for the very best interferometer plates. An
enormous improvement is possible with all-dielectric multilayer coatings.

5.2 Multilayer dielectric coatings

In chapter 1 it was mentioned that a high reflectance can be obtained from a stack
of quarter-wave dielectric layers of alternate high and low index. This is because
the beams reflected from all the interfaces in the assembly are of equal phase when
they reach the front surface, where they combine constructively. An expression is
given on p 53 for the optical admittance of a series of quarter waves. If n H and
nL are the indices of the high- and low-index layers and if the stack is arranged
so that the high-index layers are outermost at both sides, then

Y =
(

nH

nL

)2p n2
H

ns
(5.8)

where ns is the index of the substrate and (2p + 1) the number of layers in the
stack.

The reflectance in air or free space is then

R =
(

1 − (nH/nL)
2p(n2

H/ns)

1 + (nH/nL)2p(n2
H/ns)

)2

. (5.9)
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The greater the number of layers the greater the reflectance. Maximum reflectance
for a given odd number of layers is always obtained with the high-index layers
outermost.

If (
nH

nL

)2p n2
H

ns
> 1

then

R � 1 − 4

(
nL

nH

)2p ns

n2
H

and

T = 1 − R � 4

(
nL

nH

)2p ns

n2
H

(5.10)

which shows that when reflectance is high, then the addition of two extra layers
reduces the transmission by a factor of (nL/nH )

2.
Provided the materials which are used are transparent, the absorption in a

multilayer stack can be made very small indeed. We shall return later to this topic,
but we can note here that in the visible region of the spectrum the absorptance can
be less than 0.01%.

Dielectric multilayers, however, suffer from two defects. The first, which is
more of a complication than a fault, is that there is a variable change in phase
associated with the reflection. The second, which is more serious, is that the high
reflectance is obtained over a limited range of wavelengths.

We can see, qualitatively, how the phase shift varies, using the admittance
diagram. If, as is usual, the multilayer consists of an odd number of layers with
high-index layers on the outside, then at the outer surface of the final layer the
admittance will be on the real axis with a high positive value. This is shown
diagrammatically in figure 5.5. The quadrants are marked on the figure with
reference to figure 2.9(b). Clearly the phase shift associated with the coating
is π , for the reference wavelength for which all the layers are quarter-waves.
For slightly longer wavelengths, the circles shrink slightly from the semicircles
associated with the quarter-waves and so the terminal point of the locus moves
upwards into the region associated with the third quadrant. If the wavelength
decreases, the terminal point moves into the second quadrant. The phase shift,
therefore, increases with wavelength. If, on the other hand, the coating ends
with a quarter-wave of low-index material so that at the reference wavelength
the admittance is real, but less than unity, then the phase shift on reflection will be
zero, moving into the first quadrant as the wavelength increases or into the fourth
as it decreases.

To investigate the effect of the phase change, and also of the dispersion of
phase change, on the operation of the interferometer, we return to the original
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Figure 5.5. Admittance diagram for a quarter-wave stack ending with a high-index layer.
The quadrants for the phase shift on reflection φ are marked on the diagram and correspond
to those in figure 2.9(b). For decreasing wavelength the terminal point moves into the
region associated with values of φ in the second quadrant while for increasing wavelength
φ moves into the third quadrant.

formula, equation (5.1). In our analysis we made the assumption that the phase
change on reflection was zero and concluded that transmission peaks would be
obtained at wavelengths given by

δ = mπ

where m = 0, ±1, ±2, . . . . If we now permit φa and φb to be nonzero, then the
positions of the transmission peaks will be given by

φa + φb − 2δ

2
= qπ

where q = 0, ±1, ±2, . . . . The effect of the phase changes φ a and φb is simply
to shift the positions of the peak wavelengths. If the order is fairly high (and as
we have seen most interferometers are used in high order), the shift is quite small.
The effect of the phase change, and of any phase dispersion, can be completely
eliminated from the determination of wavelength with the interferometer, by a
method described by Stanley and Andrew [8] which involves the use of two
spacers of different thickness.

The behaviour of a typical quarter-wave stack is shown in figure 5.6. The
high-reflection zone can be seen to be limited in extent. On either side of a
plateau, the reflectance falls abruptly to a low, oscillatory value. The addition of
extra layers does not affect the width of the zone of high reflectance, but increases
the reflectance within it and the number of oscillations outside.
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Figure 5.6. Reflectance R for normal incidence of alternating λ0/4 layers of high-
(nH = 2.3) and low-index (nL = 1.38) dielectric materials on a transparent substrate
(ns = 1.52) as a function of the phase thickness δ = 2πnd/λ (upper scale) or the
wavelength λ for λ0 = 460 nm (lower scale). The number of layers is shown as a parameter
on the curves. (After Penselin and Steudel [14].)

The width of the high-reflectance zone can be computed using the following
method. If a multilayer consists of n repetitions of a fundamental period
consisting of two, three or indeed any number of layers, then the characteristic
matrix of the multilayer is given by

[M] = [M]n

where [M] is the matrix of the fundamental period. Let [M] be written[
M11 M12
M21 M22

]
.

Then it can be shown that for wavelengths which satisfy∣∣∣∣M11 + M22

2

∣∣∣∣ ≥ 1 (5.11)

the reflectance increases steadily with increasing number of periods. This
is therefore the condition that a high-reflectance zone should exist and the
boundaries are given by ∣∣∣∣M11 + M22

2

∣∣∣∣ = 1. (5.12)



Multilayer dielectric coatings 189

A rigorous proof of this result is somewhat involved. One version is given by
Born and Wolf [9] and another by Welford [10]. A justification of the result, rather
than a proof, was given by Epstein [11] and it is his method which is followed
here.

If the characteristic matrix of a thin-film assembly on a substrate of
admittance ηn+1 is given by [

B
C

]

then if ηn+1 is real, equation (2.67) shows that

T = 4η0ηn+1

(η0 B + C)(η0 B + C)∗
= 4η0ηn+1

|η0B + C|2
where η0 is the admittance of the incident medium. Let the characteristic matrix
of the assembly of thin films be, as above,

[M] =
[
M11 M12
M21 M22

]
.

Then [
B
C

]
=
[
M11 M12
M21 M22

] [
1

ηn+1

]
=
[
M11 + ηn+1M12
ηn+1M22 +M21

]

where [M] = [M]n as before and we have

T = 4η0ηn+1

|η0(M11 + ηn+1M12)+ ηn+1M22 +M21|2 .

If there is no absorption, M11 and M22 are real, and M12 and M21 are
imaginary. Then

T = 4η0ηn+1

|η0M11 + ηn+1M22|2 + |η0ηn+1M12 +M21|2 . (5.13)

In the absence of the multilayer, the transmission of the substrate will be

Tsub = 4η0ηn+1

(η0 + ηn+1)2
. (5.14)

To simplify the discussion, let η0 = ηn+1. Then, from equations (5.13) and (5.14),
T will be less than Tsub if

|M11 +M22|
2

≥ 1

regardless of the values ofM12 andM21. Now, if

|M11 +M22|
2

> 1
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where [M] is the matrix of the fundamental period in the multilayer, then,
generally, as the number of periods increases, that is, as n tends to infinity,

|M11 +M22|
2

→ ∞.

That this is plausible may be seen by first of all squaring [M], whence, writing
M ′

pq for the terms in [M]2,

M ′
11 + M ′

22 = (M11)
2 + 2M12 M21 + (M22)

2.

Since det[M] = 1,

2M12 M21 = 2M11 M22 − 2

so that

M ′
11 = M ′

22 = (M11 + M22)
2 − 2.

If

|M11 + M22|
2

= 1 + δ

when δ is positive, then

M ′
11 + M ′

22 = (2 + 2δ)2 − 2 = 2 + 8δ + 4δ2

so that by squaring [M ′] and resquaring the result and so on, it can be seen that

|M11 +M22|
2

→ ∞ as n → ∞.

The quarter-wave stack, which we have so far been considering, consists of
a number of two-layer periods, together with one extra high-index layer. Each
period has a characteristic matrix:

[M] =
[

cos δ (i sin δ)/nL

inL sin δ cos δ

] [
cos δ (i sin δ)/nH

inH sin δ cos δ

]
.

Since the two layers are of equal optical thickness, δ without any suffix has been
used for phase thickness.

M11 + M22

2
= cos2 δ − 1

2

(
nH

nL
+ nL

nH

)
sin2 δ.

The right-hand side of this expression cannot be greater than +1, and so to find
the boundaries of the high-reflectance zone we must set

−1 = cos2 δe − 1
2

(
nH

nL
+ nL

nH

)
sin2 δe
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which, with some rearrangement, gives(
nH − nL

nH + nL

)2

= cos2 δe.

Now,

δ = π

2

λ0

λ

where λ0 is, as usual, the wavelength for which the layers have quarter-wave
optical thickness. We can also write this as

δ = π

2
g

where

g = λ0

λ
.

Let the edges of the high-reflectance zone be given by

δe = π

2
ge = π

2
(1 ±�g)

so that

cos2 δe = sin2
(

±π�g

2

)

and the width of the zone is 2�g. Then

�g = 2

π
sin−1

(
nH − nL

nH + nL

)
. (5.15)

This shows that the width of the zone is a function only of the indices of the
two materials used in the construction of the multilayer. The higher the ratio, the
greater the width of the zone. Figure 5.7 shows �g plotted against the ratio of
refractive indices.

So far we have considered only the fundamental reflectance zone for which
all the layers are one-quarter of a wavelength thick. It is obvious that high-
reflectance zones will exist at all wavelengths for which the layers are an odd
number of quarter wavelengths thick. That is, if the centre wavelength of the
fundamental zone is λ0, then there will also be high-reflectance zones with centre
wavelengths λ0/3, λ0/5, λ0/7, λ0/9, and so on.

At wavelengths where the layers have optical thickness equivalent to an even
number of quarter-waves, which is the same as an integral number of half-waves,
the layers will all be absentee layers and the reflectance will be that of the bare
substrate.
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Figure 5.7. The width of the high-reflectance zone of a quarter-wave stack plotted against
the ratio of the refractive indices, nH/nL .

Figure 5.8. Reflectance of a nine-layer stack of zinc sulphide (nH = 2.35) and cryolite
(nL = 1.35) on glass (n = 1.52) showing the high-reflectance bands.

The analysis determining �g for the fundamental zone is valid also for all
higher-order zones so that the boundaries are given by

g0 ±�g, 3g0 ±�g, 5g0 ±�g

and so on. Higher-order reflectance curves are shown in figure 5.8.
For the visible region, the most common coating materials are zinc sulphide

and cryolite. Absorption levels less than 0.5% can be achieved with ease, 0.1%
with extra care and 0.001% with minute attention to detail. Neither material in
thin-film form is particularly hard, but they are both easy to evaporate and give
high optical performance even when evaporated onto a cold substrate. This means
that the risk of distortion of very accurate interferometer plates through heating
is eliminated. The layers are rather susceptible to attack by moisture and care
should be taken to avoid any condensation, such as might happen when cold
plates are exposed to a warmer atmosphere; otherwise, the coatings will be ruined.
Touching by fingers is also to be avoided at all costs. The softness of the coatings
can, however, be turned to advantage. Etalon plates are extremely expensive and
if the coatings are easily removable, the plates can be recoated for use at other



Multilayer dielectric coatings 193

wavelengths. Prolonged soaking in warm water is often sufficient to bring zinc
sulphide and cryolite coatings off. In cases where the coatings are not completely
removed in this way, the addition of two or three drops of hydrochloric acid to the
water will quickly complete the operation. This should obviously be done with
great care and the plates immediately rinsed in running water to avoid any risk of
surface damage.

Where substrates are worked to somewhat lower tolerances, harder materials
can be used. Oxide layers, such as titanium dioxide, zirconium dioxide or cerium
dioxide, are all useful high-index materials with indices in the region of 2.2.
Magnesium fluoride evaporated on to a hot substrate with an index of 1.38,
or quartz, with index 1.45, or silicon oxide, with an index around 1.5, are all
useful low-index layers. Such combinations will withstand handling, humidity
and abrasion.

For the ultraviolet, a good combination for the 300–400 nm region is
antimony trioxide with cryolite, evaporated on to a cold substrate. They should
be handled as carefully as zinc sulphide and cryolite.

For the infrared, germanium for the region 1.8–2.0 µm with an index of
4.0, or lead telluride for the region 3.5–4.0 µm, with an index of 5.5, are good
high-index materials. Zinc sulphide, with an index of 2.35, is a useful low-index
material out to 20 µm. In the near infrared, silicon monoxide, calcium fluoride,
magnesium fluoride, cerium fluoride, or thorium fluoride are all good low-index
materials. More details of these and of all the other materials mentioned in this
chapter will be found in chapter 8.

The losses experienced in the coatings are as much a function of the
technique used as of the materials themselves. Great care in preparing the plant
and substrates is needed. Everything should be scrupulously clean. Two papers
which will be found useful if the maximum performance is required are by Perry
[12] and Heitmann [13]. Both these authors are concerned with laser mirrors,
where losses must be of an even lower order than in the case of the Fabry–Perot
interferometer.

5.2.1 All-dielectric multilayers with extended high-reflectance zones

The limited range over which high reflectance can be achieved with a quarter-
wave stack is a difficulty in some applications, and a number of attempts have
been made to extend the range by altering the design. Most of these have involved
the staggering of the thicknesses of successive layers throughout the stack to form
a regular progression, the aim being to ensure that at any wavelength in a fairly
wide range, enough of the layers in the stack have optical thickness sufficiently
near a quarter-wave to give high reflectance.

Penselin and Steudel [14] were probably the first workers to try this method.
They produced a number of multilayers where the layer thicknesses were in
a harmonic progression. The best 13-layer results which they published were
obtained with the scheme in table 5.1. See also figure 5.9.
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Table 5.1. The performance is shown as curve B in figure 5.9.

Wavelength for
Number of which layer is a
layers Material Index quarter-wave (nm)

Quartz 1.45 Massive
substrate

1 PbCl2 2.20 330
2 MgF2 1.38 344
3 PbCl2 2.20 360
4 MgF2 1.38 377
5 ZnS 2.35 396
6 Na3AlF6 1.35 417
7 ZnS 2.35 440
8 Na3AlF6 1.35 466
9 ZnS 2.35 495

10 Na3AlF6 1.35 528
11 ZnS 2.35 566
12 Na3AlF6 1.35 609
13 ZnS 2.35 660

Air 1.00 Massive

Figure 5.9. Broadband multilayer reflectors. A, computed curve for a seven-layer
quarter-wave stack. B, measured reflectance of a broadband design (Penselin and Steudel
[14]). C, measured reflectance of an alternative design (Baumeister and Stone [16]).

Heavens and Liddell [15] used a similar approach. They computed a large
number of reflection curves for assemblies of layers for which the thicknesses
were in either arithmetic or geometric progression. With the same number of
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Table 5.2.

Number of High-reflectance Wavelength of first-layer
layers region (nm) quarter-wave (nm)

Arithmetic 15 419–625 600
filters 25 418–725 700

35 330–840 800

Geometric 15 394–625 600
filters 25 342–730 700

35 300–826 800

layers the geometric progression gave very slightly broader reflection zones. In
the computations the high index was assumed to be 2.36 (zinc sulphide), the low
index 1.39 (magnesium fluoride) and the substrate index 1.53 (glass). Values of
common difference for the arithmetic progression ranged from −0.05 to +0.05,
and for the common ratio of the geometric progression from 0.95 to 1.05. Their
results for −0.02 and 0.97 respectively are summarised in table 5.2.

The monitoring wavelengths for which each layer is a quarter-wave are given
for the arithmetic filters by

t, t (1 + k), . . . , t[1 + (q − 2)k], t[1 + (q − 1)k]

and for the geometric filters by

t, kt, . . . , kq−2t, kq−1t

where q is the number of layers, t the monitoring wavelength for the first layer,
and k the common difference or common ratio respectively. A 35-layer geometric
curve is shown in figure 5.10.

As in the case of antireflection coatings, computer refinement can be used to
improve an initial, less satisfactory performance. Baumeister and Stone [16, 17]
pioneered the use of this technique in optical thin films. By trial and error they
arrived at a preliminary 15-layer design with high reflectance over an extended
range but with unacceptably large dips. The aim was to produce a reflectance of
around 95% using zinc sulphide (n = 2.3) and cryolite (n = 1.35) and the final
result is shown as curve C of figure 5.9 with design details listed in table 5.3.
Computer limitations forced the use of a very coarse net for the relaxation—only
five points were involved—and in addition, arbitrary relationships between the
various layers were used to reduce the number of independent variables to five.
This was in 1956. Since then, advances in the technique have kept pace with the
increasing power of computers. The detailed methods are outside the scope of this
book. They are considered in depth by Liddell [18]. As an illustration of what
is possible, figure 5.11 shows the calculated performance of a 21-layer design
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Figure 5.10. Reflectance of a 35-layer geometric stack on glass. Reflectance (full curve)
and phase change on reflection (dashed curve); n0 = 1.00, nH = 2.36, nL = 1.39,
ns = 1.53, common difference k = 0.97. (After Heavens and Liddell [15].)

giving greater than 97% reflectance over the region 400–800 nm. Dispersion of
the indices of zinc sulphide and cryolite, the materials used, have been included
both in the design procedure and in the performance calculation [19].

Possibly the simplest method of all is to place a quarter-wave stack for one
wavelength on top of another for a different wavelength. This process has been
considered in detail by Turner and Baumeister [20]. Unfortunately, if each stack
consists of an odd number of layers with outermost layers of the same index,
then a peak of transmission is found in the centre of the high-reflectance zone.
This peak arises because the two stacks act in much the same way as Fabry–
Perot reflectors. In a Fabry–Perot interferometer, as we have seen, provided the
reflectances and transmittances of the structures on either side of the spacer layer
are equal in magnitude, then the transmittance of the assembly will be unity for

φa + φb − 2δ

2
= qπ

where q = 0, ±1, ±2, . . . .
The situation is sketched in figure 5.12. The assembly of the two stacks is

divided at the boundary between them and spaced apart leaving a layer of free
space forming a spacer layer. The phase angle φ associated with each reflection
coefficient is also shown. At one wavelength, given by the mean of the centre
wavelengths of the stacks, it can be seen that

φa + φb = 2π.

Also by symmetry, at this wavelength the reflectances of both stacks are
equal and, therefore, the condition for unity transmittance will be completely
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Table 5.3.

Number of Wavelength for which layer
layers Substance Index is a quarter-wave (nm)

Glass
substrate

1 ZnS 2.30 690.8
2 Na3AlF6 1.35 690.8
3 ZnS 2.30 690.8
4 Na3AlF6 1.35 666.7
5 ZnS 2.30 575.7
6 Na3AlF6 1.35 701.3
7 ZnS 2.30 626.2
8 Na3AlF6 1.35 517
9 ZnS 2.30 520.5

10 Na3AlF6 1.35 463.7
11 ZnS 2.30 463.7
12 Na3AlF6 1.35 434.8
13 ZnS 2.30 414
14 Na3AlF6 1.35 414
15 ZnS 2.30 414

Air

satisfied if 2δ = 0, that is if the spacer layer of free space is allowed to shrink until
it vanishes completely. A peak of transmission will always exist, therefore, if two
stacks are deposited so that they are overlapping at the mean of the two monitoring
wavelengths. This is shown in figure 5.13, which is reproduced from Turner
and Baumeister [20]. Curves A and B are measured reflectance of two high-
reflectance quarter-wave stacks, each with the same odd number of layers, starting
and finishing with a high-index layer. Curve C shows the measured reflectance
of a coating made by combining the two stacks. The peak of transmission can
be clearly seen as a dip in the reflectance curve. Experimental errors, either in
monitoring or measurement, prevent its reaching the theoretical minimum.

The dip can be removed by destroying the relationship

φa + φb − 2δ

2
= qπ

in the region where both stacks have high reflectance. Turner and Baumeister
achieved the result quite simply by adding a low-index layer, one quarter-wave
thick at the mean wavelength, in between the stacks. This gave value for δ of
π/2 and for (φa + φb − 2δ)/2 of π/2, which corresponds to minimum possible
transmission and maximum reflectance. This is illustrated by curve D. The dip
has disappeared completely, leaving a broad flat-topped reflectance curve.
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Figure 5.11.

Geometrical Geometrical
Layer no Material thickness (nm) Layer no Material thickness (nm)

0 Air Medium 12 Na3AlF6 120.4
1 ZnS 41.6 13 ZnS 77.6
2 Na3AlF6 76.8 14 Na3AlF6 129.9
3 ZnS 51.4 15 ZnS 69.1
4 Na3AlF6 94.3 16 Na3AlF6 153.0
5 ZnS 49.0 17 ZnS 65.4
6 Na3AlF6 94.0 18 Na3AlF6 155.7
7 ZnS 47.9 19 ZnS 69.6
8 Na3AlF6 95.2 20 Na3AlF6 179.1
9 ZnS 58.6 21 ZnS 105.3

10 Na3AlF6 147.3 22 SiO2 Substrate
11 ZnS 62.2

The calculated performance and the design of a 21-layer high-reflectance coating
for the visible and near infrared. Dispersion of the indices of the materials has been taken
into account in both design by refinement and in performance calculation. (After Pelletier
et al [19].)

Turner and Baumeister have also considered the design of broadband
reflectors from a slightly different point of view and achieved similar results to
the above, although the reasoning is completely different. If a stack is made up of
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Figure 5.12. At λ3, (φa + φb)/2 = π . Also, by symmetry, at λ3,
(λ2/λ3)− 1 = 1 − (λ1/λ3), i.e. λ3 = 1

2 (λ1 + λ2).

Figure 5.13. Measured reflectances of two quarter-wave stacks with slightly
overlapping high-reflectance bands. Individual stacks, full curves: Curve A: A
|0.8(H L H L H L H L H)| G. Curve B: A |1.2(H L H L H L H L H)| G. When these are com-
bined in a single coating, there is a minimum in the overlap region resulting from the con-
dition in figure 5.12: Curve C (dashed): A |0.8(H L H L H L H L H)1.2(H L H L H L H L H)|
G. An inserted L layer eliminates the minimum by destroying the π phase shift. Curve D
(dotted): A |0.8(H L H L H L H L H) L 1.2(H L H L H L H L H)| G. G denotes the glass sub-
strate (n = 1.52), A the air incident medium (n = 1.00), H the stibnite high-index films
and L the chiolite low-index films. H and L are quarter-wave thicknesses at the reference
wavelength, λ0, of 1.6 µm. (After Turner and Baumeister [20].)

a number of symmetrical periods such as

H

2
L

H

2
or

L

2
H

L

2
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it can be represented mathematically by a single layer of thickness similar to
the actual thickness of the multilayer and with a real optical admittance. This
relationship holds good for all regions except the zones of high reflectance where
the thickness and optical admittance are both imaginary. This result has already
been referred to on p 75 and will be examined in much greater detail in the
following two chapters. For our present purpose it is sufficient to note that the
relationship does exist. If a single layer of real refractive index is deposited
on top of a 100% reflector, no interference maxima and minima can possibly
exist. For reflectors falling short of the 100% condition, maxima and minima can
exist, but are very weak. Thus, in the region where the overlapping stack has
a real refractive index, the high reflectance of the lower stack remains virtually
unchanged, provided enough layers are used. The high-reflectance zones can
either just touch without overlapping, in which case no reflectance minima will
exist, or overlap, in which case the minima will be suppressed because the central
layer, composed of an eighth-wave from each stack, is a quarter wavelength thick
at the mean of the two monitoring wavelengths, and, as has been shown above, this
effectively removes any reflectance minima. Figure 5.14(a) shows the measured
reflectance of two stacks, (

L

2
H

L

2

)4

on a barium fluoride substrate together with the measured reflectance of two
similar stacks superimposed on the same substrate in such a way that the high-
reflectance zones just touch.

5.2.2 Coating uniformity requirements

One feature of the broadband reflectors which we have been considering is that
the change in phase on reflection varies very rapidly with wavelength, much more
rapidly than in the case of the simple quarter-wave stack. The difficulty which
this could cause if such coatings were used in the determination of wavelength
in a Fabry–Perot interferometer has frequently been mentioned. Actually, the
method proposed by Stanley and Andrew [8], which uses two spacers, completely
eliminates the effect of even the most rapid phase change with wavelength, but
there is another effect which is the subject of a dramatic report by Ramsay and
Ciddor [21]. They used a 13-layer coating of a design similar to that of Baumeister
and Stone. Their scheme is given in table 5.4.

The coating was deposited with layer uniformity in the region of 1–2 nm
from centre to edge of the 75 mm diameter plates. When tested, however, after
coating, the plates appeared to be λ/60 concave at 546 nm, very uniform at
588 nm and λ/10 convex at 644 nm. This curvature is, of course, only apparent.
Tests on the plates using silver layers showed that they were probably λ/60
concave. The apparent curvature results from changes both in the thickness of
the coatings and in the phase change on reflection.
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Table 5.4.

Number of Wavelength for which layer
layers Material is a quarter-wave (nm)

Fused silica
substrate

1 ZnS 589
2 Na3AlF6 671
3 ZnS 720
4 Na3AlF6 594
5 ZnS 562
6 Na3AlF6 573
7 ZnS 539
8 Na3AlF6 535
9 ZnS 571

10 Na3AlF6 392
11 ZnS 385
12 Na3AlF6 355
13 ZnS 454

In fact, a theory sufficient to explain the effect was published, together with
some estimates of required uniformity, by Giacomo [22] in 1958. He obtained the
result that the apparent variation of spacer thickness (measured in units of phase)
was equal to the error in uniformity of the coating (measured as the variation in
physical thickness) times a factor(

ν

e

∂φ

∂v
+ 4πν

)

where e is the total thickness of the coating (physical thickness), ν = 1/λ is the
wavenumber and φ is the phase change on reflection at the surface of the coating.
Another way of stating the result is to take �ρm as the maximum allowable error
in spacer thickness (measured in units of phase) due to this cause, and then the
uniformity in coating must be better than

�e

e
= �ρm

[(∂φ/∂ν)+ 4πe]ν
.

Giacomo showed that the two terms in the expression, ∂φ/∂ν (which is
generally negative) and 4πe, could cancel, or partially cancel, so that some
designs of coating would be more sensitive to uniformity errors than others.
Ramsay and Ciddor carried this further by pointing out that the two terms in the
expression vary in magnitude throughout the high-reflectance zone of the coating,
and, although the cancellation or partial cancellation does occur, in addition,
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Figure 5.14. (a) Measured reflectances of two stacks A |(0.5L H 0.5L)4|G on BaF2
substrates. G denotes the BaF2 and A air; H and L are films of stibnite and chiolite a
quarter-wave thick at reference wavelengths λ0 = 4.06 µm (dashed curve) or 6.3 µm
(solid curve). (After Turner and Baumeister [20].) (b) Measured reflectance of the two
stacks of (a) superimposed in a single coating for an extended high-reflectance region.
(After Turner and Baumeister [20].)

the varying magnitudes mean that it is possible in some cases for the apparent
curvature due to uniformity errors to vary from concave to convex or vice versa
throughout the range. This is so for the particular coating they considered, and it
is this change in apparent curvature which is particularly awkward, implying that
the interferometer must be tested for flatness over the entire working range, not,
as is normal, at one convenient wavelength.

For the conventional quarter-wave coating, the magnitude of ∂φ/∂ν falls
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Table 5.5.

Number of Wavelength for which the layer
layers Index is one quarter-wave thick (nm)

0 1.00 Massive—incident medium
1 1.35 309
2 2.30 866
3 1.35 969
4 2.30 436
5 1.35 521
6 2.30 369
7 1.35 484
8 2.30 441
9 1.35 795

10 2.30 768
11 1.46 Massive—substrate

far short of 4πe; for example, in the case of a seven-layer coating of zinc
sulphide and cryolite, for the visible region ∂φ/∂ν is only −1.5 µm compared
with 4πe of around +21.5 µm, and the uniformity which is required can readily
be calculated from the finesse requirement and the physical thickness of the
coating, neglecting the effect of the variations in phase angle altogether. In the
case of the broadband multilayer however, the magnitude of ∂φ/∂ν is very much
greater, and at some wavelengths will exceed the value of 4πe. For example,
Giacomo quotes a case where ∂φ/∂ν reached −125 µm, completely swamping
the thickness effect, 4πe. Heavens and Liddell, in their paper, quote values of
∂φ/∂ν varying from 10 to 26 µm for the staggered multilayers. The change in
apparent curvature can therefore occur with these staggered systems, and it is
dangerous to attempt to calculate the required uniformity simply from the coating
thickness and the finesse requirement. An analysis which is very similar in certain
respects, especially in the end result, has been carried out for random errors in
the layers of certain types of band-pass filters, and is considered in chapter 7.
One point which does arise is the possibility of designing a coating where the
two terms cancel almost completely throughout the entire working range. This is
mentioned by Ramsay and Ciddor. Since then, Ciddor [23] has carried this a stage
further and has now produced several possible designs. Particularly successful is
a design for a reflector to give approximately 75% reflectance over the major
part of the visible, which is approximately three times less sensitive to thickness
variations than would be the case with a reflector exhibiting no phase change at all
with change in thickness. The design is intended for film indices of 2.30 and 1.35
on a substrate of index 1.46, corresponding to zinc sulphide and cryolite on fused
silica. The thicknesses are given in table 5.5. The reflectance is constant within
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perhaps ±2% over the region 650 nm to 400 nm and an interferometer plate with
such a coating would behave as if it were much flatter than the purely geometrical
lack of uniformity of the coating would suggest.

5.3 Losses

If lossless materials are used, then the reflectance which can be attained by a
quarter-wave stack depends solely on the number of layers. If the reflectance is
high then the addition of a further pair of layers reduces the transmittance by a
factor (nL/nH )

2. In practice, the reflectance which can be ultimately achieved is
limited by losses in the layers. These losses can be scattering or absorption.

Scattering losses are principally due to defects such as dust in the layers or to
surface roughness, and techniques for reducing them are considered in chapter 10.
Absorption losses are a property of the material, which may be intrinsic or due to
impurities or to composition or to structure. Absorption losses are related to the
extinction coefficient of the material, and it is useful to consider the absorption
losses of a quarter-wave stack composed of weakly absorbing layers having small
but nonzero extinction coefficients. Expressions for this have been derived by
several workers. The technique we use here is adapted from an approach devised
by Hemingway and Lissberger [24].

We use the concept of potential transmittance introduced in chapter 2. We
split the multilayer into subassemblies of single layers each with its own value of
potential transmittance. The potential transmittance of the assembly is then the
product of the individual transmittances.

For the entire multilayer we can write

ψ = T

1 − R
.

Then, if A is the absorptance,

1 − ψ = 1 − R − T

(1 − R)
= A

(1 − R)

and

A = (1 − R)(1 − ψ).

Now 0 ≤ ψ ≤ 1 and so we can introduce a quantityA f , and write

ψ f = 1 −A f

for each individual layer, and since we are considering only weak absorption, the
potential transmittance will be very near unity and soA f will be very small. Then
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the potential transmittance of the entire assembly will be given by:

ψ =
p∏

f =1

ψ f =
p∏

f =1

(1 −A f )

= 1 −
p∑

f =1

A f + . . .

so that, neglecting higher powers of A f ,

A = (1 − R)(1 − ψ) = (1 − R)
p∑

f =1

A f .

Now let us consider one single layer. The relevant parameters are contained in[
B
C

]
=
[

cos δ f i(sin δ f )/yf

iyf sin δ f cos δ f

] [
1
ye

]
(5.16)

and

ψ f = Re(ye)

Re(BC∗)

from equation (2.110). Also

yf = n f − ik f (in free space units)

δ f = 2π(n f − ik f )df /λ

= 2πn f d f /λ− i2πk f d f /λ

= α − iβ

where k f , and hence β, is small.
If we consider layers which are approximately quarter waves, we can set

α = [(π/2)+ ε]

where ε is small. Then

cos δ f ≈ (−ε + iβ)

sin δ f = 1

and the matrix expression becomes[
B
C

]
=
[
(−ε + iβ) i(n − ik)
i(n − ik) (−ε + iβ)

] [
1
ye

]
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whence [
B
C

]
=
[
(−ε + iβ)+ iye/(n − ik)
i(n − ik)+ ye(−ε + iβ)

]

so that

BC∗ = [(−ε + iβ)+ iye/(n − ik)] · [i(n − ik)+ ye(−ε + iβ)]∗

and, assuming that ye is real, since we are dealing with a quarter-wave stack, and
neglecting terms of second order and above in k, β and ε

Re(BC∗) = (βn + ye + y2
eβ/n)

and

ψ f = ye

(βn + ye + y2
eβ/n)

= 1

1 + β[(n/ye)+ (ye/n)]
.

Then, since β is small,

ψ f = 1 − β[(n/ye)+ (ye/n)]

and

A f = 1 − ψ f = β[(n/ye)+ (ye/n)].

Next we must find

(1 − R)
∑

A f .

For this we need the value of ye at each interface. Let the stack of quarter-wave
layers end with a high-index layer. Then the admittance of the whole assembly
will be Y, where Y is large. If we denote the admittance of the incident medium
by y0 (= n0 in free space units) then

R =
[

y0 − Y

y0 + Y

]2

where y0 and Y are real.
If Y is sufficiently large,

R = 1 − 4y0/Y

or

(1 − R) = 4y0/Y.
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Further, since Y is the terminating admittance and the layers are all quarter-waves,
the admittances at each of the interfaces follow the pattern:

Y
y2

H
Y

y2
LY

y2
H

y4
H

y2
LY

y4
LY

y4
H

y6
H

y4
LY

y6
LY

y6
H

y0

∣∣∣ nH

∣∣∣ nL

∣∣∣ nH

∣∣∣ nL

∣∣∣ nH

∣∣∣ nL

∣∣∣ · · ·
Then

A = (1 − R)
p∑

f =1

A f

= 4y0

Y

[(
yH

y2
H/Y

+ y2
H/Y

yH

)
βH +

(
yL

y2
LY/y2

H

+ y2
LY/y2

H

yL

)
βL

+
(

yH

y4
H/y2

LY
+ y4

H/y2
LY

yH

)
βH + . . .

]

i.e.

A = 4y0

[(
1

yH
+ yH

Y2

)
βH +

(
yL

y2
H

+ y2
H

yLY2

)
βL +

(
y2

L

y3
H

+ y3
H

y2
LY2

)
βH + . . .

]
.

Since βH and βL are small and Y is large, we can neglect terms in β/Y2 and the
absorptance is then given by

A = 4y0

[(
1

yH
+ y2

L

y3
H

+ y4
L

y5
H

+ . . .

)
βH +

(
yL

y2
H

+ y3
L

y4
H

+ y5
L

y6
H

+ . . .

)
βL

]
.

(yL/yH )
2 is less than unity and, although the series are not infinite, we can assume

that they have a sufficiently large number of terms so that any error involved in
assuming that they are in fact infinite is very small.

Thus

A = 4y0

(
βH/yH

1 − (yL/yH )2
+ yLβL/y2

H

1 − (yL/yH )2

)
= 4y0(yHβH + yLβL)

(y2
H − y2

L)
.

Now

yβ = y

(
2πkd

λ

)
=
(

2πnd

λ

)
k

where, since we are working in free space units, we are replacing y by n. Since
the layers are quarter-waves,

2πnd

λ
= π

2
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so that

A = 2πn0(kH + kL)

(n2
H − n2

L)
(final layer of high index).

The case of a multilayer terminating with a low-index layer can be dealt with
in the same way. The final low-index layer acts to reduce the reflectance and so
increase the absorption, which is given by

A = 2π

n0

[
(n2

H kL + n2
LkH )

(n2
H − n2

L)

]
(final layer of low index).

As an example, we can consider a multilayer with kH = kL = 0.0001,
nH = 2.35 and nL = 1.35, in air, i.e. n0 = 1.00.

A = 0.03% (high-index layer outermost)

A = 0.12% (low-index layer outermost).

In fact, the red part of the spectrum, the losses in a zinc sulphide and cryolite
stack can be less than 0.001%, indicating that the value of k must be less than
6×10−6 assuming that the loss is entirely in one material. For tantalum pentoxide
and silicon dioxide multilayer quarter-wave stacks, losses as low as 1 ppm, i.e.
0.0001%, have been reported. This is consistent with values of k an order of
magnitude lower. At this level, small amounts of contamination on the reflector
surfaces become important additional sources of loss.

In absolute terms, the absorption loss affects the reflectance more than the
transmittance in any given quarter-wave stack. Giacomo [25, 26] has shown that
�T/T and �R/R are of the same order, and therefore, since R � T then
�R � T . We will return to this question of loss later.
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Chapter 6

Edge filters

Filters in which the primary characteristic is an abrupt change between a region
of rejection and a region of transmission are know as edge filters. Edge filters are
divided into two main groups, longwave-pass and shortwave pass. The operation
may depend on many different mechanisms and the construction may take a
number of different forms. The following account is limited to thin-film edge
filters. These rely for their operation on absorption or interference or both.

6.1 Thin-film absorption filters

A thin-film absorption filter consists of a thin film of material which has an
absorption edge at the required wavelength and is usually longwave-pass in
character. Semiconductors which exhibit a very rapid transition from opacity to
transparency at the intrinsic edge are particularly useful in this respect, making
excellent longwave-pass filters. The only complication which usually exists is
a reflection loss in the pass region due to the high refractive index of the film.
Germanium, for example, with an edge at 1.65 µm, has an index of 4.0, and,
as the thickness of germanium necessary to achieve useful rejection will be at
least several quarter-waves, there will be prominent interference fringes in the
pass zone showing variations from substrate level, at the half-wave positions, to a
reflectance of 68% (in the case of a glass substrate) at the quarter-wave position.
The problem can be readily solved by placing antireflection coatings between the
substrate and the germanium layer, and between the germanium layer and the
air. Single quarter-wave antireflection coatings are usually quite adequate. For
optimum matching the values required for the indices of the antireflecting layers
are 2.46 between glass and germanium, and 2.0 between germanium and air. The
index of zinc sulphide, 2.35, is sufficiently near to both values and, with it, the
reflectance near the peak of the quarter-wave coatings will oscillate between

(
1 − (2.354)/(42 × 1.52)

1 + (2.354)/(42 × 1.52)

)2

= 1.3%

210
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Figure 6.1. The measured characteristic of a lead telluride filter. The small dip at
4.25 µm is probably due to atmospheric CO2 causing a slight unbalance of the measuring
spectrometer. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

for wavelengths where the germanium layer is equal to an integral odd number
of quarter-waves, and 4%, that is the reflectance of the bare substrate, where
the germanium layer is an integral number of half-waves thick (for at such a
wavelength the germanium layer acts as an absentee layer and the two zinc
sulphide layers combine also to form a half-wave and, therefore, an absentee
layer).

Other materials used to form single-layer absorption filters in this way
include cerium dioxide, giving an ultraviolet rejection–visible transmitting filter,
silicon, giving a longwave-pass filter with an edge at 1 µm, and lead telluride,
giving a longwave-pass filter at 3.4 µm.

A practical lead telluride filter characteristic is shown in figure 6.1, which
also gives the design. The two zinc sulphide layers were arranged to be quarter-
waves at 3.0 µm. Better results would probably have been obtained if the
thicknesses had been increased to quarter-waves at 4.5 µm.

6.2 Interference edge filters

6.2.1 The quarter-wave stack

The basic type of interference edge filter is the quarter-wave stack of the previous
chapter. As was explained there, the principal characteristic of the optical
transmission curve plotted as a function of wavelength is a series of high-
reflection zones, i.e. low transmission, separated by regions of high transmission.
The shape of the transmission curve of a quarter-wave stack is shown in figure 6.2.
The particular combination of materials shown is useful in the infrared beyond
2 µm, but the curve is typical of any pair of materials having a reasonably high
ratio of refractive indices.
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Figure 6.2. Computed characteristic of a 13-layer quarter-wave stack of germanium
(index 4.0) and silicon monoxide (index 1.70) on a substrate of index 1.42. The reference
wavelength, λ0, is 4.0 µm.

The system of figure 6.2 can be used either as a longwave-pass filter with
an edge at 5.0 µm or a shortwave-pass filter with an edge at 3.3 µm. These
wavelengths can be altered at will by changing the monitoring wavelength.

It sometimes happens that the width of the rejection zone is adequate for
the particular application, as, for example, where light of a particularly narrow
spectral region only is to be eliminated, or where the detector itself is insensitive
to wavelength beyond the opposite edge of the rejection zone. In most cases,
however, it is desirable to eliminate all wavelengths shorter than, or longer than,
a particular value. The rejection zone, shown in figure 6.2, must somehow be
extended. This is usually done by coupling the interference filter with one of the
absorption type.

Absorption filters usually have very high rejection in the stop region, but,
as they depend on the fundamental optical properties of the basic materials, they
are inflexible in character and the edge positions are fixed. Using interference
and absorption filters together combines the best properties of both, the deep
rejection of the absorption filter with the flexibility of the interference filter. The
interference layers can be deposited on an absorption filter, which acts as the
substrate, or the interference section can sometimes be made from material which
itself has an absorption edge within the interference rejection zone. Within the
absorption region the filter behaves in much the same way as the single layers of
the previous section.

Other methods of improving the width of the rejection zone will be dealt
with shortly, but now we must turn our attention to the more difficult problem
created by the magnitude of the ripple in transmission in the pass region. As the
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curve of figure 6.2 shows, the ripple is severe and the performance of the filter
would be very much improved if somehow the ripple could be reduced.

Before we can reduce the ripple we must first investigate the reason for
its appearance, and this is not an easy task, because of the complexity of the
mathematics. A paper published by Epstein [1] in 1952 is of immense importance,
in that it lays the foundation of a method which gives the necessary insight into
the problem to enable the performance to be not only predicted but also improved.

6.2.2 Symmetrical multilayers and the Herpin index

The paper written by Epstein [1] in 1952 dealt with the mathematical equivalent
of a symmetrical combination of films and a single layer, and was the beginning
of what has become the most powerful design method to date for thin-film filters.

Any thin-film combination is known as symmetrical if each half is a mirror
image of the other half. The simplest example of this is a three-layer combination
in which a central layer is sandwiched between to identical outer layers. If a
multilayer can be split into a number of equal symmetrical periods, then it can
be shown that it is equivalent in performance to a single layer having a thickness
similar to that of the multilayer and an optical admittance that can be calculated.
This is a most important result. Unfortunately, the accurate calculation of the
equivalent optical admittance is rather involved, but the basic form of the result
can be established relatively easily and used as a qualitative guide. Once the basic
form of a filter has been established, computer techniques can be used to finalise
the design.

Consider first a symmetrical three-layer period pqp, made up of dielectric
materials free from absorption. The characteristic matrix of the combination is
given by

[
M11 M12
M21 M22

]
=
[

cos δp (i sin δp)/ηp

iηp sin δp cos δp

] [
cos δq (i sin δq)/ηq

iηq sin δq cos δq

]

×
[

cos δp (i sin δp)/ηp

iηp sin δp cos δp

]
(6.1)

(where we have used the more general optical admittance η rather than the
refractive index n). By performing the multiplication we find:

M11 = cos 2δp cos δq − 1
2

(
ηq

ηp
+ ηp

ηq

)
sin 2δp sin δq (6.2a)

M12 = i

ηp

[
sin 2δp cos δq + 1

2

(
ηq

ηp
+ ηp

ηq

)
cos 2δp sin δq

+ 1
2

(
ηp

ηq
− ηq

ηp

)
sin δq

]
(6.2b)
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M21 = iηp

[
sin 2δp cos δq + 1

2

(
ηp

ηq
+ ηq

ηp

)
cos 2δp sin δp

− 1
2

(
ηp

ηq
− ηq

ηp

)
sin δq

]
(6.2c)

and
M22 = M11. (6.2d)

It is this last relationship which permits the next step.
Now, let

M11 = cos γ = M22 (6.3)

and if we set

M12 = i sin γ

E
(6.4)

then, since M11 M22 − M12 M21 = 1

M21 = iE sin γ. (6.5)

These quantities have exactly the same form as a single layer of phase
thickness γ and admittance E. The equations can be solved for γ and E, choosing
the particular value of γ which is nearest to the total phase thickness of the period.
γ is then the equivalent phase thickness of the three-layer combination and E
is the equivalent optical admittance, also known sometimes as the Herpin index.
M11 does not equal M22 in an unsymmetrical arrangement and such a combination
cannot, therefore, be replaced by a single layer.

It can easily be shown that this result can be extended to cover any
symmetrical period consisting of any number of layers. First the central three
layers which, by definition, will form a symmetrical assembly on their own can
be replaced by a single layer. This equivalent layer can then be taken along with
the next layers on either side as a second symmetrical three-layer combination,
which can, in its turn, be replaced by a single layer. The process can be repeated
until all the layers have been replaced and a single equivalent layer found.

The importance of this result lies both in the ease of interpretation (the
properties of a single layer can be visualised much more readily than those of
a multilayer) and in the ease with which the result for a single period may be
extended to that for a multilayer consisting of many periods.

If a multilayer is made up of, say, S identical symmetrical periods, each of
which has an equivalent phase thickness γ and equivalent admittance E, then
physical considerations show that the multilayer will be equivalent to a single
layer of thickness Sγ and admittance E. This result also follows because of an
easily derived result:

[
cos γ i sin γ /E

iE sin γ cos γ

]S

=
[

cos Sγ i sin Sγ /E
iE sin Sγ cos Sγ

]
. (6.6)
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It should be noted that the equivalent single layer is not an exact replacement
for the symmetrical combination in every respect physically. It is merely a
mathematical expression of the product of a number of matrices. The effect of
changes in angle of incidence, for instance, cannot be estimated by converting the
multilayer to a single layer in this way.

In any practical case when the matrix elements are computed it will be found
that there are regions where M11 < −1, i.e. cos γ < −1. This expression cannot
be solved for real γ , and in this region γ and E are both imaginary. The physical
significance of this was explained in the previous chapter, where it was shown that
as the number of basic periods is increased the reflectance of a multilayer tends to
unity in regions where |M11 + M22|/2 > 1, M11 and M22 being elements of the
matrix of the basic period. In the present symmetrical case this is equivalent to∣∣M11

∣∣ = ∣∣M11
∣∣ > 1

which therefore denotes a region of high reflectance, i.e. a stop band. Inside the
stop band, the equivalent phase thickness and the equivalent admittance are both
imaginary. Outside the stop band the phase thickness and admittance are real and
these regions are known as pass regions or pass bands. The edges of the pass
bands and stop bands are given by M11 = −1.

6.2.2.1 Application of the Herpin index to the quarter-wave stack

Returning for the moment to our quarter-wave stack, we see that it is possible to
apply the above results directly if a simple alteration to the design is made. This
is simply to add a pair of eighth-wave layers to the stack, one at each end. Low-
index layers are required if the basic stack begins and ends with quarter-wave
high-index layers and vice versa. The two possibilities are

H
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L H L H L H . . . H L

H

2

and

L

2
H L H L H L . . .L H

L

2
.

These arrangements we can replace immediately by

H

2
L

H

2

H

2
L

H
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H

2
L

H

2

H

2
L

H

2

H

2
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2
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2
H
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2
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H
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H
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H
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respectively which can then be written as

[ H
2 L H

2 ]S and [ L
2 H L
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(H/2)L(H/2) and (L/2)H (L/2) being the basic periods in each case. The
results in equations (6.1)–(6.6) can then be used to replace both the above stack
by single layers making the performance in the pass bands and also the extent
of the stop bands easily calculable. We shall examine first the width of the stop
bands. As mentioned above, the edges of the stop bands are given by M 11 = −1.
Using equation (6.2a) this is equivalent to

cos2 δqe − 1
2

(
ηq

ηp
+ ηp

ηq

)
sin2 δqe = −1

which is exactly the same expression as was obtained in the previous chapter for
the width of the unaltered quarter-wave stack. There, δ was replaced by (π/2)g,
where g = λ0/λ (or ν/ν0, where ν is the wavenumber), and the edges of the stop
band were defined by

δe = π

2
(1 ±�g).

The width is therefore

2�g = 2�

(
λ0

λ

)
where, if ηp < ηq,

�g = 2

π
sin−1

(
ηq − ηp

ηq + ηp

)
(6.7)

or, if ηq < ηp,

�g = 2

π
sin−1

(
ηp − ηq

ηp + ηq

)
. (6.8)

These expressions are plotted in figure 5.7. The width of the stop band is therefore
exactly the same regardless of whether the basic period is (H/2)L(H/2), or
(L/2)H (L/2). Of course, it is possible to have other three-layer combinations
where the width of the central layer is not equal to twice the thickness of the two
outer layers, and some of the other possible arrangements will be examined, both
in this chapter and the next, as they have some interesting properties, but, as far
as the width of the stop band is concerned, it has been shown by Vera [2] that the
maximum width for a three-layer symmetrical period is obtained when the central
layer is a quarter-wave and the outer layers an eighth-wave each.

Let us now turn our attention to the pass band; first the equivalent admittance
and then the equivalent optical thickness. The expression for the equivalent
admittance in the pass band is quite a complicated one. From equations (6.2b),
(6.2c), (6.4) and (6.5)

E = +
(

M21

M12

)1/2

= +
(
η2

p[sin 2δp cos δq + 1
2 (ηp/ηq + ηq/ηp) cos 2δp sin δq − 1

2 (ηp/ηq − ηq/ηp) sin δq]

sin 2δp cos δq + 1
2 (ηp/ηq + ηq/ηp) cos 2δp sin δq + 1

2 (ηp/ηq − ηq/ηp) sin δq

)1/2

.

(6.9)
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Figure 6.3. Equivalent optical admittance, E, and phase thickness, γ , of a symmetrical
period of zinc sulphide (n = 2.35) and cryolite (n = 1.35) at normal incidence.

This is not a particularly easy expression to handle analytically, but
evaluation is straightforward, either by computer or even a programmable
calculator. Figure 6.3 shows the equivalent admittance and optical thickness
of combinations of zinc sulphide and cryolite. The form of this curve is quite
typical of such periods. Once the equivalent admittance and thickness have been
evaluated, the calculation of the performance of the filter in the pass region, and
its subsequent improvement, become much more straightforward. They are dealt
with in greater detail later in this chapter. First we shall examine some of the
properties of the expression for the equivalent optical admittance.

We can normalise expression (6.9) by dividing both sides by η p. E/ηp is
then solely a function of δ p, δq and the ratio ηp/ηq. Next, we can make the
further simplification, which we have not so far, that 2δ p = δq. The expression
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for E/ηp then becomes

E

ηp
= +

({1 + 1
2 [ρ + (1/ρ)]} cos δq sin δq − 1

2 [ρ − (1/ρ)] sin δq

{1 + 1
2 [ρ + (1/ρ)]} cos δq sin δq + 1

2 [ρ − (1/ρ)] sin δq

)1/2

(6.10)

where ρ = ηp/ηq.
It is now easy to see that the following relationships are true. We write

(E/ηp) (ρ, δq) to indicate that it is a function of the variables ρ and δq.

E

ηp
(ρ, π − δq) = 1

(E/ηp)(ρ, δq)
(6.11)

E

ηp

(
1

ρ
, δq

)
= 1

(E/ηp)(ρ, δq)
. (6.12)

These relationships are, in fact, true for all symmetrical periods, even ones which
involve inhomogeneous layers, and general statements and proofs of these and
other theorems are given by Thelen [3].

Thelen has shown how these relationships may be used to reduce the labour
in calculating the equivalent admittance over a wide range. Figure 6.4 shows
a set of curves giving the equivalent admittance for various values of the ratio
of admittances. The vertical scale has been made logarithmic which has the
advantage of making the various sections of the curve repetitions of the first
section. This follows directly from the relationships (6.11) and (6.12). The values
of the ratios of optical admittances which have been used are all greater than unity.
Values less than unity can be derived from the plotted curves using relation (6.12).
Again the logarithmic scale means that it is necessary only to reorient the curve
for ηp/ηq = k to give that for ηp/ηq = 1/k. All the information necessary to
plot the curves is therefore given in the enlarged version of the first section of
figure 6.4 which is reproduced in figure 6.5. Figures 6.4 and 6.5 are both taken
from the paper by Thelen [3].

It is also useful to note the limiting values of E:

E tends to (ηpηq)
1/2 as δq tends to zero

and (6.13)

E tends to ηp(ηp/ηq)
1/2 as δq tends to π.

The equivalent phase thickness of the period is given by (6.2a) and (6.3) as

γ = cos−1

[
cos 2δp cos δq − 1

2

(
ηp

ηq
+ ηq

ηp

)
sin 2δp sin δq

]
. (6.14)

This expression for γ is multivalued, and the value chosen is that nearest to
2δp + δq, the actual sum of the individual phase thicknesses, which is the most
easily interpreted value. It is clear from the expression for γ that it does not
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Figure 6.4. Equivalent admittance for the system (L/2)H(L/2). nL = 1.00 and nH/nL
is a parameter with values 1.23, 1.50, 1.75, 2.0, 2.5, 3.0. The curves with the wider stop
bands have the higher nH/nL values. (After Thelen [3].)

Figure 6.5. Enlarged first part of figure 6.4. (After Thelen [3].)

matter whether the ratio of the admittances is greater or less than unity. The
phase thickness for ρ is the same as that for 1/ρ. Figure 6.6, which is also taken
from Thelen’s paper, shows the phase thickness of the combinations in figures 6.4
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Figure 6.6. Equivalent thickness of the system described in figure 6.4. (After Thelen [3].)

and 6.5. Because of the obvious symmetries, all the information necessary for
the complete curve of the equivalent phase thickness is given in this diagram.
The equivalent thickness departs significantly from the true thickness only near
the edge of the high-reflectance zone. At any other point in the pass bands the
equivalent phase thickness is almost exactly equal to the actual phase thickness of
the combination.

6.2.2.2 Application of the Herpin index to multilayers of other than quarter-
waves

All the curves shown so far are for |eighth-wave| quarter-wave |eighth-wave|
periods. If the relative thicknesses of the layers are varied from this arrangement
then the equivalent admittance is altered. It has already been mentioned that the
reflectance zones for a combination other than the above must be narrower. Some
idea of the way in which the equivalent admittance alters can be obtained from
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the value as g → 0. Let 2δ p/δq = ψ . Then, from equation (6.9)

E = + η2
p

[
sin 2δp

sin 2δq
cos δq + 1

2

(
ηp

ηq
+ ηq

ηp

)
cos 2δp − 1

2

(
ηp

ηq
− ηq

ηp

)]1/2

×
[

sin 2δp

sin δq
cos δq + 1

2

(
ηp

ηq
+ ηq

ηp

)
cos 2δp + 1

2

(
ηp

ηq
− ηq

ηp

)]−1/2

.

(6.15)

Now sin 2δp/ sin δq → ψ as g → 0, since δq → 0, δp → 0, i.e.

E → ηp

[
ψ + 1

2

(
ηp

ηq
+ ηq

ηp

)
− 1

2

(
ηp

ηq
− ηq

ηp

)]1/2

×
[
ψ + 1

2

(
ηp

ηq
+ ηq

ηp

)
+ 1

2

(
ηp

ηq
− ηq

ηp

)]−1/2

.

Rearranging this we obtain

E

ηp
→
(
ψ + (ηq/ηp)

ψ + (ηp/ηq)

)1/2

. (6.16)

This result shows that, for small g, it is possible to vary the equivalent admittance
throughout the range of values between η p and ηq but not outside that range.
This result has already been referred to in the chapter on antireflection coatings,
where it was shown how to use the concept of equivalent admittance to create
replacements for layers having indices difficult to reproduce.

Epstein [1] has considered in more detail the variation of equivalent
admittance by altering the thickness ratio and gives tables of results of zinc
sulphide/cryolite multilayers.

Ufford and Baumeister [4] give sets of curves which assist in the use of
equivalent admittance in a wide range of design problems.

Some results which are at first sight rather surprising are obtained when the
value of the equivalent admittance around g = 2 is investigated. As g → 2,
2δp → π and δq → π so that, from equation (6.15)

E

ηp
→
(−1 − 1

2 [(ηp/ηq)+ (ηq/ηp)] − 1
2 [(ηp/ηq)− (ηq/ηp)]

−1 − 1
2 [(ηp/ηq)+ (ηq/ηp)] + 1

2 [(ηp/ηq)− (ηq/ηp)]

)1/2

=
(
ηp

ηq

)1/2

.

(6.17)
This is quite a straightforward result. Now let 2δ p/δq = ψ , as in the case

just considered where g → 0. Let g → 2 so that

2δp + δq → 2π.
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(This is really how, in this case, we define g = λ0/λ by defining λ0 as that
wavelength which makes 2δ p + δq = π .)

We have, as g → 2

cos 2δp → cos(2π − δq) = cos δq

sin 2δp → − sin(2π − δq
) = − sin δq

and δq → 2π/(1 + ψ) so that

E

ηp
→
[
− sin δq cos δq + 1

2

(
ηp

ηq
+ ηq

ηp

)
cos δq sin δq − 1

2

(
ηp

ηq
− ηq

ηp

)
sin δq

]1/2

×
[
− sin δq cos δq + 1

2

(
ηp

ηq
+ ηq

ηp

)
cos δq sin δq

+ 1
2

(
ηp

ηq
− ηq

ηp

)
sin δq

]−1/2

=
{

− cos δq

[
1 − 1

2

(
ηp

ηq
+ ηq

ηp

)]
− 1

2

(
ηp

ηq
− ηq

ηp

)}1/2

×
{

− cos δq

[
1 − 1

2

(
ηp

ηq
+ ηq

ηp

)]
+ 1

2

(
ηp

ηq
− ηq

ηp

)}−1/2

(6.18)

where cos δq = cos[2π/(1 + ψ)].
Whatever the value of ψ , the quantities within the square root brackets have

opposite signs, which means that the equivalent admittance is imaginary. Even
as ψ → 1, where one would expect the limit to coincide with the result in
equation (6.17), the admittance is still imaginary.

The explanation of this apparent paradox is as follows. An
imaginary equivalent admittance, as we have seen, indicates a zone of high
reflectance. Consider first the ideal eighth-wave|quarter-wave|eighth-wave stack
of equation (6.17). At the wavelength corresponding to g = 2, the straightforward
theory predicts that the reflectance of the substrate shall not be altered by the
presence of the multilayer, because each period of the multilayer is acting as a
full wave of real admittance and is therefore an absentee layer. Looking more
closely at the structure of the multilayer we can see that this can also be explained
by the fact the all the individual layers are a half-wavelength thick. If the ratio
of the thicknesses is altered, the layers are no longer a half-wavelength thick and
cannot act as absentees. In fact, the theory of the above result shows that a zone
of high reflectance occurs.

The transmission of a shortwave-pass filter at the wavelength corresponding
to g = 2 is therefore very sensitive to errors in the relative thicknesses of the
layers. Even a small error leads to a peak of reflection. The width of this spurious
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high-reflectance zone is quite narrow if the error is small. Thus the appearance
of a pronounced narrow dip in the transmission curve of a shortwave-pass filter
is quite a common feature and is difficult to eliminate. The dip is referred to
sometimes as a ‘half-wave hole’.

6.2.3 Performance calculations

We are now in a position to make some performance calculations.

6.2.3.1 Transmission at the edge of a stop band

The transmission in the high-reflectance region, or stop band, is an important
parameter of the filter. Thelen [3] gives a useful method for calculating this at the
edges of the band. His analysis is as follows.

Let the multilayer be made up of S fundamental periods so that the
characteristic matrix of the multilayer is

[M]S =
[

cos γ (i sin γ )/E
iE sin γ cos γ

]S

=
[

cos Sγ (i sin Sγ )/E
iE sin Sγ cos Sγ

]
.

At the edges of the stop band we know that cos Sγ → 1, sin Sγ → 0, and E → 0
or ∞ depending on the particular combination of layers. Now,

sin Sγ

sin γ
→ S as sin γ → 0

so that the matrix tends to[
1 (iSsin γ )/E

iESsin γ 1

]
=
[

1 SM12
SM21 1

]

at the stop band limits. Either M12 or M21 will also tend to zero because

M11 M22 − M12 M21 = 1

and, depending on which tends to zero, we have either[
1 SM12
0 1

]
or

[
1 0

SM21 1

]

for the matrix.
If η0 is the admittance of the incident medium and ηm of the substrate,

then the transmittance of the multilayer at the edge of the stop band is given by
equation (2.67):

T = 4η0ηm

(η0 B + C)(η0 B + C)∗
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where [
B
C

]
=
[

1 SM12
0 1

] [
1
ηs

]
if M21 = 0

or [
1 0

SM21 1

] [
1
ηm

]
if M12 = 0

i.e. [
B
C

]
=
[

1 + Sηm M12
ηm

]
or

[
1

ηm + SM21

]

so that, if there is no absorption,

T = 4η0ηm

(η0 + ηm)2 + (Sηmη0|M12|)2 when M21 = 0 (6.19)

or

T = 4η0ηm

(η0 + ηm)2 + (S|M21|)2 when M12 = 0 (6.20)

(since M12 and M21 are imaginary in the absence of absorption). For M 12 or M21
to be zero requires that

sin 2δp cos δq + 1
2

(
ηp

ηq
+ ηq

ηp

)
cos 2δp sin δq = ∓ 1

2

(
ηp

ηq
− ηq

ηp

)
sin δq.

If M12 is zero we can deduce that

∣∣M21
∣∣ =

∣∣∣∣ηp

(
ηp

ηq
− ηq

ηp

)
sin δq

∣∣∣∣ (6.21)

or, if M21 is zero, that

∣∣M12
∣∣ =

∣∣∣∣ 1

ηp

(
ηp

ηq
− ηq

ηp

)
sin δq

∣∣∣∣. (6.22)

At the limits of the high-reflectance zone we have already seen that

cos2 δ =
(
ηq − ηp

ηq + ηp

)2

i.e.

sin2 δ = 1 − cos2 δ = 4ηpηq

(ηq + ηp)2
.
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Substituting this in the expressions (6.21) and (6.22) for |M 21| and |M12| we find

∣∣M21
∣∣2 =

∣∣∣∣4ηp(ηp − ηq)
2

ηq

∣∣∣∣ for M12 = 0 (6.23)

∣∣M12
∣∣2 =

∣∣∣∣4(ηp − ηq)
2

η3
pηq

∣∣∣∣ for M21 = 0. (6.24)

To give the transmittance at the edges of the high-reflectance zone, these
expressions should be used in equations (6.19) and (6.20) according to the rule:

If E, the equivalent admittance, is zero, then M21 is zero.
If E, the equivalent admittance, is ∞, then M12 is zero.

6.2.3.2 Transmission in the centre of a stop band

For the simple quarter-wave stack an expression for transmittance at the centre
of the high-reflectance zone has already been given in chapter 5. For the present
multilayer, the transmittance is of a similar order of magnitude but the eighth-
wave layers at the outer edges of the stack complicate matters. The stack may be
represented by

p

2
q

p

2

p

2
q

p

2
. . .

p

2
q

p

2

which is

p

2
qpqpqp. . .q

p

2
.

If there are S periods, then the layer q appears S times in this expression. At the
centre of the high-reflectance zone, the matrix product becomes:[

1/
√

2 i/(ηp
√

2)
iηp/

√
2 1/

√
2

] [
0 i/ηq

iηp 0

] [
0 i/ηp

iηp 0

]
· · ·
[

0 i/ηq

iηq 0

]

×
[

1/
√

2 i/(ηp
√

2)
iηp/

√
2 1/

√
2

]
=
[

1/
√

2 i/(ηp
√

2)
iηp/

√
2 1/

√
2

] [
0 i/ηq

iηq 0

]

×
[−ηq/ηp 0

0 −ηp/ηq

]S−1 [ 1/
√

2 i/(ηp
√

2)
iηp/

√
2 1/

√
2

]

= 1
2

[
(−ηq/ηp)

S + (−ηp/ηq)
S (i/ηp)[(−ηq/ηp)

S − (−ηp/ηq)
S]

iηp[(−ηp/ηq)
S − (−ηq/ηp)

S] (−ηq/ηp)
S + (−ηq/ηp)

S

]
.

(6.25)

Let ηm be the admittance of the substrate. Then[
B
C

]
= 1

2

[
(− ηp

ηq
)S + (− ηq

ηp
)S + iηm

ηp
[(− ηq

ηp
)S − (− ηp

ηq
)S]

ηm[(− ηp
ηq
)S + (− ηq

ηp
)S] + iηp[(− ηp

ηq
)S − (− ηq

ηp
)]

]
. (6.26)
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Equation (2.67) gives

T = 4η0ηm

(η0 B + C)(η0 B + C)∗

= [
16η0ηm

][{(η0 + ηm)[(−ηq/ηp)
S + (−ηp/ηq)

S]}2

× {[(η0ηm/ηp)− ηp][(−ηq/ηp)
S − (−ηp/ηq)

S]}2]−1
. (6.27)

If S is sufficiently large so that(
ηH

ηL

)S

�
(
ηL

ηH

)S

which will usually be the case, this expression reduces to

T = 16η0ηm

(ηH/ηL)2S{(η0 + ηm)2 + [(η0ηm/ηp)− ηp]2} . (6.28)

6.2.3.3 Transmission in the pass band

In the pass band, the multilayer behaves as if it were a single layer of
slightly variable optical thickness and admittance. Let us consider the case of
[(L/2)H (L/2)]S. Figure 6.7 shows part of the curve of equivalent admittance E
for [(L/2)H (L/2)]. γ , the equivalent phase thickness, is also shown.

In the case of a real single transparent layer on a transparent substrate the
reflectance oscillates between two limiting values which correspond to layer
thicknesses of an integral number of quarter-waves. When the layer is equivalent
to an even number of quarter-waves, that is a whole number of half-waves, it is
an absentee layer and behaves as if it did not exist, so that the reflectance is that
of the bare substrate. When the layer is equivalent to an odd number of quarter-
waves, then, according to whether the index is higher or lower than that of the
substrate, the reflectance will either be a maximum or a minimum. Thus if η f is
the admittance of the film, ηm of the substrate and η0 of the incident medium, the
reflectance will be [(η0 − ηm)/(η0 + ηm)]2, corresponding to an even number of
quarter-waves, and (

η0 − (η2
f /ηm)

η0 + (η2
f /ηm)

)2

corresponding to an odd number of quarter-waves. Regardless of the actual
thickness of the film, we can draw two lines

R =
(
η0 − ηm

η0 + ηm

)2

(6.29)

and

R =
(
η0 − (η2

f /ηm)

η0 + (η2
f /ηm)

)2

(6.30)
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Figure 6.7. Diagram explaining the origin of the ripple in the pass band of an edge filter.

which are the loci of maximum and minimum reflectance values, that is, the
envelope of the reflectance curve of the film. If the optical thickness of the film is
D, then the actual positions of the turning values will be given by

D = 2nλ/4 n = 0, 1, 2, 3, 4, . . .

for those in equation (6.29), and by

D = (2n + 1)λ/4

for those in equation (6.30), that is at wavelengths given by

λ = 4D/2n = 2D/n

and

λ = 4D/(2n + 1)
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respectively.
We can now return to our multilayer. Since the multilayer can be replaced

by a single film, the reflectance will oscillate between two values: the reflectance
of the bare substrate

R =
(
η0 − ηm

η0 + ηm

)2

(6.31)

and that given by

R = [η0 − (E2/ηm)]2

[η0 + (E2/ηm)]2 (6.32)

where we have replaced ηf in equation (6.29) by E, the equivalent admittance of
the period. Equation (6.32) now represents a curve, since E is variable, rather
than a line. To find the positions of the maxima and minima we look for values
of g = λ0/λ for which the total thickness of the multilayer is a whole number
of quarter-waves, which is the same as saying that the total equivalent phase
thickness of the multilayer must be a whole number times π/2; an odd number
corresponds to equation (6.32) and an even number to equation (6.31). If there are
n periods in the multilayer, then the equivalent phase thickness will be nγ , which
will be a multiple of π/2 when the equivalent phase thickness of a single period,
γ , is a multiple of π/2n, i.e.

γ = sπ/2n s = 1, 3, 5, 7, . . . corresponding to (6.32)

and

γ = rπ/n r = 1, 2, 3, 4, . . . corresponding to (6.31).

At the very edge of the pass band, the equivalent phase thickness is π and so we
might expect that the multilayer should act as an absentee layer. However, the
equivalent admittance at that point is either zero or infinite and so the multilayer
cannot be treated in this way, and, in fact, we apply the expressions (6.21)–(6.24),
which we have already derived.

Figure 6.7 illustrates the situation where a four-period multilayer has been
taken as an example. The important point, however, is that the envelopes of the
reflectance curve do not vary with the number of periods.

The reason for the excessive ripple in the pass band of a filter is now clear.
It is due to mismatching of the equivalent admittances of the substrate, multilayer
stack, and medium. To reduce the ripple, better matching is required.

6.2.3.4 Reduction of pass-band ripple

There are a number of different approaches for reducing ripple. The simplest
approach is to choose a combination which has an equivalent admittance similar
to that of the substrate. Provided the reflection loss due to the bare substrate
is not too great, this method should yield an adequate result. Figure 6.3 shows
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Figure 6.8. Computed transmittance of a 15-layer longwave-pass filter and a 15-layer
shortwave-pass filter.

that the combination [(H/2)L(H/2)] where ηH = 2.35, ηL = 1.35, should
give a reasonable performance as a longwave-pass filter on glass, and this is
indeed the case. The performance of such a filter is shown in figure 6.8. For
a shortwave-pass filter, the combination [(L/2)H (L/2)] is better and this is also
shown in figure 6.8. Often, however, the materials which are available do not
yield a suitable equivalent admittance and other measures to reduce ripple must
be adopted.

One method which is very straightforward has been suggested by Welford [5]
but does not seem to have been much used. This is simply to vary the thicknesses
of the films in the basic period so that the equivalent admittance is altered to bring
it nearer to the desired value. For this method to be successful, the reflectance
from the bare substrate must be kept low and the substrate should have a low
index. Glass in the visible region is quite satisfactory, but the method could
not be used with, for example, silicon and germanium in the infrared without
modification.

The more usual approach is to add matching layers at either side of the
multilayer to match it to the substrate and to the medium. If a quarter-wave
layer of admittance η3 is inserted between the multilayer and substrate, and a
quarter-wave layer of admittance η1 between the multilayer and medium, then
good matching will be obtained if

η3 = (ηm E)1/2 and η1 = (η0 E)1/2. (6.33)
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The layers are simply acting as antireflection layers between the multilayer
and its surroundings. As a quick check that this does give the required
performance we can compute the behaviour of the multilayer, considering just
those wavelengths where the multilayer is equivalent either to an odd or to
an even number of quarter-waves and to plot as before the envelope of the
reflectance curve. At wavelengths where the multilayer acts like a quarter-wave,
the equivalent admittance of the assembly is just

Y = η2
1η

2
3

E2ηm

so that the reflectance is

R =
(
η0 − (η2

1η
2
3/E2ηm)

η0 + (η2
1η

2
3/E2ηm)

)2

(6.34)

which will be zero for
η2

1η
2
3 = E2ηmη0. (6.35)

When the multilayer acts like a half-wave it is an absentee, and the reflectance is

R =
(
η0 − (η2

1ηm/η
2
3)

η0 + (η2
1ηm/η

2
3)

)2

(6.36)

which is zero if
η2

1

η2
3

= η0

ηm
. (6.37)

Solving equations (6.35) and (6.37) for η 1 and η3 gives equation (6.33), as we
expected.

If ideal matching layers do not exist, the suitability of any available materials
can quickly be checked by substituting the appropriate values in equations (6.34)
and (6.36).

Figure 6.9 shows a shortwave-pass filter before and after the matching layers
have been added. The final reflectance envelopes are given by equations (6.34)
and (6.36). The computed performance of the filter is shown in figure 6.10. As
the value of g increases from 1.25, the ripple becomes a little greater than that
predicted by the envelopes. This is because the envelopes were calculated on the
basis of quarter-wave matching layers, and this is strictly true for g = 1.25 only.

6.2.3.5 Summary of design procedure so far

We have now established a simple design procedure for edge filters. First, two
materials of different refractive index which are transparent in the region where
transmission is required are chosen and used to form a multilayer of the form
[(L/2)H (L/2)]S or [(H/2)L(H/2)]S. Generally, it is better to choose as high a
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Figure 6.9. Steps in the design of a shortwave-pass filter using zinc sulphide and
germanium on a germanium substrate.

ratio of refractive indices as possible to give the widest rejection zone and also the
maximum rejection for a given number of periods. The width of the rejection zone
is given by equation (6.7) or (6.8) and is plotted in figure 5.7. The level of rejection
at the edges of the zone is given by equations (6.19), (6.20), (6.23) and (6.24) and
at the centre of the zone by equation (6.28). Next, the equivalent admittance of
the stack must be calculated. This can be done either by a computer or by using
the design curves given in figure 6.5. The formulae given in equations (6.13)
for E/ηp at g = 2 will be found useful as a guide to interpolating curves. The
reflectance envelopes can now be drawn using the formulae (6.31) and (6.32).
This will immediately give some idea of the likely ripple. The positions of the
peaks and troughs of the ripple can, if necessary, be found using the curves of γ
in figure 6.6 and the method given on p 237. If this ripple is adequate the next
step can be omitted and the design can proceed to the final step. If the ripple is not
adequate then matching layers between multilayer and substrate, and multilayer
and medium should be inserted. These should be quarter wavelength films at the
most important wavelength and should have admittances as nearly as possible
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Figure 6.10. The calculated performance of filters designed according to figure 6.9 with
design:

Air (0.5L H0.5L)qL/1.25 Ge

with nL = 2.35, nH = 4.0, nGe = 4.0, and nAir = 1.00. (a) q = 7 (b) q = 10.

given by

η1 = (η0E)1/2 η3 = (ηm E)1/2 (6.33)

where η1 is between the multilayer and medium and η3 between the multilayer
and substrate. Generally materials with the exact values will not be available
and a compromise must be made. To test the effectiveness of the compromise
the new reflectance envelope curves can be calculated using equations (6.34) and
(6.36). If this is satisfactory, the next step is to calculate the actual performance
on a computer. This is advisable because the quarter-wave matching layers are
effective over a narrower region than assumed in equations (6.34) and (6.36).
From the curve produced by the computer, the monitoring wavelength and
thicknesses of the layers to position the characteristic at the correct wavelength
can be calculated. The method is illustrated by the design of a shortwave-pass
filter made from germanium and zinc sulphide on a germanium substrate as shown
in figure 6.9 and 6.10.

A longwave-pass filter, designed by this method, with construction
Air|1.488L[(L/2)H (L/2)]7 1.488H |Ge (H = PbTe with nH = 5.3, L = ZnS
with nL = 2.35), is shown in figure 11.10.
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6.2.3.6 More advanced procedures for eliminating ripple

At the present time, probably the most common technique for eliminating ripple,
apart from that already discussed, is computer refinement. This was introduced
into optical coating design by Baumeister [6] who programmed a computer to
eliminate the effects of slight changes in the thicknesses of the individual layer on
a merit function representing the deviation of the performance of the coating from
the ideal. An initial design, not too far from ideal, was adopted and the thicknesses
of the layers modified, successively, gradually to improve the performance. This
is still the basis of the technique. The optimum thickness of any one layer is not
independent of the thicknesses of the other layers so that the changes in thickness
at each iteration cannot be large without running the risk of instability. Computer
speed and capacity has increased considerably since the early work of Baumeister,
but the essentials of the method are still the same. Rather than change the layers
successively, it is more usual to estimate changes which should be made in all
the layers. These changes are then made simultaneously and the new function
of merit computed. New charges are then estimated and the process repeated.
The way in which changes to be made are assessed is the principal difference
between the techniques in frequent use. If the function of merit is considered
as a surface in (p + 1)-dimensional space with p independent variables being
layer thicknesses, then a common method involves determining the direction of
greatest slope of the merit surface and then altering the layer thicknesses so as to
move along it, computing the new figure of merit and repeating the process. A
battery of techniques for ensuring rapid convergence exists, and for further details
the book by Liddell [7] should be consulted.

Less usual is complete design synthesis with no starting solution. This is sill
very much a research area and at the time of writing the most impressive results
are those of Dobrowolski and Lowe [8].

Computer refinement is a very powerful design aid but it can only function
with an initial design. It then finds a modified design with an improved
performance and repeats the process until stopped or until the performance
reaches a maximum. This maximum will normally be simply a local maximum
rather than the best possible performance, and the most useful way of ensuring
that the maximum reached will be sufficiently high is to start from an initial design
which is sufficiently good. The better the performance required, the better must be
the initial design. Thus the existence of efficient computer refinement techniques
does not in any way imply that the analytical design methods are obsolete and
can be discarded. Refinement should be looked upon as a way of making a good
design better. Applied to a poor design, computer refinement techniques usually
yield disappointing results. For this reason, we continue with our examination
of analytical techniques. It should always be remembered, however, that the
manufacture of edge filters is not altogether an easy task, and unless the design
performance of the simple design is being achieved in manufacture, there is little
point in attempting anything more complicated until the sources of error have
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been eliminated.
The first and obvious method for improving the design is to improve the

efficiency of the matching layers. In the chapter on antireflection coatings there
were many multilayer coatings discussed which gave a rather better performance
than the single layer. Any of these coatings can be used to eliminate the ripple.
The ultimate performance is obtained with an inhomogeneous layer, but, as we
have seen, the difficulty with inhomogeneous layers is that, in all practical cases,
it is impossible to manufacture a layer with a graded index terminating in an
index below 1.35, which means that there is always some small residual ripple.
Jacobsson [9] has, however, considered briefly the matching of a multilayer
longwave-pass filter [(H/2)L(H/2)]6, consisting of germanium with an index
of 4.0 and silicon monoxide with an index of 1.80, to a germanium substrate by
means of an inhomogeneous layer. His paper shows the three curves reproduced
in figure 6.11. The first curve 1 is the multilayer on a glass substrate of index 1.52.
Since, in the pass band, the equivalent admittance of the multilayer falls gradually
from (1.8 × 4.0)1/2 = 2.7 to zero as the wavelength approaches the edge, it will
be a value not too different from the index of the substrate in the vicinity of the
edge. The transmission near the edge is, therefore, high, as we might expect.
When, as in curve 2, the same multilayer is deposited on a germanium substrate
of index 4.0, the severe mismatching causes a very large ripple to appear. With
an inhomogeneous layer between the germanium substrate and the multilayer and
with the index varying from that of germanium next to the substrate to 1.52 next
to the multilayer, the performance achieved, curve 3, is almost exactly that of the
original multilayer on the glass substrate.

One of the examples examined by Baumeister was a shortwave-pass filter,
and the design that he eventually obtained suggested a new approach to Young and
Cristal [10]. It was mentioned in chapter 3 that Young had devised a method for
designing antireflection coatings based on the quarter-wave transformer used in
microwave filters. The antireflection coating takes the form of a series of quarter-
waves with refractive indices in steady progression from the index of one medium
to the index of the other. Young has given a series of tables enabling antireflection
coatings of given bandwidth and ripple to be designed.

In their paper, Young and Cristal explain that they examined Baumeister’s
filter, and realised that the design might be written as a series of symmetrical
periods with thicknesses increasing steadily from the middle of the stack to
the outside, and they were struck by the resemblance which this bore to an
antireflection coating in which each layer had been replaced by a symmetrical
period. They then designed a coating by microwave techniques, to match the
admittance at the centre of the filter, which they arbitrarily took as 0.6, to air, with
admittance 1.0, at the outside, each layer being replaced by an equivalent period.
The scheme is shown as filter B in table 6.1, where the thicknesses given by Young
and Cristal for one of their filters have been broken down into their symmetrical
periods. The performance of the filter is shown in figure 6.12 along with one
other filter of their design and Baumeister’s original design. The thicknesses are
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Figure 6.11. Reflectance versus wavelength of a multilayer on a substrate with index
nsub = 1.52 (curve 1), nsub = 4.00 (curve 2) and on a substrate with nsub = 4.00 with an
inhomogeneous layer between substrate and multilayer (curve 3). (After Jacobsson [9].)

all shown in table 6.2. To simplify the discussion, Young and Cristal designed the
filter to match with air on both sides of the multilayer, instead of, as is more usual,
glass on one side and air on the other.

Young and Cristal do not discuss their design procedure in detail, but, from
the final design of the filter, it is possible to deduce it. First, the equivalent
admittance of a single period was plotted, as in figure 6.13. The wavelength
corresponding to 240◦ was chosen for optimising. From the value of equivalent
admittance at 240◦ the value of 0.6 was probably selected intuitively as the value
to use for the centre of the stack. An antireflection coating consisting of four
layers, each three-quarter wavelengths thick, was designed to match this value
to air, and the admittances of the layers computed. The admittances were then
matched by that of three-layer symmetrical periods by altering thicknesses of
each period, following the scheme shown in figure 6.13. This meant that the
admittances were ideal but the thicknesses were not. However, the antireflection
coating is not very susceptible to errors in layer thickness, and as can be seen from
the curve in figure 6.12, the performance achieved is excellent.

A similar approach is to use one of the multilayer antireflection coatings
mentioned in chapter 3. Since the equivalent admittance of a symmetrical period
varies with wavelength, any optimising at one wavelength is strictly correct over
only a narrow range, and a simple approach, such as this, is probably as good as
a more complicated one. Taking 240◦ as corresponding to the design wavelength,
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Table 6.1.

Filter B Filter D

Layer Layer
Layer number thickness Periods thickness Periods

1 Na3AlF6 47.50◦ 47.50◦ 48.5◦ 48.5◦}
1

}
1

2 ZnS 95.00◦ 95.00◦ 97.0◦ 97.0◦
47.50◦ 48.5◦

3 Na3AlF6 93.25◦
{

94.5◦
{

45.75◦ 46.0◦
4 ZnS 91.50◦ 91.50◦

}
2 92.0◦ 92.0◦

}
2

45.75◦ 46.0◦
5 Na3AlF6 90.00◦

{
90.25◦

{
44.25◦ 44.25◦

6 ZnS 88.50◦ 88.50◦
}

3 88.5◦ 88.5◦
}

3
44.25◦ 44.25◦

7 Na3AlF6 87.50◦
{

86.63◦
{

43.25◦ 42.38◦
8 ZnS 86.50◦ 86.50◦

}
4 84.75◦ 84.75◦

}
4

43.25◦ 42.38◦
9 Na3AlF6 86.50◦

{
84.75◦

{
43.25◦ 42.38◦

10 ZnS 86.50◦ 86.50◦
}

5 84.75◦ 84.75◦
}

5
43.25◦ 42.38◦

11 Na3AlF6 87.50◦
{

86.63◦
{

44.25◦ 44.25◦
12 ZnS 88.50◦ 88.50◦

}
6 88.5◦ 88.5◦

}
6

44.25◦ 44.25◦
13 Na3AlF6 90.00◦

{
90.25◦

{
45.75◦ 46.0◦

14 ZnS 91.50◦ 91.50◦
}

7 92.0◦ 92.0◦
}

7
45.75◦ 46.0◦

15 Na3AlF6 93.25◦
{

94.5◦
{

47.50◦ 48.5◦
16 ZnS 95.00◦ 95.00◦

}
8 97.0◦ 97.0◦

}
8

17 Na3AlF6 47.50◦ 47.50◦ 48.5◦ 48.5◦

The second column in each case gives the filter split into its component periods.

we find the value for equivalent admittance of the single period to be 0.8. We want
the periods in the final design to be symmetrically placed around this period, so
we find the starting admittance at the centre of the stack by assuming that this
period should be able to act as a 3λ/4 antireflection coating between the centre
and the outside air. The admittance at the centre of the filter should therefore be
0.82 = 0.64. Next, we design a four-layer antireflection coating to replace this
basic period, using the formulae

η1 = η0(ηs/η0)
1/5 η3 = η0(ηs/η0)

3/5

η2 = η0(ηs/η0)
2/5 η4 = η0(ηs/η0)

4/5

where η0 is air and ηs the admittance at the centre. Taking η0 = 1.0 and
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Figure 6.12. Reflectance of the three shortwave-pass filter designs, A, B and C, having
unequal layer thickness. (After Young and Cristal [10].)

ηs = 0.64, these admittances are then

η1 = 0.91 η2 = 0.84 η3 = 0.76 η4 = 0.70.

The values of total phase thickness πg at which the single period has
equivalent admittance corresponding to these values are

πg1 = 259◦ πg2 = 245◦ πg3 = 234◦ πg4 = 226◦.

For each period to have the appropriate admittance at the design wavelength, the
phase thicknesses of the layers measured at the monitoring wavelength are given
by

Period 1




L

2
45◦ × πg1

240◦
H 90◦ × πg1

240◦
L

2
45◦ × πg1

240◦

Period 2




L

2
45◦ × πg2

240◦
H 90◦ × πg2

240◦
L

2
45◦ × πg2

240◦
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Table 6.2.

Thickness (degrees)
Number of
layers Filter A Filter B Filter C

1 46.00 47.50 46.60
2 96.00 95.00 93.20
3 93.20 93.25 91.70
4 91.70 91.50 90.20
5 91.10 90.00 89.15
6 89.75 88.50 88.10
7 87.50 87.50 87.30
8 86.05 86.50 86.50
9 86.70 86.50 86.50

10 86.05 86.50 86.50
11 87.50 87.50 87.30
12 89.75 88.50 88.10
13 91.10 90.00 89.15
14 91.70 91.50 90.20
15 93.20 93.25 91.70
16 96.00 95.00 93.20
17 46.00 47.50 46.60

Filter A: The half of Baumeister’s filter on the air side repeated symmetrically. (The
design is referred to as design IX in Baumeister’s paper.)
Filter B: New design based on a prototype transformer with a fractional bandwidth of
1.5.
Filter C: New design based on a prototype transformer with a fractional bandwidth of
1.6.

and so on. The results are shown in table 6.1, filter D. The transmission of filter D
is shown in figure 6.14.

Thelen [3] has pointed out that the rapid variation of equivalent admittance
near the edge of the filter is the major source of difficulty in edge filter design. It
is a simple matter to match the multilayer to the substrate where the equivalent
admittance curve is flat, some distance from the edge, but the variations near
the edge usually give rise, with simple designs, to a pronounced dip in the
transmission curve. Thelen has devised an ingenious method of dealing with this
dip, involving the equivalent of a single-layer antireflection coating. Between the
main or primary multilayer, which consists of a number of equal basic periods,
Thelen places a secondary multilayer, similar to the first but shifted in thickness
so that, in the centre of the steep portion of the admittance curve, the equivalent
admittance of the secondary is made equal to the square root of the equivalent
admittance of the primary times the admittance of the substrate. The number of
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Figure 6.13. The admittance of the ideal four-layer antireflection coating to match air
to the admittance of 0.6 are marked along the equivalent admittance axis. The reference
single period is shown dotted and the values marked on the g axis refer to this period. By
altering the total thickness of each period relative to this reference the four displaced solid
line curves are obtained in such a way that the four symmetrical periods have the desired
admittances at the wavelengths that correspond to a reference phase thickness of 240◦.

Figure 6.14. The computer transmittance of the shortwave-pass filter of design D of
table 6.1. The reference wavelength, λ0, is 800 nm.



240 Edge filters

secondary periods is chosen to make the thickness at this point an odd number of
quarter-waves and to satisfy completely the antireflection condition. Figure 6.15
shows the performance he achieved.

Seeley [11] has developed a different method of adapting results obtained
in the synthesis of lumped electrical circuits for use in thin-film optical filters.
One of the features of Young’s method is that the refractive indices cannot be
specified in advance, and as the range of available indices is limited this can
lead to difficulties. In certain cases this can be avoided, as we have seen, by
constructing three-layer periods with the appropriate equivalent indices, but even
this has its limitations. Seeley, therefore, searched for another method which
would permit the designer to specify the indices right from the start and to achieve
the final performance by varying the thicknesses of the various layers. In a lumped
electrical filter, consisting of inductances and capacitances, one parameter only
is specified, the admittance. In the thin-film filter there are two parameters for
each layer, the refractive index and the thickness. Thus it is possible for the
optical designer to fix the values of the refractive indices of the multilayer filter
in advance and then to compute the layer thickness by analogy with the lumped
filter. As Welford [5] has pointed out, the analogy between thin-film assemblies
and lumped electric filters is not exact. Thin films behave, in fact, in the same
manner as lengths of waveguides. Seeley, however, devised a way of making
the analogy exact, although only at one frequency. At all other frequencies, the
analogy is only approximate. If the frequency chosen for exact correspondence
is made the cut-off point of the filter, then the performance of the optical filter is
found to be sufficiently close to that of the electrical filter over the usual working
range. The techniques for optimising the performance of electrical filters are well
established.

Seeley’s method starts with an electrical filter of the desired type—
longwave-pass, shortwave-pass or band-pass—whose performance is known to
be optimum. The elements of the electrical filter are then converted by a step-by-
step process into an equivalent circuit which is an exact analogue of the thin-film
multilayer at one frequency. The process is shown in figure 6.16. In his design
work, Seeley usually chooses electrical filters which have been designed using
the Tchebyshev equal ripple polynomial. This polynomial allows the best fit to
a square pass band when both edge steepness and ripple in the pass band are
taken into account. From this, Seeley and Smith [12] have given simple rules for
longwave-pass filters.

1. The optical admittance of the substrate nm should lie between ηH and
ηL , the admittances of the high- and low-index layers of the multilayer. If this
is not satisfied, then a matching layer or combination of layers will be necessary
between the substrate and the multilayer.

2. The first layer at the substrate should be high if ηH/ηm > ηm/ηL , and
low if ηm/ηL < ηH/ηm.
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Figure 6.15. Comparison of the computed performance of the filters:

1.00|(0.5H L 0.5H)15|1.52 (dashed line)

and

1.00|(0.5H L 0.5H)12[(1/1.05)(0.5H L 0.5)3]|1.52 (solid line)

with nH = 2.3, nL = 1.56. (After Thelen [3].)

3. The fractional ripple in the pass band will be

(
ηH

ηm
− ηm

ηL

)2(
ηH

ηm
+ ηm

ηL

)−2

.

4. For filters on germanium substrates using as layer materials lead telluride
and zinc sulphide, the phase thicknesses should be in the proportions shown in
table 6.3. The first layer at the substrate and all other odd layers, including the
antireflection layer, are ZnS (n = 2.2). The remaining (even) layers are PbTe
(n = 5.1). The substrate, germanium, has an index of 4.0.

5. Since the low-index material is usually good for matching the substrate to
air, the front layer of the multilayer section of the filter should have a high index.

The computed transmittances of the designs given in table 6.3 are given in
figure 6.17. The method is described in greater detail by Seeley et al [11].
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Figure 6.16. The conversion used by Seeley in diagrammatic form. High-index layers
are first replaced by a T circuit and low-index ones by a π circuit. (a) The step-by-step
process by which Seeley converts a multilayer thin-film filter into a lumped electric filter
in such a way that the elements of the electric filter can be identified with the optical
thickness of the films, the indices of the films being specified completely independently.
(Courtesy of Dr J S Seeley.)
(Opposite page) The manipulation takes place at the cut-off frequency of the lumped
circuit and all variable quantities are normalised to that frequency. The scheme leads to
a fairly complicated set of equations for . . . δp, δq , δr . . . in terms of . . . gp, gq, gr . . . ,
which cannot be solved analytically but require iteration. Approximate solutions have
been derived and are as follows:

High-index layers: sin δp � gp

(ηH/ηm)+ (ηL/ηm)

Low-index layers: sin δq � gq

(ηm/ηL)+ (ηm/ηH )

δ being between 0 and π/2 for longwave-pass filters and π/2 and π for short-
wave-pass filters.
The admittance levels in the derivation of these two expressions have been normalised
to the terminating admittance (of the substrate), so that for ηp we have written ηH/ηm

and for ηq, ηL/ηm, ηH and ηL being the admittances of the high- and low-index layers
respectively.
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Table 6.3.

Relative thickness

Layer number Longwave-pass Shortwave-pass

1 and 14 0.55 1.25
2 and 13 0.82 1.11
3 and 12 0.92 1.05
4 and 11 0.96 1.025
5 and 10 0.98 1.015
6 and 9 0.99 1.01
7 and 8 1.0 1.0
15 (antireflection) 2.0 0.5

6.2.3.7 Practical filters

Because the stop band of the multilayer edge filter is limited in extent, it is
usually necessary for practical filters to consist of a multilayer filter together
with additional filters which give the broad rejection region that is almost always
required. These additional filters may be multilayer and some methods of
broadening the stop band in this way are mentioned in the following section.
Usually they are absorption filters having wide rejection regions but inflexible
characteristics. These absorption filters may be combined with multilayer filters
in a number of different ways. They may simply be placed in series with
the substrates carrying the multilayers, the substrates may themselves be the
absorption filters or the multilayer materials may also act as thin-film absorption
filters.

In the visible and near ultraviolet regions there is available a wide range
of glass filters which solve most of the problems, particularly those connected
with longwave-pass filters. In the infrared, the position is rather more difficult,
and often the complete filter consists of several multilayers which are necessary
to connect the edge of the stop band to the nearest suitable absorption filter.
Figure 6.18 shows a longwave-pass filter for the infrared. Figure 6.19 gives some
of the infrared absorption filters which have shortwave-pass characteristics. For
longwave-pass characteristics, semiconductors such as silicon, with an edge at
1 µm, and germanium, with an edge at 1.65 µm, are the most suitable. Indium
arsenide, with an edge at 3.4 µm, and indium antimonide, with edge at 7.2 µm,
are also useful, but because of the rather higher absorption they can only be used
in very thin slices, around 0.013 cm for indium antimonide and only a little thicker
for indium arsenide. This means that they tend to be extremely fragile and can
only be produced in a circular shape of rather limited diameter, not usually greater
than 2.0 cm.
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Figure 6.17. Computed transmittance of the 14-layer filters given in table 6.3. ν0
and λ0 are the frequency and wavelength respectively at which the central layers are a
quarter-wave in thickness. (After Seeley and Smith [12].)

The measured transmittance for a longwave-pass filter consisting of an edge
filter together with an absorption filter is given in figure 6.20. This filter was
originally designed to be used as a shortwave blocking filter with narrowband
filters at 15 µm. It consists of two components, a multilayer filter made from a
lead telluride and zinc sulphide multilayer on a germanium substrate and placed
in series with an indium antimonide filter. The very high rejection achieved can
be seen from the logarithmic plot.
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Figure 6.18. Measured transmittance of a practical longwave-pass filter with edge at
1250 cm−1 (8 µm). (Courtesy of OCLI Optical Coatings Ltd.)

Figure 6.19. A selection of infrared materials which can be used as shortwave-pass
absorption filters. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

6.2.3.8 Extending the rejection zone by interference methods

The most convenient and straightforward way of extending the reflectance zone
is to place a second stack in series with the first and to ensure that their rejection
zones overlap. The second stack is best placed either on a second substrate or on
the opposite side of the substrate from the first stack. Provided that the substrate
is reasonably thick or slightly wedged, the transmission of the assembly is then
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Figure 6.20. Measured transmittance of a multilayer blocking filter with edge at 12 µm.
A subsidiary indium antimonide filter is included to ensure good blocking at wavelengths
shorter than 7 µm. (After Seeley and Smith [12].)

given by equation (2.140)

T = 1

(1/Ta)+ (1/Tb)− 1
(6.38)

and a nomogram for calculating this is given in figure 2.15.
Occasionally it may happen that it is impossible to place the stacks on

separate surfaces, and one stack must be deposited directly on top of the other. In
this case it is necessary to take precautions to avoid the creation of transmission
maxima. The problem has already been dealt with in chapter 5 where the
extension of the high-reflectance zone of a quarter-wave stack was discussed
(pp 202–9).

If we consider the assembly split into two separate multilayers, as shown in
figure 5.12, then a transmission maximum will occur at any wavelength for which
(φa + φb)/2 = nπ , where n = 0, ±1, ±2, . . . . The height of this maximum is
given by

T = |τ+
a |2|τ+

b |2
(1 − |ρ−

a ||ρ+
b |)2 = TaTb

[1 − (Ra Rb)1/2]2
.

If there is no absorption, this expression implies that, for low transmission at the
maxima, Ra and Rb should be as dissimilar as possible. This can be achieved by
using many layers to keep the reflectance of one multilayer as high as possible in
the pass region of the other.

In slightly more quantitative terms, from the reflectance envelope, which
does not vary with the number of periods, we can find the highest reflectance in
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the pass region of either multilayer making up the composite filter. If we denote
this reflectance by Rp, then we can be certain that the design will be acceptable if
we choose a sufficiently high number of periods to make Rs, the lowest reflectance
in the stop band of the other multilayer, sufficiently high to ensure that

(1 − Rp)(1 − Rs)

[1 − (Rp Rs)1/2]2 ≤ Tc (6.39)

where Tc is some acceptable level for the transmission in the rejection zone of the
complete filter. This formula will give a pessimistic result; the actual transmission
achieved in practice will depend on the phase change as well as the reflectance.

The only other danger area is the region where the two high-reflectance
bands are overlapping. There, it must be arranged that on no account is
(φa+φb)/2 = nπ . The method for dealing with this was described in the previous
chapter where a layer of intermediate thickness was placed between the two
quarter-wave stacks. The result is equivalent to placing two similar multilayers,
both of the form [(L/2)H (L/2)]n or [(H/2)L(H/2)]n, together.

Equation (6.39) also implies that some of the sections of the composite
filter should have more periods than others. In the reduction of the ripple in the
pass band of the basic multilayer, the ripple on the other side of the stop band
is invariably increased. Thus, in the combination of, say, two multilayers, the
rejection zone of one stack will overlap a region of high ripple, while the rejection
zone of the other stack will overlap a region of relatively low ripple. Since high
ripple means that Rp is high, the former stack should have more periods than the
latter if the same level of rejection is required throughout the combined rejection
region. Figure 6.21 shows two component edge filters which are combined in a
single filter in figure 6.22. The severe ripple which occurs in one of the multilayers
can be seen reflected in the rejection zone of the composite filter. This ripple is
limited to part of the rejection zone only, and in order to reduce the effect, more
periods are necessary in the appropriate multilayer.

6.2.3.9 Extending the transmission zone

The shortwave-pass filter, as it has been described so far, possesses a limited pass
band because of the higher order stop bands. These are not always particularly
embarrassing, but occasionally, as for example with some types of heat reflecting
filters, a much wider pass band is required. The problem was first considered by
Epstein [14] and was studied more extensively by Thelen [15].

Epstein’s analysis was as follows. Let the multilayer be represented by S
periods each of the form

M =
[

M11 M12
M21 M22

]
.

If a single period is considered as if it were immersed in a medium of admittance
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Figure 6.21. Measured reflectance of two longwave-pass stacks:

A|(0.5H L 0.5H)4|BaF2.

H and L are films of stibnite and chiolite a quarter-wave thick at λ0 = 4.06 µm
or 6.3 µm. A is air and the substrate is barium fluoride. (After Turner and Baumeister
[13].)

Figure 6.22. Measured reflectance of the two longwave-pass stacks of figure 6.21
superimposed in a single coating for an extended high-reflectance region. (After Turner
and Baumeister [13].)

η, then the transmission coefficient of the period is given by

t = 2η

η{(M11 + M22)+ [ηM12 + (M21/η)]} .
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Let t = |t|eiτ ; then

1
2 {(M11 + M22)+ [ηM12 + (M21/η)]} = cos τ − i sin τ

|t| .

If the period is transparent, equating real parts gives

1
2 (M11 + M22) = cos τ

|t| .

Now, if light which has suffered two or more reflections at interfaces within the
period is ignored, then

τ �
∑

δ

the total phase thickness of the period.
When

∑
δ = nπ , cos τ = ±1, and, if |t| < 1, then∣∣ 1

2 (M11 + M22)
∣∣ > 1

and a high-reflectance zone results. If, however, |t| = 1, then∣∣ 1
2 (M11 + M22)

∣∣ = 1

and the high-reflectance zone is suppressed. In the simple form of stack,

[(L/2)H (L/2)]S or [(H/2)L(H/2)]S

|t| = 1 for τ = 2rπ r = 1, 2, 3, 4, . . .

and the even-order high-reflectance zones are therefore suppressed. As noted
earlier, only a slight change in the relative thicknesses of the layers is enough to
reduce t and turn the band into a high-reflectance zone.

Putting this result in another way, a zone of high reflectance potentially exists
whenever the total optical thickness of an individual period of the multilayer is an
integral number of half-waves, and the high-reflectance zone is prevented from
appearing if, and only if, |τ | = 1. This result has been used by Epstein in his
paper to design a multilayer in which the fourth- and fifth-order reflectance bands
were suppressed. Thelen has extended Epstein’s analysis to deal with cases where
any two and any three successive orders are suppressed and it is this method which
we shall follow.

Following Epstein, Thelen [15] assumed a five-layer form, ABC B A, which
involves three materials, for the basic period of the multilayer, and noted that
if the period is thought of as immersed in a medium M , the combination
AB becomes an antireflection coating for C in M at the wavelengths where
suppression is required. In the construction of the final multilayer, the medium
M can be considered first to exist between successive periods and then to suffer a
progressive decrease in thickness until it just vanishes. The shrinking procedure
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leaves unchanged the suppression of the various orders which has been arranged.
M can therefore be chosen quite arbitrarily during the design procedure to be
discarded later. The antireflection coating AB is of a type studied originally by
Muchmore [16] and Thelen adapted his results as follows.

The various parameters of the layers are denoted by the usual symbols with
the appropriate suffixes A, B, C and M .

Let layers A and B be of equal optical thickness, i.e.

δA = δB (6.40)

and let
ηAηB = ηCηM . (6.41)

Then the wavelengths for which unity transmittance will be achieved will be given
by

tan2 δ′
A = ηAηB − η2

C

η2
B − (ηAη

2
C/ηB)

. (6.42)

(This result can be derived from equations (3.4) and (3.5). If we replace, in these
equations, suffixes 1, 2, m and 0 by A, B, C and M respectively, then the condition
for δA = δB is, from equation (3.5): ηAηB = ηCηM and equation (6.42) then
follows immediately from equation (3.4).)

Two solutions given by equation (6.42), δ ′
A and (π − δ′

A), are possible. We
can specify that δ ′

A corresponds to λ1 and (π − δ′
A) to λ2 where λ1 and λ2 are the

two wavelengths where suppression is to be obtained. Solving these two equations
for δ′

A gives

δ′
A = π

1 + (λ1/λ2)
(6.43)

which can be entered in equation (6.42), whence

tan2 π

1 + (λ1/λ2)
= ηAηB − η2

C

η2
B − (ηAη

2
C)/ηB

. (6.44)

This determines the complete design of the coating. The optical thickness of the
layer A can be found from equation (6.43) to be

λ1λ2

2(λ1 + λ2)
. (6.45)

The only other quantity to be found is the optical thickness of layer C and we
note first that the total optical thickness of the period is λ0/2, where λ0 is the
wavelength of the first high-reflectance zone. The optical thicknesses of layers A
and B have already been defined as equal, so that the optical thickness of layer C
is

λ0

2
− 2λ1λ2

2(λ1 + λ2)
. (6.46)
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Figure 6.23. Calculated transmittance as a function of g of the design:

M|(ABC B A)10A|S

with nS = 1.50, nM = 1.00, nA = 1.38, nB = 1.90 and nC = 2.30. (After
Thelen [15].)

This medium M which was introduced as an artificial aid to calculation,
disappears and does not figure at all in the results. Any two of the optical
admittances ηA, ηB and ηC can be chosen at will. The third one is then found
from equation (6.44).

Thelen in his paper, gives a large number of examples of multilayers with
various zones suppressed. Particularly useful is a multilayer with the second- and
third-order zones suppressed. For this,

λ1 = λ0/2 λ2 = λ0/3

and all the layers are found to be of equal optical thickness λ 0/10. Two of the
refractive indices of the layers are then chosen and equation (6.44) solved for
the remaining one. For rapid calculation Thelen gives a nomogram connecting
the three quantities. The transmittance of a multilayer with the second and third
orders suppressed is given in figure 6.23.

Thelen also considered a multilayer in which the second, third and fourth
orders were all suppressed and found the conditions to be as follows.

Layer thicknesses:

A : λ0/12

B : λ0/12

C : λ0/6.
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Figure 6.24. Calculated transmittance as a function of g of the design:

M|(AB2C B A)10 A|S

with nS = 1.50, nM = 1.00, nA = 1.38, nB = 1.781 and nC = 2.30. (After
Thelen [15].)

The indices are given by

ηB = (ηAηC)
1/2.

Figure 6.24 shows the transmittance of a multilayer where the second, third and
fourth orders have been suppressed in this way.

A heat-reflecting filter using a combination of stacks in which the second
and third, and second, third and fourth orders have been suppressed, together with
the normal quarter-wave stacks, has been designed. The calculated transmittance
spectrum is shown in figure 6.25. The production of such a coating would indeed
be a formidable task.

6.2.3.10 Reducing the transmission zone

The simple quarter-wave multilayer has the even-order high-reflectance bands
missing. Sometimes it is useful to have these high-reflectance bands present.
The method of the previous section can also be applied to this problem and the
enhancement of the reflectance at the even orders is a relatively simple business.

Because it makes the analysis simpler, we assume that the basic period is of
the form AB rather than (A/2)B(A/2). Once the basic result is established, it
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Figure 6.25. Calculated transmittance of a triple-stack heat reflector. Design:

M
∣∣∣[1.1( 1

2 AC1
2 A)]( 1

2 AC1
2 A)5[1.25(1

2 AC1
2 A)]

−[0.57(ADC DA)]8[0.642(AB2C B A)]8 1
2 A
∣∣∣S

with λ0 = 860 nm, nS = 1.50, nM = 1.00, nA = 1.38, nB = 1.781, nC = 2.30 and
nD = 1.90. (After Thelen [15].)

can easily be converted to the form (A/2)B(A/2) if required. The reason that the
even-order peaks are suppressed in the ordinary quarter-wave stack is that each of
the layers is an integral number of half-waves thick and so |t| = 1 for the basic
period. All that is required for a reflectance peak to appear is the destruction
of this condition. To achieve this, the thickness of one of the layers must be
increased and the other decreased, keeping the overall optical thickness constant.
The greater the departure from the half-wave condition, the more pronounced the
reflectance peak.

Consider the case where reflectance bands are required at λ0, λ0/2, and λ0/3,
but not necessarily at λ0/4. This will be satisfied by making nAdA = nBdB/3 and
nAdA = λ0/8 so that the basic stack becomes either

H

2

3L

2

H

2

3L

2
. . .

3L

2
or

L

2

3H

2

L

2

3H

2
. . .

3H

2
.

The reflectance peak at λ0/4 will be suppressed because the layers at that
wavelength have integral half-wave thicknesses.

The method can be used to produce any number of high-reflectance zones.
However, it should be noted that the further the thicknesses depart from ideal
quarter-waves at λ0, the narrower will be the first-order reflectance band.
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6.2.3.11 Edge steepness

In long- and shortwave-pass filters, the steepness of edge is not usually a
parameter of critical importance. The number of layers necessary to produce
the required rejection in the stop band of the filter will generally produce an edge
steepness which is quite acceptable.

If, however, an exceptional degree of edge steepness is required, then the
easiest way of improving it is to use still more layers. Increasing the number of
layers will cause an apparent increase in the ripple in the pass band, because the
first minimum in the pass band will be brought nearer to the edge, and usually
will be on a part of the reflectance envelope which is increasing in width towards
the edge. If the increase in number of layers is considerable, then it will probably
be advisable to use one of the more advanced techniques for reducing ripple.

An alternative method for increasing the steepness of edge without major
alterations to the basic design concept is the use of higher-order stacks. The
steepness of edge for a given number of layers will increase in proportion with
the order. There are two snags here. The first is that the rejection zone width
varies inversely with the order number. This can be dealt with by adding a further
first-order stack to extend the rejection zone. The second snag is more serious.
The permissible errors in layer thickness are also reduced in inverse proportion
with the order number. This is because the performance does not depend directly
on the phase thickness of the layers but rather on the sines and cosines of the
layer thicknesses, and in the case of the fifth order, for example, these are layer
thicknesses greater than 2π . Thus, while for a first-order edge filter, as we shall
see in chapter 9, the random errors in layer thickness which can be tolerated are
of the order of 5% or even 10%, those which are tolerable in the fifth order are
of the order of 1% or possibly 2%. A possible further practical difficulty with
higher-order filters is that considerably more material is required for each layer.
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Chapter 7

Band-pass filters

A filter which possesses a region of transmission bounded on either side by
regions of rejection is known as a band-pass filter. For the broadest band-pass
filters, the most suitable construction is a combination of longwave-pass and
shortwave-pass filters, which we discussed in chapter 6. For narrower filters,
however, this method is not very successful because of difficulties associated with
obtaining both the required precision in positioning and the steepness of edges.
Other methods are therefore used, involving a single assembly of thin films to
produce simultaneously the pass and rejection bands. The simplest of these is the
thin-film Fabry–Perot filter, a development of the interferometer already described
in chapter 5. The thin-film Fabry–Perot filter has a pass band shape which is
triangular and it has been found possible to improve this by coupling simple filters
in series in much the same way as tuned circuits. These coupled arrangements
are known as multiple cavity filters or multiple half-wave filters. If two simple
Fabry–Perot filters are combined, the resultant becomes a double cavity or double
half-wave filter, abbreviated to DHW filter, while, if three Fabry–Perot filters are
involved, we have a triple cavity filter, abbreviated normally to THW for triple
half-wave. In the earlier part of this chapter, we consider single cavity filters.
First of all, we examine combinations of edge filters.

7.1 Broadband-pass filters

Band-pass filters can be very roughly divided into broadband-pass filters and
narrowband-pass filters. There is no definite boundary between the two types
and the description of one particular filter usually depends on the application and
the filters with which it is being compared. For the purpose of the present work,
by broadband filters we mean filters with bandwidths of perhaps 20% or more
which are made by combining longwave-pass and shortwave-pass filters. The
best arrangement is probably to deposit the two components on opposite sides of a
single substrate. To give maximum possible transmission, each edge filter should

257
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Figure 7.1. The construction of a band-pass filter by placing two separate edge filters in
series. (Courtesy of Standard Telephones and Cables Ltd.)

be designed to match the substrate into the surrounding medium, a procedure
already examined in chapter 6. Such a filter is shown in figure 7.1.

It is also possible, however, to deposit both components on the same side
of the substrate. This was a problem which Epstein [1] examined in his early
paper on symmetrical periods. The main difficulty is the combining of the two
stacks so that the transmission in the pass band is a maximum and also so that
one stack does not produce transmission peaks in the rejection zone of the other.
The transmission in the pass band will depend on the matching of the first stack
to the substrate, the matching of the second stack to the first, and the matching
of the second stack to the surrounding medium. Depending on the equivalent
admittances of the various stacks it may be necessary to insert quarter-wave
matching layers or to adopt any of the more involved matching techniques.

In the visible region, with materials such as zinc sulphide and cryolite,
the combination [(H/2)L(H/2)]S acts as a good longwave-pass filter with an
equivalent admittance at normal incidence and at wavelengths in the pass region
not too far removed from the edge of near unity. This can therefore be used next to
the air without mismatch. The combination [(L/2)H (L/2)] S acts as a shortwave-
pass filter, with equivalent admittance only a little lower than the first section,
and can be placed next to it, between it and the substrate, without any matching
layers. The mismatch between this second section and the substrate, which in
the visible region will be glass of index 1.52, is sufficiently large to require a
matching layer. Happily, the [(H/2)L(H/2)] combination with a total phase
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Table 7.1.†

Phase thickness of each Phase thickness of each
layer measured at layer measured at)

Layer 546 nm (degrees) Index 546 nm (degrees)

1.52 Massive 1.38 55.4
1.38 67.3 2.30 33.9
2.30 134.5 1.38 67.9
1.38 122.7 2.30 67.9
2.30 110.8 1.38 67.9
1.38 110.8 2.30 67.9
2.30 110.8 1.38 67.9
1.38 110.8 2.30 67.9
2.30 110.8 1.38 67.9
1.38 110.8 2.30 33.9
2.30 110.8 1.00 Massive

† From Epstein [1].

thickness of 270◦, i.e. effectively three quarter-waves, has an admittance exactly
correct for this. The transmission of the final design is shown in figure 7.2(b)
with the appropriate admittances of the two sections in figure 7.2(a). Curve A
refers to a [(L/2)H (L/2)]4 shortwave-pass section and B to a [(H/2)L(H/2)]4

longwave-pass. The complete design is shown in table 7.1. The edges of the two
sections have been chosen quite arbitrarily and could be moved as required.

To avoid the appearance of transmission peaks in the rejection zones of
either component, it is safest to deposit them so that high-reflectance zones do
not overlap. The complete rejection band of the shortwave-pass section will
always lie over a pass region of the longwave-pass filter, but the higher-order
bands should be positioned, if at all possible, clear of the rejection zone of the
longwave-pass section. The combination of edge filters of the same type has
already been investigated in chapter 6 and the principles discussed there apply to
this present situation. It should also be remembered that, although in the normal
shortwave-pass filter the second-order reflection peak is missing, a small peak can
appear if any thickness errors are present. This can, if superimposed on a rejection
zone of the other section, cause the appearance of a transmission peak if the errors
are sufficiently pronounced. The expression for maximum transmission is

Tmax = TaTb

[1 − (Ra Rb)1/2]2

but this only holds if the phase conditions are met.
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Figure 7.2. (a) Equivalent admittances of two stacks made up of symmetrical periods
used to form a band-pass filter. A: (0.5L H0.5L); B: (0.5H L0.5H), where nL = 1.38,
nH = 2.30. (b) Calculated reflectance curve for a band-pass filter. For the complete design
of this filter, made up of two superimposed stacks, one of type A and one of type B, refer
to table 7.1. (After Epstein [1].)

7.2 Narrowband filters

7.2.1 The metal–dielectric Fabry–Perot filter

The simplest type of narrowband thin-film filter is based on the Fabry–Perot
interferometer discussed in chapter 5. In its original form, the Fabry–Perot
interferometer consists of two identical parallel reflecting surfaces spaced apart
a distance d. In collimated light, the transmission is low for all wavelengths
except for a series of very narrow transmission bands spaced at intervals that are
constant in terms of wavenumber. This device can be replaced by a complete thin-
film assembly consisting of a dielectric layer bounded by two metallic reflecting
layers (figure 7.3). The dielectric layer takes the place of the spacer and is known
as the spacer layer. Except that the spacer layer now has an index greater than
unity, the analysis of the performance of this thin-film filter is exactly the same
as for the conventional etalon, but in other respects there are a few significant
differences.

While the surfaces of the substrates should have a high degree of polish,
they need not be worked to the exacting tolerances necessary for etalon plates.
Provided the vapour stream in the plant is uniform, the films will follow the
contours of the substrate without exhibiting thickness variations. This implies
that it is possible for the thin-film Fabry–Perot filter to be used in a much lower
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Figure 7.3. Characteristics of a metal–dielectric filter for the visible region (curve a).
Curve b is the transmittance of an absorption glass filter that can be used for the suppression
of the short wavelength sidebands. (Courtesy of Barr & Stroud Ltd.)

order than the conventional etalon. Indeed, it turns out in practice that lower
orders must be used, because the thin-film spacer layers begin, where thicker than
the fourth order or so, to exhibit roughness. This roughness broadens the pass
band and reduces the peak transmittance so much that any advantage of the higher
order is completely lost. This simple type of filter is known as a metal–dielectric
Fabry–Perot to distinguish it from the all-dielectric one to be described later.

It is worthwhile briefly analysing the performance of the Fabry–Perot once
again, this time including the effects of phase shift at the reflectors. The starting
point for this analysis is equation (2.150):

TF = TaTb

[1 − (Ra Rb)1/2]2

1

1 + F sin2[ 1
2 (φa + φb)− δ]

F = 4(Ra Rb)
1/2

[1 − (Ra Rb)1/2]2
δ = 2πndcos θ

λ




(7.1)

where the notation is given in figure 2.19. We have adapted equation (2.150)
slightly by removing the + and − signs on the reflectances. The analysis which
follows is similar to that already performed in chapter 5 except that here we are
including the effects of φa and φb. The maxima of transmission are given by

2πndcos θ

λ
− φa + φb

2
= mπ m = 0, ±1, ±2, ±3, . . . (7.2)

where we have chosen −m rather than +m because (φa+φb)/2 < π by definition.
The analysis is marginally simpler if we work in terms of wavenumber instead of
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wavelength. The positions of the peaks are then given by

1

λ
= ν = mπ + (φa + φb)/2

2πndcos θ
= 1

2ndcos θ

(
m + φa + φb

2π

)
. (7.3)

Depending on the particular metal, the thickness, the index of the substrate
and the index of the spacer, the phase shift on reflection φ will be either in the first
or second quadrant. (φa + φb)/(2π) will therefore be positive between 0 and 1
and roughly in the region of 0.5. The peak wavelength of the filter will therefore
be shifted to the shortwave side of the peak which would be expected simply from
the optical thickness of the spacer layer.

The resolving power of the thin-film Fabry–Perot filter may be defined in
exactly the same way as for the interferometer. As we saw in chapter 5, a
convenient definition is

Peak wavelength

Halfwidth of pass band

where the halfwidth is the width of the band measured at half the peak
transmission. Now let the pass bands be sufficiently narrow, which is the same as
F being sufficiently large, so that near a peak we can replace

φa + φb

2
− δ by − mπ −�δ

and

sin2
(
φa + φb

2
− δ

)
by (�δ)2.

We are assuming here that φa and φb are constant or vary very much more slowly
than δ over the pass band.

The half-peak bandwidth, or halfwidth, can be found by noting that at the
half-peak transmission points

F sin2
(
φa + φb

2
− δ

)
= 1.

Using the approximation given above, this becomes

(�δh)
2 = 1

F

i.e. the halfwidth of the pass band

2�δh = 2/F1/2.
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The finesse is defined as the ratio of the interval between fringes to the fringe
halfwidth, and is written F . The change in δ in moving from one fringe to the
next is just π , and the finesse, therefore, is

F = πF1/2

2
. (7.4)

Now ν0/�νh = δ0/2�δh because ν ∝ δ, where v0 and δ0 are respectively the
values of the wavenumber and spacer layer phase thickness associated with the
transmission peak, and �νh and 2�δh are the corresponding values of halfwidth.
The ratio of the peak wavenumber to the halfwidth is then given by

ν0

�νh
= F

(
m + φa + φb

2π

)
(7.5)

for a peak of order m, since

δ0 = mπ + φa + φb

2
.

The ratio of peak position to halfwidth expressed in terms of wavenumber is
exactly the same in terms of wavelength,

ν0

�νh
= λ0

�λh
(7.6)

where λ0 is given by

λ0 = 2ndcos θ

m + (φa + φb)/2π
(7.7)

and this was discussed in chapter 5. The halfwidth is thus a most useful parameter
with which to specify a narrowband Fabry–Perot filter since it can be converted
very quickly into a measure of resolution. It has come to be used rather than
resolving power for all types of narrowband filter, regardless of whether or not
they are Fabry–Perot type. Usually, therefore �λh/λ0, often expressed as a
percentage, is the parameter which is quoted by the manufacturers and users alike.
Other measures of bandwidth sometimes quoted along with the halfwidth are the
widths measured at 0.9× peak transmission, at 0.1× peak transmission, and at
0.01× peak transmission. For a Fabry–Perot filter, provided the phase shifts on
reflection from the reflecting layers are effectively constant over the pass band,
these widths are given respectively by one-third of the halfwidth, three times the
halfwidth, and ten times the halfwidth. The other measures of bandwidth are used
to give some indication of the extent to which, in any given type of filter, the sides
of the pass band, compared with those of the Fabry–Perot, can be considered
rectangular.

The manufacture of the metal–dielectric filter is straightforward. The main
point to watch is that the metallic layers should be evaporated as quickly as
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possible on to a cold substrate. In the visible and near infrared regions the best
results are probably achieved with silver and cryolite, while in the ultraviolet
the best combination is aluminium and either magnesium fluoride or cryolite.
Wherever possible the layers should be protected by cementing a cover slip over
them as soon as possible after deposition. This also serves to balance the assembly
by equalising the refractive indices of the media outside the metal layers.

Turner [2] quoted some results for metal–dielectric filters constructed for
the visible region which may be taken as typical of the performance to be
expected. The filters were constructed from silver reflectors and magnesium
fluoride spacers. For a first-order spacer a bandwidth of 13 nm with a peak
transmission of 30% was obtained at a peak wavelength of 531 nm. A similar filter
with a second-order spacer gave a bandwidth of 7 nm with peak transmission of
26% at 535 nm. With metal–dielectric filters the third order is usually the highest
used. Because of scattering in the space layer, which becomes increasingly
apparent in the fourth and higher orders, any benefit which would otherwise arise
from using these orders is largely lost.

A typical curve for a metal–dielectric filter for the visible region is shown in
figure 7.3. The particular peak to be used is that at 0.69 µm, which is of the third
order. The shortwave sidebands due to the higher-order peaks can be suppressed
quite easily by the addition of an absorption glass filter, which can be cemented
over the metal–dielectric element to act as a cover glass. Such a filter is also shown
in the figure and is one of a wide range of absorption glasses which are available
for the visible and near infrared and which have longwave-pass characteristics.
There are, unfortunately, few absorption filters suitable for the suppression of the
longwave sidebands. If the detector which is to be used is not sensitive to these
longer wavelengths, then no problem exists and commercial metal–dielectric
filters for the visible and near infrared usually possess long-wavelength sidebands
beyond the limit of the photocathodes or photographic emulsions, which are the
usual detectors for this region. If the longwave-sideband suppression must be
included as part of the filter assembly, then there is an advantage in using metal–
dielectric filters in the first order, even though the peak transmission for a given
bandwidth is much lower, since they do not usually possess long-wavelength
sidebands. Theoretically, there will always be a peak corresponding to the zero
order at very long wavelengths, but this will not usually appear, partly because the
substrate will cut off long before the zero order is reached, and also because the
properties of the thin-film materials themselves will change radically. We shall
discuss later a special type of metal–dielectric filter, the induced transmission
filter, which can be made to have a much higher peak transmission, though with
a rather broader halfwidth, without introducing long-wavelength sidebands, and
which is often used as a long-wavelength suppression filter.

Silver does not have an acceptable performance for ultraviolet filters and
aluminium has been found to be the most suitable metal, with magnesium fluoride
as the preferred dielectric. In the ultraviolet beyond 300 nm there are few suitable
cements (none at all beyond 200 nm) and it is not possible to use cover slips
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Figure 7.4. Experimental transmittance curves of first-order metal–dielectric filters for the
far ultraviolet deposited on Spectrosil B substrates. (After Bates and Bradley [3].)

which are cemented over the layers in the way in which filters for the visible
region are protected. The normal technique, therefore, is to attempt to protect the
filter by the addition of an extra dielectric layer between the final metal layer and
the atmosphere. These layers are effective in that they slow down the oxidation
of the aluminium which otherwise takes place rapidly and causes a reduction
in performance even at quite low pressures. This oxidation has already been
referred to in chapter 4. They cannot completely stabilise the filters, however,
and slight longwave drifts can occur, as reported by Bates and Bradley [3]. A
second function of the final dielectric layer is to act as a reflection-reducing layer
at the outermost metal surface and hence to increase the transmittance of the
filter. This is not a major effect—the problem of improving metal–dielectric filter
performance is dealt with later in this chapter—but any technique which helps to
improve performance, even marginally, in the ultraviolet, is very welcome. Some
performance curves of first-order metal–dielectric Fabry–Perot filters are shown
in figure 7.4.

The formula for transmission of the Fabry–Perot filter can also be used
to determine both the peak transmission in the presence of absorption in the
reflectors and the tolerance which can be allowed in matching the two reflectors.
First of all, let the reflectances be equal and let the absorption be denoted by A,
so that

R + T + A = 1. (7.8)
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The peak transmission will then be given by

(TF )peak = T2

(1 − R)2

and, using equation (7.8),

(TF )peak = 1

(1 + A/T)2
(7.9)

exactly as for the Fabry–Perot interferometer, which shows that when absorption
is present the value of peak transmission is determined by the ratio A/T .

To estimate the accuracy of matching which is required for the two reflectors
we assume that the absorption is zero. The peak transmission is given by the
expression

(TF )peak = TaTb

[1 − (Ra Rb)1/2]2
(7.10)

where the subscripts a and b refer to the two reflectors. Let

Rb = Ra −�a (7.11)

where �a is the error in matching, so that Tb = Ta +�a. Then we can write

(TF )peak = Ta(Ta +�a)

{1 − [Ra(Ra −�a)]1/2}2

= Ta(Ta +�a)

{1 − Ra[1 − 1
2 (�a/Ra)+ . . .]}2

. (7.12)

Now assume that �a is sufficiently small compared with Ra so that we can
take only the first two terms of the expansion in equation (7.12). With some
rearrangement the equation becomes

(TF )peak = T2
a

(1 − Ra)2

1 + (�a/Ta)

[1 + 1
2 (�a/Ta)]2

. (7.13)

The first part of the equation is the expression for peak transmission in the
absence of any error in the reflectors, while the second part shows how the peak
transmission is affected by errors. The second part of the expression is plotted in
figure 7.5 where the abscissa is Tb/Ta = 1+�a/Ta. Clearly, the Fabry–Perot filter
is surprisingly insensitive to errors. Even with reflector transmittance unbalanced
by a factor of 3, it is still possible to achieve 75% peak transmission.

7.2.2 The all-dielectric Fabry–Perot filter

In the same way as we found for the conventional Fabry–Perot etalon, if improved
performance is to be obtained, then the metallic reflecting layers should be
replaced by all-dielectric multilayers.
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Figure 7.5. Theoretical peak transmittance of a Fabry–Perot filter with unbalanced
reflectors.

Figure 7.6. The structure of an all-dielectric Fabry–Perot filter.

An all-dielectric filter is shown in diagrammatic form in figure 7.6. Basically,
this is the same as the conventional etalon with dielectric coatings and with a
solid thin-film spacer, and the observations made for the metal–dielectric filter
are also valid. Again, the substrate need not be worked to a high degree of
flatness although the polish must be good, because, provided the plant geometry
is adequate, the films will follow any contours without showing changes in
thickness.

The bandwidth of the all-dielectric filter can be calculated as follows. If the
reflectance of each of the multilayers is sufficiently high, then

F = 4R

(1 − R)2
� 4

T2

and
λ0

�λh
= mF = mπF1/2

2
� mπ

T
. (7.14)
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Figure 7.7. The structure of the two basic types of all-dielectric Fabry–Perot filter.

Since the maximum reflectance for a given number of layers will be obtained
with a high-index layer outermost, there are really only two cases which need be
considered and these are shown in figure 7.7. If x is the number of high-index
layers in each stack, not counting the spacer layer, then in the case of the high-
index spacer, the transmission of the stack will be given by

T = 4n2x
L · ns

n2x+1
H

and in the case of the low-index spacer by

T = 4n2x−1
L ns

n2x
H

.

Substituting these results into the expression for bandwidth we find, for the
high-index spacer,

�λh

λ0
= 4n2x

L ns

mπn2x+1
H

(7.15)

and, for the low-index spacer,

�λh

λ0
= 4n2x−1

L ns

mπn2x
H

(7.16)

where we are adopting the fractional halfwidth �λh/λ0 rather than the resolving
power λ0/�λh as the important parameter. This is customary practice.

In these formulae we have completely neglected any effect due to the
dispersion of phase change on reflection from a multilayer. As we have already
noted in chapter 5, the phase change is not constant. The sense of the variation is
such that it increases the rate of variation of [(φa + φb)/2] − δ with wavelength
in the formula for transmission of the Fabry–Perot filter and, hence, reduces
the bandwidth and increases the resolving power in equations (7.15) and (7.16).
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Seeley [4] has studied the all-dielectric filter in detail and, by making some
approximations in the basic expressions for the filter transmittance, has arrived
at formulae for the first-order halfwidths, which, with a little adjustment, become
equal to the expressions in (7.15) and (7.16) multiplied by a factor (n H −nL)/nH .
We can readily extend Seeley’s analysis to all-dielectric filters of order m.

We recall that the half-peak points are given by

F sin2[(2πD/λ)− φ] = 1 (7.17)

where, since the filter is quite symmetrical, we have replaced (φ1 + φ2)/2 by φ.
It is simpler to carry out the analysis in terms of g = λ0/λ = v/vo. At the peak
of the filter we have g = 1.0. We can assume for small changes �g in g that

2πD/λ = mπ(1 +�g)

and

φ = φ0 + dφ

dg
�g

so that equation (7.17) becomes

F sin2
(

mπ(1 + �g)− φ0 − dφ

dg
�g

)
= 1.

φ0, we know, is 0 or π , and so, using the same approximation as before,

F

(
mπ�g − dφ

dg
�g

)2

= 1

or

�g = F−1/2
(

mπ − dφ

dg

)−1

.

The halfwidth is 2�g so that

2�g = �νh

ν0
= �λh

λ0
= 2F−1/2

(
mπ − dφ

dg

)−1

= 2

mπF1/2

(
1 − 1

mπ

dφ

dg

)−1

. (7.18)

We now need the quantity dφ/dg. We use Seeley’s technique, but, rather than
follow him exactly, we choose a slightly more general approach because we shall
require the results later. The matrix for a dielectric quarter-wave layer is[

cos δ (i sin δ)/n
in sin δ cos δ

]
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where, as usual, we are writing n for the optical admittance, which is in free space
units. Now, for layers which are almost a quarter-wave we can write

δ = π/2 + ε

where ε is small. Then

cos δ � −ε sin δ � 1

so that the matrix can be written [−ε i/n
in −ε

]
.

We limit our analysis to quarter-wave multilayer stacks having high index next to
the substrate. There are two cases, even and odd numbers of layers.

7.2.2.1 Case 1: even number (2x) of layers

The resultant multilayer matrix is given by[
B
C

]
= [L] [H ] [L] . . . [L] [H ]

[
1

nm

]

where

[L] =
[−εL i/nL

inL −εL

]

[H ] =
[−εH i/nH

inH −εH

]
.

Then [
B
C

]
= {[L] [H ]}x

[
1

nm

]

=
[ −(nH

nL
) −i( εL

nH
+ εH

nL
)

−i(nLεH + nH εL) −( nL
nH
)

]x [
1

nm

]

=
[

M11 iM12
iM21 M22

] [
1

nm

]
.

Our problem is to find expressions for M11, M12, M21 and M22. In the evaluation
we neglect all terms of second and higher order in ε. Terms in ε appearing in M 11
and M22 are of second and higher order and therefore

M11 = (−1)x
(

nH

nL

)x

M22 = (−1)x
(

nL

nH

)x

.
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M12 and M21 contain terms of first, third and higher orders in ε. The first-order
terms are

M12 = −
(
εL

nH
+ εH

nL

)(
− nL

nH

)x−1

+
(

−nH

nL

)[
−
(
εL

nH
+ εH

nL

)](
− nL

nH

)x−2

+ . . .

+
(

−nH

nL

)p[
−
(
εL

nH
+ εH

nL

)](
− nL

nH

)x−p−1

+ . . .

+
(

−nH

nL

)x−1[
−
(
εL

nH
+ εH

nL

)]

= (−1)x
(
εL

nH
+ εH

nL

)[(
nL

nH

)x−1

+
(

nL

nH

)x−3

+ . . .+
(

nH

nL

)x−1]

= (−1)x
(
εL

nH
+ εH

nL

)(
nH

nL

)x−1

×
[(

nL

nH

)2x−2

+
(

nL

nH

)2x−4

+ . . .+
(

nL

nH

)2

+ 1

]

= (−1)x
(
εL

nH
+ εH

nL

)(
nH

nL

)x−1[
1 −

(
nL

nH

)2x][
1 −

(
nL

nH

)2]−1

since (nL/nH ) < 1.
Now, provided x is large enough and (n L/nH ) small enough, we can neglect

(nL/nH )
2x in comparison with 1, and after some adjustment, the expression

becomes

M12 = (−1)xnH nL(nH/nL)
x(εL/nH + εH/nL)

(n2
H − n2

L)
.

A similar procedure yields

M21 = (−1)xnH nL(nH/nL)
x(nLεH + nH εL)

(n2
H − n2

L)
.

7.2.2.2 Case II: odd number(2x + 1) of layers

The resultant matrix is given by[
B
C

]
= [H ] [L] [H ] . . .[L] [H ]

[
1

nm

]

= [H ] {[L] [H ]}x
[

1
nm

]
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which we can denote by [
N11 iN12
iN21 N22

] [
1

nm

]

and which is simply the previous result multiplied by[−εH i/nH

inH −εH

]
.

Then

N11 = − εH M11 − M21/nH = (−1)x+1
(

nH

nL

)x (εLnH nL + εHn2
H )

(n2
H − n2

L)

N12 = − εH M12 + M22/nH = (−1)x
(

nL

nH

)x 1

nH

N21 = nH M11 − εH M21 = (−1)x
(

nH

nL

)x

nH

N22 = − εH M22 − nH M12 = (−1)x+1
(

nH

nL

)x n2
H nL(εL/nH + εH/nL)

(n2
H − n2

L)

where terms in (nL/nH )
x are neglected in comparison with (nH/nL)

x .

7.2.2.3 Phase shift: case I

We are now able to compute the phase shift on reflection. We take, initially, the
index of the incident medium to be n0. Then[

B
C

]
=
[

M11 iM12
iM21 M22

] [
1

nm

]

=
[

M11 + inmM12
nmM22 + iM21

]

ρ = n0 B − C

n0 B + C
= n0(M11 + inmM12)− nmM22 − iM21

n0(M11 + inmM12)+ nmM22 + iM21

= (n0M11 − nmM22)+ i(n0nmM12 − M21)

(n0M11 + nmM22)+ i(n0nmM12 + M21)
(7.19)

tanφ = 2n0n2
mM12 M22 − 2n0M11 M21

n2
0M2

11 − n2
mM2

22 + n2
0n2

mM2
12 − M2

21

.

Inserting the appropriate expressions and once again neglecting terms of second
and higher order in ε and terms in (nL/nH )

x, we obtain for φ

tanφ = −2nHnL(nLεH + nH εL)

n0(n2
H − n2

L)
(7.20)

(for L H . . . L H L H |nm).
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7.2.2.4 Phase shift: case II

ρ is given by an expression similar to (7.19), in which M is replaced by N. Then,
following the same procedure as for case I we arrive at

tanφ = −2n0(εLnL + εH nH )

(n2
H − n2

L)
(7.21)

(for H L H . . . L H L H |nm).
Equations (7.20) and (7.21) are in a general form which we will make use of

later. For our present purposes we can introduce some slight simplification.

δ = 2πnd

λ
= 2πndv = 2πndν0(ν/ν0) = (π/2)g

so that

εH = εL = (π/2)g − π/2 = (π/2)(g − 1).

Also, when we consider the construction of the Fabry–Perot filters we see that
the incident medium in case I will be a high-index spacer layer and in case II a
low-index spacer. Thus, for Fabry–Perot filters,

tanφ = −πnL

(nH − nL)
(g − 1)

for both case I and case II.
Now, φ is nearly π or 0. Then

dφ

dg
= −πnL

(nH − nL)

which is the result obtained by Seeley. This can then be inserted in equation (7.18)
to give

�νh

ν0
= �λh

λ0
= 2

mπF1/2

(
nH − nL

nH − nL + nL/m

)
.

Then the expressions for the halfwidth of all-dielectric Fabry–Perot filters of mth
order become

High-index spacer:(
�λh

λ0

)
H

= 4nmn2x
L

mπn2x+1
H

(nH − nL)

(nH − nL + nL/m)
(7.22)

Low-index spacer:(
�λh

λ0

)
L

= 4nmn2x−1
L

mπn2x
H

(nH − nL)

(nH − nL + nL/m)
(7.23)
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Figure 7.8. Measured transmittance of a narrowband all-dielectric filter with unsuppressed
sidebands. Zinc sulphide and cryolite were the thin-film materials used. (Courtesy of Sir
Howard Grubb, Parsons & Co. Ltd.)

Figure 7.9. Measured transmittance of a Fabry–Perot filter for the far infrared. Design:
Air|L H L H H L H |Ge with H indicating a quarter-wave of germanium and L of caesium
iodide. The rear surface of the substrate is unbloomed so that the effective transmission of
the filter is 50%. (Courtesy of Sir Howard Grubb, Parsons & Co. Ltd.)

which are simply the earlier results multiplied by the factor (n H − nL)/(nH −
nL + nL/m). It should be noted that these results are for first-order reflecting
stacks and mth-order spacer. Clearly the effect of the phase is much greater the
closer the two indices are in value and the lower the spacer order m. For the
common visible and near infrared materials, zinc sulphide and cryolite, the factor
for first-order spacers is equal to 0.43, while for infrared materials such as zinc
sulphide and lead telluride it is greater, around 0.57. Figures 7.8 and 7.9 show the
characteristics of typical all-dielectric narrowband Fabry–Perot filters.

Since the all-dielectric multilayer reflector is effective over a limited range
only, sidebands of transmission appear on either side of the peak and in most
applications must be suppressed. The shortwave sidebands can be removed very
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easily by adding to the filter a longwave-pass absorption filter, readily available
in the form of polished glass disks from a large number of manufacturers.
Unfortunately, it is not nearly as easy to obtain shortwave-pass absorption filters
and the rather shallow edges of those which are available tend considerably
to reduce the peak transmission of the filter if the sidebands are effectively
suppressed. The best solution to this problem is not to use an absorption type of
filter at all, but to employ as a blocking filter a metal–dielectric filter of the type
already discussed or of the multiple cavity type to be considered shortly. Because
metal–dielectric filters used in the first order do not have longwave sidebands,
they are very successful in this application. The metal–dielectric blocking filter
can, in fact, be deposited over the all-dielectric filter in the same evaporation run
provided that the layers are monitored using the narrowband filter itself as the
test glass—this is known as direct monitoring—but more frequently a completely
separate metal–dielectric filter is used. The various components which go to make
up the final filter are cemented together in one assembly.

Before we leave the Fabry–Perot filters we can examine the effects of
absorption losses in the layers in a manner similar to that already employed in
chapter 5, where we were concerned with quarter-wave stacks. The problem has
been investigated by many workers. The account which follows relies heavily on
the work of Hemingway and Lissberger [5], but with slight differences.

We apply the method of chapter 5 directly. There, we recall, we showed that
the loss in a weakly absorbing multilayer was given by

A = (1 − R)
∑

A

where, for quarter-waves,

A = β

(
n

ye
+ ye

n

)

β = 2πkd

λ
= 2πnd

λ

k

n
= π

2

k

n
.

ye is the admittance of the structure on the emergent side of the layer, in free space
units, n− ik is the refractive index of the layer and d is the geometrical thickness.
For quarter-waves, nd = λ/4.

The scheme is shown in table 7.2 where the admittance ye is given at each
interface and where alternative schemes for either high- or low-index spacers are
included. The reflecting stacks are assumed to begin with high-index layers of
which there are x per reflector, not counting the spacer.

We consider the case of low-index spacers first.

∑
A = βH

(
nm

nH
+ nH

nm

)
+ βL

(
n2

H

nLnm
+ nLnm

n2
H

)

+ βH

(
n2

Lnm

n3
H

+ n3
H

n2
Lnm

)
+ βL

(
n4

H

n3
Lnm

+ n3
Lnm

n4
H

)
+ . . .



276 Band-pass filters

Table 7.2.
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+ βL

(
n2x−2

H

n2x−3
L nm

+ n2x−3
L nm

n2x−2
H

)
+ βH

(
n2x−1

H

n2x−2
L nm

+ n2x−2
L nm

n2x−1
H

)

+ m

[
βL

(
n2x

H

n2x−1
L nm

+ n2x−1
L nm

n2x
H

)
+ βL

(
n2x−1

L nm

n2x
H

+ n2x
H

n2x−1
L nm

)]

+ βH

(
n2x−1

H

n2x−2
L nm

+ n2x−2
L nm

n2x−1
H

)
+ . . .+ βH

(
nH

nm
+ nm

nH

)

where the final set of terms is a repeat of the first and where the spacer consists of
2m quarter-waves. Rearranging, we find

∑
A = 2βH

(
nm

nH
+ n2

Lnm

n3
H

+ n4
Lnm

n5
H

+ . . .+ n2x−2
L nm

n2x−1
H

)

+ 2βH

(
nH

nm
+ n3

H

n2
Lnm

+ n5
H

n4
Lnm

+ . . .+ n2x−1
H

n2x−2
L nm

)

+ 2βL

(
nLnm

n2
H

+ n3
Lnm

n4
H

+ . . .+ n2x−3
L nm

n2x−2
H

)

+ 2βL

(
n2

H

nLnm
+ n4

H

n3
Lnm

+ . . .+ n2x−2
H

n2x−3
L nm

)

+ 2mβL

(
n2x

H

n2x−1
L nm

+ n2x−1
L nm

n2x
H

)

where we have combined similar terms due to the two mirrors and where the final
term is due to the spacer. The first four terms are geometric series and therefore,
since (nL/nH ) < 1,

∑
A = 2βH

nm

nH

[1 − (nL/nH )
2x]

[1 − (nL/nH )2]

+ 2βH
n2x−1

H

n2x−2
L nm

[1 − (nL/nH )
2x−2]

[1 − (nL/nH )2]

+ 2βL
nLnm

n2
H

[1 − (nL/nH )
2x−2]

[1 − (nL/nH )2]

+ 2βL
n2x−2

H

n2x−3
L nm

[1 − (nL/nH )
2x−2]

[1 − (nL/nH )2]

+ 2mβL

[
n2x

H

n2x−1
L nm

+ n2x−1
L nm

n2x
H

]
.

(nL/nH ) will usually be rather less than unity and x will normally be large and
so we can make the usual approximations and neglect terms such as (n L/nH )

2x
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in the numerators and also those terms which have (nm/nH ) as a factor compared
with (nL/nm)(nH/nL)

2x−1 etc. Then the expression simplifies to

∑
A = 2βH

n2x−1
H

n2x−2
L nm

1

[1 + (nL/nH )2]

+ 2βL
n2x−2

H

n2x−3
H nm

1

[1 + (nL/nH )2]

+ 2mβL
n2x

H

n2x−1
L nm

.

But

βH = 2πnH d

λ

kH

nH
= π

2

kH

nH

βL = π

2

kL

nL
.

Thus

∑
A = πkH (n2x

H /nmn2x−2
L )+ πkL(n2x

H /nmn2x−2
L )

(n2
H − n2

L)
+ πmkLn2x

H

n2x
L nm

= πn2x
H

nmn2x
L

(
n2

LkH + n2
LkL

(n2
H − n2

L)
+ mkL

)
.

The absorption is then given by A = (1 − R)
∑
A. If the incident medium has

index n0, then, since the terminating admittance in table 7.2 is nm,

R =
(

n0 − nm

n0 + nm

)2

and therefore

(1 − R) = 4n0nm

(n0 + nm)2
.

The above expression for
∑
A should, therefore, be multiplied by the factor

4n0nm/(n0+nm)
2 to yield the absorption. However, the filters should be designed

so that they are reasonably well matched into the incident medium and therefore
this factor will be unity, or sufficiently near unity. The absorption is then given by∑
A. That is:

A = πn2x
H

nmn2x
L

(
n2

LkH + n2
LkL

(n2
H − n2

L)
+ mkL

)
(7.24)

for low-index spacers.
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For high-index spacers we work through a similar scheme and, with the same
approximations, we arrive at

A = πn2x
H

nmn2x
L

(
n2

LkH + n2
H kL

(n2
H − n2

L)
+ mkH

)
(7.25)

for high-index spacers.
It should be noted that, since x is the number of high-index layers, the

filter represented by equation (7.25) will be narrower than that represented by
equation (7.24) for equal x.

A useful set of alternative expressions can be obtained if we substitute
equations (7.22) and (7.23) into equations (7.24) and (7.25) to give:

High-index spacer

A = 4
λ0

�λh

{kL + kH [m + (1 − m)(nL/nH )
2]}

(nH + nL)[m + (1 − m)(nL/nH )]
. (7.26)

Low-index spacer

A = 4
λ0

�λh

{kL(nH/nL)[m + (1 − m)(nL/nH )
2] + (nL/nH )kH }

(nH + nL)[m + (1 − m)(nL/nH )]
. (7.27)

Figure 7.10 shows the value of A plotted for Fabry–Perot filters with n H =
2.35 and nL = 1.35, typical of zinc sulphide and cryolite. (λ0/�λh) is taken
as 100 and kH and kL as either zero of 0.0001. The effect of other values of
(λo/�λh) or k can be estimated by multiplying by an appropriate factor. The
approximations are reasonable for k(λ0/�λh) less than around 0.1.

It is difficult to draw any general conclusions from figure 7.10 because the
results depend on the relative magnitudes of k H and kL . However, except in the
case of very low kL , the high-index spacer is to be preferred. There are very good
reasons connected with performance when tilted, with energy grasp and with the
manufacture of filters, for choosing high- rather than low-index spacers.

In the visible and near infrared regions of the spectrum, materials such as
zinc sulphide and cryolite are capable of halfwidths of less than 0.1 nm with
useful peak transmittance. Uniformity is, however, a major difficulty for filters of
such narrow bandwidths. At the 90%-of-peak points, the Fabry–Perot filter has a
width which is one-third of the halfwidth. It is a good guide that the uniformity
of the filter should be such that the peak wavelength does not vary by more than
one-third of the halfwidth over the entire surface of the filter. This means that the
effective increase in halfwidth due to the lack of uniformity is kept within some
4.5% of the halfwidth and the reduction in peak transmittance to less than 3%
(these figures can be calculated using the expressions derived later for assessing
the performance of filters in uncollimated incident light). For filters of less than
0.1 nm halfwidth this rule implies a variation of not more than 0.03 nm or 0.006%
in terms of layer thickness, a very severe requirement even for quite small filters.
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Figure 7.10. The value (expressed as a percentage) of the absorptance, as a function of
the order number m, of Fabry–Perot filters with λ0/�λh of 100 and values of extinction
coefficients kH and kH L of 0.0001 or zero. Other values can be accommodated by
multiplying by an appropriate factor. nH is taken as 2.35 and nL as 1.35. The results
are derived from equations (7.26) and (7.27).

Halfwidths of 0.3–0.5 nm are less demanding and can be produced more readily
provided considerable care is taken. For narrower filters use is often made of the
solid etalon filters now to be described.

7.2.3 The solid etalon filter

A solid etalon filter, or, as it is sometimes called, a solid spacer filter, is a
very high-order Fabry–Perot filter in which the spacer consists of an optically
worked plate or a cleaved crystal. Thin-film reflectors are deposited on either
side of the spacer in the normal way, so that the spacer also acts as the substrate.
The problems of uniformity which exist with all-thin-film narrowband filters are
avoided and the thick spacer does not suffer from the increased scattering losses
which always seem to accompany the higher-order thin-film spacers. The solid
etalon filter is very much more robust and stable than the conventional air-spaced
Fabry–Perot etalon, while the manufacturing difficulties are comparable. The
high order of the spacer implies a small interval between orders and a conventional
thin-film narrowband filter must be used in series with it to eliminate the unwanted
orders.

An early account of the use of mica for the construction of filters of this
type is that of Dobrowolski [6] who credits Billings with being the first to use
mica in this way, achieving halfwidths of 0.3 nm. Dobrowolski obtained rather
narrower pass bands and his is the first complete account of the technique. Mica
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can be cleaved readily to form thin sheets with flat parallel surfaces, but there
is a complication due to the natural birefringence of mica which means that the
position of the pass band depends on the plane of polarisation. This splitting of
the pass band can be avoided by arranging the thickness of the mica such that it
is a half-wave plate, or multiple half-wave, at the required wavelength. If the two
refractive indices are n0 and ne, this implies

2π(n0 − ne)d

λ
= pπ p = 0, ±1, ±2, . . . .

The order of the spacer will then be given by

m = n0 p

(n0 − ne)
or

ne p

(n0 − ne)

depending on the plane of polarisation. The difference between these two values
is p, but, since p is small, the bandwidth will be virtually identical. The separation
of orders for large m is given approximately by λ/m. Dobrowolski found that the
maximum order separation, corresponding to p = 1, was given by 1.64 nm at
546.1 nm. With such spacers, around 60 µm thick, filters with halfwidths around
0.1 nm, the narrowest 0.085 nm, were constructed. Peak transmission ranged
up to 50% for the narrower filters and up to 80% for slightly broader ones with
around 0.3 nm halfwidth.

More recent work on solid etalon filters has concentrated on the use of
optically worked materials as spacers. These must be ground and polished so that
the faces have the necessary flatness and parallelism. The most complete account
so far of the production of such filters is by Austin [7]. Fused silica spacers as
thin as 50µm have been produced with the necessary parallelism for halfwidths as
narrow as 0.1 nm in the visible region, while thicker discs can give bandwidths as
narrow as 0.005 nm. A 50-µm fused silica spacer gives an interval between orders
of around 1.4 nm in the visible region which allows the suppression of unwanted
orders to be fairly readily achieved by conventional thin-film narrowband filters.

The process of optical working tends to produce an error in parallelism over
the surface of the spacer which is ultimately independent on the thickness of
the spacer. Let us denote the total range of spacer thickness due to this lack
of parallelism and to any deviation from flatness by �d. This variation in spacer
thickness causes the peak wavelength of the filter to vary. We can take an absolute
limit for these variations as half the bandwidth of the filter. Then the resultant
halfwidth will be increased by just over 10% and the peak transmittance reduced
by just over 7% (once again using the expressions which we will shortly establish
for filter performance in uncollimated light). We can write

�λ0/λ0 = �D/D = �d/d ≤ 0.5�λh/λ0

where D is the optical thickness nd of the spacer, �λ0 is the error in peak
wavelength and �λh is the halfwidth. But

Resolving power = λ0/�λh = mF
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and hence, since

D = mλ0/2

F ≤ 0.25λ0

�D
.

Now the attainable �D in the visible region is of the order of λ/100 and this
means that the limiting finesse is around 25, independent of the spacer thickness.
High resolving power then has to be achieved by the order number m which
determines both the spacer thickness D = mλo/2 and the interval between orders
λ0/m. For a halfwidth of 0.01 nm at, say, 500 nm the resolving power is 50 000.
The finesse of 25 implies an order number of 2000, a spacer optical thickness of
500 µm and an interval between orders of 0.25 nm. This very restricted range
between orders means that it is very difficult to carry out sideband blocking by a
thin-film filter directly. Instead, a broader solid etalon filter can be used with its
corresponding greater interval between orders. It, in its turn, can be suppressed by
a thin-film filter. For a halfwidth of 0.1 nm, a spacer optical thickness of 50 µm
is required which gives an interval between orders of 2.5 nm.

The temperature coefficient of peak wavelength change of solid etalon filters
with fused silica spacers is 0.005 nm ◦C−1 and the filters may be finely tuned by
altering this temperature.

Candille and Saurel [8] have used Mylar foil as the spacer. Their filters were
strictly of the multiple cavity type described later in this chapter. The Mylar acted
as a substrate and a high-order spacer. One of the reflectors included a low-order
Fabry–Perot filter which served both as blocking filter to eliminate the additional
unwanted orders of the Mylar section and as an additional cavity to steepen the
sides of the pass band. The position of the pass band could be altered by varying
the tension in the Mylar. The filters were not as narrow as the other solid etalon
filters which have been mentioned, halfwidths of 0.8–1.0 nm being obtained.

Solid etalon filters have also been constructed for the infrared. Smith and
Pidgeon [9] used a polished slab of germanium some 780 µm thick working at
around 700 cm−1 in the 400th order. Both faces were coated with a quarter-
wave of zinc sulphide followed by a quarter-wave of lead telluride to give a
reflectance of 62%, a fringe halfwidth of 0.1 cm−1 and an interval between orders
of 1.6 cm−1. This particular arrangement was designed so that the lines in the
R-branch of the CO2 spectrum, which are spaced at 1.6 cm−1 apart at around
14.5 µm, should be exactly matched by a number of adjacent orders. Order
sorting was not, therefore, a problem.

Roche and Title [10] have reported a range of solid etalon filters for the
infrared. These filters are some 13 mm in diameter, have resolving powers in the
region of 3×104 and the techniques used for their construction are as reported by
Austin [7]. For wavelengths equal to or shorter than 3.5 µm, fused silica spacers
are quite satisfactory. For longer wavelengths Yttralox, a combination of yttrium
and thorium oxides, was found most satisfactory. With this material, solid etalon
filters were produced which at 3.334 µm had halfwidths as low as 0.2 nm and at
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4.62 µm, 0.8 nm. At these wavelengths, the attainable finesse was 30–40 and the
current limit to the halfwidth which can be achieved is the permissible interval
between orders which determines the arrangement of subsidiary blocking filters.

7.2.4 The effect of varying the angle of incidence

As we have seen with other types of thin-film assembly the performance of the all-
dielectric Fabry–Perot varies with angle of incidence, and this effect is particularly
important when considering, for instance, the allowable focal ratio of the pencil
being passed by the filter or the maximum tilt angle in any application. The
variation with angle of incidence is not altogether a bad thing because the effect
can be used to tune filters which would otherwise be off the desired wavelength—
very important from the manufacturer’s point of view because it enables him to
ease a little the otherwise almost impossibly tight production tolerances.

The effect of tilting has been studied by a number of workers, particularly
by Dufour and Herpin [11], Lissberger [12], Lissberger and Wilcock [13] and
Pidgeon and Smith [14]. For our present purposes we follow Pidgeon and Smith
since their results are in a slightly more suitable form.

7.2.4.1 Simple tilts in collimated light

The phase thickness of a thin film at oblique incidence is

δ = 2πndcos θ/λ

which can be interpreted as an apparent optical thickness of ndcos θ which varies
with angle of incidence so that layers seem thinner when tilted. Although the
optical admittance changes with tilts, in narrowband filters the predominant effect
is the apparent change in thickness which moves the filter pass band to shorter
wavelengths.

For a ideal Fabry–Perot filter with spacer layer index n∗, where the reflectors
have constant phase shift of zero or π regardless of the angle of incidence or
wavelength, we can write for the position of peak wavelength in the mth order

2πn∗ cos θ/λ = mπ

i.e.

(2πn∗d/λ0) g cos θ = mπ

i.e.

g cos θ = 1

�g =
(

1

cos θ
− 1

)
.
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If the angle of incidence is θi in air then

θ = sin−1(sin θi/n∗)

and �g is given in terms of θi and n∗. The effect of tilting, then, in this ideal
filter can be estimated simply from a knowledge of the index of the spacer and the
angle of incidence. For small angles of incidence, the shift is given by

�g = �ν/ν0 = �λ/λ0 = θ2
i /2n∗2. (7.28)

The index of the spacer n∗ determines its sensitivity to tilt: the higher the index,
the less the filter is affected.

In the case of a real filter, the reflectors are also affected by the tilting and so
the calculation of the shift in peak wavelength is more involved. It has, however,
been shown by Pidgeon and Smith that the shift is similar to that which would
have been obtained from an ideal filter with spacer index n∗, intermediate between
the high and low indices of the layers of the filter. n∗ is known as the effective
index. This concept of the effective index holds good for quite high angles of
incidence, up to 20◦ or 30◦ or even higher, depending on the indices of the layers
making up the filter.

We can estimate the effective index for the filter by a technique similar to
that already used for metal–dielectrics (equation (7.3)). We retain our assumption
of small angle of incidence and small changes in g around the value which
corresponds to the peak at normal incidence.

The peak position is given, as before, by

sin2[(2πndcos θ/λ)− φ] = 0 (7.29)

with, at normal incidence

sin2[(2πnd/λ0)− φ0] = 0. (7.30)

Now φ0 is 0 or π and so equation (7.30) is satisfied by

2πnd/λ0 = mπ m = 0, 1, 2, . . . .

The analysis is once again easier in terms of g (= λ0/λ = ν/ν0). Equation (7.29)
becomes

sin2[(2πnd/λ0)g cos θ − φ0 −�φ] = 0. (7.31)

We write

g = 1 +�g and cos θ � 1 − θ 2/2.

However, we should work in terms of θ i, the external angle of incidence, which we
assume is referred to free space (if not, then we make the appropriate correction).
Then

n sin θ = ni sin θi = sin θi
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and, using equation (7.31),

sin2[(2πnd/λ0)− φ0 + mπ�g − (mπθ2
i /2n2)−�φ] = 0

is the condition for the new peak position. This requires

mπ�g − (mπθ2
i /2n2)−�φ = 0. (7.32)

Now �φ is a function of θ and�g and to evaluate it we return to equations (7.20)
and (7.21). The layers in the reflectors are all quarter-waves and so ε is given by

π/2 + ε = (2πnd/λo)g cos θ = (π/2)(1 +�g)(1 − θ 2/2)

but

θ = θi/n

so that

ε = (π/2)�g − πθ2
i /4n2

with n being either nL or nH for εL or εH respectively.
At this stage we are forced to consider high-index and low-index spacers

separately.

7.2.4.2 Case I: high-index spacers

From equation (7.20) we have, inserting n H for n0,

�φ = − 2n2
L

(n2
H − n2

L)
εH − 2nH nL

(n2
H − n2

L)
εL

= 2n2
L

(n2
H − n2

L)

(
π

2
�g − πθ2

i

4n2
H

)
− 2nH nL

(n2
H − n2

L)

(
π

2
�g − πθ2

i

4n2
L

)

= − πnL

(nH − nL)
�g + π

2

(n2
L − nLnH + n2

H )

n2
H nL(nH − nL)

θ2
i

and equation (7.32) becomes

mπ�g − mπθ2
i

2n2
H

+ πnL�g

(nH − nL)
− π

2

(n2
L − nLnH + n2

H )

n2
H nL(nH − nL)

θ2
i = 0

giving, after some manipulation and simplification

�g = 1

n2
H

[(m − 1)− (m − 1)(nL/nH )+ (nH/nL)]

[m − (m − 1)(nL/nH )]

(
θ2

i

2

)
.
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But, comparing the expression with equation (7.28) we find

n∗2 = n2
H [m − (m − 1)(nL/nH )]

[(m − 1)− (m − 1)(nL/nH )+ (nH/nL)]

or

n∗ = nH

(
m − (m − 1)(nL/nH )

(m − 1)− (m − 1)(nL/nH )+ (nH/nL)

)1/2

. (7.33)

For first-order filters
n∗ = (nH nL)

1/2 (7.34)

which is the result obtained by Pidgeon and Smith. As m → ∞ then n∗ → nH ,
as we would expect.

7.2.4.3 Case II: low-index spacer

The analysis is exactly as for case I except that equation (7.21) is used and the n
in equation (7.32) becomes nL :

n∗ = nL

(
m − (m − 1)(nL/nH )

m − m(nL/nH )+ (nL/nH )2

)1/2

. (7.35)

For first-order filters

n∗ = nL

[1 − (nL/nH )+ (nL/nH )2]1/2
(7.36)

which is, again, the expression given by Pidgeon and Smith and we note again
that as m → ∞ then n∗ → nL .

Typical curves showing how the effective index n∗ varies with order number
for both low- and high-index spacers are given in figure 7.11.

Pidgeon and Smith made experimental measurements on narrowband filters
for the infrared. The designs in question were

(a) L|Ge|L H L H LL H L H |Air

(b) L|Ge|L H L H L H H L H L H |Air

where H represents a quarter-wave thickness of lead telluride and L of zinc
sulphide, and where the peak wavelength was in the vicinity of 15 µm.
Calculations of shift were carried out by the approximate method using n ∗ and by
the full matrix method without approximations. The results using n ∗ matched the
accurate calculations up to angles of incidence of 40 ◦ to an accuracy representing
±2% change in n∗. The experimental points showed good agreement with the
theoretical estimates. Some of the results are shown in figures 7.12 and 7.13.

The angle of incidence may be in a medium other than free space, in which
case equation (7.28) becomes

�g = �λ0/λ = �ν0/ν = 1
2 (niθi/n∗)2 (7.37)
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Figure 7.11. The effective index n∗ plotted against order number m for Fabry–Perot filters
constructed of materials such as zinc sulphide, n = 2.35, and cryolite, n = 1.35. The
results were calculated from expressions (7.35) and (7.36).

Figure 7.12. The shift of peak wavenumber with scanning angle for two Fabry–Perot
filters in collimated light. In both cases the monolayer curves fit the computed curves to
±2% in n. (After Pidgeon and Smith [14].)
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Figure 7.13. Measured transmittance of two filters of type (b). Design: Air
|H L H L H H L H L H L|Ge substrate |L|Air (H = PbTe, L = ZnS). (After Pidgeon and
Smith [14].)

where θi is measured in radians.
If θi is measured in degrees, then

�g = �λ0/λ = �ν0/ν0 = 1.5 × 10−4(ni/n∗)2θ2
i . (7.38)

7.2.4.4 Effect of an incident cone of light

The analysis can be taken a stage further to arrive at expressions for the
degradations of peak transmission and bandwidth which become apparent when
the incident illumination is not perfectly collimated. Essentially the same results
have been obtained by Lissberger and Wilcock [13] and by Pidgeon and Smith
[14].

It is assumed first of all that, in collimated light, the sole effect of tilting
a filter is a shift of the characteristic towards shorter wavelengths or greater
wavenumbers, leaving the peak transmittance and bandwidth virtually unchanged.
The performance in convergent or divergent light is then given by integrating
the transmission curve over a range of angles of incidence. The analysis is
simpler in terms of wavenumber or of g, rather than wavelength. If ν 0 is the
wavenumber corresponding to the peak at normal incidence and ν � to the peak at
angle of incidence�, then it is plausible that the resultant peak, when all angles of
incidence in the cone from 0 to � are included, should appear at a wavenumber
given by the mean of the above extremes. We shall show, shortly, that this is
indeed the case. The new peak is given by

νm = ν0 + 1
2�ν

′ (7.39)
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where

�ν′ = ν� − ν0 = ν0�
2/2n∗2.

The effective bandwidth of the filter will, of course, appear broader and, since the
process is, in effect, a convolution of a function with bandwidth W0, which is the
width of the filter at normal incidence, and another function with bandwidth �ν ′,
the change in peak position produced by altering the angle of incidence from 0 to
�, it seems likely that the resultant bandwidth might be given by the square root
of the sum of their squares. This too is indeed the case, as we shall also show.

W2
� = W2

0 + (�ν′)2. (7.40)

The peak transmission falls and is given by

T̂� =
(

W0

�ν′

)
tan−1

(
�ν′

W0

)
. (7.41)

The analysis is as follows.
We consider incident light in the form of a cone with semiangle �, that is a

cone of focal ratio 1/(2 tan�). We assume that in collimated light the effect of
tilting the filter is simply to move the characteristic towards shorter wavelengths,
leaving the bandwidth and peak transmittance unchanged.

For small values of θ , the flux incident on the filter is proportional to θdθ .
The resultant transmittance of the filter is then given by the total flux transmitted
divided by the total flux incident.

The total flux incident is proportional to∫ �

0
θdθ = 1

2�
2.

The total flux transmitted is proportional to∫ �

0
θTdθ.

We can, for small values of θ and �g, set

T = 1

1 − {(2/�gh)[�g − (θ2
i /2n∗2)]}2

where �gh is the halfwidth at normal incidence of the filter in units of g. This
expression follows directly from the concept of n∗. The transmittance of the filter
is then given by

T = 2

�2

∫ �

0

θdθ

1 + {(2/�gh)[�g − (θi/2n∗2)]}2
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= − 2

�2

n∗2�gh

2

[
tan−1

{
2

�gh

(
�g − θi

2n∗2

)}]�
0

= 1

2

�gh

(�2/2n∗2)

{
tan−1

(
2
�g

�gh

)
− tan−1

[
2

(
�g

�gh
− �2

2n∗2

1

�gh

)]}
(7.42)

= 1

2

�gh

(�2/2n∗2)

[
tan−1

(
(2/�gh)(�

2/2n∗2)

1 + (2/�gh)2{�g[�g − (�2/2n∗2)]}
)]

.

(7.43)

This is a maximum when

�g = 1

2

�2

2n∗2 .

But�2/(2n∗2) is the shift in the position of the peak at angle of incidence�. Thus
in a cone of light of semiangle �, the peak wavelength of the filter is given by the
mean of the value at normal incidence and that at the angle � corresponding to
equation (7.39). The value of the peak transmittance is then, from equation (7.42),

�gh

(�2/2n∗2)
tan−1

(
�2/2n∗2

�gh

)

which corresponds to equation (7.41).
The half-peak points are given by

(7.43) = 1
2 (peak T)

i.e.

1

2
· �gh

(�2/2n∗2)
tan−1

(
(2/�gh)(�

2/2n∗2)

1 + (2/�gh)2{�g[�g − (�2/2n∗2)]}
)

= 1

2

�gh

(�2/2n∗2)
tan−1

(
�2/2n∗2

�gh

)

which is satisfied by

1 +
(

2

�gh

)[
�g

(
�g − �2

2n∗2

)]
= 2

i.e.

�g

(
�g − �2

2n∗2

)
−
(
�gh

2

)2

= 0.

We are interested in the difference between the roots of the equation which
is the width of the characteristic

(�g1 −�g2) =
[(

�2

2n∗2

)2

+ (�gh)
2
]1/2
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which corresponds exactly to equation (7.40).
Since

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ . . . for |x| ≤ 1

for small values of (�v ′/W0) we can write

T̂� = 1 − 1

3

(
�ν′

W0

)2

. (7.44)

If F R denotes the focal ratio of the incident light, then, for values of around 2 to
infinity, it is a reasonably good approximation that

� = 1/[2(F R)].

Using this, we find another expression for �ν ′ which can be useful:

�ν′ = ν0

8n∗2(F R)2
.

We can extend this analysis still further to the case of a cone of semiangle
� incident at an angle other than normal, provided we make some simplifying
assumptions. If the angle of incidence of the cone is χ then the range of angles of
incidence will be χ ±�.

If χ < � then we can assume that the result is simply that for a normally
incident cone of semiangle χ +�.

If χ > � then we have three frequencies, ν0 corresponding to normal
incidence, ν1 to angle of incidence χ − �, and ν2 to angle of incidence χ + �.
The new filter peak can be assumed to be

1

2
(ν1 + ν2) = χ2 +�2

2n∗2
ν0 (χ and � in radians)

= 1.52 × 10−4(χ2 +�2)

n∗2
ν0 (χ and � in degrees). (7.45)

The halfwidth is

[W2
0 + (ν2 − ν1)

2]1/2

where

(ν2 − ν1) = 2χ�

n∗2
ν0 (χ and θ in radians)

= 6.09 × 10−4χ�

n∗2
ν0 (χ and � in degrees) (7.46)
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and the peak transmittance is

W0

(ν2 − ν1)
tan−1

(
(ν2 − ν1)

W0

)
� 1 − 1

3

(
(ν2 − ν1)

W0

)2

. (7.47)

(ν2 − ν1) is proportional to �χ and Hernandez [15] has found excellent
agreement between measurements made on real filters and calculations from these
expressions for values of �χ up to 100◦2

.
We can illustrate the use of these expressions in calculating the performance

of a zinc sulphide and cryolite filter for the visible region. We assume that this is
a low-index first-order filter with a bandwidth of 1%.

For this filter we calculate that n∗ = 1.55. We take 10% reduction in peak
transmittance as the limit of what is acceptable. Then, from equation (7.47)

(ν2 − ν1)/W0 = 0.55

and the increased halfwidth which corresponds to this reduction in peak
transmittance is

(1 + 0.552)1/2W0 = 1.14W0

or an increase of 14% over the basic width.
At normal incidence, the cone semiangle which can be tolerated is given by

1.5 × 104(�2/n∗2) = �ν = 0.55W0 = 0.55 × 0.01 (� in degrees)

i.e.

� = [1.552 × 0.55 × 0.01/(1.5 × 10−4)]1/2 = 9.4◦.

Such a cone at normal incidence will cause a shift in the position of the peak
towards shorter wavelengths or higher frequencies of

1
2 (�ν

′/ν0) = ( 1
2 × 0.55 × 0.01) = 0.275%.

Used at oblique incidence in a cone of illumination we have

(6.09 × 10−4χ�/n∗2)ν0 = ν2 − ν1 = 0.55 × 0.01

i.e.

χ� = 1.552 × 0.55 × 0.01

6.09 × 10−4
= 21.7◦2

which means that the filter can be used in a cone of semiangle 2 ◦ up to an angle
of incidence of 21.7/2 = 10.9◦ of of semiangle 3◦ up to an angle of incidence of
7◦ and so on.

One very important result is the shift in peak wavelength in a cone at normal
incidence which indicates that if a filter is to be used at maximum efficiency in
such an arrangement, its peak wavelength at normal incidence in collimated light
should be slightly longer to compensate for this shift.
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7.2.5 Sideband blocking

There is a disadvantage in the all-dielectric filter: the high-reflectance zone of
the reflecting coating is limited in extent and hence the rejection zone of the
filter is also limited. In the near ultraviolet, visible and near infrared regions,
the transmission sidebands on the shortwave side of the peak can usually be
suppressed, or blocked, by an absorption filter with a longwave-pass characteristic
in the same way as for metal–dielectric filters. The longwave sidebands are more
of a problem. These may be outside the range of sensitivity of the detector and
therefore may not require elimination, but if they are troublesome then the usual
technique for removing them is the addition of a metal–dielectric first-order filter
with no longwave sidebands. It is usually very much broader than the narrowband
component in order that the peak transmittance may be high. The metal–dielectric
component is usually added as a separate component, but it can be deposited over
the basic Fabry–Perot. Rather than a simple Fabry–Perot filter, a double cavity
metal–dielectric is commonly used. Multiple cavity filters are the next topic of
discussion.

7.3 Multiple cavity filters

The transmission curve of the basic all-dielectric Fabry–Perot filter is not of
ideal shape. It can be shown that one half of the energy transmitted in any
order lies outside the halfwidth (assuming an even distribution of energy with
frequency in the incident beam). A more nearly rectangular curve would be a great
improvement. Further, the maximum rejection of the Fabry–Perot is completely
determined by the halfwidth and the order. The broader filters, therefore, tend to
have poor rejection as well as a somewhat unsatisfactory shape.

When tuned electric circuits are coupled together, the resultant response
curve is rather more rectangular and the rejection outside the pass band rather
greater than a single tuned circuit, and a similar result is found for the Fabry–Perot
filter. If two or more of these filters are placed in series, much the same sort of
double peaked curve is obtained; it has, however, a much more promising shape
than the single filter. The filters may be either metal–dielectric or all-dielectric
and the basic form is

|reflector|half-wave|reflector|half-wave|reflector|
known as a double half-wave or DHW filter or as a double cavity or two-cavity
filter. Some typical examples of all-dielectric DHW or two-cavity filters are shown
in figure 7.14.

Such filters were certainly constructed by A F Turner and his co-workers
at Bausch and Lomb in the early 1950s but the results were published only as
quarterly reports in the Fort Belvoir Contract Series over the period 1950–68
[16]. The earliest filters were of the triple half-wave type, known at Bausch
and Lomb as WADIs (wide-band all-dielectric interference filters) [17]. Double
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Figure 7.14. (a) Computed transmittance of H LL H L H LL H . (b) Computed
transmittance of H L H H L H L H H L H . In both cases nH = 4.0 and nL = 1.35. (After
Smith [18].)

half-wave, or two-cavity, filters came later but were in routine use at Bausch
and Lomb certainly by 1957. They were initially known as TADIs. The Fort
Belvoir Contract1 Reports make fascinating reading and show just how advanced
the work at Bausch and Lomb was at that time. Use was being made of the
concept of equivalent admittance for the design both of WADI filters and of the
edge filters for blocking the sidebands. Multilayer antireflection coatings were
also well understood.

The first complete account of a theory applicable to multiple half-wave filters
was published by Smith [18] and it is his method that we follow first here.

The reflecting stacks in the classical Fabry–Perot filter have more or less
constant reflectance over the pass band of the filter. A dispersion of phase change
on reflection does, as we have seen, help to reduce the bandwidth, but this does
so without altering the basic shapes of the pass-band shape. Smith suggested the
idea of using reflectors with much more rapidly varying reflectance to achieve a
better shape. The essential expression for the transmission of the complete filter
has already been derived on p 75 where we have assumed β = 0, that is, no
absorption in the spacer layer. From Smith’s formula, equation (2.149),

T = |τ+
a |2|τ+

b |2
(1 − |ρ−

a ||ρ+
b |)2

[
1 + 4|ρ−

a ||ρ+
b |

(1 − |ρ−
a ||ρ+

b |)2 sin2 φa + φb − 2δ

2

]−1

(7.48)

it can be seen that high transmission can be achieved at any wavelength if, and
only if, the reflectances on either side of a chosen spacer layer are equal. Of
course the phase condition must be met too, but this can be arranged by choosing

1 These reports were obtainable from the Engineer Research and Development Laboratories, Fort
Belvoir, Virginia 22060, USA, but are now out of print.
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Figure 7.15. Computed transmittance of H H L H H and explanatory reflectance curves R1
and R2 (nH = 4.0, nL = 1.35). (After Smith [18].)

the correct spacer thickness to make∣∣∣∣φa + φb

2
− δ

∣∣∣∣ = mπ.

In these expressions, the symbols have the same meanings as given in figure 2.19.
Smith pointed out the advantage of having reasonably low reflectance in the

region around the peak wavelength, which means that absorption is less effective
in limiting the peak transmittance. In the Fabry–Perot filter, low reflectance
means wide bandwidth, but Smith limited the bandwidth by arranging for the
reflectances to begin to differ appreciably at wavelengths only a little removed
from the peak. This is illustrated in figure 7.15. The figure shows what is the
simplest type of DHW filter, which has construction H H L H H . The H H layers
are the two half-wave spacers and the L layer is a coupling layer. In the discussion
which follows, for simplicity we shall ignore any substrate. The behaviour of the
filter is described in terms of the reflectances on either side of one of the two
spacers. R1 is the reflectance of the interface between the high index and the
surrounding medium, which we take as air with index unity, and is a constant.
R2 is the reflectance of the assembly on the other side of the spacer and is low
at the wavelength at which the spacer is a half-wave and rises on either side. At
wavelengths λ′ and λ′′, the reflectances R1 and R2 are equal and we would expect
to see high transmission if the phase condition is met, which in fact it is. The
transmission of the assembly is also shown in the figure and the shape can be seen
to consist of a steep-sided pass band with two peaks close together and only a
slight dip in transmission between the peaks, much more like the ideal rectangle
than the shape of the Fabry–Perot filter.

Smith’s formula for the transmittance of a filter can be written:

T(λ) = T0(λ)
1

1 + F(λ) sin2[(φ1 + φ2)/2 − δ]
(7.49)
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Figure 7.16. T0(λ) and F(λ) for H H L H H . (After Smith [18].)

where

T0(λ) = (1 − R1)(1 − R2)

[1 − (R1 R2)1/2]2 (7.50)

F(λ) = 4(R1 R2)
1/2

1 − (R1 R2)1/2]2
. (7.51)

Both these quantities are now variable since they involve R2, which is a variable.
The form of the functions is also shown in figure 7.16. At wavelengths removed
from the peak, T0(λ) is low and F(λ) is high, the combined effect being to
increase the rejection. In the region of the peak, T0 is high, and, just as important,
F is low, producing high transmittance which is not sensitive to the effects of
absorption. As we have shown before, the peak transmittance is dependent on
the quantity A/T , where A is the absorptance and T the transmittance of the
reflecting stacks. Clearly, the greater T is, the higher A can be for the same
overall filter transmittance.

The typical double-peaked shape of the double half-wave filter results from
the intersection of the R1 and R2 curves at two separate points. Two other cases
can arise. The curves can intersect at one point only, in which case the system has
a single peak whose transmittance is theoretically unity, or the curves may never
intersect at all, in which case the system will show a single peak of transmittance
rather less than unity, the exact magnitude depending on the relative magnitudes
of R1 and R2 at their closest approach. This third case is to be avoided in design.
For the twin-peaked filter, a requirement is that the trough in the centre between
the two peaks should be shallow, which means that R1 and R2 should not be very
different at λ0.

Having examined the simplest type of DHW filter, we are in a position to
study more complicated ones. What we have to look for is a system of two
reflectors, where one of the reflectors remains reasonably constant over the range
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Figure 7.17. The construction of a DHW filter.

of interest and where the other should be equal, or nearly equal, to the first
over the pass-band region, but should increase sharply outside the pass band.
The straightforward Fabry–Perot filter has effectively zero reflectance at the peak
wavelength, but the reflectance rapidly rises on either side of the peak. If, then, a
simple quarter-wave stack is added to the Fabry–Perot, the resultant combination
should have the desired property, that is, the reflectance equal to that of the
simple stack at the centre wavelength and increasing sharply on either side. We
can therefore use a simple stack as one reflector, with more or less constant
reflectance, on one side of the spacer, and, on the other side, an exactly similar
stack combined with a Fabry–Perot filter. This will result in a single-peaked filter
since the reflectances in this way will be exactly matched at λ0. The double-
peaked transmission curve will be obtained if the reflectance of the stack plus the
Fabry–Perot filter is arranged to be just a little less than the reflectance of the
stack by itself. This is the arrangement that is more often used and it involves the
insertion of an extra quarter-wave layer between the stack and the Fabry–Perot.
This layer appears as a sort of coupling layer in the filter. Figure 7.17 should make
the situation clear.

So far we have not given any consideration to the substrate of the filter.
The substrate will be on one side of the spacer and will alter the reflectance on
that side. This change in reflectance can easily be calculated, particularly if the
substrate is considered to be on the same side of the spacer as the simple stack.
The constant reflectance R1 of the simple stack will generally be large, and if
the substrate index is given by ns, then the transmittance of the stack on its own,
(1 − R1), will become either (1 − R1)/ns if the index of the layer next to the
substrate is low, or ns(1 − R1) if it is high.

Since this change in reflectance could be considerable, especially if n s is
large, the substrate must be taken into account in the design and this should be
done right from the beginning. The substrate can be considered part of the simple
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stack and R1 can be adjusted to include it. Provided the reflectances of the two
assemblies on either side of the spacer layer are arranged always to be equal at
the appropriate wavelengths, the transmittance of the complete filter will be unity.

For example, let us consider the case of a filter deposited on a germanium
substrate using zinc sulphide for the low-index layers and germanium for the
high ones. Let the spacer be of low index and let the reflecting stack on the
germanium substrate be represented by Ge|L H LL, where the LL layer is the
spacer. The transmittance of the stack into the spacer layer will be approximately
T1 = 4n3

L/n2
H nGe, which, since the substrate is the same material as the high-

index layer, becomes 4n3
L/n3

H . On the other side of the spacer layer we make a
start with the combination LL H L H |air, representing the basic reflecting stack,
where LL once again is the spacer layer. This has transmission T2 = 4n3

L/n4
H ,

which is 1/nH times T1. Clearly this is too unbalanced and an adjustment to
this second stack must be made. If a low-index layer is added next to the air,
then the transmission becomes T2 = 4n5

L/n4
H . Since n2

L is approximately equal
to the index of germanium, the transmittances T1 and T2 are now equal and the
Fabry–Perot filter can be added to the second stack to give the desired shape to the
reflectance curve. The Fabry–Perot can take any form, but it is convenient here to
use a combination almost exactly the same as the combination of two stacks and
a spacer layer which has already been arrived at. The complete design of the filter
is then:

Ge|L H LL H L H L H L H LL H L H |air

and the performance of the filter is shown in figure 7.18.
An alternative way of checking whether or not the filter is going to have high

transmission uses the concept of absentee half-wave layers. The layers in DHW

filters are usually either of quarter- or half-wave thickness at the centre of the
pass band, as in the above filter, and we can take it as an example to illustrate
the method. First we note that the two spacers are both half-wave layers and that
they can be eliminated without affecting the transmission. The filter, at the centre
wavelength, will have the same transmittance as

Ge|L H H L H L H L H H L H |air.

In this there are two sets of H H layers which can be eliminated in the same way,
leaving two sets of LL layers which can be removed in their turn. Almost all the
layers in the filter can be eliminated in this way leaving ultimately

Ge|L|air.

As we already know, a single quarter-wave of zinc sulphide is a good
antireflection coating for germanium, and so the transmittance of the filter will
be high in the centre of the pass band. Any type of DHW filter can be dealt with
in this way.
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Figure 7.18. Computed transmittance of the double half-wave filter. Design:
Air|L H LL H L H L H L H LL H L H |Ge. The substrate is germanium (n = 4.0); H =
germanium (n = 4.0), L = zinc sulphide (n = 2.35) and the incident medium is air
(n = 1.0).

Knittl [19, 20] has used an alternative multiple beam approach to study the
design of DHW filters. Basically he has applied a multiple beam summation to
the first cavity, the results of which are then used in a multiple beam summation
for the second cavity. This yields an expression which is not unlike Smith’s,
although slightly more complicated, but which has the advantage that it is only
the phase which varies across the pass band. The magnitude of the reflection
and transmission coefficients can be safely assumed constant and this means that
the parameters which involve these quantities are also constant. The form of the
expression for overall transmittance is then very much easier to manipulate so that
the positions and values of maxima and minima in the pass band can be readily
determined. We shall not deal further with the method here, because it is already
well covered by Knittl [20].

Of course, the possible range of designs does not end with the DHW filter.
Other types of filter exist involving even more half-waves. An early type of filter,
which we have already mentioned, was the WADI which was devised by Turner
and which consisted of a straightforward Fabry–Perot filter, to either side of
which was added a half-wave layer together with several quarter-wave layers. The
function of these extra layers was to alter the phase characteristics of the reflectors
on either side of the primary spacer layer, so that the pass band was broadened and
at the same time the sides became steeper. Similarly, it is possible to repeat the
basic Fabry–Perot element used in the DHW filter once more to give a triple half-
wave or THW filter, which has a similar bandwidth but steeper sides. WADI and
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THW filters are much the same thing, although the original design philosophy was
a little different, and usually the term THW is taken as referring to all types having
three half-wave spacers. Even more spacer layers may be used giving multiple
half-wave filters. The method which we have been using for the analysis of the
filters becomes rather cumbersome when many half-waves are involved—even
the simple method for checking that the transmittance is high in the pass band
breaks down, for reasons which will be made clear in the next section, where we
shall consider a very powerful design method which has been devised by Thelen.

7.3.1 Thelen’s method of analysis

We have not yet arrived at any ready way of calculating the bandwidth of DHW

and THW filters. The design method has merely ensured that the transmittance
of the filter is high in the pass band and that the shape of the transmission curve
is steep-sided. The bandwidth can be calculated, but to arrive at a prescribed
bandwidth in the design has to be achieved by trial and error. It can indeed be
calculated using the formula for transmittance

T = T0
1

1 + F0 sin2 δ

but this can be very laborious as the phases of the reflectances have to be included
in δ. This expression has been very useful in achieving an insight into the basic
properties of the multiple half-wave filter, but, for systematic design, a method
based on the concept of equivalent admittance will be found much more useful.

As was shown in chapter 6, any symmetrical assembly of thin films can be
replaced by a single layer of equivalent admittance and optical thickness which
both vary with wavelength, but which can be calculated. This concept has been
used by Thelen [21] in the development of a very powerful systematic design
method which predicts all the performance features of the filters including the
bandwidth. The basis of the method is the splitting of the multiple half-wave filter
into a series of symmetrical periods, the properties of which can be predicted by
finding the equivalent admittance. Take for example the design we have already
examined.

Ge|L H LL H L H L H L H LL H L H |air.

This can be split up into the arrangement

Ge|L H L L H L H L H L H L L H L H |air.

The part of the filter which determines its properties is the central section
L H L H L H L H L which is a symmetrical assembly. It can therefore be replaced
by a single layer having the usual series of high-reflectance zones where the
admittance is imaginary, and pass zones where the admittance is real. We are
interested in the latter because they represent the pass bands of the final filter. The



Multiple cavity filters 301

symmetrical section must then be matched to the substrate and the surrounding
air, and matching layers are added for that purpose on either side. This is the
function of the remaining layers of the filter. The condition for perfect matching
is easily established because the layers are all of quarter-wave optical thicknesses.

A most useful feature of this design approach is that the central section of
the filter can be repeated many times, steepening the edges of the pass band and
improving the rejection without affecting the bandwidth to any great extent.

In order to make predictions of performance straightforward, Thelen has
computed formulae for the bandwidth of the basic sections. We use Thelen’s
technique here, with some slight modifications, in order to fit in with the pattern
of analysis already carried out for the Fabry–Perot. In order to include filters of
order higher than the first, we write the basic period as

H mL H L H L H . . . L H m or LmH L H L H L . . .H Lm

where there are 2x +1 layers, x +1 of the outermost index and x of the other, and
m is the order number. We have already mentioned how Seeley [4], in the course
of developing expressions for the Fabry–Perot filter, arrived at an approximate
formula for the product of the characteristic matrices of quarter-wave layers of
alternating high and low indices. Using an approach similar to Seeley’s, we can
put the characteristic matrix of a quarter-wave layer in the form:[−ε i/n

in −ε
]

(7.52)

where ε = (π/2)(g − 1) and g = λ0/λ. This expression is valid for wavelengths
close to that for which the layer is a quarter-wave. First let us consider m odd,
and write m as 2q + 1. Then, to the same degree of approximation, the matrix for
H m or Lm is

(−1)q
[−mε i/n

in −mε

]
.

Neglecting terms of second and higher order in ε, then the product of the 2x − 1
layers making up the symmetrical period is[

M11 iM12
iM21 M22

]
(7.53)

where

M11 = M22 = (−1)x+2q(−ε)
[
m

(
n1

n2

)x

+
(

n1

n2

)x+1

+
(

n1

n2

)x−2

+ . . .

+
(

n2

n1

)x−1

+ m

(
n2

n1

)x]
iM12 = i(−1)x/[(n1/n2)

xn1]
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and

iM21 = i(−1)x[(n1/n2)
xn1].

Now it is not easy from this expression to derive the halfwidth of the final filter
analytically. Instead of deriving the halfwidth, therefore, Thelen chose to define
the edges of the pass band as those wavelengths for which

1

2

∣∣∣∣M11 + M22

∣∣∣∣ = 1

or, since M11 = M22, ∣∣M11
∣∣ = 1.

These points will not be too far removed from the half peak transmission points,
especially if the sides of the pass band are steep. Applying this to equation (7.53),
we obtain

∣∣M11
∣∣ = ε

[
m

(
n1

n2

)x

+
(

n1

n2

)x−1

+ . . .+
(

n2

n1

)x−1

+ m

(
n2

n1

)x]
. (7.54)

Now, this expression is quite symmetrical in terms of n1 and n2. Then if we
replace n1 and n2 by nH and nL , regardless of which is which, we will obtain the
same expression

ε

[
m

(
nH

nL

)x

+
(

nH

nL

)x−1

+
(

nH

nL

)x−2

+ . . .+
(

nL

nH

)x−1

+ m

(
nL

nH

)x]
= 1

i.e.

ε

[
(m − 1)

(
nH

nL

)x

+ (m − 1)

(
nL

nH

)x

+
(

nH

nL

)x(1 − (nL/nH )
x+1

1 − (nL/nH )

)]
= 1

where we have used the formula for the sum of a geometric series just as in the
case of the Fabry–Perot. We now neglect terms of power x or higher in (n L/nH )

to give

ε

(
nH

nL

)x(
(m − 1)+ 1

1 − (nL/nH )

)
= 1

i.e.

ε =
(

nL

nH

)x [1 − (nL/nH )]

[m − (m − 1)(nL/nH )]
. (7.55)

The bandwidth will be given by∣∣∣∣�λB

λ0

∣∣∣∣ =
∣∣∣∣�νB

ν0

∣∣∣∣ = 2(g − 1) = 4ε

π
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so that, manipulating equation (7.55) slightly,∣∣∣∣�λB

λ0

∣∣∣∣ = 4

mπ

(
nL

nH

)x
(nH − nL)

(nH − nL + nL/m)
. (7.56)

The equivalent admittance is given by

ηE =
(

M21

M12

)1/2

=
(

n1

n2

)x

n1. (7.57)

The case of m even, i.e. m = 2q, is arrived at similarly. Here the matrix of H m or
Lm is

(−1)q
[

1 imε/n
imεn 1

]

and a similar multiplication, neglecting terms higher than first in ε gives

�λB

λ0
= 4

mπ

(
nL

nH

)x
(nH − nL)

(nH − nL + nL/m)

that is, exactly as equation (7.56), but

ηE =
(

n2

n1

)x−1

n2 (7.58)

for equivalent admittance. This is to be expected since the layers L m or H m act
as absentees because of the even value of m.

Expression (7.56) should be compared with the Fabry–Perot expressions
(7.22) and (7.23). If we consider multiple cavity filters to be a series of Fabry–
Perot cavities then the number of layers in each reflector is half that in the basic
symmetrical period. Equations (7.22), (7.23) and (7.58) are, therefore, consistent.

In order to complete the design we need to match the basic period to the
substrate and the surrounding medium. We first consider the case of first-order
filters and the modifications which have to be made in the case of higher order will
become obvious. For a first-order filter, then, matching will best be achieved by
adding a number of quarter-wave layers to the period. The first layer should have
index n1, the next n2 and so on, alternating the indices in the usual manner. The
equivalent admittance of the combination of symmetrical period and matching
layers will then be

n2y
1

n2(y−1)
2

(
n2

n1

)x 1

n2
or

(
n2

n1

)2y

n2

(
n1

n2

)x

(7.59)

where there are y layers of index n1 and either (y − 1) or y layers of index n2
respectively. We have also used the fact that the addition of a quarter-wave of
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index n to an assembly of equivalent admittance E alters the admittance of the
structure to n2/E.

This equivalent admittance should be made equal to the index of the substrate
on the appropriate side, and to the index of the surrounding medium on the other.
The following discussion should make the method clear.

When we try to apply this formula to the design of multiple half-wave filters,
we find to our surprise that quite a number of designs which we have looked
at previously, and which seemed satisfactory, do not satisfy the conditions. For
example, let us consider the design arrived at in the earlier part of this section:

Ge|L H LL H L H L H L H LL H L H |air

where L indicates zinc sulphide of index 2.35 and H germanium of index 4.0.
The central period is L H L H L H L H L, which has equivalent admittance n5

L/n4
H .

The L H L combination alters this equivalent admittance to

n4
L

n2
L

n4
H

n5
L

= n2
H

nL

which is a gross mismatch to the germanium substrate. The L H L H combination
on the other side alters the admittance to

n4
H

n4
L

n5
L

n4
H

= nL

which in turn is not a particularly good match to air.
The explanation of this apparent paradox is that in this particular case the

total filter, taking the phase thickness of the central symmetrical period into
account, has unity transmittance because it satisfies Smith’s conditions given
in the previous section, but, over a wide range of wavelengths, pronounced
transmission fringes would be seen if the bandwidth of the filter were not
much narrower than a single fringe. Adding extra periods to the central
symmetrical one has the effect of decreasing this fringe width, bringing them
closer together. Eventually, given enough symmetrical periods, the width of the
fringes becomes less than the filter bandwidth and they appear as a pronounced
ripple superimposed on the pass band. This is illustrated clearly in figure 7.19.
The triple half-wave version is still acceptable when an extra L layer is added,
but this quintuple half-wave version is quite unusable. The presence or absence
of an outermost L layer has no effect on the performance, other than inverting
the fringes. The simple method of cancelling out half-waves for predicting the
pass-band transmission therefore breaks down, because it merely ensures that λ 0
will coincide with a fringe peak.

It is profitable to look at the possible combinations of the two materials
which can be made into a filter on germanium and where the centre section can
be repeated as many times as required. The combinations for up to 11 layers in
the centre section are given in table 7.3.
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Figure 7.19. (a) Curve 1: Computed transmittance of the triple half-wave filter:
Air|L H L H L(L H L H L H L H L)2 L H L|Ge. Curve 2: shows the effect of omitting
the L layer next to the air in the design of curve 1: Air|H L H L(L H L H L H L H L)2

L H L|Ge. (b) Computed transmittance of quintuple half-wave filters. Curve 3:
Air|H L H L(L H L H L H L H L)4 L H L|Ge. Curve 4: As curve 3 but with an extra L layer:
Air|L H L H L(L H L H L H L H L)4 L H L|Ge. The presence or absence of the L layer has
little effect on the ripple in the pass band. For all curves, H = germanium (nH = 4.0) and
L = zinc sulphide (nL = 2.35).

Table 7.3.

Matching combination Matching combination
for germanium Symmetrical period for air

Ge|L L H L |air
(already matched)

Ge|L H H L H L H H |air
Ge|L H L L H L H L H L L H |air
Ge|L H L H H L H L H L H L H H L H |air
Ge|L H L H L L H L H L H L H L H L L H L H |air

L: ZnS, nL = 2.35 H : Ge, nH = 4.0.

The validity of any of these combinations can easily be tested. Take for
example the fourth one, with the nine-layer period in the centre. Here the
equivalent admittance of the symmetrical period is E = n5

H/n4
L . The L H L H

section between the germanium substrate and the centre section transforms the
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admittance into

n4
L

n4
H

n5
H

n4
L

= nH

which is a perfect match for germanium. The matching section at the other end is
H L H and this transforms the admittance into

n4
H

n2
L

n4
L

n5
H

= n2
L

nH

which, because zinc sulphide is a good antireflection material for germanium,
gives a good match for air.

For higher-order filters, the method of designing the matching layers is
similar. However, we can choose, if we wish, to add half-wave layers to that
part of the matching assembly next to the symmetrical period in order to make
the resulting cavity of the same order as the others. For example, the period
H H H L H L H L H L H H H , based on the fourth example of table 7.3, can be
matched either by Ge|L H L H and H L H |air, as shown, or by Ge|L H L H H H
and H H H L H |air, making all cavities of identical order regardless of the number
of periods.

This method, then, gives the information necessary for the design of
multiple half-wave filters. The edge steepness and rejection in the stop bands
will determine the number of basic symmetrical periods in any particular case.
Usually, because of the approximations which have been used in establishing
the various formulae, and also because the definition used for bandwidth is
not necessarily the halfwidth, although it would not be too far removed from
it, it is advisable to check the design by accurate computation before actually
manufacturing the filter. It may also be advisable to make an estimate of
the permissible errors which can be tolerated in the manufacture because it is
pointless attempting to achieve a performance beyond the capabilities of the
process. The result will just be worse than if a less demanding specification had
been attempted. The estimation of manufacturing errors is a subject which has not
received much attention in the literature on thin-film filters. A brief discussion
of permissible errors is given in chapter 11, pp 535–44, with some examples
of calculations applied to multiple half-wave filters. Typical multiple half-wave
filters are shown in figure 7.20.

7.4 Higher performance in multiple cavity filters

The curve of figure 7.20(b) shows the square shape of the pass band of a multiple
cavity filter but also illustrates one of the problems inherent in this type of design,
the ‘rabbit’s ears’, or the rather prominent peaks at either side of the pass band.
This can become even worse with increasing numbers of periods. Figure 7.21
shows this clearly.
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Figure 7.20. (a) Transmittance of a multiple half-wave filter. Design:
Air|H H L H L H H L L H H L H |Ge with H = PbTe (n = 5.0); L = ZnS (n = 2.35),
λ0 = 15 µm. (b) Transmittance of a multiple half-wave filter. Design:
Air|H H L H L H H L H L H H L H L H H L H L H H |silica H = Ge (n = 4.0); L = ZnS
(n = 2.35); silica substrate (n = 1.45) λ0 = 3.5 µm. (Courtesy of Sir Howard Grubb,
Parsons & Co. Ltd.)
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Figure 7.21. A multiple cavity filter with a central core of five symmetrical periods.
Design: Glass|H L H L H L H (H L H L H L H L H L H L H L H)5 H L H L H L H |Glass, with
yH = 2.35, yL = 1.35, yglass = 1.52, λ0 = 1000 nm. Note the very prominent peaks at
the edges of the pass band sometimes called ‘rabbit’s ears’.
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The reason for this problem feature is the dispersion of the equivalent
admittance of the symmetrical period. In the design approach, this is assumed to
be a constant across the pass band but in reality it varies considerably, tending to
either zero or infinity at the pass-band edges; see figure 7.22. It is, in fact, exactly
the same problem as in edge filters where better ripple suppression near the edge
demands a matching system that exhibits similar dispersion. Shifted periods are,
however, difficult to arrange in the case of band-pass filters because of the need
for ripple suppression at both edges of the pass band. However, inspired by the
shifted periods technique, we seek a solution, where part of the matching is due
to a symmetrical system that has a dispersion of the appropriate form so that its
matching remains reasonably good even when the equivalent admittance to be
matched to the surrounding media is varying. Any of the symmetrical periods we
are dealing with will have an odd number of quarter-waves so that the equivalent
phase thickness at g = 1 will be an odd number of π/2. This implies that the
period could, itself, be used as a simple matching assembly. Since the pass band
in this type of filter is usually narrow, the matching condition will not vary too
much over the pass-band width. In order to make use of this possibility, we have
to find at least pairs of symmetrical periods that will permit one to be used as
a matching assembly for the other. Attempting to find two, or more, periods
that have the correct relationship at g = 1 for one to match the other to the
substrate or incident medium is difficult. If we could find two periods of different
width but with the same central admittance, then we could continue to use the
straightforward matching illustrated in figure 7.3 which uses a series of quarter-
wave layers and is perfectly satisfactory at the centre of the pass band. A solution
lies with higher-order periods.

The addition of further half-wave layers to the outside of a symmetrical
period does not change its equivalent admittance at the pass-band centre,
nor does it change the sense of curvature of the variation of equivalent
admittance. Figure 7.23 shows the admittances of H L H L H L H L H L H ,
H H H L H L H L H L H L H H H , H LLL H L H L H L H LLL H and H H H LLL H
L H L H L H LLL H H H . All have the value y6

H/y5
L at g = 1 and all exhibit a

gradually increasing admittance as the value of g moves away from unity. The
wider curves have values of admittance intermediate between the narrower curves
and the value that all possess at g = 1. All represent an odd number of quarter-
waves at g = 1 but the broader curves remain closer to an odd number of quarter-
waves than the narrower as g varies. They could therefore be used to match the
narrower ones to a notional medium of constant admittance, y 6

H/y5
L . The best

one, that is the period that is closest to the ideal values of the required admittance,
is chosen. The use of more than one of the wider matching systems does not
give very good results because of their differing dispersion curves. Matching of
the dispersionless notional medium to the incident and emergent media is then a
straightforward matter of a series of quarter-waves, as before.

A simple example uses two of the periods from figure 7.23, H L H L H L H
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Figure 7.22. The equivalent admittance of (H L)7 H over the potential pass band. Note the
rapid change near the edges of the pass band. This dispersion of equivalent admittance is
very difficult to match to an essentially dispersionless medium.

L H L H and H H H L H L H L H L H L H H H :

Glass|H L H L H H L H L H L H L H L H (H H H L H L H L H L H L H H H)q

H L H L H L H L H L H H L H L H |Glass.

The characteristic curves of two such filters are shown in figures 7.24 and 7.25.
We need an expression for the width of such filters. This is determined

principally by the highest order periods. If we write the expression for the highest
order period as:

m AB AB A. . .B Am A

where there are 2x + 1 layers including the layers m A, then we can show that the
bandwidth, defined in the same way as before, is given by:

�λ

λ0
= 4

mπ

(
yL

yH

)x (yH − yL)

(yH − yL + yL/m)
. (7.60)

This expression reduces to that already derived if m = 1. Using the
expression to calculate the bandwidth of the filters of figures 7.24 and 7.25, we
find 0.018, implying pass-band edges at 991.1 nm and 1009.1 nm.

Designs arrived at in this way will be satisfactory for a wide range of
applications where ripple within the pass band must be small. However, there are
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Figure 7.23. The equivalent admittances of symmetrical periods from narrower to
broader in order H H H LLL H L H L H L H LLL H H H , H H H L H L H L H L H L H H H ,
H LLL H L H L H L H LLL H and H L H L H L H L H L H with H representing characteris-
tic admittance 2.35 and L 1.35. The straight line represents the admittance that all have at
g = 1.

applications where even the performance in figures 7.24 and 7.25 is inadequate.
There are requirements in dense wavelength division multiplexing for peak
transmittances in excess of 99%, for example. A useful technique that is
somewhat empirical uses additional matching layers. In the following filter H
and L indicate admittances of 2.35 and 1.35, and where the substrate is glass
of admittance 1.52 and the incident medium is air of admittance 1.00. These
correspond to the materials we have been using so far and we prefer not to change
at this stage. Recently much use has been made of dense silica and tantala
in the manufacture of narrowband filters, particularly for wavelength division
multiplexing, but the design techniques are similar. The filter we use as an
example is given by:

Air|L(H L)3 H (H L)7 H (H H (H L)7H H H )2 (H L)7 H H (L H )3|Glass.

The performance is shown in figure 7.26. The filter is matched to an incident
medium of air rather than the glass we have been using and so there is an extra L
layer next to the incident medium.

The loss is purely a reflection loss. No absorption is involved. Thus it
should be possible by correct matching to reduce the loss to zero and increase
the transmittance to 100%. However, we need to accomplish this in as simple a
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Figure 7.24. A multiple cavity filter similar to that of figure 7.21 but us-
ing periods of increasing order to improve the pass-band ripple. Design:
Glass|H L H L H H L H L H L H L H L H(H H H L H L H L H L H L H H H)2 H L H L H L
H L H L H H L H L H |Glass with yH = 2.35, yL = 1.35, yglass = 1.52, λ0 = 700 nm.
Note the much flatter pass-band top compared with figure 7.21.

fashion as possible. We take as our target, therefore, to increase the transmittance
so that it is greater than 99% over the entire pass-band top. An analytical approach
is unlikely to be profitable and so we use some logic and then rely on automatic
methods.

The filter structure is thick and complicated and the matching must be
capable of accommodating considerable dispersion of the admittance of the
assembly. This implies that a very thin system of layers is unlikely to be of much
value. We therefore assume from the start that the matching layer will be fairly
thick.

We try two different starting designs for the matching layer, a three-layer
L H L and a five-layer L H L H L arrangement to replace the single L matching
layer of the original design (the layer next to the air). However, we find single
quarter-wave thicknesses insufficient for a good match and we need to make the
layer thicker. Some trial and error finds preferred starting designs of 18L18H 18L
and 12L12H 12L12H12L although the final result is not very sensitive to the
exact starting design thicknesses. Some gentle refinement with only the matching
layers taking part then yields final matching systems as shown in tables 7.4 and
7.5 and filter characteristics in figures 7.27, 7.29 and 7.30. The admittance locus
of the three-layer matching system is shown in figure 7.28.
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Figure 7.25. A multiple cavity filter similar to that of figure 7.24 but
with three central high-order periods rather than two. Design: Glass
|H L H L H H L H L H L H L H L H(H H H L H L H L H L H L H H H)3 H L H L H L
H L H L H H L H L H | Glass with yH = 2.35, yL = 1.35, yglass = 1.52, λ0 = 700 nm.

Table 7.4.

Three-layer system

Optical thickness
Index (full waves)

Air Incident medium
1.3500 4.6377
2.3500 4.4624
1.3500 4.7197

Filter structure

It is very difficult to carry out this type of design in a completely systematic
way. There are other techniques but the quarter-wave thicknesses of the basic
filter design help considerably in the thickness control of the deposition process.
The final matching layers are much thicker than quarter-waves and are the final
layers of the structure and so their monitoring signals are also quite favourable.

The matching can also be conveniently placed between the multiple cavity
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Basic filter transmittance
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Figure 7.26. Transmittance of filter: Air|L(H L)3 H (H L)7 H (H H(H L)7H H H)2

(H L)7 H H(L H)3|Glass.

Table 7.5.

Five-layer system

Optical thickness
Index (full waves)

Air Incident medium
1.3500 3.0727
2.3500 2.9991
1.3500 3.0674
2.3500 2.9651
1.3500 3.1973

Filter structure

structure and the substrate. Automatic refinement of the matching layers is again
the preferred technique for arriving most easily at the thicknesses required for the
layers.
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Figure 7.27. The two curves when the additional matching three- and five-layer systems
are added. The five-layer system is superimposed over the three-layer, which is almost
invisible in the scale of the figure. An expanded transmittance is shown in figure 7.29.
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Figure 7.28. The admittance locus of the three-layer matching system plotted at the centre
wavelength of the filter.
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Extra matching
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Figure 7.29. The two curves of figure 7.27 plotted on an expanded scale to show the
differences. The three-layer system (lighter curve) is slightly inferior to the five-layer
system.

7.4.1 Effect of tilting

A feature of the design not so far mentioned is the sensitivity to changes in angle
of incidence. Thelen [21] has examined this aspect and for those types which
involve symmetrical periods consisting of quarter-waves of alternating high and
low index and where the spacers are of the first order, he arrived at exactly the
same expressions as those of Pidgeon and Smith for the Fabry–Perot. As far as
angular dependence is concerned, the filter behaves as if it were a single layer
with an effective index of

n∗ = (n1n2)
1/2

where n1 > n2 or

n∗ = n1

[1 − (n1/n2)+ (n1/n2)2]1/2

where n2 > n1.

For higher-order filters, therefore, we should be safe in making use of
expressions (7.33) and (7.35).
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Figure 7.30. The performance of the filter with five-layer matching from figures 7.27 and
7.29 shown on a logarithmic scale.

7.4.2 Losses in multiple cavity filters

Losses in multiple cavity filters can be estimated in the same way as for the
Fabry–Perot filter. There are so many possible designs that a completely general
approach would be very involved. However, we can begin by assuming that
the basic symmetrical unit is perfectly matched at either end. The scheme of
admittances through the basic unit will then be as shown in table 7.6.

Then, in the same way as for the Fabry–Perot, we can write

∑
A = β1

[(
n1

n2

)x−1

+
(

n2

n1

)x−1]
+ β2

[(
n2

n1

)x−2

+
(

n1

n2

)x−2]

+ β1

[(
n1

n2

)x−3

+
(

n2

n1

)x−3]
+ . . .+ β2

[(
n2

n1

)x−2

+
(

n1

n2

)x−2]

+ β1

[(
n1

n2

)x−1

+
(

n2

n1

)x−1]

= β1

{[(
n1

n2

)x−1

+
(

n1

n2

)x−3

+ . . .+
(

n2

n1

)x−1]

+
[(

n2

n1

)x−1

+
(

n2

n1

)x−2

+ . . .+
(

n1

n2

)x−1]}
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Table 7.6.

nx
1/nx−1

2
n1

nx−1
2 /nx−2

1
n2

nx−2
1 /nx−3

2
n1

nx−3
2 /nx−4

1
...

nx−2
1 /nx−3

2
n2

nx−1
2 /nx−2

1
n1

nx
1/nx−1

2

x layers of n1.
(x − 1) layers of n2.

+ β2

{[(
n2

n1

)x−2

+
(

n2

n1

)x−4

+ . . .+
(

n1

n2

)x−2]

+
[(

n1

n2

)x−2

+
(

n1

n2

)x−4

+ . . .+
(

n2

n1

)x−2]}
.

We note that the second expression of each pair is the same as the first with inverse
order.

The layers are quarter-waves and so we can write, as before,

β1 = π

2

k1

n1
and β2 = π

2

k2

n2
.

Once again we divide the cases into high- and low-index cavities.

7.4.3 Case I: high-index cavities

We replace n1 by nH , k1 by kH , n2 by nL and k2 by kL . Then, neglecting, as
before, terms in (nL/nH )

x compared with unity,

∑
A = π(kH/nH )(nH/nL)

x−1

1 − (nL/nH )2
+ π(kL/nL)(nH/nL)

x−2

1 − (nL/nH )2

= π

(
nH

nL

)x nL(kH + kL)

(n2
H − n2

L)
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or, using (7.56) with m = 1,

�λB

λ0
= 4

π

(
nL

nH

)x
(nH − nL)

nH

i.e.

∑
A = 4

(
λ0

�λB

)
nL(kH + kL)

nH (nH + nL)
.

Now, this is the loss of one basic symmetrical unit. If further basic units are added
each will have the same loss. In addition, there are the matching stacks at either
end of the filter. We will not be far in error if we assume that they add a further
loss equal to one of the basic symmetrical units. The total number of units is then
equal to the number of cavities. If we denote this by q then q = 2 for a two-cavity
(or DHW) filter and so on. We can also assume that R = 0 so that the absorption
loss becomes

A = qπ

(
nH

nL

)x nL(kH + kL)

(n2
H − n2

L)
(7.61)

or

A = 4q

(
λ0

�λB

)
nL(kH + kL)

nH (nH + nL)
. (7.62)

7.4.4 Case II: low-index cavities

In the same way

A = qπ

(
nH

nL

)x (n2
H kL + n2

LkH )

nH (n2
H − n2

L)
(7.63)

or

A = 4q

(
λ0

�λB

)(
nL

nH

)
[kL(nH/nL)+ kH (nL/nH )]

(nH + nL)
. (7.64)

Expressions (7.62) and (7.64) are approximately q times the absorption of single-
cavity, or Fabry–Perot, filters with the same halfwidth, a not surprising result.

7.4.5 Further information

Many of the examples of multiple cavity filters so far described have been for
the infrared, but of course they can be designed for any region of the spectrum
where suitable thin-film materials exist. An account of filters for the visible and
ultraviolet is given by Barr [22]. All-dielectric filters, both of the Fabry–Perot and
multiple cavity types for the near ultraviolet are described by Nielson and Ring
[23]. They used combinations of cryolite and lead fluoride and of cryolite and
antimony trioxide, the former for the region 250–320 nm and the latter for 320–
400 nm. Apart from the techniques required for the deposition of these materials,
the main difference between such filters and those for the infrared is that the values
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of the high and low refractive indices are much closer together, requiring more
layers for the same rejection. Nielson and Ring’s filters contained basic units
of 17 or 19 layers, in most cases, so that complete DHW filters consisted of 31
or 39 layers respectively. Malherbe [24] has described a lanthanum fluoride and
magnesium fluoride filter for 205.5 nm in which the basic unit had 51 layers (high-
index first-order spacer), the full design being (H L)12H H (L H )25H (L H )12

with a total number of 99 layers, giving a measured bandwidth of 2.5 nm.

7.5 Phase dispersion filter

The phase dispersion filter represents an attempt to find an approach to the design
of narrowband filters which would avoid some of the manufacturing difficulties
inherent in Fabry–Perot filters. The Fabry–Perot becomes increasingly difficult to
manufacture as halfwidths are reduced below 0.3% of peak wavelength. Attempts
to improve the position by using higher-order spacers are not effective when the
spacer becomes thicker than the fourth order because of what has been described
as increased roughness of the spacer. Much more is now known about the Fabry–
Perot filter and the causes of manufacturing difficulties, and those will be dealt
with in some detail in a subsequent chapter. Although the phase dispersion
filter was not, as it turned out, the solution to the narrowband filter problem,
nevertheless it does have very interesting properties and the philosophy behind
the design is worth discussing.

The reflecting stack with extended bandwidth which was originally intended
for classical Fabry–Perot plates and was described in chapter 5 shows a large
dispersion of the phase change on reflection and this suggested to Baumeister and
Jenkins [25] that it might form the basis for a new type of filter in which the
narrow bandwidth would depend almost entirely on this phase dispersion rather
than on the very high reflectances of the reflecting stacks. They called this type of
filter a ‘phase dispersion filter’. It consists quite simply of a Fabry–Perot all-
dielectric filter which has, instead of the conventional dielectric quarter-wave
stacks on either side of the spacer layer, reflectors consisting of the staggered
multilayers. The rapid change in phase causes the bandwidth of the filter and the
position of the peak to be much less sensitive to the errors in thickness of the
spacer layer than would otherwise be the case.

The results which they themselves [25] and also with Jeppesen [26]
eventually achieved were good, although they never quite succeeded in attaining
the performance possible in theory. This prompted a study [27] of the influence of
errors in any of the layers of a filter on the position of the peak. The idea behind
this study was that random errors in both thickness and uniformity in layers other
than the spacer might be responsible for the discrepancy between theory and
practice. If, in a practical filter, the errors were causing the peak to vary in position
over the surface of the filter, then the integrated response would exhibit a rather
wider bandwidth and lower transmittance than those of any very small portion of



320 Band-pass filters

the filter, which might well be attaining the theoretical performance. It seemed
possible that there might be a design of filter which could yield the minimum
sensitivity to errors and therefore give the minimum possible bandwidth with a
given layer ‘roughness’.

Giacomo et al’s findings [27] can be summarised as follows (the notation in
their paper has been slightly altered to agree with that used throughout this book):
the peak of an all-dielectric multilayer filter is given by

φa + φb

2
− δ = mπ (7.65)

where

δ = 2πnds

λ
= 2πndsν

the symbols having their usual meanings.
For a change�di in the i th layer, �dj in the j th layer and �ds in the spacer,

the corresponding change in the wavenumber of the peak �ν is given by

∑
i

∂φa

∂di
�di +

∑
j

∂φb

∂dj
�dj −2

∂δ

∂ds
�ds +

(
∂φa

∂ν
+ ∂φb

∂ν
−2

∂δ

∂ν

)
�ν = 0. (7.66)

Now
∂δ

∂ds
= 2πnν = δ

ds
(7.67)

and
∂δ

∂ν
= 2πnds = δ

ν
(7.68)

and also, since di and ν appear in the individual thin-film matrices only in the
value of δi = 2πni di ν, then

∑
i

∂φa

∂di
�0di = ∂φa

∂ν
�0ν

and similarly for φb, where �0 indicates that the changes in di are related by

�0di

di
= �0ν

ν
.

This gives
∂φa

∂ν
=
∑

i

(
∂φa

∂di

di

ν

)
(7.69)

which is independent of the particular choice of � 0 used to arrive at it. A
similar expression holds for φb. Using equations (7.67), (7.68) and (7.69) in
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equation (7.66):

∑
i

∂φa

∂di
�di +

∑
j

∂φb

∂dj
�dj − 2δ

�ds

ds

+
(∑

i

∂φa

∂di
di +

∑
j

∂φb

∂dj
dj − 2δ

)
�ν

ν
= 0

i.e.

�ν

ν
= −

[
−2δαs +

∑
i

(
∂φa

∂di
diαi

)
+
∑

j

(
∂φb

∂dj
djα j

)]

×
[
−2δ +

∑
i

(
∂φa

∂di
di

)
+
∑

j

(
∂φb

∂dj
dj

)]−1

(7.70)

where

αi = �di

di
etc.

Now, in a real filter, the fluctuations in thickness, or ‘roughness’, will be
completely random in character, and in order to deal with the performance of
any appreciable area of the filter, we must work in terms of the mean square
deviations. Each layer in the assembly can be thought of as being a combination
of a large number of thin elementary layers of similar mean thicknesses but which
fluctuate in a completely random manner quite independently of each other. The
RMS variation in thickness of any layer in the filter can then be considered to be
proportional to the square root of its thickness. This can be written:

εi = kd1/2
i

where k can be assumed to be the same for all layers regardless of thickness. If ai

is the RMS fractional variation of the i th layer, then

ai = εi

di
= k

d1/2
i

where

a2
i = α2

i .

We now define β as being

β2 =
(
�ν

ν

)2

.
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Then

β2 =
{

4δ2a2
s +

∑
i

[(
∂φa

∂di
di

)2

a2
i

]
+
∑

j

[(
∂φb

∂dj
dj
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a2
j

]}

×
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which gives

β2 =
(

k2
q∑

k=1

1

dk
A2

k

)( q∑
k=1

Ak

)−2

(7.71)

where

Ak = ∂φa

∂dk
dk or

∂φb

∂dk
dk or − 2δ

whichever is appropriate. q is the number of layers in the filter. The expression
will be a minimum when

Ak/dk = Al/dl = . . . . (7.72)

Then
β2 = k2/T (7.73)

where T is the total thickness of the filter.
In the general case,

β ≥ k/T1/2

and one might hope to attain a limiting resolution of

R = T1/2/k. (7.74)

The condition written in equation (7.62) can be developed with the aid of
equation (7.59) into

∂φa

∂dk
= ∂φb

∂dl
= −4πnν

so that

v

(
∂φa

∂v

)
=
∑

i

∂φa

∂di
di = −4πnνdm

and likewise for reflector b, where dm = total thickness of the appropriate reflector
and a is the index of the spacer. This gives

∂φa

∂ν
= −4πndm. (7.75)



Phase dispersion filter 323

This condition is necessary but not sufficient for the resolution to be a maximum
and it can be used as a preliminary test of the suitability of any particular
multilayer reflector which may be employed.

The classical quarter-wave stack is very far from satisfying it but the
staggered multilayer is much more promising. In their paper, Giacomo et al
compare a staggered multilayer reflector with a conventional quarter-wave stack.
Both reflectors have 15 layers, and the results are quoted for the broadband
reflector at 17 000 cm−1 and for the conventional reflector at 20 000 cm−1.

Equation (7.75) can be written

∑
i

∂φa

∂di
di =

∑
i

∂φa

∂αi
= −4πnνdm.

Now, from table 7.7,

−
∑

i

∂φa

∂αi
= 30.662

and

4πnνdm = 34.5

so that on the preliminary basis of equation (7.75) the prospects look extremely
good. However, this is not a sufficient condition. We must calculate the actual
relationship between β and k and compare it with the theoretical condition given
by equation (7.73). Now

Ai = di
∂φ

∂di
= ∂φ

∂αi

which is the last column given for each reflector. This can be used in
equation (7.71) giving for a filter using the broadband reflector

β = 1.023k

which can be compared with the value obtained in the same way for the
conventional quarter-wave stack of table 7.7:

β = 1.289k.

For a total filter thickness of 2.35µm the theoretical minimum value of β is given
by (7.73) as

β = 0.652k

(k having units of µm1/2).
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Table 7.7.

Broadband film Classical film

Layer Thickness Index ∂φ/∂di Thickness ∂φ/∂di
number di (µm) n (µm−1) ∂φ/∂αi di (µm) (µm−1) ∂φ/∂αi

Substrate — 1.52 — — — — —
1 0.0751 2.30 0.32 0.024 0.0543 0.01 0.001
2 0.1279 1.35 0.60 0.076 0.0926 0.02 0.002
3 0.0751 2.30 1.97 0.148 0.0543 0.05 0.003
4 0.1235 1.35 1.85 0.229 0.0926 0.06 0.005
5 0.0626 2.30 4.75 0.298 0.0543 0.16 0.009
6 0.1299 1.35 4.60 0.597 0.0926 0.16 0.015
7 0.0681 2.30 11.68 0.795 0.0543 0.48 0.026
8 0.0957 1.35 10.63 1.018 0.0926 0.48 0.044
9 0.0566 2.30 30.85 1.746 0.0543 1.39 0.075

10 0.0859 1.35 30.37 2.608 0.0926 1.39 0.128
11 0.0504 2.30 78.33 3.948 0.0543 4.03 0.219
12 0.0805 1.35 62.33 5.019 0.0926 4.03 0.373
13 0.0450 2.30 121.58 5.471 0.0543 11.69 0.635
14 0.0767 1.35 65.41 5.015 0.0926 11.69 1.082
15 0.0450 2.30 81.59 3.672 0.0543 33.92 1.843
Medium of
incidence — 1.35 — — — — —∑

1.1978 — 506.8 30.662 1.0829 69.53 4.460

After Giacomo et al [27].

Thus, although the phase description filter using the reflectors shown in
table 7.7 appears to be promising on the basis of the criterion (7.75), in the
event its performance is somewhat disappointing. It is, however, certainly better
than the straightforward classical filter. So far no design which better meets the
condition of equation (7.72) has been proposed.

Some otherwise unpublished results obtained by Ritchie [28] are shown in
figure 7.31. This filter used zinc sulphide and cryolite as the materials on glass
as substrate. Its design is given in table 7.8. An experimental filter monitored at
1.348 µm gave peaks with corresponding bandwidths of

1.047 µm, bandwidth 3.0 nm

1.159 µm, bandwidth 2.5 nm

1.282 µm, bandwidth 4.0 nm.

Theoretically, the bandwidths should have been 0.8 nm, 1.7 nm and 4.6 nm
respectively.
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Figure 7.31. The measured transmittance of a 35-layer phase-dispersion filter. The design
is given in table 7.7. (After Ritchie [28].)

Table 7.8.

Layer Optical thickness as fraction
number Material of monitoring wavelength

1 ZnS 0.2375
2 Na3AlF6 0.2257
3 ZnS 0.2143
4 Na3AlF6 0.2036
5 ZnS 0.1934
6 Na3AlF6 0.1838
7 ZnS 0.1746
8 Na3AlF6 0.1649
9 ZnS 0.1576

10 Na3AlF6 0.1498
11 ZnS 0.1423
12 Na3AlF6 0.1352
13 ZnS 0.1285
14 Na3AlF6 0.1220
15 ZnS 0.1159
16 Na3AlF6 0.1101
17 ZnS 0.1046
Spacer Na3AlF6 0.5000

These 17 layers are followed by another 17 layers which are a mirror image of the first
17.

7.6 Multiple cavity metal–dielectric filters

Metal–dielectric filters are indispensable in suppressing the longwave sidebands
of narrowband all-dielectric filters, and as filters in their own right, especially
in the extreme shortwave region of the spectrum. Unlike all-dielectric filters,
however, they possess the disadvantage of high intrinsic absorption. In single
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Fabry–Perot filters this means that the pass bands must be wide in order to achieve
reasonable peak transmission and the shape is far from ideal. It is possible to
combine metal–dielectric elements into multiple cavity filters which, because of
their more rectangular shape, are more satisfactory but, again, losses can be high.

The accurate design procedure for such metal–dielectric filters can be
lengthy and tedious and frequently they are simply designed by trial and error as
they are manufactured. We have already mentioned the metal–dielectric Fabry–
Perot filter. These filters may be coupled together simply by depositing them one
on top of the other with no coupling layer in between.

We can illustrate this by choosing silver as our metal, which we can give
an index of 0.055 − i3.32 at 550 nm [29]. The thickness of the spacer layer in
the Fabry–Perot filter, as we have already noted, should be rather thinner than a
half-wave at the peak wavelength to allow for the phase changes in reflection at
the silver/dielectric interfaces. This phase change varies only slowly with silver
thickness when it is thick enough to be useful as a reflector and we can assume,
as a reasonable approximation, that it is equal to the limiting value for infinitely
thick material. We can then use equation (4.5) to calculate the thickness of the
spacer layer. Equation (4.5) calculates for us exactly one-half of the filter because
it gives the thickness of the dielectric material to yield real admittance with zero
phase change at the outer surface of the metal–dielectric combination. Adding a
second exactly similar structure with the two dielectric layers facing each other,
so that they join to form a single spacer, yields a Fabry–Perot filter in which the
phase condition, equation (7.2), is satisfied.

Let us choose a spacer of index 1.35, similar to that of cryolite. Then half
the spacer thickness is given by

Df = 1

4π
tan−1

(
2βnf

n2
f − α2 − β2

)
(7.76)

where α − iβ is the index of the metal and nf that of the cryolite and the angle is
in the first or second quadrant.

With α − iβ = 0.055 − i3.32 and nf = 1.35 we find

Df = 0.188 55

so that the spacer thickness should be 0.3771 full waves.
We can choose a metal layer thickness of 35 nm, quite arbitrarily, simply for

the sake of illustration. Our Fabry–Perot filter is then

Glass

∣∣∣∣ Ag

35 nm

∣∣∣∣ Cryolite

0.3771 full waves

∣∣∣∣ Ag

35 nm

∣∣∣∣Glass

(the geometrical thickness being quoted for the silver and the optical thickness for
the cryolite) and the DHW filter is exactly double this structure:

Glass

∣∣∣∣ Ag

35 nm

∣∣∣∣ Cryolite

D = 0.3771

∣∣∣∣ Ag

70 nm

∣∣∣∣ Cryolite

D = 0.3771

∣∣∣∣ Ag

35 nm

∣∣∣∣Glass.



Multiple cavity metal–dielectric filters 327

Figure 7.32. The transmittance as a function of wavelength of filters of design:

Glass Silver
35 nm

Cryolite
0.3771λ0

Silver
35 nm Glass

and

Glass Silver
35 nm

Cryolite
0.3771λ0

Silver
70 nm

Cryolite
0.3771λ0

Silver
35 nm Glass

where λ0 = 550 nm, n − ik = 0.055 − i3.32 and ncryolite = 1.35. Dispersion in
the materials has been neglected.

Curves of these filters are shown in figure 7.32. The peaks are slightly displaced
from 550 nm because of the approximations inherent in the design procedure.

The Fabry–Perot has reasonably good peak transmission but its typical
triangular shape means that its rejection is quite poor even at wavelengths far from
the peak. The DHW filter has better shape but rather poorer peak transmittance.
The rejection can be improved by increasing the metal thickness, but at the
expense of peak transmission.

The design approach we have described is quite crude and simply
concentrates on ensuring that the peak of the filter is centred near the desired
wavelength. Peak transmittance and bandwidth are either accepted as they are or
a new metal thickness is tried. Performance is in no way optimised.

The unsatisfactory nature of this design procedure led Berning and Turner
[30] to develop a new technique for the design of metal–dielectric filters in
which the emphasis is on ensuring that maximum transmittance is achieved in
the filter pass band. For this purpose they devised the concept of potential
transmittance and created a new type of metal–dielectric filter known as the
induced-transmission filter.
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7.6.1 The induced-transmission filter

Given a certain thickness of metal in a filter, what is the maximum possible peak
transmission, and how can the filter be designed to realise this transmission?
This is the basic problem tackled and solved by Berning and Turner [30]. The
development of the technique as given here is based on their approach, but it has
been adjusted and adapted to conform more nearly to the general pattern of this
book.

The concept of potential transmittance has already been touched on in
chapter 2 and used in the analysis of losses in dielectric multilayers. We recall
that the potential transmittanceψ of a layer or assembly of layers is defined as the
ratio of the intensity leaving the rear surface to that actually entering at the front
surface, and it represents the transmittance which the layer or assembly of layers
would have if the reflectance of the front surface were reduced to zero. Thus,
once the parameters of the metal layer are fixed, the potential transmittance is
determined entirely by the admittance of the structure at the exit face of the layer.
Furthermore, it is possible to determine the particular admittance which gives
maximum potential transmittance. To achieve this transmittance it is sufficient to
add a coating to the front surface to reduce the reflectance to zero. The maximum
potential transmittance is a function of the thickness of the metal layer.

The design procedure is then as follows. The optical constants of the metal
layer at the peak wavelength are given. Then the metal layer thickness is chosen
and the maximum potential transmittance together with the matching admittance
at the exit face of the layer, which is required to produce that level of potential
transmittance, is found. Often a minimum acceptable figure for the maximum
potential transmittance will exist and that will put an upper limit on the metal
layer thickness. A dielectric assembly which will give the correct matching
admittance when deposited on the substrate must then be designed. The filter
is then completed by the addition of a dielectric system to match the front surface
of the resulting metal–dielectric assembly to the incident medium. Techniques
for each of these steps will be developed. The matching admittances for the metal
layer are such that the dielectric stacks are efficient in matching over a limited
region only, outside which their performance falls off rapidly. It is this rapid fall
in performance that defines the limits of the pass band of the filter.

Before we can proceed further, we require some analytical expressions for
the potential transmittance and for the matching admittance. This leads to some
lengthy and involved analysis, which is not difficult but rather time-consuming.

(a) Potential transmittance

We limit the analysis to an assembly in which there is only one absorbing layer,
the metal. The potential transmittance is then related to the matrix for the
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assembly, as shown in chapter 2[
B′

i
C′

i

]
= [M]

[
1
Ye

]

where [M] is the characteristic matrix of the metal layer and Ye is the admittance
of the terminating structure. Then the potential transmittance ψ is given by

ψ = T

(1 − R)
= Re(Ye)

Re(B′
iC

′∗
i )

. (7.77)

Let

Yi = X + iZ.

Then [
B′

i
C′

i

]
=
[

cos δ (i sin δ)/y
iy sin δ cos δ

] [
1

X + iZ

]

where

δ = 2π(n − ik)d/λ = 2πnd/λ− i2πkd/λ

= α − iβ

α = 2πnd/λ

β = 2πkd/λ.

If free space units are used, then

y = n − ik.

Now,

(B′
iC

′∗
i ) = [cos δ + i(sin δ/y)(X + iZ)][iy sin δ + cos δ(X + iZ)]∗

= [cos δ + i(sin δ/y)(X + iZ)][−iy∗ sin δ∗ + cos δ∗(X − iZ)]

= − iy∗ cos δ sin δ∗ + sin δ sin δ∗y∗2(X + iZ)

yy∗

+ cos δ cos δ∗(X − iZ)+ i sin δ cos δ∗y∗(X − iZ)(X + iZ)

yy∗ .

We require the real part of this and we take each term in turn.

−iy∗ cos δ sin δ∗ = − i(n + ik)(cosα coshβ + i sinα sinhβ)(sinα coshβ

+ i cosα sinhβ)

and the real part of this, after a little manipulation, is

Re(−iy∗ cos δ sin δ∗) = n sinhβ coshβ + k cosα sinα.
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Similarly

Re

(
sin δ sin δ∗y∗2(X + iZ)

yy∗

)
= X(n2 − k2)− 2nkZ

(n2 + k2)
(sin2 α cosh2 β

+ cos2 α sinh2 β)

Re[cos δ cos δ∗(X − iZ)] = X(cos2 α cosh2 β + sin2 α sinh2 β)

Re

(
i sin δ cos δ∗y∗(X − iZ)(X + iZ)

yy∗

)

= X2 + Z2

(n2 + k2)
(n sinhβ coshβ − k sinα cosα).

The potential transmittance is then

ψ =
(
(n2 − k2)− 2nk(Z/X)

(n2 + k2)
(sin2 α cosh2 β + cos2 α sinh2 β)

+ (cos2 α cosh2 β + sin2 α sinh2 β)

+ 1

X
(n sinhβ coshβ + k cosα sinα)

+ X2 + Z2

X(n2 + k2)
(n sinhβ coshβ − k cosα sinα)

)−1

. (7.78)

(b) Optimum exit admittance

Next we find the optimum values of X and Z. From equation (7.78)

1

ψ
=
(

q[n2 − k2 − 2nk(Z/X)]

[n2 + k2]
+ r + p

X
+ s(X2 + Z2)

X(n2 + k2)

)
(7.79)

where p, q, r and s are shorthand for the corresponding expressions in
equation (7.78). For an extremum in ψ , we have an extremum in 1/ψ and hence

∂

∂X

(
1

ψ

)
= 0 and

∂

∂Z

(
1

ψ

)
= 0

i.e.
q2nkZ

X2(n2 + k2)
− p

X2 + s

(n2 + k2)
− sZ2

X2(n2 + k2)
= 0 (7.80)

and
q(−2nk)

X(n2 + k2)
+ 2sZ

X(n2 + k2)
= 0. (7.81)
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From equation (7.81):
Z = nkq/s

and, substituting for equation (7.80),

X2 = p(n2 + k2)/s − n2k2q2/s2.

Then, inserting the appropriate expressions for p, q and s, from equation (7.79)

X =
(
(n2 + k2)(n sinhβ coshβ + k sinα cosα)

(n sinhβ coshβ − k sinα cosα)

− n2k2(sin2 α cosh2 β + cos2 α sinh2 β)2

(n sinhβ coshβ − k sinα cosα)2

)1/2

(7.82)

Z = nk(sin2 α cosh2 β + cos2 α sinh2 β)

(n sinhβ coshβ − k sinα cosα)
. (7.83)

We note that for β large X → n and Z → k, that is:

Ye → (n + ik) = (n − ik)∗.

(c) Maximum potential transmittance

The maximum potential transmittance can then be found by substituting the values
of X and Z, calculated by equations (7.82) and (7.83), into equation (7.78). All
these calculations are best performed by computer or calculator and so there
is little advantage in developing a separate analytical solution for maximum
potential transmittance.

(d) Matching stack

We have to device an assembly of dielectric layers which, when deposited on the
substrate, will have an equivalent admittance of

Y = X + iZ.

This is illustrated diagrammatically in figure 7.33 where a substrate of admittance
(ns − iks) has an assembly of dielectric layers terminating such that the final
equivalent admittance is (X+iZ). Now, the dielectric layer circles are executed in
a clockwise direction always. If we therefore reflect the diagram in the x axis and
then reverse the direction of the arrows, we get exactly the same set of circles—
that is, the layer thicknesses are exactly the same—but the order is reversed (it
was ABC and is now CBA) and they match a starting admittance of X − iZ, i.e.
the complex conjugate of (X + iZ), into a terminal admittance of (n s + iks), i.e.
the complex conjugate of the substrate index. In our filters the substrate will have
real admittance, i.e. ks = 0, and it is a more straightforward problem to match
(X − iZ) into ns than ns into (X + iZ).
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Figure 7.33. (a) A sketch of the admittance diagram of an arbitrary dielectric assembly of
layers matching a starting admittance of (ns − iks) to the final admittance of (X + iZ). (b)
The curves of figure 7.33(a) reflected in the real axis and with the directions of the arrows
reversed. This is now a multilayer identical to (a) but in the opposite order and connecting
an admittance of (X − iZ) (i.e. (X + iZ)∗) to one of (ns + iks) (i.e. (ns − iks)

∗).

There is an infinite number of possible solutions, but the simplest involves
adding a dielectric layer to change the admittance (X − iZ) into a real value and
then to add a series of quarter-waves to match the resultant real admittance into
the substrate. We will illustrate the technique shortly with several examples. At
the moment we recall that the necessary analysis was carried out in chapter 4.
There we showed that a film of optical thickness D given by

D = 1

4π
tan−1

(
2Znf

(n2
f − X2 − Z2)

)
(7.84)

(where the tangent is taken in the first or second quadrant) will convert an
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admittance (X − iZ) into a real admittance of value

µ = 2Xn2
f

(X2 + Z2 + n2
f )+ [(X2 + Z2 + n2

f )
2 − 4X2n2

f ]1/2
. (7.85)

nf can be of high or low index, but µ will always be lower than the index of the
substrate (except in very unlikely cases) because it is the first intersection of the
locus of nf with the real axis which is given by equations (7.84) and (7.85). Since
the substrate will always have an index greater than unity, then the quarter-wave
stack to match µ to ns must start with a quarter-wave of low index. Alternate
high- and low-index layers follow, the precise number being found by trial and
error.

In order to complete the design, we need to know the equivalent admittance
at the front surface of the metal layer and then we construct a matching stack to
match it to the incident medium.

(e) Front surface equivalent admittance

If the admittance of the structure at the exit surface of the metal layer is the
optimum value (X + iZ) given by equations (7.82) and (7.83), then it can be
shown that the equivalent admittance which is presented by the front surface of
the metal layer is simply the complex conjugate (X − iZ). The analytical proof
of this requires a great deal of patience, although it is not particularly difficult.
Instead, let us use a logical justification.

Consider a filter consisting of a single metal layer matched on either side to
the surrounding media by dielectric stacks. Let the transmittance of the assembly
be equal to the maximum potential transmittance and let the admittance of the
structure at the rear of the metal layer be the optimum admittance (X + iZ) given
by equations (7.82) and (7.83). Let the equivalent admittance at the front surface
be (ξ + iη) and let this be matched perfectly to the incident medium. Now we
know that the transmittance is the same regardless of the direction of incidence.
Let us turn the filter around, therefore, so that the transmitted light proceeds in
the opposite direction. The transmittance of the assembly must be the maximum
potential transmittance once again. The admittance of the structure at what was
earlier the input, but is now the new exit face of the metal layer, must therefore by
(X+iZ). But, since the layers are dielectric and the medium is of real admittance,
this must also be the complex conjugate of (ξ + iη), that is, (ξ − iη). (ξ + iη)
must therefore be (X − iZ), which is what we set out to prove.

The procedure for matching the front surface to the incident medium is
therefore exactly the same as that for the rear surface and, indeed, if the incident
medium is identical to the rear exit medium, as in a cemented filter assembly, then
the front dielectric section can be an exact repetition of the rear.
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7.6.2 Examples of filter designs

We can not attempt some filter designs. We choose the same material, silver, as
we did for the Fabry–Perot and the DHW filters earlier. Once again, arbitrarily, we
select a thickness of 70 nm. The wavelength we retain as 550 nm, at which the
optical constants of silver are 0.055 − i3.32.

The filter is to use dielectric materials of indices 1.35 and 2.35 corresponding
to cryolite and zinc sulphide respectively. The substrate is glass, n = 1.52, and the
filter will be protected by a cemented cover slip so that we can also use n = 1.52
for the incident medium.

α = 2πnd/λ = 0.043 98

β = 2πkd/λ = 2.6549

and from equations (7.82) and (7.83) we find the optical admittance

X + iZ = 0.4572 + i3.4693.

Substituting this in equation (7.78) gives

ψ = 80.50%.

We can choose to have either a high- or a low-index spacer. Let us choose first
a low index and from equation (7.84) we obtain an optical thickness for the 1.35
index layer of 0.19174 full waves. Equation (7.85) yields a value of 0.05934 forµ
which must be matched to the substrate index of 1.52. We start with a low-index
quarter-wave and simply work through the sequence of possible admittances:

n2
L

µ
,

n2
Hµ

n2
L

,
n4

L

n2
Hµ

,
n4

Hµ

n4
L

etc

until we find one sufficiently close to 1.52. The best arrangement in this case
involves three layers of each type.

n6
Hµ

n6
L

= 1.6511

equivalent to a loss of 0.2% at the interface with the substrate.
The structure so far is then

|Ag|L ′′L H L H L H |Glass (7.86)

with L ′′ = 0.191 74 full waves. This can be combined with the following L layer
into a single layer L ′ = 0.25 + 0.19174 = 0.44174 full waves, i.e.

|Ag|L ′H L H L H |Glass.
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Since the medium is identical to the substrate then the matching assembly at the
front will be exactly the same as that at the rear so that the complete design is

Glass|H L H L H L ′AgL ′ H L H L H |Glass

with

Ag 70 nm (geometrical thickness)

L ′ 0.44174 full waves (optical thickness)

H, L 0.25 full waves

λ0 550 nm.

The performance of this design is shown in figure 7.34(a). Dispersion of the
silver has not been taken into account to give a clearer idea of the intrinsic
characteristics. The peak is indeed centred at 550 nm with transmittance virtually
that predicted.

A high-index matching layer can be handled in exactly the same way. For
an index of 2.35, equation (7.84) yields an optical thickness of 0.1561 and
equation (7.85) gives a value of 0.1426 for µ. Again, the matching quarter-wave
stack should start with a low-index layer. There are two possible arrangements,
H ′ representing 0.1561 full waves:

(a) AgH ′ L H L H |Glass

with n4
Hµ/n4

L = 1.310, i.e. a loss of 0.6% at the glass interface, or

(b) AgH ′ L H L H |Glass

with n6
L/n4

Hµ = 1.392 representing a loss of 0.2% at the glass interface.
We choose alternative (b) and the full design can then be written

Glass|H L H L H ′AgH ′ L H L H |Glass

with

Ag 70 nm (geometrical thickness)

H ′ 0.1561 full waves (optical thickness)

H, L 0.25 full waves.

The performance of this design is shown in figure 7.34(b), where, again the
dispersion of silver has not been taken into account. Peak transmission is virtually
as predicted.

When, however, we plot the performance of any of these designs, including
the metal–dielectric Fabry–Perot and DHW filters over an extended wavelength
region, we find that the performance at longer wavelengths appears very
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Figure 7.34. (a) Calculated performance of the design:

Glass|H L H L H L ′Ag L ′ H L H L H |Glass

where

nGlass = 1.52
Ag = 70 nm (geometrical thickness) of index 0.055 − i3.32
H = 0.25λ0 (optical thickness) of index 2.35
L = 0.25λ0 (optical thickness) of index 1.35
L ′ = 0.4417λ0 (optical thickness) of index 1.35
λ0 = 550 nm.

Dispersion has been neglected.

disappointing. One example, the low-index matched induced-transmission filter,
is shown in figure 7.35(a). In the case of the Fabry–Perot and the DHW, the rise
is smoother, but is of a similar order of magnitude. The reason for the rise is,
in fact, our assumption of zero dispersion. This means that β is reduced as λ
increases. α is always quite small and the performance of the metal layers is
determined principally by β. Silver, however, over the visible and near infrared,
shows an increase in k which corresponds roughly to the increase in λ so that k/λ
is roughly constant (to within around ±20%) over the region 400 nm–2.0 µm.
This completely alters the picture and is the reason why the first-order metal–
dielectric filters do not show longwave sidebands.

Taking dispersion into account, the performance of the induced transmission
filter improves considerably and is shown in figure 7.35(b). The rejection is,
however, not particularly high, being between 0.01 and 0.1% transmittance over
most of the range with an increase to 0.15% in the vicinity of 860 nm. This level
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Figure 7.34. (b) Calculated performance of the design:

Glass|H L H L H ′ Ag H ′ L H L H |Glass

where

nGlass = 1.52
Ag = 70 nm (geometrical thickness) of index 0.055 − i3.32
H = 0.25λ0 (optical thickness) of index 2.35
L = 0.25λ0 (optical thickness) of index 1.35
H ′ = 0.1561λ0 (optical thickness) of index 2.35
λ0 = 550 nm.

Dispersion has been neglected.

of rejection can be acceptable in some applications and the induced-transmission
filter represents a very useful, inexpensive general purpose filter. The dispersion
which improves the performance on the longwave side of the peak degrades it on
the shortwave side, and to complete the filter it is normal to add a longwave-pass
absorption glass filter which is cemented to the induced transmission component.

To improve the rejection of the basic filter it is necessary to add further metal
layers. The simplest arrangement is to have these extra metal layers of exactly the
same thickness as the first. The potential transmittance of the complete filter
will then be the product of the potential transmittances of the individual layers.
The terminal admittances for all the metal layers can be arranged to be optimum
quite simply, giving optimum performance for the filter. All that is required
is a dielectric layer in between the metal layers which is twice the thickness
given by equation (7.84) for the first matching layer. We can see why this is
by imagining a matching stack on the substrate overcoated with the first metal
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Figure 7.35. (a) The design of figure 7.34(a) computed over a wider spectral region
neglecting dispersion.

Figure 7.35. (b) The design of figure 7.34(a) computed this time including dispersion.
The rise in transmittance at longer wavelengths has vanished but there is now obvious
transmittance at 400 nm.

layer. Since its terminal admittance will be optimum, the input admittance will be
the complex conjugate, as we have discussed already. Addition of the thickness
given by equation (7.84) renders the admittance real, that is, the admittance locus
has reached the real axis. Addition of a further identical thickness must give an
equivalent input admittance which is the complex conjugate of the metal input
admittance and hence is equal to the optimum admittance. This can be repeated
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as often as desired.
Returning to our example, a two-metal layer induced-transmission filter will

have peak transmission, if perfectly matched, of ψ = (0.80501) 2, that is, 64.8%,
a three-metal layer should have ψ = (0.80501)3 that is, 52.17%, and so on.

The designs, based on the low-index matching layer version, are then, from
equation (7.86)

Glass |H L H L H L L′′AgL ′′L ′′AgL ′′ L H L H L H |Glass

= Glass|H L H L H L ′AgL ′′′AgL ′ H L H L H |Glass (7.87)

where

L ′ = 0.25 + 0.191 74 = 0.441 74 full waves

L ′′ = 0.191 74 full waves

L ′′′ = 2 × 0.191 74 = 0.383 48 full waves

Ag = 70 nm

and
Glass|H L H L H L ′AgL ′′′AgL ′′′AgL ′ H L H L H |Glass. (7.88)

Unfortunately, these designs, although they do have the peak transmittance
predicted, possess a poor pass-band shape, in that it has a hump on the longwave
side. To eliminate this hump, it is necessary to add an extra half-wave layer to
each of the layers marked L ′′′, i.e.

Glass|H L H L H L ′AgL ′′′′AgL ′ H L H L H |Glass (7.89)

and
Glass|H L H L H L ′AgL ′′′′AgL ′′′′AgL ′ H L H L H |Glass (7.90)

where

L ′′′′ = 0.5 + 0.383 48 = 0.883 48 full waves.

Figure 7.36 shows the form of designs (7.87) and (7.88) and the hump can
clearly be seen together with the improved shape of designs (7.89) and (7.90).

Dispersion was not included in the computation of figure 7.36. To examine
the rejection over an extended region, we must include the effects of dispersion.
Unfortunately, the modified designs (7.89) and (7.90) act as metal–dielectric–
metal (M–D–M is a frequently used shorthand notation for such a filter) and
metal–dielectric–metal–dielectric–metal (M–D–M–D–M) filters at approximately
1100 nm which gives a very narrow leak, rising to around 0.15% in the former and
0.05% in the latter. Elsewhere, the rejection is excellent, of the order of 0.0001%
at 900 nm and 0.000 015% at 1.05µm for the former and 0.000 0001% at 900 nm
and 3 × 10−9% at 1.05 µm for the latter.
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Figure 7.36. Performance, neglecting dispersion, of (a) two-metal-layer designs and (b)
three-metal-layer designs of induced-transmission filter. The full curves denote (7.87) and
(7.88) and there is a spurious shoulder on the longwave side of the peak in each case. This
can be eliminated by the addition of half-wave decoupling layers as the dashed lines show.
They are derived from (7.89) and (7.90) respectively.

If the leak is unimportant, then the filter can be used as it is with the addition
of a longwave-pass filter of the absorption type as before. For the suppression of
all-dielectric filter sidebands, it is better to use filters of type (7.87) and (7.88)
since the shape of the sides of the pass band is relatively unimportant. The
rejection of these filters is slightly better than that of (7.89) and (7.90) and, of
course, the leak is missing (figure 7.37).

The bandwidth of the filters is not an easy quantity to predict analytically
and the most straightforward approach is simply to compute the filter profile.

Berning and Turner [30] show that a figure of merit indicating the potential
usefulness of a metal is the ratio k/n. The higher this ratio, the better is the
performance of the completed filter.

Induced-transmission filters for the visible region having only one single
metal layer are relatively straightforward to manufacture. The thickness of the
metal layer can be arrived at by trial and error. If the metal layer is less than
optimum in thickness, the effect will be a broadening of the pass band and a rise
in peak transmission at the expense of an increase in background transmission
remote from the peak. A splitting of the pass band will also become noticeable
with the appearance eventually, if the thickness is further reduced, of two separate
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Figure 7.37. (a) Calculation, including dispersion, of the performance of the designs of
(7.89) (dashed curve) and (7.90) over an extended spectral range. These designs include
the half-wave decoupling layers and the penalty for the improved pass-band shape is the
narrow transmission spike near 1.05 µm. (b) Calculation, including dispersion, of the
original designs (7.87) (dashed curve) and (7.88). The transmission spike is no longer
there but the pass-band shape includes the shoulder (off scale).

peaks. If, on the other hand, the silver layer is made too thick, the effect will be
a narrowing of the peak with a reduction of peak transmission. The best results
are usually obtained with a compromise thickness where the peak is still single
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in shape but where any further reduction in silver thickness would cause the
splitting to appear. A good approximation in practice, which can be used as a
first attempt at a filter, is to deposit the first dielectric stack and to measure the
transmission. The silver layer can then be deposited using a fresh monitor glass
so that the optical density is twice that of the dielectric stack. The second spacer
and stack can then be added on yet another fresh monitor. A measurement of the
transmission of the complete filter will quickly indicate which way the thickness
of the silver layer should be altered in order to optimise the design. Usually, one
or two tests are sufficient to establish the best parameters. If, after this optimising,
the background rejection remote from the peak is found to be unsatisfactory, then
not enough silver is being used. As the thickness was chosen to be optimum for
the two dielectric sections, a pair of quarter-wave layers should be added to each
in the design and the trial-and-error optimisation repeated. This will also narrow
the bandwidth, but this is usually preferable to high background transmission.

In the ultraviolet the available metals do not have as high a performance as,
for instance, silver in the visible, and it is very important, therefore, to ensure
that the design of a filter is optimised as far as possible; otherwise a very inferior
performance will result. An important paper in this field is that by Baumeister
et al [31]. Aluminium is the metal commonly used for this region and measured
and computed results obtained by these workers for filters with aluminium layers
are shown in figure 7.38. The performance which has been achieved is most
satisfactory and the agreement between practical and theoretical curves is good.

Induced-transmission filters have been the subject of considerable study by
many workers. Metal–dielectric multilayers are reviewed by MacDonald [32]. A
useful, recent account of induced-transmission filters is given by Lissberger [33].
Multiple cavity induced-transmission filters have been described by Maier [34].
An alternative design technique for metal–dielectric filters involving symmetrical
periods has been published by Macleod [35]. Symmetrical periods for metal–
dielectric filter design have also been used by McKenney [36] and by Landau and
Lissberger [37].

7.7 Measured filter performance

Not a great deal has been published on the measured performance of actual
filters and the main source of information for a prospective user is always the
literature issued by manufacturers. Performance of current production filters tends
to improve all the time so that inevitably such information does not remain up
to date for long. Two papers [38, 39] quote the results of a number of tests on
commercial filters, and, although they were written some time ago, they will still
be found useful sources of information.

Blifford examined the performance of the products of four different
manufacturers, covering the region 300–1000 nm. The variation of peak
wavelength with angle of incidence was found to be similar to the relationship
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Figure 7.38. Computed and measured transmittance of an induced transmission filter for
the ultraviolet. Design:

Air|H L H L H L H 1.76L Al 1.76L H L H L H L H |Quartz

where H = PbF2 (nH = 2.0) and L = Na3AlF6 (nL = 1.36). The physical
thickness of the aluminium layer is 40 nm and λ0 = 253.6 nm. (After Baumeister et al
[31].)

already established (see p 283). Unfortunately, information on the design and
materials is lacking, so that the expression for the effective index cannot be
checked. The sensitivities to tilt varied from P = 0.22 to P = 0.51, where
P corresponds to the quantity 1/n∗2 in equation (7.39). Blifford suggests that
an average value of 0.35 for P would probably be the best value to assume in
any case where no other data were available. Changes in peak transmittance with
angle of incidence were found, but were not constant from one filter to another
and apparently must always be measured for each individual filter. Possibly, the
effect is due to the absorption filters which are used for sideband suppression
and which, because they do not show any shift in edge wavelength with angle of
incidence, may cut into the pass band of the interference section at large angles
of incidence. In most cases examined, the change in peak transmission was less
than 10% for angles of 5◦–10◦.

The variation in peak transmittance over the surface of the filter was also
measured in a few cases. For a typical filter with a peak wavelength of 500 nm
and a bandwidth not explicitly mentioned, but probably 2.1 nm (from information
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given elsewhere in the paper), the extremes of peak transmission were 54% and
60%. This is, in fact, one aspect of a variation of peak wavelength, bandwidth and
peak transmittance which frequently occurs, although the magnitude can range
from very small to very large. The cause is principally the adsorption of water
vapour from the atmosphere before a cover slip can be cemented over the layers
and it is dealt with in greater detail in chapter 9. Infrared filters appear to suffer
less from this defect than visible and near infrared filters.

Another parameter measured by Blifford was the variation of peak
wavelength with temperature. Variation of the temperature from −60 ◦C
to +60 ◦C resulted in changes of peak wavelength from +0.01 nm ◦C−1 to
+0.03 nm ◦C−1. The relationship was found to be linear over the whole of this
temperature range with little, if any, change in the pass-band shape and peak
transmittance. In most cases, the temperature coefficients of bandwidth and peak
transmittance were found to be less than 0.01 nm ◦C−1. Filters for the visible
region have also been the subject of a detailed study by Pelletier and his colleagues
[40]. The shift with temperature for any filter is a function of the coefficients
of optical thickness change with temperature, depending on the design of the
filter and especially on the material used for the spacers. Measurements made on
different filter designs yielded the following coefficients of optical thickness for
the individual layer materials:

zinc sulphide (4.8 ± 1.0)× 10−5 ◦C−1

cryolite (3.1 ± 0.7)× 10−5 ◦C−1.

Hysteresis is frequently found with temperature cycling narrowband filters
over an extended temperature range. The hysteresis is particularly pronounced
when the filters are uncemented and when they are heated towards 100 ◦C. It is
usually confined to the first cycle of temperature, takes the form of a shift of peak
wavelength towards shorter wavelengths and is caused by the desorption of water
which is discussed again in chapter 9.

An effect of a different kind, although related, is the subject of a
contribution by Title and his colleagues [41, 42]. A permanent shift of a
filter characteristic towards shorter wavelengths amounting to a few tenths of
nanometres accompanied by a distortion of pass-band shape was produced by a
high level of illumination. The filters were for the Hα wavelength, 656.3 nm, and
the changes were interpreted as due to a shift in the properties of the zinc sulphide
material, the fundamental nature of the shift being unknown. Zinc sulphide can
be transformed into zinc oxide by the action of ultraviolet light, especially in the
presence of moisture, and the shifts that were observed could probably have been
caused by such a mechanism.

The possibility of variations in filter properties both over the surface of the
filter and as a function of time, temperature and illumination level should clearly
be borne in mind in the designing of apparatus incorporating filters.

A useful survey which compares the performance achievable from different
types of narrowband filters was the subject of a report by Baumeister [43].
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A study was carried out by Baker and Yen on infrared filters. The effects
studied were those of variation in angle of incidence and temperature, and both
theoretical and experimental results were quoted.

Accurate calculation of the effects of changes in the angle of incidence
yielded a variation of peak wavelength of the expected form, but no significant
variation of bandwidth for angles of incidence up to 50 ◦. They also calculated
that the peak transmittance and the shape of the pass band should remain
unchanged for angles up to 45◦. For angles above 50◦, both the shape and the
peak transmittance gradually deteriorated. The calculations were confirmed by
measurements on real filters.

The effects of varying temperatures were also investigated both theoretically
and practically. As in the case of the shorter wavelength filters examined
by Blifford, they measured a shift towards longer wavelengths with increasing
temperature. For temperatures down to liquid helium the filters show little loss
of peak transmittance or variation of characteristic pass-band shape. However,
serious losses in transmittance occurred above 50 ◦C. Although not mentioned in
the paper, this is probably due to the use of germanium, either as substrate or
one of the layer materials, which always exhibits a marked fall in transmittance
at elevated temperatures above 50 ◦C. Baker and Yen make the point that filters
designed to be least sensitive to variations in the angle of incidence are usually
most sensitive to temperature and vice versa. The temperature coefficients of peak
wavelength which they quote vary from +0.0035% ◦C−1 to +0.0125% ◦C−1.
Unfortunately, neither the materials used in the filters nor the designs are quoted
in the paper, but it is likely that the figures will apply to most interference filters
for the infrared.

Similar measurements of the temperature shift of infrared filters were made
at Grubb Parsons. The materials used were zinc sulphide and lead telluride, and
the filters which had first-order high-index spacers gave temperature coefficients
of peak wavelength of −0.0135% ◦C−1. These filters were of the type used in the
selective chopper radiometer described in chapter 12. The negative temperature
coefficient is usual with filters having lead telluride as one of the layer materials.
This negative coefficient in lead telluride is especially useful as it tends to
compensate for the positive coefficient in zinc sulphide, and Seeley et al [44]
have succeeded in designing and constructing filters using lead telluride which
have zero temperature coefficient.
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d’ensembles complexes de couches minces alternées Opt. Acta1 1–8

[12] Lissberger P H 1959 Properties of all-dielectric filters. I—A new method of
calculation J. Opt. Soc. Am.49 121–5

[13] Lissberger P H and Wilcock W L 1959 Properties of all-dielectric filters. II—Filters
in parallel beams of light incident obliquely and in convergent beams J. Opt. Soc.
Am.49 126–38

[14] Pidgeon C R and Smith S D 1964 Resolving power of multilayer filters in non-parallel
light J. Opt. Soc. Am.54 1459–66

[15] Hernandez G 1974 Analytical description of a Fabry–Perot spectrometer, 3. Off-axis
behaviour and interference filters Appl. Opt.13 2654–61

[16] For example, Reports 4, 5 and 6 of Contract DA-44-009-eng-1113 covering the
period January–October 1953

[17] Turner A F 1952 Wide pass band multilayer filters J. Opt. Soc. Am.42 878(a)
[18] Smith S D 1958 Design of multilayer filters by considering two effective interfaces

J. Opt. Soc. Am.48 43–50
[19] Knittl Z 1965 Dielektrische Interferenzfilter mit rechteckigen Maximum Proc. Coll.

Thin Films (Budapest)pp 153–61 (The method is described in detail in reference
20 also)

[20] Knittl Z 1976 Optics of Thin Films(London: Wiley)
[21] Thelen A 1966 Equivalent layers in multilayer filters J. Opt. Soc. Am.56 1533–8
[22] Barr E E 1974 Visible and ultraviolet bandpass filters Optical Coatings, Applications

and Utilizationed G W DeBell and D H Harrison Proc. SPIE50 87–118
[23] Neilson R G T and Ring J 1967 Interference filters for the near ultra-violet J. Phys.

28 C2-270–5 (supplement to no 3–4 March–April)
[24] Malherbe A 1974 Interference filters for the far ultraviolet Appl. Opt.13 1275–6
[25] Baumeister P W and Jenkins F A 1957 Dispersion of the phase change for dielectric

multilayers. Application to the interference filter J. Opt. Soc. Am.47 57–61
[26] Baumeister P W, Jenkins F A and Jeppesen M A 1959 Characteristics of the phase-

dispersion interference filter J. Opt. Soc. Am.49 1188–90
[27] Giacomo P, Baumeister P W and Jenkins F A 1959 On the limiting band width of

interference filters Proc. Phys. Soc.73 480–9
[28] Ritchie F S Unpublished work on Ministry of Technology Contract



Measured filter performance 347

KX/LSO/C.B.70(a)
[29] Hass G and Hadley L 1972 Optical constants of metals American Institute of Physics

Handbooked D E Gray (New York: McGraw-Hill) pp 6-124–56
[30] Berning P H and Turner A F 1957 Induced transmission in absorbing films applied

to band pass filter design J. Opt. Soc. Am.47 230–9
[31] Baumeister P W, Costich V R and Pieper S C 1965 Bandpass filters for the ultraviolet

Appl. Opt.4 911–13
[32] MacDonald J 1971 Metal–Dielectric Multilayers(London: Adam Hilger)
[33] Lissberger P H 1981 Coatings with induced transmission Appl. Opt.20 95–104
[34] Maier R L 1967 2M interference filters for the ultraviolet Thin Solid Films1 31–7
[35] Macleod H A 1978 A new approach to the design of metal–dielectric thin-film optical

coatings Opt. Acta25 93–106
[36] McKenney D B 1969 Ultraviolet interference filters with metal–dielectric stacks PhD

Dissertation(Optical Services Center, University of Arizona)
[37] Landau B V and Lissberger P H 1972 Theory of induced transmission filters in terms

of concept of equivalent layers J. Opt. Soc. Am.62 1258–64
[38] Blifford I H Jr 1966 Factors affecting the performance of commercial interference

filters Appl. Opt.5 105–11
[39] Baker M L and Yen V L 1967 The effect of the variation of angle of incidence and

temperature on infrared filter characteristics Appl. Opt.6 1343–51
[40] Pelletier F, Roche P and Bertrand L 1974 On the limiting bandwidth of interference

filters: influence of temperature during production Opt. Acta21 927–46
[41] Title A M, Pope T P and Andelin J P 1974 Drift in interference filters. 1 Appl. Opt.

13 2675–9
[42] Title A M 1974 Drift in interference filters. 2: radiation effects Appl. Opt.13 2680–4
[43] Baumeister P W 1973 Thin films and interferometry Appl. Opt.12 1993–4
[44] Seeley J S, Evans C S, Hunneman R and Whatley A 1976 Filters for the ν2 band of

CO2; monitoring and control of layer deposition Appl. Opt.15 2736–45



Chapter 8

Tilted coatings

8.1 Introduction

We have already seen in chapter 2 that the characteristics of coatings change when
they are tilted with respect to the incident illumination, and the particular way
in which they change depends on the angle of incidence. We have studied the
shifts that are induced in narrowband filters. Narrowband filters are a simple
case because the tilt angle is usually small and we can assume that the major
effect is in the phase thickness of the layers, which is affected equally for each
plane of polarisation. For larger tilts, however, the admittances are also affected
and then the performance for each plane of polarisation differs. Some important
applications involve the difference in performance between one plane and the
other, which can be controlled to some extent, making possible the construction of
phase retarders and polarisers. On the other hand, the differences in performance
can create problems, and although it is impossible to cancel the effects completely,
there are ways of modifying it so that a more acceptable performance may be
achieved. Then there are some, at first sight, strange effects which occur with
dielectric-coated reflectors. Under certain conditions and at reasonably high
angles of incidence, sharp absorption bands can exist for one plane of polarisation.
This can create difficulties with dielectric-overcoated reflectors such as protected
silver. The chapter begins with the addition of tilting effects to the admittance
diagram, which allows us to explain qualitatively the behaviour of many different
types of tilted coatings including overcoated reflectors and which involves a
slight modification to the traditional form of the tilted admittances. Next there
is a description of polarisers followed by an account of phase retarders. Some
coatings where the polarisation splitting is undesirable, such as dichroic filters,
are described with ways of reducing this splitting. Finally some antireflection
coatings at high angles of incidence are described.

Some of the material in this chapter has already been mentioned and
discussed in earlier chapters but here we attempt to introduce a consistent and

348
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connected account and so there are some advantages in repeating what has been
said before in the present context.

8.2 Modified admittances and the tilted admittance diagram

The form of the admittances and the phase thickness of a film which is illuminated
at oblique incidence are given in chapter 2 and have already been used in
considering the performance of some coatings including narrowband filters. They
are:

δ = 2πd(n2 − k2 − n2
0 sin2 θ0 − 2ink)1/2/λ (8.1)

where the fourth quadrant solution is correct, and then

ηs = (n2 − k2 − n2
0 sin2 θ0 − 2ink)1/2Y (8.2)

again in the fourth quadrant, and

ηp = y2/ηs (8.3)

where n, k refer to the film and n0, θ0 etc to the incident medium. When the layers
are purely dielectric then this is in the simpler form

δ = (2πndcos θ)/λ (8.4)

ηs = y cos θ (8.5)

and
ηp = y/ cos θ (8.6)

where n sin θ = n0 sin θ0. Expressions (8.4)–(8.6) can be used instead of
expressions (8.1)–(8.3) if the cos θ is permitted to become complex.

The calculation of multilayer properties at angles of incidence other than
normal simply involves the use of the above expressions instead of those for
normal incidence. It should be emphasised that the appropriate tilted values are
to be adopted for incident medium and substrate as well as for the films. The
use of the admittance diagram is rendered much more complicated because of
the change in the incident admittance. The isoreflectance and isophase contours
depend on the admittance of the incident medium and we therefore need one
set for s-polarisation and one quite different set for p-polarisation, as well as
completely new sets each time the angle of incidence is changed. Fortunately,
there is a way round this problem, which carries some other advantages as well.

It has been shown by Thelen [1] that the properties of a multilayer are
unaffected if all the admittances are multiplied or divided by a constant factor,
and indeed it is usual to divide the admittances by Y , the admittance of free space,
so that the normal incidence admittance is numerically equal to the refractive
index. We now propose an additional correction to the admittances, the dividing
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of the s-polarised admittances, and the multiplying of the p-polarised admittances,
by cos θ0. This has the effect of preserving, for both s- and p-polarisation, the
admittance of the incident medium at its normal incidence value, regardless of
the angle of incidence, and means that the isoreflectance and isophase contours of
the admittance diagram retain their normal incidence values whatever the angle
of incidence or plane of polarisation. We can call these admittances simply the
modified admittances, and the expressions for them become

ηs = (n2 − k2 − n2
0 sin2 θ0 − 2ink)1/2/ cos θ0 (8.7)

again in the fourth quadrant, and

ηp = y2/ηs. (8.8)

Or, when the layers are dielectric, the simpler forms are

ηs = (y cos θ)/ cos θ0 (8.9)

and
ηp = (y cos θ0)/ cos θ. (8.10)

The values of reflectance, transmittance, absorptance and phase changes
on either transmission or reflection are completely unchanged by the adoption
of these values for the admittances. Since the expressions involve cos θ 0 and
cos θ , which are connected by the admittance of the incident medium, then the
dependence of the modified admittances on the index of the incident medium will
be somewhat different from the unmodified, traditional ones. Nevertheless, we
shall see that this does carry some advantages.

We consider first of all purely dielectric materials. In this case, provided
that n0 sin θ0 is less than n, the film index, then the two values for the modified
admittances are real and positive. If, however, n0 is greater than n, then there
is a real value of θ0 at which n0 sin θ0 is equal to n. This angle is known as the
critical angle, and, for angles of incidence greater than this value, the admittances
are imaginary. We will consider what happens for angles of incidence beyond
critical later. First we will limit ourselves to angles less than critical where the
admittances are real.

First of all, let us consider air of index unity as the incident medium. We
recall that all transparent thin-film materials have refractive index greater than
unity. In figure 8.1 the modified admittance is shown for a number of thin-film
materials as a function of angle of incidence. The p-admittances of all materials
cross the line n = 1 at the value known as the Brewster angle for which the
single-surface p-reflectance is zero. The s-admittances all increase away from the
line n = 1, so that the single-surface s-reflectance simply increases with angle of
incidence. Since all these materials are dielectric, their modified optical thickness
is real and therefore, although a correction has to be made for the effect of angle of
incidence, quarter- and half-wave layers can be produced at non-normal incidence
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Figure 8.1. Modified p- and s-admittances (i.e. including the extra factor of cos θ0) of
materials of indices 1.0, 1.35, 1.52, 2.0 and 2.5 for an incident medium of index 1.0.

just as readily as at normal and it cannot be too greatly emphasised that although
the optical thickness changes with angle of incidence, it does not vary with the
plane of polarisation.

It is possible to make several deductions directly from figure 8.1. The first
is that, for any given pair of indices, the ratio of the s-admittances increases with
angle of incidence, while that for p-admittances reduces. Since the width of the
high-reflectance zone of a quarter-wave stack decreases with decreasing ratio of
these admittances, the width will be less for p-polarised light than for s-polarised.
As we shall shortly see, this effect is used in a useful type of polariser. The
splitting of the admittance of dielectric layers means also that there is a relative
phase shift between p- and s-polarised light reflected from a high-reflectance
coating when the layers depart from quarter-waves. This effect can be used in the
design of phase retarders and we will give a brief account of this. The diagram
also helps us to consider the implications of antireflection coatings for high angles
of incidence. A frequent requirement is an antireflection coating for a crown glass
of index around 1.52. For a perfect single-layer coating we should have a quarter-
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Figure 8.2. Modified p- and s-admittances (i.e. including the extra factor of cos θ0) of
materials of indices 1.0, 1.35, 1.52, 2.0 and 2.5 for an incident medium of index 1.52.

wave of material of optical admittance equal to the square root of the product
of the admittances of the glass and the incident medium. At normal incidence
in air there is, of course, no sufficiently robust material with index as low as
1.23. For greater angles of incidence, the s-polarised reflectance increases still
further from its normal incidence value and the admittance required for a perfect
single-layer antireflection coating remains outside the range of practical materials,
corresponding to still lower indices of refraction. The p-polarised behaviour is,
however, completely different, and in the range from approximately 50 ◦–70◦ the
admittance required for the antireflection coating is within the range of what is
possible. No coating is required, of course, at the Brewster angle. For angles
greater than the Brewster angle, the index required is greater than that of the
glass. Antireflection coatings for high angles of incidence will also be discussed
shortly.

The behaviour of dielectric materials when the incident medium is of a
higher index (one that is within the range of available thin-film materials) is
somewhat more complicated. Figure 8.2 shows the way in which the admittances
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vary when the incident medium is glass of index 1.52. There is the familiar
splitting of the s- and p-polarised admittances which, as before, increases with
angle of incidence. For indices which are lower than that of the glass it is possible
to reach the critical angle, and at that point the admittances reach either zero
or infinity and disappear from the diagram. Their behaviour beyond the critical
angle will be discussed shortly. A further very important feature is that, while
for indices higher than that of the incident medium the p-polarised admittance
falls with angle of incidence, for indices lower than the incident medium the
p-polarised admittance rises. All cut the incident medium admittance at the
Brewster angle, but now a new phenomenon is apparent. The p-admittance curves
for materials of index lower than that of the incident medium intersect the curves
corresponding to higher indices. An immediate deduction is that a quarter-wave
stack, composed of such pairs of materials, will simply behave, at the angle of
incidence corresponding to the point of intersection, as a thick slab of material.
Provided the admittances of substrate, thin films and incident medium are not too
greatly different, the p-reflectance will be low. The ratio of the s-admittances
is large, because their splitting increases with angle of incidence, and so the
corresponding s-reflectance is high and the width of the high-reflectance zone
is large. This is the basic principle of the MacNeille polarising beam splitter that
we will return to in a later section. The range of useful angles of incidence will
depend partly on the rate at which the curves of p-polarised admittance diverge
on either side of the intersection, and this can be estimated from the diagram.

Apart from the polarisation-splitting of the admittance, the behaviour
of dielectric layers at angles of incidence less than critical is reasonably
straightforward and does not involve difficulties of a more severe order than exist
at normal incidence. When metal films are introduced, however, the difficulties
increase and the behaviour becomes still stranger when combined with dielectric
materials, especially when used beyond the critical angle. The aim in the
remainder of this section is to discuss, in a qualitative fashion, such behaviour
and to suggest techniques which can be used for visualisation and prediction. The
use of admittance loci will be emphasised.

We know already that the admittance locus of a dielectric layer at normal
incidence is a circle centred on the real axis. Tilted dielectric layers at angles of
incidence less than critical still have circular loci which can be calculated from
the tilted admittances in exactly the same way. Provided the modified admittances
are used in constructing the loci then the isoreflectance and isophase circles on the
admittance diagram will remain exactly the same as at normal incidence for both
p- and s-polarisation.

The admittance of a metal layer is a little more complicated than a dielectric.
For a lossless metal in which the refractive index, and hence the optical
admittance, is purely imaginary, and given by −ik, the loci are a set of circles
with centres on the real axis and passing through the points ik and −ik, which
are on the imaginary axis. Figure 8.3 shows the typical form. The circles are
like the dielectric ones, traced out clockwise so that they start on ik and end on
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Figure 8.3. Admittance loci for an ideal metal with admittance −ik. The loci begin at
the point ik and terminate on −ik. Equi-thickness contours are also shown at no fixed
intervals. Similar loci are obtained for s-polarised frustrated total reflectance (FTR) layers.
For p-polarised FTR layers, the shape of the loci is similar but they are traced in the opposite
direction.

−ik. Real metallic layers depart somewhat from this ideal model but if the metal
is of high performance, i.e. if the ratio k/n is high, then the loci are similar to
the perfect case. It is as if the diagram were rotated slightly about the origin so
that the points where all circles intersect are (n,−k) and (−n, k) respectively,
although the circles can never reach the point (−n, k) since admittance loci are
constrained to the first and second quadrants of the Argand diagram. Figure 8.4
shows a set of optical admittance loci calculated for silver, n− ik = 0.075− i3.41
[2] demonstrating this typical behaviour. The direction of the loci is now better
described as terminating on (n, −k), although most are still described in a
clockwise direction. We will omit from the discussion in this chapter metals
which are not of high optical quality and for which the loci resemble a set of
spirals terminating at (n, −k). What happens at oblique incidence?

The optical phase factor at normal incidence is

2π(n − ik)d/λ (8.11)

dominated by the imaginary part. At oblique incidence, it becomes

2π(n2 − k2 − n2
0 sin2 θ0 − 2ink)1/2d/λ (8.12)

still in the fourth quadrant. Since n0 sin θ0 is normally small compared with k, it
has little effect on the phase factor. It reduces the real part slightly and increases
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Figure 8.4. Admittance loci for silver at normal incidence in the visible region. The value
assumed for the optical constants is 0.075 − i3.51 [2].

the imaginary part, but the effect is small, and the behaviour is essentially similar
to that at normal incidence. At an angle of incidence of 80 ◦ in air, for example,
the phase factor of silver changes from 2π(0.075 − i3.41)d/λ to 2π(0.00721 −
i3.549)d/λ. The change in the modified admittance, therefore, is mainly due to
the cos θ0 term. The ratio of real to imaginary parts remains virtually the same,
and the p-admittance simply moves towards the origin (both real and imaginary
parts reduced) and the s-admittance away from the origin. Thus the principal
effect for high-performance metal layers with tilt is an expansion of the circular
loci for s-polarisation and a contraction for p-polarisation. The basic form remains
the same.

The shift in the modified optical admittance does mean that the phase shift
on reflection from a massive metal will vary. For silver at normal incidence, the
phase shift will be in the second quadrant. As the angle of incidence increases,
the movement of the p-polarised admittance towards the origin implies that the
p-polarised phase shift moves towards the first quadrant, entering it at an angle of
incidence of just above 70◦ (i.e. roughly cos−1 1

3 )while the s-polarised phase shift
moves further towards 180◦. The reflectance for s-polarised light increases, while
for p-polarised light it shows a very slight drop initially to a shallow minimum,
but rising thereafter.

Now we examine what happens when a metal layer is overcoated with
a dielectric layer. The arrangement is sketched schematically in figure 8.5.
Provided the admittance ηf of the dielectric layer is less than (ηmη

∗
m)

1/2, where
ηm is the admittance of the metal layer, the admittance locus will loop outside the
line joining the origin to the starting point, as in the diagram. For dielectric layers
having admittance greater than that of the incident medium, the reflectance falls
while the locus is in the fourth quadrant of the Argand diagram. As the thickness
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Figure 8.5. Schematic diagram of a dielectric overcoat on a metal surface. At normal
incidence the metal admittance is at point A. A′ represents a quarter-wave thickness of
material, while A′′ represents the point at which the reflectance returns to the starting
value. The lowest reflectance is given by the intersection with the real axis between the
points A and A′. When tilted, the p-locus is given by PP′ and the s-locus by SS′.

of the dielectric layer increases, the reflectance is reduced until the intersection
with the real axis. It then begins to rise, but, at the quarter-wave point A ′ given
by η2

f /ηm, it is still below the reflectance of the bare metal. Only at point A ′′ does
the reflectance return to its initial level. The drop in reflectance for silver is slight,
but for aluminium it is catastrophic. Silver is therefore usually overcoated with a
quarter-wave, but aluminium with a half-wave that limits its useful spectral range
somewhat.

As the metal–dielectric combination is tilted, the p-admittance of the metal
slides towards the origin, the reflectance dropping, while the s-admittance moves
away from the origin with a rise in reflectance. The dielectric layer shows a drop
in admittance for p-polarised light and an increase for s-polarised. For dielectric
coatings that are a quarter-wave or less these changes tend to compensate, and
indeed, in silver, slightly overcompensate, the changes in reflectance of the bare
metal. The p-reflectance of the overcoated metal tends to be slightly higher than
the s-reflectance.

Eventually, for very high angles of incidence, the p-polarised admittance of
the dielectric layer falls below the admittance of the incident medium, and now the
fourth quadrant portion of the locus represents increasing reflectance. This means
that the dielectric overcoating, when thin, instead of reducing the reflectance of
the metal, actually enhances it. Thus, depending on the final thickness of the
dielectric layer, the reflectance will tend to be high. For s-polarised light, the
admittance of the dielectric layer tends to infinity as the angle of incidence tends
to 90◦. The locus of the dielectric overcoat, therefore, tends more and more
towards a vertical line. As the admittance of the metal moves away from the
origin, its projection in the real axis moves further to the right, eventually crossing
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the incident medium admittance and continuing towards infinity. There must,
therefore, be an angle of incidence, very high, where the locus of the dielectric
overcoat will intersect the real axis at the admittance of the incident medium.
If the thickness is chosen so that the locus terminates at this point, then the
reflectance of the metal–dielectric combination will be zero. This will occur for
one particular value of angle of incidence and for a precise value of the dielectric
layer thickness, and the dip in reflectance will show a rapid variation with angle of
incidence. Such behaviour, for s-polarised light, of a metal overcoated with a thin
dielectric layer was predicted by Nevière and Vincent [3] from a quite different
analysis based on a Brewster absorption phenomenon in a lossy waveguide used
just under its cutoff thickness. Since the modified admittance for s-polarised
light increases with angle of incidence only in the case where its refractive index
is greater than that of the incident medium, this is a necessary condition for
the observation of the effect. The increased flexibility given by two dielectric
layers deposited on a metal has been used to advantage in the design of reflection
polarisers [4].

A different phenomenon was observed by Cox et al [5] in connection with
an infrared mirror of aluminium with a protective overcoat of silicon dioxide. The
silicon dioxide is heavily absorbing in the region beyond 8 µm. At a wavelength
of just over 8 µm, n and k have values around 0.4 and 0.3 respectively. At
normal incidence, the admittance loci of the silicon dioxide are spirals which
end on the admittance of the silicon dioxide and are described in a clockwise
manner in much the same way as the silver loci already discussed. At non-normal
incidence, the s-polarised admittance and the phase factor for the layer remain in
the fourth quadrant, and so the behaviour of the silicon oxide is similar to that
at normal incidence. The p-polarised admittance, however, moves towards the
first quadrant, and enters it at an angle of incidence around 40 ◦. The behaviour
of such a material, where the phase thickness is in the fourth quadrant but the
optical admittance is in the first, is different from normal materials in that the
spirals are now traced out anticlockwise, rather than clockwise. The admittance
of aluminium at 8.1 µm is around 18.35 − i55.75 and, for p-polarised light at
an angle of incidence of 60◦, the modified admittance becomes 9.176 − i27.87.
The dielectric locus sweeps down towards the real axis, as in figure 8.6, and, in
a thickness of 150 nm, terminates in the vicinity of the point (1, 0), so that the
reflectance is near zero.

This behaviour is quite unlike the normal behaviour to be expected with
lossless dielectric overcoats which have refractive index greater than that of the
incident medium. However, we shall see that it does have a certain similarity with
one of the techniques for generating surface electromagnetic waves, which we
shall be dealing with shortly, where the coupling medium is a dielectric layer of
index lower than that of the incident medium, and where the angle of incidence is
beyond the critical angle.

We now turn back to dielectric materials and investigate what happens when
angles of incidence exceed the critical angle. Equations (8.7), (8.8) and (8.12) are
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Figure 8.6. p-polarised admittance locus for 150 nm thickness of SiO2, 0.39 − i0.29, on
aluminium, 18.35− i55.75, at an angle of incidence of 60◦. A is the point corresponding to
the modified admittance of aluminium and the anticlockwise curvature of the spiral locus
carries it into the region of low reflectance.

the relevant equations and we have k = 0 and n0 sin θ0 > n. The phase thickness
at normal incidence, 2πnd/λ, becomes, from equation (8.12),

2π(n2 − n2
0 sin2 θ0)

1/2d/λ

i.e.
−i2π(n2

0 sin2 θ0 − n2)1/2d/λ (8.13)

at oblique incidence, where, again, the fourth rather than second quadrant solution
is correct. The modified admittances are then

ηs = − i(n2
0 sin2 θ0 − n2)1/2/ cos θ0 (fourth quadrant)

ηp = n2/ηs. (8.14)

Since ηs is negative imaginary, ηp must be positive imaginary. The behaviour
of the modified admittance is shown diagrammatically in figure 8.7. For a thin
film of material used beyond the critical angle, then, the s-polarised behaviour is
indistinguishable from that of an ideal metal. We have a set of circles centred
on the real axis, described clockwise and ending on the point η s which is on
the negative imaginary axis. For p-polarised light, the behaviour is, in one
important respect, different. Here, the combination of negative imaginary phase
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Figure 8.7. The variation of the s-polarised and p-polarised modified admittances of free
space with respect to an incident medium of higher index. η0 is the incident admittance.
The s-admittance falls along the real axis until zero at the critical angle and then it turns
along the negative direction of the imaginary axis tending to negative imaginary infinity
as the angle of incidence tends to 90◦. The p-admittance rises along the real axis, passing
the point η0 at the Brewster angle, becoming infinite at the critical angle, switching over to
positive imaginary infinity and then sliding down the imaginary axis tending to zero as the
angle of incidence tends to 90◦.

thickness and positive imaginary admittance inverts the way in which the circles
are described, so that although they are still centred on the origin, they are
anticlockwise and terminate at ηp on the positive imaginary axis. This behaviour
plays a significant part in what follows. We assume a beam of light incident on
the hypotenuse of a prism beyond the critical angle. Simply for plotting some of
the following figures, we assume a value for the index of the incident medium of
1.52.

For an uncoated hypotenuse, the second medium is air of refractive index
unity. The modified admittance for p-polarised light is positive imaginary and, as
θ0 increases, falls down the imaginary axis towards the origin. The reflectance is
unity and figure 8.7 shows that the phase shift varies from 180 ◦ through the third
and fourth quadrants towards 0◦. The s-polarised reflectance is likewise unity,
but the admittance is negative imaginary, and falls from zero to infinity along the
imaginary axis so that the s-polarised phase shift increases with θ0 from zero,
through the first and second quadrants towards 180 ◦. Since the incident medium
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Figure 8.8. (a) Coupling to a surface plasma wave. (After Kretschmann and Raether [8].)
(b) p-polarised admittance locus corresponding to the arrangement in (a). The solid curve
corresponds to the optimum angle of incidence and thickness of metal (silver) film. The
dashed curves correspond to changes in the angle of incidence as marked on each curve.

has admittance 1.52, the circle separating the first and second quadrants and the
third and fourth quadrants, which has centre the origin, has radius 1.52.

Now let a thin film be added to the hypotenuse. Since we are treating
our glass prism as the incident medium, we should treat the surrounding air
as the substrate. Thus the starting admittance for the film is on the imaginary
axis. Provided the thin film has no losses, then the admittance of the film–
substrate combination must remain on the imaginary axis. If the film admittance
is imaginary, the combination admittance will simply move towards the film
admittance. If, however, the film admittance is real, the admittance of the
combination will move along the imaginary axis in a positive direction, returning
to the starting point every half-wave. The lower the modified admittance, the
slower the locus moves in the vicinity of the origin and the faster at points far
removed from the origin. The variation of phase change between the fourth
quadrant and the start of the first quadrant is, therefore, slower, while that between
the third and second quadrants is faster than for a higher admittance. Thus there
is a wide range of possibilities for varying the relative phase shifts for p- and s-
polarisations by choosing an overcoat of higher or lower index and varying the
thickness [6, 7].

Given that the starting point is on the axis, then the only way in which the
admittance can be made to leave it is by an absorbing layer. We turn to the set
of metal loci (figure 8.4) and we can see that for a range of values of starting
admittance on the imaginary axis, the metal loci loop around, away from the axis,
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to cut the real axis. Although figure 8.4 shows the behaviour of metal layers for an
incident medium of unity at normal incidence, the tilted behaviour for an incident
admittance of 1.52 is quite similar. Figure 8.8 shows the illuminating arrangement
and the loci. For a very narrow range of starting values, the metal locus cuts the
real axis in the vicinity of the incident admittance, and, if the metal thickness is
such that the locus terminates there, then the reflectance of the combination will
be low. For one particular angle of incidence and metal thickness the reflectance
will be zero. It should not be too much of a surprise to find that the condition is
very sensitive to angle of incidence. Since the admittance of the metal varies much
more slowly than the air substrate, the zero reflectance condition will no longer
hold, even for quite small tilts. This very narrow drop in reflectance to a very
low value, which has all the hallmarks of a sharp resonance, can be interpreted
as the generation of a surface plasma wave, or plasmon, on the metal film. This
coupling arrangement, devised by Kretschmann and Raether [8], cannot operate
for s-polarised light without modification. The admittance of the substrate for s-
polarisation is now on the negative part of the real axis and, therefore, any metal
which is deposited will simply move the admittance of the combination towards
the admittance of the bulk metal.

An alternative coupling arrangement, devised by Otto [9], involves the
excitation of surface waves through an evanescent wave in an FTR layer (frustrated
total reflectance). We recall that the admittance locus for p-polarisation of a layer
used beyond the critical angle is a circle which is described in an anticlockwise
direction. This means that such a layer can be used to couple into a massive
metal. Here the metal acts as the substrate, with a starting admittance in the
fourth quadrant of the Argand diagram. For p-polarised light, the dielectric FTR

layer has a circular locus which cuts the real axis. Clearly, then, for the correct
angle of incidence and dielectric layer thickness, the reflectance can be made
zero. Surface plasma oscillations and their applications are extensively reviewed
by Raether [10]. Abelès [11] includes an account of the optical features of such
effects in his review of the optical properties of very thin films.

Now let us return to the first case of coupling and let us examine what
happens when a thin layer is deposited over the metal next to the surrounding
air. The starting admittance is, as before, on the imaginary axis, but now the
dielectric layer modifies that position, so that the starting point for the metal
locus is changed. Because the metal loci at the imaginary axis are clustered
closely together, almost intersecting, a small change in starting point produces
an enormous change in the locus, and hence in the point at which it cuts the real
axis, leading to a substantial change in reflectance (figure 8.9). This very large
change which a thin external dielectric film makes to the internal reflectance of
the metal film has been used in the study of contaminant films adsorbed on metal
surfaces. Film thicknesses of a few ångstroms have been detected in this way.
Provided that the film is very thin, then an additional tilt of the system will be
sufficient to pull the intersection of the metal locus with the real axis back to the
incident admittance, and so the effect can be interpreted as a shift in the resonance
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Figure 8.9. (a) The effect of a thin adsorbed layer on the surface of the silver in figure 8.8.
The solid line is the optimum while the dashed line is the change in the metal locus due to
the adsorbed layer. (b) Calculated reflectance as a function of angle of incidence with and
without the adsorbed layer.

rather than a damping.
This result helps us to devise a method for exciting a similar resonance with

s-polarised light. The essential problem is the starting point on the negative
imaginary axis, which means that the subsequent metal locus remains within
the fourth quadrant, never crossing the real axis to make it possible to have zero
reflectance. The addition of a dielectric layer between the metal surface and the
surrounding air can move the starting point for the metal on to the positive part
of the imaginary axis so that the coated metal locus can cut the real axis for s-
polarised light in just the same way as the uncoated metal in p-polarised light.
Moreover, for both p- and s-polarised light, the low reflectance will be repeated
for each additional half-wave dielectric layer which is added. This behaviour
was used by Greenland and Billington [12] for the monitoring of optical layers
intended as spacer layers for metal–dielectric interference filters. The operation of
the cavities for inducing absorption devised by Harrick and Turner [13], although
designed on the basis of a different approach, can also be explained this way.

8.3 Polarisers

8.3.1 The Brewster angle polarising beam splitter

This type of beam splitter was first constructed by Mary Banning [14] at the
request of S M MacNeille, the inventor of the device [15] which is frequently
known as a MacNeille polariser.

The principle of the device is that it is always possible to find an angle of
incidence so that the Brewster condition for an interface between two materials
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Figure 8.10. Schematic diagram of a polarising beam splitter. (After Banning [14].)

of differing refractive index is satisfied. When this is so, the reflectance for the
p-plane of polarisation vanishes. The s-polarised light is partially reflected and
transmitted. To increase the s-reflectance, retaining the p-transmittance at or very
near unity, the two materials may then be made into a multilayer stack. The layer
thickness should be quarter-wave optical thicknesses at the appropriate angle of
incidence.

When the Brewster angle for normal thin-film materials is calculated, it is
found to be greater than 90◦ referred to air as the incident medium. In other
words, it is beyond the critical angle for the materials. This presents a problem
which is solved by building the multilayer filter into a glass prism so that the light
can be incident on the multilayer at an angle greater than critical. The type of
arrangement is shown in figure 8.10.

The calculation of the design is quite straightforward. Consider two
materials with refractive indices nH and nL (where H and L refer to high and
low relative indices respectively). The Brewster condition is satisfied when the
angle of incidence is such that

nH/ cos θH = nL/ cos θL (8.15)

where

nH sin θH = nL sin θL = nG sin θG. (8.16)
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G refers to the glass of the prism. These equations can be solved easily for θ H

sin2 θH = n2
L

n2
H + n2

L

(8.17)

the form in which we shall use the result. (A more familiar form is tan 2 θH =
n2

L/n2
H .)

Given the layer indices there are two possible approaches to the design.
Either we can decide on the refractive index of the glass and then calculate the
angle at which the prism must be set, or we can decide on the prism angle, 45 ◦
being a convenient figure, and calculate the necessary refractive index of the glass.
The approach which was used by Banning was the latter.

First suppose that the condition θG = 45◦ must be met. Using
equations (8.16) and (8.17) we obtain

sin2 θH = n2
G sin2 θG

n2
H

= 1
2

n2
G

n2
H

for θG = 45◦

i.e.

n2
G = 2n2

H n2
L

n2
H + n2

L

(8.18)

the condition obtained by Banning.
If, however, nG is fixed, then equations (8.16) and (8.17) give

n2
G sin2 θG

n2
H

= sin2 θH = n2
L

n2
H + n2

L

i.e.

sin2 θG = n2
H n2

L

n2
G(n

2
H + n2

L)
. (8.19)

Banning used zinc sulphide with an index of 2.30 and cryolite evaporated at
a pressure of 10−3 Torr to give a porous layer of index around 1.25. With these
indices it is necessary to have an index of 1.55 for the glass if the prism angle is
to be 45◦. For an index of 1.35, a more usual figure for cryolite, together with
zinc sulphide with an index of 2.35, the glass index should be 1.66. Alternatively,
for glass of index 1.52, the angle of incidence using the second pair of materials
should be 50.5.

The degree of polarisation at the centre wavelength can also be calculated.

R =
(
ηG − (η2

H/ηG)(ηH/ηL)
n−1

ηG + (η2
H/ηG)(ηH/ηL)n−1

)2

(8.20)
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where n is the number of layers and we are assuming n to be odd.

For s-waves For p-waves :

ηG = nG cos θG ηG = nG/ cos θG

ηH = nH cos θH ηH = nH/ cos θH

ηL = nL cos θL ηL = nL/ cos θL .

Now, for p-waves, by the condition we have imposed, η H = ηL and

Rp =
(
ηG − (η2

H/ηG)

ηG + (η2
H/ηG)

)2

=
[(

n2
G cos2 θH

n2
H cos2 θG

− 1

)(
n2

G cos2 θH

n2
H cos2 θG

+ 1

)−1
]2

. (8.21)

Similarly,

Rs =
(

n2
G cos2 θG − n2

H cos2 θH (nH cos θH/nL cos θL)
n−1

n2
G cos2 θG + n2

H cos2 θH (nH cos θH/nL cos θL)n−1

)2

. (8.22)

Now

nH cos θL

nL cos θH
= 1

so that

nH cos θH

nL cos θL
= n2

H

n2
L

and

Rs =
(

n2
G cos2 θG − n2

H cos2 θH (nH/nL)
2(n−1)

n2
G cos2 θG + n2

H cos2 θH (nH/nL)2(n−1)

)2

. (8.23)

The degree of polarisation in transmission is given by

PT = Tp − Ts

Tp + Ts
= 1 − Rp − 1 + Rs

1 − Rp + 1 − Rs
= Rs − Rp

1 − Rp − Rs
(8.24)

and in reflection by

PR = Rs − Rp

Rs + Rp
. (8.25)

It can be seen that in general, for a small number of layers, the polarisation in
reflection is better than the polarisation in transmission, but for a large number of
layers it is inferior to that in transmission.
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The construction of the beam splitter is similar to the cube beam splitter
which was considered in chapter 4. Any number of layers can be used in the
stack. Banning’s original stack consisted of three layers, probably because of
practical difficulties at that time. Two stacks were therefore prepared, one on
the hypotenuse of each prism making up the cube, as shown in figure 8.10. The
two prisms were then cemented together. Nowadays there is little difficulty in
depositing 21 layers or more if need be and this can be conveniently deposited on
just one prism and the other untreated prism simply cemented to it.

The very great advantage which this type of polarising beam splitter has
over the other polarisers such as the pile-of-plates is its wide spectral range
coupled with a large physical aperture. Unfortunately, it does suffer from a limited
angular field, particularly at the centre of its range, simply because the Brewster
condition is met exactly only at the design angle. As the angle of incidence moves
away from this condition, a residual reflectance peak for p-polarisation gradually
appears in the centre of the range. The performance well away from the centre
remains high even for quite large tilts away from optimum. As an example, we
can consider a seven-layer ZnS and cryolite beam splitter in glass of index 1.52
designed so that a wavelength of 510 nm corresponds to the centre of the range.
At the design angle of 50.4◦ and at 510 nm the residual p-reflectance is 1.6%,
due to the mismatch between the materials of the stack and the glass prism. (The
Brewster angle condition cannot be met for both film materials and the substrate
simultaneously—see figure 8.2.) A tilt in the plane of incidence to 55 ◦ in glass
(that is a tilt to 7◦ in air) raises the reflectance to 25% at 510 nm and over 30%
at 440 nm, since the band centre moves to shorter wavelengths. The reflectance
at 650 nm, on the other hand, shows little change. Skew rays present a further
difficulty. Polarisation performance is measured with reference to the s- and p-
directions associated with the principal plane of incidence containing the axial
ray. A skew ray possesses a plane of incidence that is rotated with respect to the
principal plane. Thus the s- and p-planes for skew rays are not quite those of the
axial ray and although the s-polarised transmittance can be very low there can be
a component of the p-polarised light, which is parallel to the axial s-direction and
which can represent an appreciable leakage.

A detailed study of the polarising prism has been carried out by Clapham
[16].

8.3.2 Plate polariser

The width of the high-reflectance zone of a quarter-wave stack is a function of the
ratio of the admittances of the two materials involved. This ratio varies with the
angle of incidence and is different for s- and p-polarisations. We recall that

ηs = n cos θ while ηp = n/ cos θ

so that

ηHs/ηLs = cos θH/ cos θL
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and

ηHp/ηLp = cos θL/ cos θH

whence

(ηH/ηL)s

(ηH/ηL)p
= (cos θH )

2

(cos θL)2
. (8.26)

The factor (cos θH )
2/(cos θL)

2 is always less than unity so that the width of the
high-reflectance zone for p-polarised light is always less than that for s-polarised
light. Within the region outside the p-polarised but inside the s-polarised high-
reflectance zone, the transmittance is low for s-polarised light but high for p-
polarised so that the component acts as a polariser. The region is quite narrow,
so that such a polariser will not operate over a wide wavelength range; but for
single wavelengths, such as a laser line, it can be very effective. To complete the
design of the component it is necessary to reduce the ripple in transmission for p-
polarised light and this can be performed using any of the techniques of chapter 6,
probably the most useful being Thelen’s shifted-period method because it is the
performance right at the edge of the pass region which is important. It is normal to
use the component as a longwave-pass filter because this involves thinner layers
and less material than would a shortwave-pass filter. The rear surface of the
component requires an antireflection coating for p-polarised light. We can omit
this altogether if the component is used at the Brewster angle. The design of such
a polariser is described by Songer [17] who gives the design shown in figure 8.11.
Plate polarisers are used in preference to the prism or MacNeille type when high
powers are concerned

Virtually any coating which possesses a sharp edge between transmission
and reflection can potentially be used as a polariser. It has been suggested
that narrowband filters have advantages over simple quarter-wave stacks as the
basis of plate polariser coatings, because the monitoring of the component during
deposition is a more straightforward procedure [18].

8.3.3 Cube polarisers

An advantage of the polariser immersed in a prism is that the effective angle of
incidence can be very high—much higher than if the incident medium were air.
This enhances the polarisation splitting and gives broader regions of high degree
of polarisation than could be the case with air as the incident medium. Even if
the Brewster angle condition cannot be reached, there is an advantage in using an
immersed design, provided the incident power is not too high. Netterfield [19]
has considered the design of such polarisers in some detail and his paper should
be considered for further information.
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Figure 8.11. Characteristic curve of a plate polariser for 1.06 µm. Design:

Air|(0.5H ′L ′0.5H ′)3 (0.5H ′′L ′′0.5H ′′)8 0.5H ′L ′0.5H ′)3|Glass

where H ′ = 1.010H , L ′ = 1.146L , H ′′ = 1.076H , L ′′ = 1.220L and with
nH = 2.25, nL = 1.45, λ0 = 0.9 µm and θ0 = 56.5◦. The solid line indicates
s-polarisation and the dashed line p-polarisation. (After Songer [17].)

8.4 Nonpolarising coatings

The design of coatings which avoid polarisation problems is a much more difficult
task than that of polariser design and there is no completely effective method.
The changes in the phase thickness of the layers and in the optical admittances
are fundamental and cannot be avoided. The best we can hope to do, therefore,
is to arrange the sequence of layers so that they give the same performance for p-
as for s-polarisation. Clearly, the wider the range of either angle of incidence or
of wavelength, the more difficult the task. The techniques which are currently
available operate only over very restricted ranges of wavelength and angle of
incidence (effectively over a very narrow range of angles). There is a small body
of published work but the principal techniques we shall use here rely heavily on
techniques devised by Thelen [20, 21].

8.4.1 Edge filters at intermediate angle of incidence

This section is based entirely on an important paper by Thelen [20]. However,
the expressions found in the original paper have been altered in order to make
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the notation consistent with the remainder of this book. Care should be taken,
therefore, in reading the original paper. In particular, the x found in the original
is defined in a slightly different way.

At angles of incidence which are not so severe that the p-reflectance suffers,
the principal effect of operating edge filters at oblique incidence is the splitting
between the two planes of polarisation. This limits the edge steepness which can
be achieved for light which is unpolarised. Edge filters which have pass regions
which are quite limited can be constructed from band-pass filters, but, because
band-pass filters are also affected in much the same way, the bandwidth for s-
polarised light shrinking and for p-polarised light expanding, they still suffer from
the same problem. However, there is a technique which can be used for displacing
the pass bands of a band-pass filter to make one pair of edges coincide, resulting
in an edge filter of rather limited extent, which for a given angle of incidence
has no polarisation splitting. The position of the peak of a band-pass filter can
be considered to be a function of both the spacer thickness and the phase shift
of the reflecting stacks on either side. At oblique incidence, the relative phase
shift between s- and p-polarised light from the reflecting stacks can be adjusted
by adding or removing material. This alters the relative positions of the peaks of
the pass bands for the two planes of polarisation and, if the adjustment is correctly
made, it can make a pair of edges coincide. This, of course, is for one angle of
incidence only. As the angle of incidence moves away from the design value, the
splitting will reappear.

Rather than apply this technique exactly as we have just described it, we
instead adapt the techniques for the design of multiple cavity filters based on
symmetrical periods. Let us take a typical multiple cavity filter design:

Incident medium|matching (symmetrical stack)q matching|substrate.

The symmetrical stack which forms the basis of this filter can be represented as a
single matrix which has the same form as that of a single film, as we have already
seen in chapter 7. The limits of the pass band are given by those wavelengths for
which the diagonal terms of the matrix are unity and the off-diagonal terms are
zero. That is, if the matrix is given by[

N11 iN12
iN21 N22

]

then the edges of the pass band are given by

N11 = N22 = ±1.

The design procedure simply ensures that this condition is satisfied for the
appropriate angle of incidence.

We can consider the symmetrical period as a quarter-wave stack of 2x + 1
layers which has two additional layers added, one on either side:

f B AB AB . . . A f B
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where A and B indicate quarter-wave layers and f is a correction factor which
is to be applied to the quarter-wave thickness to yield the thicknesses of the
detuned outer layers. We can write the overall matrix as f B M f B where
M = AB AB . . . A, giving the product:[

cosα i sinα/ηB
iηB sinα cosα

] [
M11 iM11
iM21 M11

] [
cosα i sinα/ηB

iηB sinα cosα

]
.

Then N11 is given by

N11 = N22 = M11 cos 2α − 0.5(M12ηB − M21/ηB) sin 2α = ±1 (8.27)

for the edge of the zone for each plane of polarisation. This must be satisfied
for both planes of polarisation simultaneously for the edges of the pass bands to
coincide. In fact, symmetrical periods which are made up of thicknesses other
than quarter-waves can be used, when some trial and error will be required to
satisfy equation (8.27). A computer can be of considerable help. For quarter-wave
stacks we seek assistance in the expressions derived in chapter 7 for narrowband
filter design. We use expression (7.53), with m = 1 and q = 0, giving

M11 = M22 = (−1)x(−ε)[(ηA/ηB)
x + . . .+ (ηB/ηA)

x]

iM12 = i(−1)x/[(ηA/ηB)
xηA] (8.28)

iM21 = i(−1)x[(ηA/ηB)
xηA].

Note that 2x + 1 is now the number of layers in the inner stack. The total
number of layers, including the detuned ones, is 2x + 3. Now, using exactly
the same procedure as in chapter 7, we can write expressions for the coefficients
in equation (8.27) as

M11 = (−1)x(−ε)(nH/nL)
x

(1 − nL/nH )

= (−1)x(−ε)P
and

0.5(M12ηB + M21/ηB) = 0.5(−1)x[(ηB/ηA)
x+1 + (ηA/ηB)

x+1]

= (−1)x Q

where

P = (ηH/ηL)
x/(1 − ηL/ηH ) and Q = 0.5(ηH/ηL)

x+1.

Then the two equations become

±1 = εPp cos 2α + Qp sin 2α

±1 = εPs cos 2α + Qs sin 2α
(8.29)
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which give for α and ε:

sin 2α = ± Ps − Pp

(Ps Qp − Pp Qs)
(8.30)

ε = ±1 − Qp sin 2α

Pp cos 2α
. (8.31)

Now,

ε = (π/2)(1 − g) where g = λ0/λ

α = (π/2)(λR/λ) = (π/2)(λR/λ0)g = (π/2) f g

so that
f = α/(πg/2) = α/(π/2 − ε). (8.32)

Two values for f will be obtained. Usually, the larger corresponds to a shortwave-
pass and the smaller to a longwave-pass filter.

There are some important points about the particular values of α and ε, which
are best discussed within the framework of a numerical example. Let us attempt
the design of a longwave-pass filter at 45◦ in air having a symmetrical period of

f L H L H L H L H f L

where H represents an index of 2.35 and L of 1.35. The inner stack has seven
layers, which corresponds to 2x + 1, so that x in this example is 3. We will use
the modified admittances that for this combination are (the subscripts S and A
referring to the substrate and to air, respectively):

ηHs = 3.1694 ηLs = 1.6264

ηSs = 1.9028 ηAs = 1.000

ηHp = 1.7425 ηLp = 1.1206

ηSp = 1.2142 ηAp = 1.000.

Then

Ps = 15.201 Pp = 10.535

Qs = 7.211 Qp = 2.923

giving sinα = ±0.1480.
Now, the outer tuning layers in their unperturbed state will be quarter-waves

and so the two solutions we look for will be near 2α = π , that is, in the second
and third quadrants. We continue to keep the results in the correct order and find

2α = π ± 0.1485 = 3.2901 or 2.9931.
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Then, in both cases, cos 2α = 0.9890 and so

ε = ±(1 + 2.923 × 0.148)/(−10.535 × 0.9890) = ±(−0.1375)

whence

f = (3.2901/2)/[(π/2)− 0.1375] = 1.148

with

g = 1 − 2 × 0.1375/π = 0.9125

and

f = (2.9931/2)/[(π/2)+ 0.1375] = 0.876

with

g = 1 + ×0.1375/π = 1.088.

We take the second of these which will correspond to a longwave-pass filter. We
now need to consider the matching requirements. Since we are attempting to
obtain coincident edges for both planes of polarisation in an edge filter of limited
pass band extent, we will interest ourselves in having good performance right at
the edge of the pass band with little regard for performance further away. We use
the symmetrical period method. The basic period is

0.876L H L H L H L H 0.876L

with H and L quarter-waves of indices 2.35 and 1.35 respectively, and tuned
for 45◦. Calculation of the equivalent admittances for the symmetrical period
gives the values for s- and p-polarisation shown in table 8.1. (Again they are
modified admittances.) We will arrange matching at g = 1.08. Adding a H L H L
combination to the period with the L layer next to it yields admittances of 0.9625
for p-polarisation and 1.416 for s. The media we have to match have modified
admittances of 1.0 for air and 1.214 for glass for p-polarisation and 1.0 and 1.903
respectively for s. As an initial attempt, therefore, this matching is probably
adequate. Since the matching is to be at g = 1.08, the thicknesses of the four
layers in the matching assemblies must be corrected by the factor 1.0/1.08. To
complete the design we need to make sure all layers are tuned for 45 ◦ which
means multiplying their effective thicknesses for 45◦ by the factor 1/ cos θ . The
final design with all thicknesses quoted as their normal incidence values is then

Air|(0.971 H 1.087 L)2(1.028 L(1.049 H 1.174 L)31.049 H 1.028 L)q

(1.087 L 0.971 H )2|Glass.
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Table 8.1. Equivalent admittances and phase thicknesses of the symmetrical period
(0.876L H L H L H L H 0.876L) where L and H indicate quarter-waves at 45◦ angle of
incidence of index 1.35 and 2.35 respectively.

s-polarisation p-polarisation

g E (modified) γ /π E (modified) γ /π

1.04 Imaginary values 0.1946 4.4372
1.05 0.0949 4.2955 0.2018 4.4372
1.06 0.1190 4.4454 0.1993 4.5884
1.07 0.1202 4.5786 0.1861 4.6652
1.08 0.0982 4.7211 0.1588 4.7486
1.09 Imaginary values 0.1049 4.8530
1.10 Imaginary values Imaginary values

Figure 8.12. Calculated performance of a polarisation-free edge filter designed for use at
45◦ in air using the method of Thelen [20]. The multilayer structure is given in the text.
The solid curve indicates s-polarisation and the dashed curve p-polarisation.

The performance with q = 4 is shown in figure 8.12 along with the
performance of a band-pass filter of similar design using unaltered quarter-waves
to demonstrate the difference. Since the p-admittances are less effective than
the s in achieving high reflectance, the steepness of the edge for s-polarisation is
somewhat greater and so the two edges coincide at their upper ends. Adjustment
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of the factor f can move this point of coincidence up and down the edges. Thelen
gives many examples of designs including some which are based on symmetrical
periods containing thicknesses other than quarter-waves.

8.4.2 Reflecting coatings at very high angles of incidence

Reflecting coatings at very high angles of incidence suffer catastrophic reductions
in reflectance for p-polarisation. This is especially true for coatings that are
embedded in glass such as cube beam splitters and we have already seen how
they can make good polarisers. The admittances for p-polarised light are not
favourable for high reflectance and so to increase the p-reflectance we must use
a large number of layers—many more than is usual at normal incidence. The s-
reflectance must also at the same time be considerably reduced, otherwise it will
vastly exceed what is possible for p-polarisation. The technique we use here is
based on yet another method originated by Thelen [21]. A number of authors have
studied the problem. For a detailed account of the use of symmetrical periods in
the design of reflecting coatings for oblique incidence, the paper by Knittl and
Houserkova [22] should be consulted.

We consider a quarter-wave stack. The admittance of such a stack is given at
normal incidence by

Y = y2
1 y2

3 y2
5 . . . ysub

y2
2 y2

4 y2
6 . . .

(8.33)

with ysub in the numerator, as shown, if the number of layers is even or in the
denominator if odd. The reflectance is

R =
(

y0 − Y

y0 + Y

)2

in the normal way. Now, if the stack of quarter-waves is considered to be tilted,
with the thicknesses tuned to the particular angle of incidence, the expression for
reflectance will be similar except that the appropriate tilted admittances must be
used. Here we will use the modified admittances so that y0 will remain the same.
Then Y becomes

Y = η2
1η

2
3η

2
5 . . . ηsub

η2
2η

2
4η

2
6 . . .

(8.34)

and in order for the reflectances for p- and s-polarisations to be equal, the modified
admittances for p- and s-polarisation must be equal. If we write � 1 for (η1p/η1s)

and so on, then this condition is

�2
1�

2
3�

2
5 . . .�sub

�2
2�

2
4�

2
6 . . .

= 1. (8.35)

(Note that Thelen’s paper does not use modified admittances and so includes
the incident medium in the formula.) The procedure then is to attempt to find
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Table 8.2.

nf 1/ cos θ ηp ηs �(= ηp/ηs)

1.35 1.6526 1.5776 1.1553 1.3656
1.38 1.5943 1.5558 1.2241 1.2710
1.45 1.4898 1.5275 1.3765 1.1097
1.52 1.4142 1.5200 1.5200 1.0000
1.57 1.3719 1.5230 1.6185 0.9410
1.65 1.3180 1.5377 1.7705 0.8685
1.70 1.2907 1.5515 1.8627 0.8330
1.75 1.2672 1.5680 1.9531 0.8028
1.80 1.2466 1.5867 2.0419 0.7771
1.85 1.2286 1.6072 2.1295 0.7548
1.90 1.2127 1.6292 2.2158 0.7353
1.95 1.1985 1.6525 2.3010 0.7182
2.00 1.1858 1.6770 2.3853 0.7030
2.05 1.1744 1.7023 2.4687 0.6895
2.10 1.1640 1.7285 2.5514 0.6775
2.15 1.1546 1.7554 2.6334 0.6666
2.20 1.1461 1.7829 2.7147 0.6568
2.25 1.1383 1.8110 2.7955 0.6478
2.30 1.1311 1.8396 2.8757 0.6397
2.35 1.1245 1.8686 2.9554 0.6323
2.40 1.1184 1.8980 3.0347 0.6254

Modified admittances
Incident medium index = 1.52

Angle of incidence = 45◦

a combination of materials such that condition (8.35) is satisfied and the value of
admittance is such that the required reflectance is achieved. This is a matter of
trial and error.

An example will help to make the method clear. Table 8.2 gives some figures
for modified admittances in glass (n = 1.52) and at an angle of incidence of 45 ◦.
There is a number of possible arrangements but the most straightforward is to find
three materials H , L and M , M being of intermediate index, such that

�H�L = �2
M . (8.36)

Then the multilayer structure can be . . . H M LM H M LM H M LM . . . so that the
form of admittance is

Y = η2
Hη

2
Lη

2
H . . .

η2
Mη

2
Mη

2
M . . .

(8.37)

and the number of layers chosen so that adequate reflectance is achieved. The
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substrate does not appear in (8.37) because it is assumed to be of the same material
as the incident medium and so �sub is unity. Where the substrate is of a different
material there may be a slight residual mismatch but practical difficulties will
usually make achievement of an exact match difficult. A set of layers giving an
approximate match at 45◦ has indices 1.35, 2.25 and 1.57. For this combination

�H�L

�2
M

= 1.3656 × 0.6478

0.9412
= 0.999.

The p-admittance increase due to one four-layer period of that type is

η2
Hpη

2
Lp

η4
Mp

= 1.8112 × 1.5782

1.5234
= 1.518.

Eight periods give a value of 28.2, that is a reflectance of 87% for 32 layers.
The particular arrangement of H , L and M layers is flexible as long as H or L
are odd and M is even. The performance of a coating to this design is shown in
figure 8.13. The basic period is four quarter-waves thick. High-reflectance zones
exist wherever the basic period is an integral number of half-waves thick. Since
in this case we have four quarter-waves we expect extra-high-reflectance zones at
g = 0.5 and g = 1.5. The peak at g = 0.5 (i.e. λ = 2 × 510 = 1020 nm) is
visible at the long wavelength end of the diagram.

Examination of the modified admittances for the materials shows how the
coating does yield the desired performance. Each second pair of layers tends
to reduce the s-reflectance of the preceding pair but slightly to increase the p-
reflectance. To achieve high reflectance large numbers of layers are needed.
Angular sensitivity is quite high and there is little that can be done to improve
it.

8.4.3 Edge filters at very high angles of incidence

It is possible to adapt the treatment of the previous section to design edge filters for
use at high angles of incidence. Let us illustrate the method by using the example
we have just calculated. Figure 8.13 shows the performance. We wish to use
this component as a longwave-pass filter and hence to eliminate the ripple on the
longwave side of the peak. The ripple is principally confined to s-polarisation and
so we concentrate our efforts there. We will use a symmetrical period approach.

The basic symmetrical period can be either

(0.5H M LM 0.5H ) or (0.5L M H M 0.5L).

We use the modified s-admittances that we have already calculated in the previous
section and we compute the equivalent admittances as shown in table 8.3. The
surrounding material has admittance 1.52 and it appears as though a simple match
would be obtained with the (0.5L M H M 0.5L) combination. We match at g =
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Figure 8.13. Calculated performance of a polarisation-free reflector at an angle of
incidence of 45◦ in glass. The coating was designed using the method of Thelen [21].
Design: Glass|(1.38H 1.372M 1.653L 1.372M)8|Glass with nH = 2.25, nM = 1.57,
nL = 1.35, nGlass = 1.52 and λ0 = 510 nm. The solid line indicates s-polarisation and
the dashed line p-polarisation.

0.88 where the equivalent admittance is 0.802. To match to 1.52, a quarter-wave
of admittance (0.802 × 1.52)1/2 is required. This is 1.104 and corresponds fairly
well with the 1.155 admittance of the 1.35 low-index material. A quarter-wave at
g = 0.88 and 45◦ has a normal incidence thickness of (1.0/0.88)× 1.653 × 0.25
full waves, that is, 1.877 quarter-waves or 0.470 full waves. The full design is
then

Glass|1.877L(0.826L 1.372M 1.138H 1.372M 0.826L) q 1.877|Glass.

The performance of a coating with q = 10 is shown in figure 8.14. Shortwave-
pass filters or filters with different materials can be designed in the same way. The
design is fairly sensitive to materials and to angle of incidence.

8.5 Antireflection coatings

Antireflection coatings at high angles of incidence are a stage more difficult than
the design of coatings for normal incidence. Some simplification occurs when
only one plane of polarisation has to be considered. Then it is a case of taking
the tables for modified optical admittance at the appropriate angle of incidence
and designing coatings in much the same way as for normal incidence. The
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Table 8.3. Equivalent admittances and phase thicknesses of the symmetrical periods
(0.5L M H M0.5L) and (0.5H ML M0.5H) calculated for 45◦ angle of incidence in glass
of index 1.52. nH = 2.35, nL = 1.35 and nM = 1.57.

Emod.s

g (0.5H ML M0.5H) (0.5L M H M0.5L) γ /π

0.58 Imaginary values
0.60 18.8985 0.1442 1.0473
0.62 6.8181 0.3965 1.1438
0.64 5.1698 0.5184 1.2061
0.68 4.4178 0.6007 1.2600
0.70 3.9680 0.6613 1.3100
0.72 3.6599 0.7443 1.3577
0.74 3.4300 0.7728 1.4040
0.76 3.2471 0.7949 1.4494
0.78 2.9594 0.8114 1.5382
0.80 2.8362 0.8225 1.5820
0.82 2.7180 0.8281 1.6256
0.84 2.5994 0.8276 1.6691
0.86 2.4741 0.8199 1.7126
0.88 2.3340 0.8024 1.7564
0.90 2.1662 0.7705 1.8005
0.92 1.9467 0.7151 1.8456
0.94 1.6195 0.6135 1.8930
0.96 0.9761 0.3808 1.9489
0.98 Imaginary values

complication is that the range of admittances available is different from the range
at normal incidence and also different for the two planes of polarisation. We
therefore consider briefly the problem of antireflection coatings for one plane of
polarisation first. In order to simplify the discussion of design we assume an angle
of incidence of 60◦ in air with a substrate of index 1.5 and possible film indices
of 1.3, 1.4, 1.5, . . . , 2.5. Real designs will be based on available indices and
will therefore be more constrained and may require more layers. The modified
admittances with values of �(= ηp/ηs) are given in table 8.4.

8.5.1 p-polarisation only

At 60◦ the modified p-admittance of the substrate is only 0.9186 giving a
single-surface reflectance for p-polarised light of less than 0.2%, acceptable for
most purposes. The angle of incidence of 60◦ is only just greater than the
Brewster angle. If still lower reflectance is required then a single quarter-wave
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Figure 8.14. Calculated performance of a polarisation-free edge filter at an
angle of incidence of 45◦ in glass. Design: Glass|1.877L (0.826L 1.372M
1.138H 1.372M 0.826L)10 1.877|Glass with nH = 2.25, nM = 1.57, nL = 1.35,
nGlass = 1.52 and λ0 = 510 nm. The solid line indicates s-polarisation and the dashed
line p-polarisation.

of admittance given by (0.9186 × 1.0000) 1/2, that is 0.9584, is required. This
corresponds from table 8.3 to an index of 1.6, that is greater than the index
of the substrate. As the angle of incidence increases still further from 60 ◦
the required index will become still greater. Eventually, at very high angles
of incidence indeed, the required single layer index will be greater than the
highest index available and at that stage designs based on combinations such as
Air|H L|Glass will be required with quarter-wave thicknesses at the appropriate
angle of incidence. Such coatings operate over a very small range of angles
of incidence only and are very difficult to produce with any reasonable degree
of success. If at all possible it is better to avoid such designs altogether by
redesigning the optical system.

8.5.2 s-polarisation only

The modified s-admittance for the substrate is 2.449 and the required single-
layer admittance for perfect antireflection is (2.4495 × 1.0000) 1/2 or 1.5650,
well below the available range. The problem is akin to that at normal incidence
where we do not have materials of sufficiently low index and the solution is
similar. We begin by raising the admittance of the substrate to an acceptable
level by adding a quarter-wave of higher admittance. In this case a layer of
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Table 8.4.

nf 1/ cos θ ηp ηs �(= ηp/ηs)

1.00 2.0000 1.0000 1.0000 1.0000

1.30 1.3409 0.8716 1.9391 0.4495
1.40 1.2727 0.8909 2.2000 0.4050
1.50 1.2247 0.9186 2.4495 0.3750
1.60 1.1893 0.9514 2.6907 0.3536
1.70 1.1621 0.9878 2.9258 0.3376
1.80 1.1407 1.0266 3.1560 0.3253
1.90 1.1235 1.0673 3.3823 0.3156
2.00 1.1094 1.1094 3.6056 0.3077
2.10 1.0977 1.1526 3.8262 0.3012
2.20 1.0878 1.1966 4.0448 0.2958
2.30 1.0794 1.2414 4.2615 0.2913
2.40 1.0722 1.2867 4.4766 0.2874
2.50 1.0660 1.3325 4.6904 0.2841

Modified admittances
Incident medium index = 1.00

Angle of incidence = 60◦

index 1.9 or admittance 3.3823 is convenient and gives a resultant admittance
of 3.38232/2.449 or 4.6713 that requires a quarter-wave of admittance (4.6713 ×
1.0000)1/2 or 2.1613 to complete the design. This corresponds most nearly to
an index of 1.4, admittance 2.2000, and the residual reflectance with such a
combination is 0.03%, a considerable improvement over the 17.7% reflectance
of the uncoated substrate. We cannot expect that such a coating will have a broad
characteristic and figure 8.15 confirms it. A small improvement can be made
by adding a high-admittance half-wave layer between the two quarter-waves or
a low-admittance half-wave next to the substrate. The latter is also shown in the
figure. In terms of normal incidence thicknesses the two designs are:

Air|1.273L 1.123H |Glass

and

Air|1.273L 1.123H 2.682A|Glass

where L, H and A indicate quarter-waves at normal incidence of films of index
1.4, 1.9 and 1.3 respectively. The p-reflectance of these designs is very high and
they are definitely suitable for s-polarisation only.

Again it is better wherever possible to avoid the necessity for such
antireflection coatings by rearranging the optical design of the instrument so that
s-polarised light is reflected and p-polarised light is transmitted.
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Figure 8.15. Antireflection coatings for s-polarised light at an angle of incidence of 60◦ in
air. (a) Air|1.273L 1.123H |Glass, (b) Air|1.273L 1.123H 2.682A|Glass with nL = 1.4,
nH = 1.9, nA = 1.3, nGlass = 1.5 and λ0 = 632.8 nm.

8.5.3 s- and p-polarisation together

The task of assuring low reflectance for both s- and p-polarised light is almost
impossible and should only be attempted as a last and very expensive resort. It
is possible to arrive at designs that are effective over a narrow wavelength region
and one such technique is included here. Again we use the range of indices given
in table 8.4 and design a coating to give low s- and p-reflectance on a substrate of
index 1.5 in air.

We use quarter-wave layer thicknesses only and a design technique similar
to the procedure we have already used for high-reflectance coatings but with an
additional condition that the admittance of both substrate and coating for both p-
and s-polarisations should be unity to match the incident medium. This implies

�2
1�

2
3�

2
5 . . .�sub

�2
2�

2
4�

2
6 . . .

= 1 (8.38)

and

Y = η2
1sη

2
3sη

2
5s . . . ηsub,s

η2
2sη

2
4sη

2
6s . . .

= 1. (8.39)

Equation (8.39) ensures that the reflectance for s-polarised light is zero and
equation (8.38) that the p-reflectance equals the s-reflectance. From table 8.4,
the starting values are �sub = 0.3750 and ηsub = 2.4495. Trial and error
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shows that with the addition of one single quarter-wave layer, the best result
corresponds to an index of 1.3 for which � 2

1/�sub = 0.44952/0.3750 = 0.5387
and η2

1s/ηsub = 1.93912/2.4495 = 1.5350. Other combinations give values that
are further from unity in each case. Adopting a quarter-wave of index 1.3 as the
first layer of the coating we need a further combination of layers that will provide
a correction factor of 1.3624 in � and of 0.8071 in η s. An additional single layer
will not do, but two-layer combinations of a high- followed by a low-index layer
can be found that will correct � but which are inadequate in terms of η s. The
two-layer combination that comes nearest to satisfying the requirements is a layer
of index 1.8 followed by one of index 1.3 making the design so far:

|n = 1.3|n = 1.8|n = 1.3|Glass.

This has an overall � of (0.44952 × 0.44952)/(0.32532 × 0.375) = 1.0288 and
a ηs of (1.93912 × 0.93912)/(3.15602 × 2.4495) = 0.5795. But the combination
of index 2.5 followed by 1.4 gives approximately the same correction for � but a
different correction for ηs. This gives the opportunity of using both combinations
in a four-layer arrangement to adjust the value of η s without altering �. The
correction factor for � is given by (0.4495 2 × 0.28412)/0.40502 × 0.32532) =
0.9396 and for ηs by (1.93912 × 4.69042)/(2.20002 × 3.15602) = 1.7159. This
then yields an overall value for � of 0.9396 × 1.0288 = 0.9667 and for η s of
1.7159×0.5795 = 0.9944. The seven layers can be put in various orders without
altering the reflectance at the reference wavelength. All that is required is that the
1.3 and 2.5 indices should be odd and the 1.4 and 1.8 indices even. Here we put
them in descending value of index from the substrate so that the final design is:

Air|1.3409L 1.2727A 1.3409L 1.1407B1.3409L 1.1407B1.066H |Glass

with nL = 1.30, nA = 1.40, nB = 1.80 and nH = 2.50.
The calculated performance of this coating for a reference wavelength of

632.8 nm is shown in figure 8.16. As we might have suspected, the width of the
zone of low reflectance is narrow. An alternative design arrived at in the same
way but for a substrate of index 1.52 and a range of film indices from 1.35 to 2.40
uses ten layers:

Air|1.3036L 1.1748A 1.3036L 1.1748A 1.3036L 1.1407B

1.0722H 1.1235C 1.0722H 1.1235C|Glass

with nL = 1.35, nA = 1.65, nB = 1.80, nC = 1.90, nH = 2.40, nGlass = 1.52
and nair = 1.00. The performance is similar to that of figure 8.16.

8.6 Retarders

8.6.1 Achromatic quarter- and half-wave retardation plates

As well as being used in the construction of polarisers, optical thin films can
find application in the production of achromatic quarter- and half-wave plates.
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Figure 8.16. Calculated performance of an antireflection coating for glass to have low
reflectance for both p- and s-polarisation at an angle of incidence of 60◦ in air. The solid
line indicates s-polarisation and the dashed line p-polarisation. λ0 = 632.8 nm and the
design is given in the text.

A quarter-wave plate by definition produces between the two principal planes of
polarisation a phase shift of 90◦, which corresponds to an optical path difference
of a quarter of a wavelength, while a half-wave plate produces a phase shift of
180◦ corresponding to a half wavelength. These components are generally made
from mica, or some other similar birefringent material, cut to such a thickness
that the difference in optical pathlength for each plane of polarisation is either
a quarter or a half wavelength. A considerable disadvantage of such retardation
plates is the rapid variation of the performance of the device with wavelength.

The case of the half-wave plate has been considered by Lostis [7], who has
used a thin film to alter the phase shift on total internal reflection to make it exactly
180◦. The arrangement is shown in figure 8.17. The notation for the various
refractive indices and thicknesses is shown also in the figure. Let Y indicate the
optical admittance with regard to the s-plane of polarisation and Z with respect
to the p-plane. Then Yr = nr cosφr, Zr = nr/ cosφr. Once the notation is
established the calculation of the reflectances for the two planes of polarisation
is an easy matter. The reflectance will be total for both but their phase shifts
will depend on the parameters of the thin film. The condition that the relative
phase difference between the two planes of polarisation should be 180 ◦ can then
be asserted and the necessary condition derived for this to be so. Lostis found this
condition to be

A tanβ + B tanβ + C = 0 (8.40)



384 Tilted coatings

where

β = 2π

λ
n1d cosφ1

A = n2
1 −

(
n0n2

n1

)2

B = γ

n1 cosφ1
(n2

1 − n2
0)+ n1 cosφ1

γ

[(
n0n2

n1

)2

− n2
2

]
C = n0 − n2

2

and

Y2 = n2 cosφ2 = i(n2
0 sin2 φ0 − n2

2)
1/2 = iγ.

In the case where the surrounding medium is air, of index 1.0, the necessary
condition for the above equation to have a real root is

n0 ≤ 1.46 and n1 ≥ 2.6.

When the limiting values are inserted in equation (8.40), the optical thickness of
the film is found to be λ/11. Having arrived at this value the retardation can be
calculated for the rest of the visible spectrum and it is found that the retardation
does not vary by more than ±λ/50 from 400–700 nm. Lostis constructed such
a system using a prism of fused silica and a layer of titanium dioxide as the thin
film.

The quarter-wave plate made from mica suffers from the same disability
as the half-wave plate. It is correct for only one wavelength. Results derived
in chapter 2 show that the phase change on total internal reflection varies with
the angle of incidence and the plane of polarisation, and the difference in phase
between the two principal planes also varies as the angle of incidence varies.
With the materials available in the visible region it is not possible with a single
reflection to obtain a retardation of 90◦, but, with glass of refractive index 1.51, a
retardation of 45◦ is obtained with an angle of incidence of either 48◦ 37′ or 54◦
37′, and with two successive internal reflections the value of 90◦ can be obtained
[23]. This is achieved in a device known as a Fresnel rhomb, shown in figure 8.18.
The Fresnel rhomb is almost achromatic in performance, but the dispersion of the
glass causes the retardation to increase gradually with decrease in wavelength. A
further disadvantage of the Fresnel rhomb is its sensitivity to angle of incidence
changes. The performance of the Fresnel rhomb can be considerably improved
in both these directions by the addition of a thin-film coating to both surfaces
of the rhomb. King [24] has manufactured Fresnel rhombs which show a phase
retardation which varies by less than 0.4◦ over the wavelength range 330–600 nm.
These were made from hard crown glass with one surface coated with magnesium
fluoride 20 nm thick.
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Figure 8.17. A half-wave retardation prism. (After Lostis [7].)

Figure 8.18. A Fresnel rhomb.

8.6.2 Multilayer phase retarders

In recent years there has been a number of applications where reflecting coatings
have been required which introduced specified phase retardances between s-
and p-polarisation. In particular there is a need in certain types of high-power
laser resonators for coatings that introduce a 90◦ phase shift between s- and p-
polarisation at an angle of incidence of 45◦. The coatings that have been designed
and manufactured for this purpose have been tuned for wavelengths in the infrared
and have taken the form of silver films with a multilayer dielectric overcoat.
The first published designs were due to Southwell [25, 26] who used a computer
synthesis technique. Then Apfel [27] devised an analytical approach that we
follow here. The principle of operation of the coatings is that an added dielectric
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layer will not affect the reflectance of a system that already has a reflectance of
unity. It will simply alter the phase change on reflection. When the component
is used at oblique incidence, the alteration in phase will be different for each
plane of polarisation. By adding layers in the correct sequence, eventually any
desired phase difference between p- and s-polarisation for a single specified angle
of incidence and wavelength can be achieved. In practice a silver layer is used
as the basic reflecting coating and, although this has reflectance slightly less than
unity, in the infrared it is high enough for it to be possible to neglect any error
that might otherwise be introduced. It is of course not necessary to use a metal
layer as starting reflector. A dielectric stack would be equally effective but would
simply have more layers.

The basis of Apfel’s method is a plot of phase retardance, denoted by Apfel
as D, against the average phase shift A as a function of thickness of added layer
of a given index. For simplicity, we retain this notation but in the rest of what
follows we alter both notation and derivation to agree with the remainder of the
book.

The starting point of the treatment is a reflector with a reflectance of unity,
that is, a surface with imaginary admittance. Let this imaginary admittance be iβ.
Then

ρeiφ = eiφ = (η0 − iβ)/(η0 + iβ) (8.41)

i.e.
tan(φsub/2) = −β/η0. (8.42)

Should the incident medium be changed to η1 then the phase shift becomes

tan(φ1/2) = (−β/η1) = (η0/η1) tan(φsub/2). (8.43)

Now we add a film of admittance η1 and phase thickness δ1 = (2π/λ)n1d1 to the
substrate. [

B
C

]
=
[

cos δ1 i(sin δ1)/η1
iη1 sin δ1 cos δ1

] [
1
iβ

]

=
[

cos δ1 − (β/η1) sin δ1
i(η1 sin δ1 + β cos δ1)

]
. (8.44)

The phase shift is now given, from equation (8.44), as

tan(φ0/2) = −(η1 sin δ1 + β cos δ1)

η0[cos δ1 − (β/η1) sin δ1]
= (η1/η0)

[(−β/η1)− tan δ1]

[1 + (−β/η1) tan δ1]
.

The second factor has the form of the tangent of the differences of two angles.
Using this and expression (8.43) we have

tan(φ0/2) = (η1/η0) tan(φ1/2 − δ1). (8.45)

This expression is valid for either plane of polarisation simply by inserting the
appropriate values of η and δ.
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Figure 8.19. Immersed D–A plot for a film of index 4.0 in an incident medium of index 2.2
at an angle of incidence of 45◦ in air. The two S-shaped vertical curves mark the extrema
of the D–A curves. The target retardation of 90◦ in air is denoted by the U -shaped curve
at the top of the figure. The letters M, A, B, C, D and E are explained in the text. (After
Apfel [27].)

To draw a D–A curve, we choose a starting point given by D = 2ψ and
A = 0, equivalent to φsub,p = ψ and φsub,s = −ψ , and plot the difference in
phase against the average phase all calculated from (8.45). Different values of
ψ yield a family of curves. This family of curves can have a scale of thickness
marked along them, in the manner of figure 8.19. Note that as curves disappear
off the left-hand side of the diagram they reappear at the right-hand side. The
relationships for the various quantities may be written

p-polarisation:

tan(φ0,p/2) = [(y1 cos θ0)/(y0 cos θ1)] tan[(φ1,p/2)− δ1]

tan(φ1,p/2) = [(y0 cos θ1)/(y1 cos θ0)] tan(ψ/2)
(8.46)
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s-polarisation:

tan(φ0,s/2) = [(y1 cos θ1)/(y0 cos θ0)] tan[(φ1,s/2)− δ1]

tan(φ1,s/2) = [(y0 cos θ0)/(y1 cos θ1)] tan(−ψ/2)
(8.47)

where δ1 is calculated for the appropriate angle of incidence. Then

D = φ0,p − φ0,s A = (φ0,p + φ0,s)/2.

The curves now make it possible to determine the phase retardation produced by
any thickness of the dielectric material added to any substrate of unity reflectance.
To complete the design we need to construct similar diagrams for each dielectric
material that is to be used. Since these sets of curves will not coincide, it is
possible to reach any point of the diagram simply by moving from one set of
curves to the other in succession. Only two dielectric materials are necessary and
in that case Apfel shows that a technique of immersion simplifies the diagram. If
we imagine that the structure is immersed in a medium of admittance equal to y1
then

n0 = n1 y0 = y1

and

tan(φ0/2) = tan[(φ1/2)− δ1]

for both planes of polarisation. Then D is a constant and A = −2δ 1, since
φ1,s = −φ1,p.

This result implies that the curves corresponding to the addition of material
of index equal to that of the incident medium are horizontal lines on the diagram
and can easily be visualised. The only problem we have now is that the target
retardation is specified in a medium that will, in general, be different from that
of the layer material. We therefore must add to the diagram the specification for
retardation in the dummy immersion medium that will give the correct retardation
when the dummy medium is removed and replaced by the correct medium. Let
the phase retardation required in the correct incident medium be D f. Then we can
write

Df = φfp − φfs 2Af = φfp + φfs

i.e.

φfp = [(Df/2)+ Af] φfs = [−(Df/2)+ Af].

Converting φfp and φfs to φ0p and φ0s, the immersed values are

tan(φ0p/2) = n0 cos θ1

n1 cos θ0
tan(φfp/2) = n0 cos θ1

n1 cos θ0
tan[(Df/4)+ (Af/2)]

(8.48)

tan(φ0s/2) = n0 cos θ1

n1 cos θ0
tan(φfs/2) = n0 cos θ1

n1 cos θ0
tan[(Df/4)+ (Af/2)].
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Then varying Af gives the curves. Note that equations (8.48) are similar to (8.46)
and (8.47) but with n0 and n1 interchanged.

The method is illustrated by figure 8.19, taken from Apfel [27] and showing
the design curves for a retarder constructed of films of germanium, index 4.0, and
zinc sulphide, index 2.2, to have a retardance of 90 ◦ in air at an angle of incidence
of 45◦. The curves of figure 8.19 are D–A curves for germanium immersed in a
medium of index 2.2. The U -shaped curve in the upper region is the retardation
target of 90◦ in air referred to the dummy medium of 2.2. The S-shaped curves
running top to bottom mark the maxima of the D–A curves while the tick marks
are made at intervals of one-tenth of a quarter-wave optical thickness. The four-
layer design: 0.864H 0.778L 0.674H 0.319L Ag gives a retardance of 86.8 ◦ at
the design wavelength and is represented by the trajectory MABCD. Two extra
layers would be required to reach exactly 90◦. The diagram could be made into a
design aid for any desired retardance by adding a family of target curves.

8.7 Optical tunnel filters

At an earlier stage in the development of narrowband filters a main barrier to their
construction was the fabrication of reflecting stacks of sufficiently low loss, and
it appeared that the phenomenon of frustrated total internal reflection might offer
some hope as a possible solution. This phenomenon has been known for some
time. If light is incident on a boundary beyond the critical angle, it will normally
be completely reflected. However, the incident light does in fact penetrate a short
distance into the second medium, where it decays exponentially. Provided the
second medium is somewhat thicker than a wavelength or so, the decay will be
more or less complete and the reflectance unity. If, on the other hand, the second
medium is made extremely thin, then the decay may not be complete when the
wave meets the boundary with the third medium and, if the angle of propagation is
then no longer greater than critical, a proportion of the incident light will appear
in the third medium and the reflectance at the first boundary will be something
short of total. This, as Baumeister [28] has pointed out, is very similar to the
behaviour of fundamental particles in tunnelling through a potential barrier, and
he has used the term ‘optical tunnelling’ to describe the phenomenon. The most
important feature of the effect, as far as the thin-film filter is concerned, is that the
frustrated total reflection can be adjusted to any desired value, simply by varying
the thickness of the frustrating layer between the first and third media.

The method of constructing a filter using this effect is very similar to the
polarising beam splitter (p 362). The hypotenuse of a prism is first coated with
a frustrating layer of lower index so that the light will be incident at an angle
greater than critical. This is a function of the prism angle, refractive index, and the
refractive index of the frustrating layer. Next follows the spacer layer which must
necessarily be of higher index so that a real angle of propagation will exist. This
in turn is followed by yet another frustrating layer. The whole is then cemented
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into a prism block by adding a second prism. The angle at which light is incident
on the diagonal face must be greater than the angle ψ given by

sinψ = nF/nG

where nF is the index of the frustrating layer and nG is the index of the glass of
the prism. For nF = 1.35 and nG = 1.52, we find ψ = 63◦, which is quite
an appreciable angle. Usually glass of rather higher index, nearer 1.7, is used to
reduce the angle as far as possible.

Although at first sight the optical tunnel or frustrated total reflectance (FTR)
filter appears most attractive and simple, there are some tremendous theoretical
disadvantages. First there is an enormous shift in peak wavelength between the
two planes of polarisation. Typical figures quoted are of the order of 100 nm in
the visible region, the peak corresponding to the p-plane of polarisation being at
a shorter wavelength. This large polarisation splitting is due to the large angle of
incidence at which the device must be used. Another effect of this large angle is
that the angle sensitivity of the filter is extremely large. Shifts of 5 nm/degree of
arc have been calculated [28].

Added to these disadvantages is the fact that the attempts which have been
made to produce FTR filters have been very disappointing in their results, the
performance appearing to fall far short of what was expected theoretically. It
seems that the difficulties inherent in the construction of the FTR filter are at least
as great as those involved in the conventional Fabry–Perot filter. Because of this,
interest in the FTR filter has been mainly theoretical and the filter does not appear
to be in commercial production.

The theory of the FTR filter has been written up in great detail by Baumeister
[28]. Not only has he covered the FTR filter but he has also pointed out that,
as far as the theory is concerned, the frustrating layer or, as he has renamed
it, the tunnel layer, behaves exactly as a loss-free metal layer. This means that
all sorts of filters including induced-transmission filters are possible using tunnel
layers. Designs for a number of these are included in the paper. One conclusion
which Baumeister reaches is that there appears to be no practical application for
the tunnel-layer filter of the induced-transmission and FTR Fabry–Perot types.
However he does mention the possibility of a longwave-pass filter constructed
from an assembly of many tunnel layers separated by spacer layers and which has
the advantage of a limitless rejection zone on the shortwave side of the edge. Even
with this type of filter there are some disadvantages which could be serious. The
characteristics of the filter near the edge suffer from strong polarisation splitting.
This could be overcome by adding a conventional edge filter to the assembly at
the front face of the prism. However, the second disadvantage is rather more
serious: the appearance of pass bands in the stop region when the filter is tilted
in the direction so as to make the angle of incidence more nearly normal. Curves
given by Baumeister show a small transmission spike appearing even with a tilt
of only 1◦ internal or 2.7◦ external with respect to the design value.
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Chapter 9

Production methods and thin-film materials

In this chapter, we shall deal briefly with the fundamental process, the machines
that are used for the thin-film deposition and discuss some aspects of the
properties of thin-film materials. Subsequent chapters will include a more detailed
examination of some of the problems met in production.

Much of this chapter is concerned with the properties of materials, ways of
measuring them, and some examples of the results of the measurements of the
important parameters. Probably the most important properties from the thin-film
point of view are given in the following list, although the order is not that of
relative importance, which will vary from one application to another.

1. Optical properties such as refractive index and region of transparency.
2. The method which must be used for the production of the material in thin-

film form.
3. Mechanical properties of thin films such as hardness or resistance to

abrasion, and the magnitude of any built-in stresses.
4. Chemical properties such as solubility and resistance to attack by the

atmosphere, and compatibility with other materials.
5. Toxicity.
6. Price and availability.
7. Other properties which may be important in particular applications, for

example, electrical conductivity or dielectric constant.

Item 7 is not one on which we comment further here. On the question of
price and availability, item 6, there is also little that can be said. The situation
is changing all the time. Note, however, that price is of secondary importance to
suitability. The cost of a failed batch of coatings is very great compared with
the price of the source materials. Many companies are able to offer a wide
range of materials completely ready for thin-film production, together with all
the necessary information on the techniques that should be used.

393
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9.1 The production of thin films

There is a considerable number of processes that can be and are used for the
deposition of optical coatings. The commonest take place under vacuum and
can be classified as physical vapour deposition (sometimes abbreviated to PVD).
In these processes, the thin film condenses directly in the solid phase from the
vapour. The word ‘physical’ as distinct from ‘chemical’ is intended to indicate
the absence of any chemical reactions in the formation of the film. This is
an oversimplification. Chemical reactions are, in fact, involved but the term
chemical vapour deposition (sometimes abbreviated to CVD) is reserved for a
family of techniques where the growing film differs substantially in composition
and properties from the components of the vapour phase.

The physical vapour deposition processes can be classified in various ways
but the most useful classifications for our purposes are based on the methods used
for producing the vapour and on the energy that is involved in the deposition
and growth of the films. Vacuum, or thermal, evaporation has for years been
the principal physical vapour deposition process and because of its simplicity, its
flexibility and its relatively low cost, and because of the enormous number of
existing deposition systems, it is likely to continue so for some considerable time.
It is, however, clear that it possesses major shortcomings, especially in respect of
the microstructure of the films, and, particularly for high-performance specialised
coatings, alternative processes, such as sputtering, are being adopted. In thermal
evaporation, the material to be deposited, the evaporant, is simply heated to a
temperature at which it vaporises. The vapour then condenses as a solid film
on the substrates, which are maintained at temperatures below the melting point
of the evaporant. Molecules travel virtually in straight lines between source and
substrate and the laws governing the thickness of deposit are similar to the laws
that govern illumination. In sputtering, the vapour is produced by bombarding a
target with energetic particles, mostly ions, so that the atoms and molecules of
the target are ejected from it. Such vapour particles have much more energy than
the products of thermal evaporation and this energy has considerable influence on
the condensation and film-growth processes. In particular the films are usually
much more compact and solid. In other variants of physical vapour deposition,
the condensation of thermally evaporated material is supplied with additional
energy by direct bombardment by energetic particles. Such processes, together
with sputtering, are known collectively as the energetic processes.

Although physical vapour deposition is the predominant class of deposition
processes in optical coatings, the application of chemical vapour deposition is
gradually increasing. The chemical reactions between the starting materials,
the precursors, to form the material of the coating may be triggered in various
ways but the most common is probably by means of an electrically induced
plasma in the active vapour. Such processes are known collectively as plasma
enhanced. Chemical vapour deposition is complementary to rather than a direct
competitor of physical vapour deposition. It is especially useful in the deposition
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of organic polymer films that are largely beyond the capabilities of physical
vapour deposition. The boundary between the two classes of process is rather
blurred.

In chapter 1 we saw how the subject could be said to begin with Fraunhofer’s
preparing of thin films by the chemical etching of glass and also by deposition
from solution. These and similar methods have been used to some extent in optical
thin-film work. Other techniques that, at different stages in the development of the
subject, have been, and are still sometimes, employed, include anodic oxidation of
aluminium to form a protective coating and the spraying of material onto a surface
either in solution or in the form of a substance that can be chemically converted
into the desired material later. Even the substance itself is sometimes sprayed on,
possibly after vaporisation in a hot flame. Polymerisation of monomers deposited
on surfaces by condensation or from solution is also used occasionally. Extrusion
of self-supporting thin-film multilayers is yet another technique.

It is impossible to cover everything, or even anything, to the depth it
deserves. There is a number of books that deal specifically with processes.
Useful works include Vossen and Kern [1, 2] and Glocker and Shah [3]. We
shall deal primarily with physical vapour deposition and especially with thermal
evaporation since that is still the staple process.

9.1.1 Thermal evaporation

In thermal evaporation the vapour is produced simply by heating the material,
known as the evaporant. Because of the reduced pressure in the chamber the
vapour is given off in an even stream, the molecules appearing to travel in straight
lines so that any variation in the thickness of the film that is formed is smooth,
and depends principally on the position and orientation of the substrate with
respect to the vapour source. The properties of the film are broadly similar
to those of the bulk material, although, as we shall see, there are important
differences in the detailed microstructure. Precautions that have to be taken to
ensure good film quality include scrupulous cleanliness of the substrate surface,
near normal incidence of the vapour stream and, sometimes, heating the substrate
to temperatures of 200–300 ◦C (or even higher, depending on the material) before
commencing deposition. The evaporation is carried out in a sealed chamber
that is evacuated to a pressure usually of the order of 10−5 mb. The materials
to be deposited are melted within the chamber, using one of a number of
possible techniques that will be described. The complete plant consists of the
chamber together with the necessary pumps, pressure gauges, power supplies for
supplying the energy necessary to melt the evaporant, monitoring equipment for
the measurement of the thin-film thickness during the process, substrate holding
jigs, substrate heaters and the controls. Modern thin-film coating plants are shown
in figures 9.1 and 9.2.

In order to evaporate the material, it must be contained in some kind of
crucible and it must be heated until molten, unless it sublimes. There is a
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(a)

(b)

Figure 9.1. Thin-film coating machines. These are known as box coaters because the
chamber is fabricated in the form of a box with a front door rather than as a bell jar on a
base-plate. (a) Model A 1100 High Vacuum Deposition System. The LEYCOM process
control computer is also shown. This displays on the screen the entire vacuum status of the
system, the status of the evaporation process and the status of all pre- and post-deposition
steps, all of these functions being computer controlled. Part of the photometer, which is
used for real-time in situ optical thickness control, can be seen at the lower part of the
front door. (Courtesy of Leybold Heraeus GmbH, Hanau, Germany.) (b) Internal view of
the chamber of a BAK 760 High Vacuum Coating System. The upper part of the chamber
is occupied by a reversible calotte so that substrates may be coated on both sides without
breaking vacuum. The domed shape at the very top of the chamber, above the calotte,
is a radiant heater. In the foreground at the base of the chamber, there are two thermal
sources, each with a shutter and one charged with material. Towards the rear of the base,
two electron beam sources are surrounded by circular shields and covered with shutters.
The glow discharge electrode is a horizontal circular bar at the rear. (Courtesy of Balzers
AG, Balzers, Liechtenstein.)
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(a)

Figure 9.2. CES Series Continuous Vacuum Thin Film Coater. The operation is
completely automatic. A continuous supply of jigs carrying preloaded substrates are heated
under vacuum before passing into the coating chamber. Once coated they pass back out
of the system and fresh jigs take their place. (a) The coating chamber. Some of the
transport and heating chambers can be seen at the top of the photograph. (b) The interior of
the coating chamber showing two electron-beam evaporation sources with automatic feed
mechanisms for tablets on the right and granules on the left. (Courtesy of Shincron Co.
Ltd, Tokyo, Japan.)

number of ways of achieving this. The simplest method is to make use of a
crucible of refractory metal that acts also as a heater when an electric current
is passed through it. The crucibles are elongated in shape with flat contact
areas at either end and are commonly referred to as boats. Electrodes within
the plant, which are insulated from the structure, act both as terminals and
supports. The resistance of the boats is low and high currents, several hundred
amps at low voltages, are required to heat them. Because of the high currents and
especially to protect the sealing rings, the electrodes are normally water-cooled.
Figure 9.4 shows a baseplate complete with a set of electrodes and figure 9.5
a molybdenum boat, mounted between electrodes, being charged with material.
Tantalum, molybdenum and tungsten are all suitable for the manufacture of boats,
tantalum and molybdenum being easily bent and formed, tungsten much less so.
A wide range of materials can be evaporated from tantalum, and, of the three, it is
the one most frequently used. However, some materials react with it (ceric oxide
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(b)

Figure 9.2. (Continued)

for example) or with molybdenum, and require the less reactive but rather more
difficult tungsten.

Considerable skill is required in the manufacture of tungsten boats. To avoid
cracking, the tungsten strip should be heated to red heat before bending and only
the simplest of shapes can be attempted. Fortunately, a wide range of preformed
boats of high quality is available commercially. Certain evaporants react even
with tungsten. In some cases a protective liner of alumina can be added, or an
alumina crucible surrounded by a tungsten heater can even be used. In other
cases, such as aluminium, the reaction is not very fast, and a tungsten wire helix
is a satisfactory source. The aluminium, which wets the tungsten, forms droplets
along the helix that has its axis horizontal. The area of tungsten in contact with
the aluminium for a given evaporation rate is somewhat less, and the thickness of
the wire somewhat greater, than for a boat, so that the tungsten is dissolved away
more slowly and a greater proportion can be removed before failure. Different
types of boat are shown in figure 9.6.

Materials like zinc sulphide or silicon monoxide, which sublime at not too
high a temperature, can be heated in a crucible of alumina, or even fused silica, by
radiation from above. A tungsten spiral just above the surface of the material can
produce enough heat to vaporise it. This means that the hottest part of the material
is the evaporating surface and so the material is much less prone to spitting. One
example of such a source is shown in figure 9.6—the crucible is being held in the
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Figure 9.3. Preparing a very large plant for coating a batch of components. The substrate
carrier is in the form of a horizontal drum that rotates around the sources and is carried
by the chamber door that can be seen on the right. The chamber furniture, as is usual,
is covered by aluminium foil for easy subsequent cleaning. (Courtesy of Optical Coating
Laboratory Inc., Santa Rosa, California, USA.)

hand and the spiral is on the table. A development of this type of source is the
‘howitzer’ source that is shown in figure 9.7, which is particularly useful for zinc
sulphide in the infrared as the capacity can be very great [4].

Germanium is an example of a material that reacts even with alumina. The
reaction is not particularly fast, but the germanium films become contaminated
and show higher longwave infrared absorption than is usual. Graphite has been
found to be a useful boat material in this case. Supplied in rod form for use as
furnace heating elements, it can be easily machined into almost any desired shape
or form. Copper, graphite, or one of the refractory metals should be used to make
the contacts to the graphite boats. At the high temperatures involved, steel and
graphite interact so that the former tends to melt and pit badly and is, therefore,
quite unsuitable.

A form of heating which avoids many of the difficulties associated with
directly and indirectly heated boats is electron-beam heating, and this is now the
preferred technique for most materials, especially the refractory oxides. In this
method, the evaporant is contained in a suitable crucible, or hearth, of electrically
conducting material, and is bombarded with a beam of electrons to heat and
vaporise it. The portion of the evaporant that is heated is in the centre of the
exposed surface, and there is a reasonably long thermal conduction path through
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Figure 9.4. The base-plate of a thin-film coating plant showing the electrodes and the
shutter used for terminating the layers.

the material to the hearth that can therefore be held at a rather lower temperature
than the melting temperature of the evaporant, without prohibitive heat loss. This
means that the reaction between the evaporant and the hearth can be inhibited,
and the hearth is normally water-cooled to maintain its low temperature. Copper,
because of its high thermal conductivity, is the preferred hearth material. The
electrons are emitted by a hot filament, normally tungsten, and are attracted to the
evaporant by a potential usually between 6 and 10 kV. Various types of electrodes
and forms of focusing have been used at different times, but the arrangement that
has now been almost universally adopted is what is known as the bent-beam type
of gun. The hearth is at the ground potential and the filament is negative with
respect to it. The filament and electrodes, usually a plate at filament potential
situated close to the filament with a beam-defining slit through which the electrons
pass, followed closely by the anode at the same potential as the hearth and
incorporating a slightly larger slit so that the beam passes through it, are placed
under the hearth, well out of reach of the emitted evaporant. The beam is bent
around through rather greater than a semicircle by a magnetic field and focused
on the material in the hearth. This avoids the problems of early electron beam
systems that had filaments in line of sight of the hearth and hence considerably
shortened life due to reactions with the evaporant. Supplementary magnetic fields
derived from coils allow the position of the spot to be varied so that the mean can
be placed in the centre of the hearth and a raster can be described which increases
the area of heated material. This reduces the temperature necessary to maintain
the same rate of deposition, improves the efficiency of use of the material in the
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Figure 9.5. A molybdenum boat, mounted between electrodes in an Edwards E19E
machine, being charged with material.

crucible and makes the electron beam source more stable. A typical electron beam
source of this type is shown in figure 9.8.

The electron beam source is particularly useful for materials that react with
boats or require very high evaporation temperatures, or both. Even in quite
small sources, beam currents of up to 1 A at voltages of around 10 kV can
be achieved and refractory oxides such as aluminium oxide, zirconium oxide
and hafnium oxide, and reactive semiconductors such as germanium and silicon,
can be evaporated readily. Furthermore, materials that can be evaporated quite
satisfactorily by a directly heated boat can be evaporated still more easily by
electron beam, and so the tendency is to use electron beam sources, once they
are installed, for virtually all materials. To improve their flexibility, they can be
constructed with multiple pockets in the hearth so that the same source can handle
up to four different materials in a single coating cycle. Of course the capacity of
each individual pocket in a multiple-pocket version is usually rather less than that
of the single-pocket version of the same source. Also it is not currently possible
to maintain the alternative crucibles at near evaporation temperatures implying a
delay between layers as the source is brought up to temperature. For large-scale
production, therefore, or for coatings for the infrared, it is normal to use two or
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(a) (b)

(c) (d)

(e)

Figure 9.6. Various evaporation sources. (a) Tantalum box source (660 A, 1695 W for
1600 ◦C). (b) Tungsten source for large quantities of metals such as aluminium, silver and
gold (475 A, 1400 W for 1800 ◦C). (c) Tungsten boat (325 A, 565 W for 1800 ◦C). (d)
Aluminium oxide crucible with molybdenum heater. (e) Aluminium oxide crucible with
tungsten filament. Two tungsten boats can also be seen. (Courtesy of Balzers AG.)
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Figure 9.7. The howitzer—a source for evaporating large quantities of ZnS at high
deposition rates. The removable ZnS holder shown as steel can also be made of fused
silica or alumina and the hairpin filament can be replaced by a tungsten helix. (After Cox
and Hass [4].)

more single-pocket sources.

The temperature of the substrate also plays a part in determining the
properties of the condensed films. Usually it is the consistency of temperature
from one coating run to the next which is of greater importance than the absolute
level, although Ritchie [5], working in the far infrared beyond 12 µm, found
substrate temperature to be of critical importance and devised ways of controlling
it to within 2 ◦C of the experimentally determined optimum. Substrates are often
of low thermal conductivity and are mounted on rotating jigs to ensure uniformity
of film thickness so that the measurement of the absolute temperature of the
substrates is difficult. The heating is usually by means of radiant elements placed
a short distance behind the substrates or by tungsten halogen lamps placed so
that they illuminate the front surfaces of the substrates, the latter method gaining
in popularity. Measurement is most often carried out by placing a thermocouple
just in front of the substrate carrier. This will not measure substrate temperature
accurately but will give an indication of the constancy of process conditions;
frequently this is all that is wanted, anyway. An improvement can be obtained
by embedding the thermocouple in a block of material of the same type as the
substrates. Thermocouples have been placed on the rotating jig and the signal
led out through silver slip rings, but even in this case the temperature of the
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Figure 9.8. A four-pocket ‘supersource’. This is an electron-beam source of the bent-beam
type. The water-cooled crucible has four pockets that can be rotated into position at the
focus of the electron beam that issues from the slot to the right of the opening in the top
of the gun. The sides of the gun are the pole pieces of the focusing and deflecting magnet.
(Reproduced by kind permission of Temescal, Berkeley, California, USA, a division of the
BOC Group Inc.)

front surface of the substrates is still not necessarily known to any high degree
of accuracy, especially if they are of material of low thermal conductivity such
as glass or silica. Rather more accurate results are achievable with substrates
of germanium or silicon, frequently used in the infrared. A more consistent
technique that is becoming more common is the use of an infrared remote sensing
thermometer that detects infrared radiation from the hot substrates. Usually
mounted outside the chamber, this views the substrates through an infrared-
transmitting window. The absolute calibration of the device depends on the
emittance of the substrate. This varies less for substrates such as glass with
dielectric coatings for the visible region than for infrared components. Again,
consistency from one run to the next is of prime importance.

Usually metals should be deposited at low substrate temperatures to avoid
scatter—particularly important in metal–dielectric filters and in ultraviolet-
reflecting coatings, although there is an exception to this rule of thumb in the
cases of rhodium and platinum, both of which give substantially better results
when deposited hot [6, 7]. There are difficulties in refrigerating substrates, and
substrate temperatures below ambient encourage thicker adsorbed gas layers
that inhibit the condensation of the films and cause contamination. Thus it
is not normal to operate with substrate temperatures below ambient, at which
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adequate results are obtained. The softer dielectric materials such as zinc
sulphide and cryolite can also be deposited at room temperature (except, as we
shall see, if zinc sulphide is to be used in the infrared). The harder dielectric
materials, however, usually require elevated substrate temperatures, often 200–
300 ◦C. These materials include ceric oxide, magnesium fluoride and titanium
dioxide. Some of the semiconductors for the infrared must be similarly treated.
Frequently, optimum mechanical properties demand deposition at a temperature
that is different from that for optimum optical properties and a compromise that
depends on the particular application is necessary. Further details will be given
when individual materials are discussed.

9.1.2 Energetic processes

The energetic processes, as the name suggests, are ones that involve energies
rather greater than thermal. Thin films deposited by thermal evaporation have a
pronounced columnar structure that is a major cause of coating instability and
drift. This is discussed later in this chapter. The idea behind the energetic
processes is to disrupt the columnar structure with its accompanying voids by
supplying extra energy, and this does work well. Some of the energetic processes
are old ones that have always involved extra energy and are now recognised as
having certain advantages because of it. Although we describe the processes as
energetic, it has been shown that momentum is the important quantity.

Sputtering is an old process that predates thermal evaporation. Momentum
transfer from incident energetic ions is used to eject atoms and molecules from
a target into the vapour phase. The kinetic energy and momentum of the ejected
particles are high and so the growing film is subjected to a much greater impulse
each time a fresh particle arrives, which disrupts the void and columnar structure.
In the conventional form of sputtering, the target is metallic so that it conducts
and the bombarding ions are derived from a DC discharge in the vicinity of the
target. This discharge may be confined by crossed electric and magnetic fields
when it is known as magnetron sputtering and this is the most common way in
which the process is applied in optical coating. DC planar magnetron targets are
most common; figure 9.9 shows a schematic form of such a target. The great
advantage of magnetron sputtering is the much longer path length of the electrons
so that the discharge can be maintained at a considerably lower pressure (0.3 Pa
or 0.3 × 10−2 mb for example) than is required compared with conventional
sputtering in the absence of the magnetic field.

There are, however, some disadvantages. The arrangement of magnets
concentrates the discharge in the region between the pole pieces and the erosion of
the target is greatest there, while other areas of the target show negligible erosion.
With long rectangular targets, the appearance of the eroded region is not unlike the
shape of a race track, a term often used to describe it. Target utilisation is therefore
not good and so used targets are usually recovered rather than scrapped. Since the
targets in DC magnetron sputtering are metallic, a process of reactive sputtering
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Figure 9.9. Schematic representation of a planar magnetron source. The target or cathode
is connected to the negative supply. The structure of the coating machine including the
grounded shield is the positive side of the supply. Electrons leaving the cathode surface
move outward but are turned into a cycloidal path by the field of the magnets. The polarity
of the magnets is unimportant as long as they are arranged with the outer poles opposite to
the inner as shown.

must be used to produce oxides or nitrides and the sputtering gas, therefore, is
usually a mixture of a noble gas such as argon and oxygen or nitrogen. This
reactive gas reacts also with the target to produce a skin of oxide or nitride and
the skin tends to build up in the less eroded regions. Electrons are very mobile
and tend to collect on the surface of this skin charging it up like a capacitor
that can discharge suddenly and violently. This arcing tends to produce molten
droplets of material that are often embedded in the film. In the worst case the
discharge can actually damage the target so badly as to render it unusable. The
insulating skin also modifies the electrical properties of the sputtering system so
that hysteresis appears making control difficult. These effects are particularly
severe with silicon targets, and silicon oxide is the sole low-index material really
suitable for sputtering. The problem is often called target poisoning.

There are several current solutions to the target poisoning problem. The
target surface may be moved with respect to the magnets so that the region of
high erosion moves over the surface and cleans it up. In the usual embodiment
the target is made in cylindrical form and rotated about a longitudinal axis around
the magnets and inside the grounded shield.

Another more recent form of solution involves twin magnetron targets that
are connected to opposite poles of a mid-frequency power supply. The targets
are now alternately the anode and cathode of the system. This discharges the
effective capacitors before they can cause damage and also solves the problem of
the disappearing anode. In normal single-target sputtering the chamber structure
is the anode of the supply. The build up of insulating film over this structure
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Figure 9.10. The twin magnetron arrangement in which two magnetron targets are
connected to a mid-frequency power supply so that each is alternately anode and cathode.
The arrangement avoids the charging problems of reactive DC sputtering without the
complications of radio-frequency sputtering.

gradually makes the anode less and less effective with all kinds of implications
for both control and deposition. The twin magnetron solution avoids this problem
because the alternate source is the anode. The frequency is usually of the order of
40 kHz, high enough to avoid the charging problems but low enough so that the
targets are effectively operating in the DC regime. Usually the twin magnetrons
are planar but the process has also been used with rotating magnetrons.

Two other solutions are worthy of mention. The oxidation or nitriding may
take place remote from the deposition. This requires that only a small amount of
material be deposited then treated, then more deposited and then treated, and so
on. The process is implemented by placing the substrates on a cylindrical drum
that is then rotated rapidly and continuously past a linear magnetron sputtering
source then past an ion source and round to the magnetron target again. This
process is known as metamode, short for metal mode and is the subject of an
issued patent [8]. An alternative process places the magnetron source inside a
shroud where it can be operated in argon. The material escapes through a large
aperture above the source in the centre of the shroud. Outside the shroud in
the main chamber the material coats the substrates but the growing film is also
bombarded with a beam of oxygen or nitrogen ions in the manner of ion-assisted
deposition, described shortly. Enormous quantities of gas enter the deposition
chamber and to remove the gas very fast, high capacity pumps are used. The films
that grow are amorphous of very high packing density. This process is known as
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microplasma and, at the time of writing, very little is known publicly about it
except for an issued patent [9]. An advantage of the process appears to be that the
geometry of the coating chamber can be similar to that for thermal evaporation.
Presumably the increased positional stability of the magnetron sources is a further
advantage.

Radio-frequency (RF) sputtering is a process that avoids the problems of an
insulating target. It is much used in other areas of thin-film deposition but has not
been popular in optical coatings mainly because of all the additional problems of
radio-frequency systems such as screening and matching. At radio frequencies
even a straight length of conductor can have an appreciable impedance so that
grounding is a much greater problem than at low frequency. It is also a somewhat
slower process. Nevertheless, in applications where speed is less important than
quality it has been found remarkably reliable and stable, to the extent where even
quite complex coatings can be controlled entirely by power, gas pressure and time
with no ongoing layer thickness measurement whatsoever [10].

The most advanced form of sputtering uses a separate chamber to generate
the ions that are then extracted and directed towards the target. This is known
as ion-beam sputtering [11]. It is capable of a very high degree of film purity
and the lowest published losses in optical coatings, 1 ppm or less, have been
achieved with this process [12, 13]. Since the ion beam is usually neutralised
by adding electrons, charging problems with insulating targets can be avoided
and the process is as useful for insulating materials as for conductors. Ion-beam
sputtering is slow compared with most other processes and it is not able to cope
with deposition over large areas. It has not been generally adopted and its use is
largely limited to special coatings where low loss is the important criterion.

Not all materials are suitable for sputtering. In particular the fluorides present
considerable difficulties because of preferential sputtering of fluorine atoms. The
film is then fluorine deficient and optically absorbing. The fluorine vacancies
can be filled with oxygen—there is usually plenty of oxygen around—which
removes the absorption, at least at longer wavelengths, but the film becomes
an oxyfluoride with altered (usually raised) index of refraction and frequently
degraded environmental resistance.

In reactive low-voltage ion plating [14, 15], a high-current beam of low-
voltage electrons is directed into the region above the hearth in an electron beam
source. This results in a very high degree of ionisation of evaporant material,
usually a metal or suboxide so that the melt is conducting. Reactive gases,
oxygen or nitrogen, fed separately into the chamber, are also highly ionised There
is a complete circuit from ion gun to electron beam source and back and it is
completely isolated from the rest of the structure. The substrate carrier is also
electrically isolated. There are many electrons and they are very mobile and so
the isolated substrates acquire a charge that is negative with respect to the electron
beam source. This attracts the positive ions from the source so that they arrive
at the film surface with additional momentum that is transferred to the film and
compacts it. Films are tough, hard and dense and usually amorphous. Because of
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Figure 9.11. The Plasmacoat is a small machine intended principally for the coating of
spectacle lenses but it can also be used for small batches of other types of coating. The
process is one of reactive sputtering and the operation is entirely automatic. The coating
chamber is permanently under vacuum. For loading, the substrate carrier drops down into
the loading chamber leaving the coating chamber sealed off. The carrier can then be loaded
through the access door. Once substrates are loaded the access door closes and the substrate
carrier moves upwards back into the deposition chamber. (Courtesy of Applied Vision Ltd,
Coalville, Leicestershire, England.)
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Figure 9.12. Ion-beam sputtering schematic. The ion-generating discharge is within the
ion gun and therefore removed from the deposition chamber. This gives much higher
quality films.

the very efficient reaction with the additional gas they are of high optical quality.

Ion-assisted deposition is an energetic process that has the great advantage
that it is easy to implement in conventional equipment. It consists of thermal
evaporation to which has been added bombardment of the growing film with
a beam of energetic ions. All that is required to put it into operation in a
conventional plant, therefore, is the addition of an ion gun. The most common
types of ion sources for this purpose are broad-beam, often with extraction
grids. Much of the published research and reported successes have been with
the Kaufman or gridded type of ion gun. In that, the source of electrons is a hot
filament and the extraction system consists of two closely aligned grids, the inner
floating and acquiring the potential of the discharge so that it confines it within the
gun, and the second applying a field to draw the positive ions out of the discharge
chamber through the apertures in the inner grid. The beam of ions is neutralised
outside the discharge chamber by adding electrons, usually from a hot filament,
immersed in the beam to avoid space charge limitation, or from a separate hollow-
cathode electron emitter. The grids are fragile and easily misaligned or damaged
and so some effort has been put into the development of sources that do not require
extraction grids and they are being used in increasing numbers in production. For
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Figure 9.13. A Spector ion-beam sputtering system for the production of high-quality
optical coatings especially narrowband filters for dense wavelength division multiplexing.
(Courtesy of Ion Tech, Inc., Fort Collins, Colorado, USA.)

further information see Bovard [16] and Fulton [17].
The ionised plasma-assisted deposition process includes features of both ion-

assisted deposition and low-voltage ion plating. It makes use of what is known
as an advanced plasma source [18–20]. The source, which is insulated from the
chamber and floats in potential, is of simple construction. A central indirectly
heated cathode is made of lanthanum hexaboride. This lies along the axis of a
vertical cylinder that is the anode. A noble gas, usually argon, is introduced into
the source. The cylinder contains a solenoid that produces an axial magnetic field.
The crossed electric and magnetic fields make the electrons move in cycloids
with the usual increase in path length and degree of ionisation, so that an intense
plasma is produced in the source. The fields do not confine the plasma axially and
so it escapes from the source into the chamber. There the electrons, that are very
mobile, escape preferentially to the chamber structure leaving the plasma charged
positively without the need for isolated substrate holders. The deposition sources
are thermal, usually electron beam, and they emit evaporant into the plasma
where it gains energy and is partially ionised. The evaporant then condenses
on the growing film with additional energy, as in ion plating, and is bombarded
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Figure 9.14. The low-voltage ion plating process. The negative bias on the electrically
isolated substrates is acquired from the free electrons in the chamber. (After Pulker. See
for example [15].)

simultaneously by ions from the plasma as in ion-assisted deposition. For reactive
processes, the reacting gas is not fed into the source but into the plasma as it
leaves the source. A ring-shower-shaped inlet tube is positioned just above the
aperture of the source for this purpose. The process has been very successful in
the production of narrowband filters for dense wavelength division multiplexing.

It seems clear that the major benefit of the energetic processes is an increase
in film packing density. The improvements are achieved at comparatively low
substrate temperatures which helps with the difficult coating of plastic substrates.

It has been theoretically demonstrated by advanced computer modelling
[21, 22] that the major effects are due to the additional momentum of the
molecules, either supplied by collisions with the incoming energetic ions, or
derived from the additional kinetic energy of the evaporant. Experimental
evidence exists [23] that shows correlation of the effects with momentum rather
than energy of the bombarding ions. Major benefits of these processes are the
increased packing density of the films, making them more bulk-like and hence
increasing their ruggedness, the improved adhesion resulting from a mixing of
materials at the interfaces between layers, and a reduction of the sometimes
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Figure 9.15. The addition of ion bombardment of the growing film transforms
conventional thermal evaporation into ion-assisted deposition.

quite high tensile stress in the layers. The increase in packing density reduces
also the moisture sensitivity and can actually eliminate it altogether [24]. The
increased packing density also improves the stability of the films in other ways.
Magnesium fluoride films resist high temperature oxidation better, for example
[25]. The hardness and corrosion resistance of metal films, especially with
dielectric overcoats [26], is improved by ion-assisted deposition but the optical
properties tend to be slightly adversely affected, possibly by the implantation of
a small fraction of the bombarding ions [27]. The increased reactivity of the
bombarding ions permits the deposition of compounds, such as nitrides [28], that
are difficult or impossible by normal vacuum evaporation.

9.1.3 Other processes

Physical vapour deposition processes are those most often used for the production
of optical coatings. However, in the electronic device field, chemical vapour
deposition is the principal method for thin-film deposition and there is increasing
interest in it for optical purposes, usually with regard to very special requirements.

Chemical vapour deposition differs from physical vapour deposition in that
the film material is produced by a reaction amongst components of the vapour
that surrounds the substrates. The reaction may be induced by the temperature
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Figure 9.16. The advanced plasma source. (Courtesy of Leybold AG, Hanau, Germany.)
(a) Diagram of the advanced plasma source (APS) and the arrangement of the machine
for plasma ion-assisted deposition (PIAD). The monomer inlet shown is used in the
construction of the final anti-smudge coat in the coating of spectacle lenses. (b) Photograph
of the interior of the system showing the electron-beam sources and just slightly to the right
of the centre the cylindrical advanced plasma source.

of the substrates themselves, when the process is the classical thermal chemical
vapour deposition, or, and this is more usual in the optical field, it may be a
plasma-induced process.

Usually the components, the reactants or precursors, will be introduced into
a carrier gas that is permitted to flow through the system. This ensures a constant
supply of the reactants to the growing interface and allows sufficient dilution so
that the reaction is not so fast as to overwhelm the film growth.

In this classical form of chemical vapour deposition great problems are
created by reactions that are too efficient. A reaction that proceeds rapidly tends
to produce a film that is poorly packed and poorly adherent. The term snowis
often used to describe it. The reactions must, therefore, be quite weak and this
means that impurities that have strong reactions can play havoc with the process
and severely limit the possible range of processes.
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Because of all the difficulties, the classical thermal chemical vapour
deposition process is not often used for optical coatings. Instead, pulsed processes
have been largely adopted. Material added to a thin film is assimilated provided
it is not immobilised by material deposited over it before it has had time to relax
into favourable positions. The problem is not really the strength of the reaction but
rather the large amount of material that arrives in a given time. Earlier material is
buried under the weight of later material and cannot relax to a state of equilibrium,
and snow is the result. If an efficient reaction can be made to deliver material at
a correct rate then the film will be dense. It is the overall rate of deposition that
determines the microstructure. Pulsing the reaction gives the control of rate that is
required. The pulsing can most conveniently be achieved when a plasma-assisted
process is involved [29].

A related process that is sometimes called plasma polymerisation, and
sometimes plasma-enhanced (or induced) chemical vapour deposition or PECVD

[30–32] is used to deposit dense organic layers with stable optical properties over
curved and irregular surfaces with good uniformity. Plasma polymerisation is
quite unlike normal polymerisation where monomers are linked into chains of
repeat units. The plasma is characterised by energetic electrons that break the
reactants into active fragments and these fragments link with each other to form
the deposited film. Some of this combination may take place in the gaseous phase
forming clusters that may deposit on the growing film or may be broken into
fragments again by the plasma. Strong binding occurs so that the deposited film
is tough and hard and dense. It is not strictly polymeric and contains free radicals
that may combine with any oxygen that is also present. The mechanical properties
can range from plastic to elastic and glass-like. Because the films are insulating,
in fact they are used as capacitor dielectrics in some applications, RF discharges
are usual for this process. Speed of deposition can be very high, up to 1µm min −1

although rates of one-tenth to one-hundredth of this are more common.
The process has been used for some time in the semiconductor industry

to deposit silicon dioxide. The normal precursor is tetraethoxysilane (TEOS)
together with oxygen but the substrate temperature is usually quite high, at
least 250 ◦C, much higher than can be possible for plastic substrates. When
the temperature is reduced to permit coating of plastic substrates, the film
composition becomes much more complicated. Apart from the silicon oxide
content they include, for example, silanol that results from reactions involving
residual water vapour. There are, in fact, many silicone compounds that can be
and have been used as precursors in the PECVD deposition of such silica-rich
films. The feature that they tend to share is a backbone of alternate silicon and
oxygen atoms. Apart from the tetraethoxysilane already mentioned other suitable
compounds include hexamethyldisiloxane (HMDSO), tetramethoxysilane (TMOS),
methyltrimethoxysilane (MTMOS) and trimethylmethoxysilane (TMMOS). As
might be expected, they are toxic, although their toxicity varies. The make-up
of the precursors determines to a large extent the character of the film. With
organic silicone compounds or silanes present in the gas along with oxygen the



416 Production methods and thin-film materials

coatings are particularly tough and resistant to abrasion and form the basis for a
number of different hard coats. The name hard coat is normally given to an initial
layer over a plastic substrate that acts as a transition between the organic plastic
and an overlying essentially inorganic optical coating. Fluorine compounds give
films that have very low friction and are hydrophobic and are frequently used as
the outermost anti-smudge layer in an antireflection coating. The precise details
of the precursors are difficult to obtain. They are considered part of the know-how
of the process.

There are many other techniques for the deposition of optical coatings.
Probably the most important of these is the sol-gel process. The name sol-gel
refers to those processes that involve a solution that undergoes a transition of the
sol-gel type, that is, a solution is transformed into a gel. The common form of
the sol-gel process starts with a metal alkoxide. This organometallic compound
is hydrolysed when it is mixed with water in an appropriate mutual solvent. The
solution is usually made slightly acidic to control the rates of reaction and to
help the formation of a polymeric material with linear molecules. The result is a
gradual transition to an oxide polymer with liquid-filled pores. This gel can be
deposited over the surface of an optical component by dipping. The coating is
then heat treated to remove the liquid in the pores and to densify it; the higher the
temperature to which it is raised, the denser is the film. By treating the gel film
at temperatures as high as 1000 ◦C complete densification is achieved. Lower
temperatures give partial densification but already by 600 ◦C the film is largely
impermeable. Typical materials are TEOS (tetraethylorthosilicate, Si(OC 2H5)4)

for eventual films consisting of silica, and titanium tetraethoxide (Ti(OC 2H5)4)

for films of titanium oxide. These materials are dissolved in ethanol and then
hydrolysed by adding a little distilled water. In the case of the titanium compound,
the rate of hydrolysation is much faster and so nitric acid is added to control the
transformation and so the solution is made rather weaker.

There are quite considerable difficulties in producing multilayer coatings
by the sol-gel process, and so, apart from some applications involving high
durability antireflection coatings of a few layers, the process has never competed
successfully with vacuum deposition.

Interest in the sol-gel process increased enormously when it was discovered
that sol-gel deposited antireflection coatings had exceptionally high laser damage
threshold [33]. The technique is much used therefore in producing antireflection
coatings for components in the very large lasers for fusion experiments. These
coatings are unbaked and quite porous, otherwise the refractive index would not
be suitable for antireflection coatings for low-index materials. In uncontrolled
environments such porous coatings take up moisture and other contamination and
their index tends to vary over a period of time and their performance falls. Regular
coatings must be baked at high temperature. However, the environment of the
large lasers is tightly controlled and the fragility of the unbaked coatings can be
viewed as an advantage if they have to be removed to permit recoating of the
component.
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9.1.4 Baking

A final stage of the manufacturing process for optical coatings that is seldom
discussed is that of baking. This is probably the one aspect of coating production
that might still be referred to as an art rather than a science. Baking consists of
heating the coated component normally in air at temperatures of usually between
100 ◦C and 300 ◦C for a period of perhaps several hours.

A common reaction in most coating departments to a batch of coatings that
exhibit less than acceptable properties is to bake the coatings in air for a time
simply to see if their properties improve. They frequently do. There is no doubt
that such treatment can improve the properties of the coatings in several respects.

Coated substrates that are to be used as laser mirrors cemented to laser
tubes are almost invariably baked before mounting because it is believed that this
increases their stability. There is no doubt that such treatment does reduce the
drift that may occur at the early stages of laser operation but the reason for this is
obscure.

Frequently the absorption in the layers falls. This may be simply a case of
improved oxidation. We know that baking of titanium suboxides in air improves
their transmittance and reduces their absorptance [34]. High-quality films are
frequently amorphous and prolonged baking may induce a slow amorphous-to-
crystalline transition in such films. This process may compete with the oxidation
process so that an optimum period of baking may result. This may be one reason
why details of baking are frequently considered proprietary.

Most of the work that has been reported on baking is with regard to
narrowband filters frequently constructed from zinc sulphide and cryolite.
Meaburn [35] was a particularly early worker in this area. He found that a
process of baking at 90 ◦C for ten hours improved the stability of narrowband
filters of zinc sulphide and cryolite enormously. This was especially so if they
were protected afterwards by a cemented cover slip.

Title et al [36] reported a baking process called a hard bakewith filters
similar to those described by Meaburn. In the hard bake, filters were subjected to
temperatures around 100 ◦C for a certain time. During the baking process the peak
wavelength moved towards shorter wavelengths. After a critical time the rate of
movement suddenly slowed and the filter became much more stable. Details of the
shift and the time were considered proprietary and not included in the published
account. This is consistent with a desorption process coupled with a diffusion
process to be described shortly.

Richmond [37] and Lee [38] both conducted baking experiments on
narrowband filters. They were interested in absorption and desorption processes
in thin films. They found that the baking process did not appear to alter the
amount of moisture absorbed and desorbed by the filters. The stability of the
characteristic, in the sense of the total change for a given change in relative
humidity, was essentially unaltered. The rate of change, however, was greatly
increased so that the characteristic reached equilibrium very much faster. The
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filters, therefore, appeared to be much more stable in the laboratory environment.
Müller [39] constructed computer models of the annealing process in thin

films. The essential features of the models were thermally activated movements
of atoms from a filled site to an available neighbouring and vacant site. He found
that packing density did not change during this process but that there was a quite
definite amalgamation of smaller voids into larger ones. This process appears to
be a wandering of the voids through the material of the thin film but is really a
process of surface diffusion around the interior of the voids. Once two voids meet
there is an energetic advantage in combining but, once combined, no advantage
in splitting. Thus the voids simply increase gradually in size as they reduce in
number. The reason for the findings of Richmond and Lee, and probably also
Title and Meaburn, now become clear. After deposition, the pore-shaped voids
in the material are quite irregular in shape, especially at the interfaces between
the layers. The annealing or baking process tends to remove the restrictions in
the pores so that although their volume is unchanged their regular shape implies a
much faster filling by capillary condensation when exposed to humidity. This
means that equilibrium is reached much more rapidly and the filter appears
much more stable when the environmental conditions are stable. In the case of
already cemented filters the effective environment is quite stable although the
filter stability may be disturbed by changes in temperature. However, when the
temperature stabilises, equilibrium is rapidly established once again.

The improved stability of the integral laser mirror is probably also derived
at least partly from this decrease in the time constant for it to reach equilibrium.
Any drift of the mirrors after alignment in the laser would immediately cause
fluctuations, almost invariably reductions, in laser output. If the mirror can reach
equilibrium before the final alignment then, since the environment within the laser
is reasonably stable from the point of view of moisture and consequent adsorption,
the laser will be stable.

Müller [39] has also explained why it is that baking never seems to improve
poor adhesion but invariably makes it worse. Here if the bonds that bind atoms
together across an interface are weaker than those that bind similar atoms together
in either material, then there is an energetic advantage for a void that reaches
an interface to remain there. Voids therefore collect at such an interface and
gradually weaken the adhesion further.

Much more work is required on the whole matter of baking and consequent
filter stability before all becomes completely clear, but the oven is already an
indispensable apparatus in virtually all coating shops.

We return to the matter of moisture adsorption in chapter 10.

9.2 Measurement of the optical properties

Once a suitable method of producing the particular thin film has been determined,
the next step is the measurement of the optical properties. Many methods for this



Measurement of the optical properties 419

exist and a useful earlier account is given by Heavens [40]. Measurement of the
optical constants of thin films is also included in the book by Liddell [41]. A more
recent survey is that of Borgogno [42]. Recently, the measurement of the optical
properties of thin films has increased in importance to the extent that special
purpose instruments are now available. These normally include the extraction
software and are essentially push-button in operation. As always, however, even
when automatic tools are available some understanding of the nature of the
process and its limitations is still necessary. Here we shall be concerned with
just a few methods that are frequently used.

In all of this it is important to understand that we never actually measure the
optical constants n and k directly. Although thickness, d, is more susceptible to
direct measurement, its value too is frequently the product of an indirect process.
The extraction of these properties, and others, involves measurements of thin-
film behaviour followed by a fitting process in which the parameters of a film
model are adjusted so that the calculated behaviour of the model matches the
measured data. The adjustable parameters of the model are then taken to be the
corresponding parameters of the real film. The operation is dependent on a model
that corresponds closely to the real film. The appropriateness of the model would
be of less importance were we simply trying to recast the measurements in a
more convenient form. Even an inadequate model with parameters appropriately
adjusted can be expected to reconstitute the original measurements. But the
parameters extracted are rarely used in that role. Rather they are used for
predictions of film performance in different situations where film thickness may
be quite different and where the film is part of a much more complex structure.
This leads to the idea of stability of optical constants, a rather different concept
from accuracy. Accurate fitting of measured data using an inappropriate model
may reproduce the measurements with immense precision yet yield predictions
for other film thicknesses that are seriously in error. Such parameters are lacking
in stability. Stable optical constants might reproduce the measured results with
only satisfactory precision but would have equal success in a predictive role. A
good example might be where a film that is really inhomogeneous and free from
absorption is modelled by a homogeneous and absorbing film. The extracted
film parameters in this case can be completely misleading. It must always be
remembered that the film model is of fundamental importance.

Almost as important as the model is the accuracy of the actual measurements.
Calibration verification is an indispensable step in the measurement of the
performance that will be used for the optical constant extraction. Remember
that only two parameters are required to define a straight line but to verify
linearity requires more. Small errors in measurement can have especially serious
consequences in the extinction coefficient and/or assessment of inhomogeneity
of the film. The samples themselves should be suitable for the quality of
measurement. For example, a badly chosen substrate may deflect the beam
partially out of the system so that the measurement is deficient or it may introduce
scattering losses that are not characteristic of the film.
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The calculation of performance given the design of an optical coating is a
straightforward matter. Optical constant extraction is quite different. Each film is
a separate puzzle. It may be necessary to try different techniques and different
models. Repeat films of different thicknesses or on different substrates may
be required. Some films may appear to defy rational explanation. A common
film defect is a cyclic inhomogeneity that produces measurements that the usual
simpler film models are incapable of fitting with sensible results. It is always
worthwhile attempting to recalculate the measurements using the model and
extracted parameters to see where deficiencies might lie. Because of all the
caveats in this and the previous paragraphs, exact correspondence, however, does
not necessarily indicate perfect extraction.

As we saw in chapter 2, given the optical constants and thicknesses of any
series of thin films on a substrate, the calculation of the optical properties is
straightforward. The inverse problem, that of calculating the optical constants
and thicknesses of even a single thin film, given the measured optical properties,
is much more difficult and there is no general analytical solution to the problem of
inverting the equations. For an ideal thin film there are three parameters involved,
n, k and d, the real and imaginary parts of refractive index and the geometrical
thickness, respectively. Both n and k vary with wavelength, which increases the
complexity. The traditional methods of measuring optical constants, therefore,
rely on special limiting cases that have straightforward solutions.

Perhaps the simplest case of all is represented by a quarter-wave of material
on a substrate, both of which are lossless and dispersionless, that is, k is zero and
n is constant with wavelength. The reflectance is given by

R =
(

1 − n2
f /nm

1 + n2
f /nm

)2

(9.1)

where nf is the index of the film, nm that of the substrate and the incident medium
is assumed to have an index of unity. Then n f is given by

nf = n1/2
m

(
1 − R1/2

1 + R1/2

)1/2

(9.2)

where the refractive index of the substrate nm must, of course, be known. The
measurement of reflectance must be reasonably accurate. If, for instance, the
refractive index is around 2.3, with a substrate of glass, then the reflectance
should be measured to around one-third of a per cent (absolute �R of 0.003)
for a refractive index measurement accurate in the second decimal place. It is
sometimes claimed that this method gives a more accurate value for refractive
index than the original measure of reflectance since the square root of R is used in
the calculation. This may be so, but the value obtained for refractive index will be
used in the subsequent calculation of the reflectance of a coating, and therefore the
computed figure can be only as good as the original measurement of reflectance.
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Figure 9.17. The reflectance of a simple thin film.

In the absence of dispersion, the curve of reflectance versus wavelength of the film
will be similar to that in figure 9.17. The extrema correspond to integral numbers
of quarter-waves, even numbers being half-wave absentees and giving reflectance
equal to that of the uncoated substrate, and odd corresponding to the quarter-wave
of equations (9.1) and (9.2). Thus it is easy to pick out those values of reflectance
which correspond to the quarter-waves.

The technique can be adapted to give results in the presence of slight
dispersion. The maxima in figure 9.17 will now no longer be at the same heights
but, provided the index of the substrate is known throughout the range, the heights
of the maxima can be used to calculate values for film index at the corresponding
wavelengths. Interpolation can then be used to construct a graph of refractive
index against wavelength. Results obtained by Hall and Ferguson [43] for MgF 2
are shown in figure 9.18.

This simple method yields results that are usually sufficiently accurate for
design purposes. If, however, the dispersion is somewhat greater, or if rather more
accurate results are required, then the slightly more involved formulae given by
Hass et al[44] must be applied. It is still assumed that the absorption is negligible.
If the curve of reflectance or transmittance of a film possessing dispersion is
examined, it will easily be seen that the maxima corresponding to the odd quarter-
wave thicknesses are displaced in wavelength from the true quarter-wave points,
while the half-wave maxima are unchanged. This shift is due to the dispersion,
and measurement of it can yield a more accurate value for the refractive index.
In the absence of absorption the turning values of R, T , 1/R and 1/T must all
coincide. Assuming that the refractive index of the incident medium is unity, that



422 Production methods and thin-film materials

Figure 9.18. The refractive index of magnesium fluoride films. (a) The reflectance of
a single film. (b) The reflectance result transforms into refractive index. The curves are
formed by the results from many films. x denotes bulk indices of the crystalline solid.
(After Hall and Ferguson [43].)

of the substrate nm and of the film nf then their expression for T becomes

T = 4

nm + 2 + n−1
m + 0.5n−1

m

(
nf − 1 − n2

m + n2
mn−2

f

)
[1 − cos (4πnfdf/λ)]

.

Since the turning values of T and 1/T coincide, the positions of the turning
values can be found in terms of d/λ by differentiating the expression for 1/T
and equating it to zero as follows:

1

T
= nm + 2 + n−1

m

4
+ 1

8nm

(
nf − 1 − n2

m + n2
mn−2

f

)(
1 − cos

4πnfdf

λ

)
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i.e.

0 = d (1/T)

d (t/λ)
= 0.25n′

f

(
n−1

m nf − nsn
−3
f

)(
1 − cos

4πnfdf

λ

)

+ 0.5π
(
n−1

m n2
f − n−1

m − nm + nmn−2
f

)(
nfn

′
f
tf
λ

)
sin

4πnfdf

λ

where n′
f = dnf/d(d/λ). That the equation is satisfied exactly at all half-wave

positions can easily be seen since both sin(4πnfdf/λ) and (1 − cos 4πnfdf/λ) are
zero. At wavelengths corresponding to odd quarter-waves a shift does occur and
this can be determined by manipulating the above equation into

tan
2πnfdf

λ
= −2π

n5
f − (

1 + n2
m

)
n3

f + n2
mnf

n4
f − n2

m

(
nf

n′
f
+ df

λ

)
. (9.3)

Of course it is impossible to solve this equation immediately for n f because there
are too many unknowns. Generally the most useful approach is by successive
approximations using the simpler quarter-wave formula (9.1) to obtain a first
approximation for the index and the dispersion. It should be remembered that
the reflection of the rear surface of the test glass should be taken into account
in the derivation of the reflectance curve. It is also important that the test glass
should be free from dispersion to a greater degree than the film, otherwise it must
also be taken into account with consequent complication of the analysis.

If absorption is present, then formula (9.3) cannot be used. In the case of
heavy absorption it can safely be assumed that there is no interference and the
value of the extinction coefficient can be calculated from the expression

1 − R

T
= exp

(
4π kf df

λ

)

(4πkfdf/λ because we are dealing with energies not amplitudes) which gives [44]
for kf

kf = λ

4πdf log e
log

(
1 − R

T

)
(9.4)

where the two logarithms are to the same base, usually 10.
The thin-film designer is not too concerned with very accurate values of

heavy absorption. Often it is sufficient merely to know that the absorption is high
in a given region and the result given by (9.4) will be more than satisfactory. In
regions where the absorption is significant but not great enough to weaken the
single-film interference effects, a more accurate method can be used.

Equations (2.122) and (2.125) are valid for any assembly of thin films on a
transparent substrate, nm, and give

T

1 − R
= Re (nm)

Re (BC∗)
. (9.5)
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For a single film on a transparent substrate, the values of B and C are given by[
B
C

]
=
[

cos δf (i sin δf) /Nf
iNf sin δf cos δf

] [
1

nm

]
=
[

cos δf + i (nm/Nf) sin δf
nm cos δf + iNf sin δf

]
.

Now

δf = ϕ − iψ = 2πNfdf

λ
= 2πnfdf

λ
− i

2πkfdf

λ
. (9.6)

We shall assume the k is small compared with n and this implies that ψ will be
small compared with ϕ. Now for ϕ sufficiently small

cos δ = cosϕ coshψ + i sin ϕ sinhψ ≈ cosϕ + iψ sin ϕ

and

sin δ = sinϕ coshψ − i cosϕ sinhψ ≈ sinϕ − iψ cosϕ

which yields the following expression for B and C[
B
C

]
=
[

[1 − (nm/nf) ψ] cosϕ − (
nmkf/n2

f

)
sin ϕ + i [ψ + (nm/nf)] sinϕ

(nm + nfψ) cosϕ + kf sinϕ + i (nf + nmψ) sin ϕ

]
.

(9.7)
At wavelengths where the optical thickness is an integral number of quarter
wavelengths, sin ϕ or cos ϕ is zero, and we can neglect terms in cos ϕ sin ϕ. The
value of the real part of (BC∗) is then given by

Re
(
BC∗) = cos2 ϕ

(
1+ nm

nf
ψ

)
(nm+nfψ)+sin2 ϕ

(
ψ+ nm

nf

)
(nf+nsψ)

=
[
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(

n2
m

nf
+ nf

)
ψ

]
(9.8)

and when substituted in (9.5) yields

1 − R

T
= 1 +

(
nm

nf
+ nf

nm

)
ψ (9.9)

giving for kf (using the expression (9.6) in (9.9))

kf =
(

λ

2πdf [(nm/nf)+ (nf/nm)]

)(
1 − R − T

T

)
. (9.10)

This expression is accurate only close to the turning values of the reflectance or
transmittance curves.

In the case of low absorption, the index should also be corrected. Hall and
Ferguson [45] give the following expressions.

nf =

nm

(
1 + √

R
)

1 − √
R




1/2

+ πkfdf

λ

(
1 + √

R

1 − √
R

− nm

)
(9.11)



Measurement of the optical properties 425

where R is the value of reflectance of the film at the reflectance maximum.
In the methods discussed so far, we have been assuming that the thickness of

the film is unknown, except inasmuch as it can be deduced from the measurements
of reflectance and transmittance, and the extrema have been the principal indicator
of film thickness. However, it is possible to measure film thickness in other ways,
such as multiple beam interferometry, or electron microscopy, or by using a stylus
step-measuring instrument. Once there is an independent accurate measure of
physical thickness, the problem of calculating the optical constants becomes much
simpler. The most frequently used technique of this type was devised by Hadley
(see Heavens [40] for a description). Since two optical constants, n f and kf, are
involved at each wavelength, two parameters must be measured, and these can
most conveniently be R and T . In the ideal form of the technique, if now a value
of nf is assumed, then by trial and error one value of k f can be found, which,
together with the known geometrical thickness and the assumed n f, yields the
correct measured value of R, and then a second value of k f that similarly yields the
correct value of T . A different value of n f will give two further values of kf, and
so on. Proceeding thus, we can plot two curves of k f against nf, one corresponding
to the T values and the other to the R values, and, where they intersect, we have
the correct values of nf and kf for the film. The angle of intersection of the curves
gives an indication of the precision of the result.

Hadley, at a time when such calculations were exceedingly cumbersome,
produced a book of curves giving the reflectance and transmittance of films as
a function of the ratio of geometrical thickness to wavelength, with n f and kf as
parameters, which greatly speeded up the process. Nowadays, the method can
be readily programmed and precision estimates incorporated. This method can
be applied to any thickness of film, not just at the extrema, although maximum
precision is achieved, as we might expect, near optical thicknesses of odd quarter-
waves, while, at half-wave optical thicknesses, it is unable to yield any results. As
with many other techniques, it suffers from multiple solutions, particularly when
the films are thick, and in practice a range of wavelengths is employed, which
adds an element of redundancy and helps to eliminate some of the less probable
solutions.

Hadley’s method involves simple iteration and does not require any very
powerful computing facilities. Even in the absence of Hadley’s precalculated
curves, it can be accommodated on a programmable calculator of modest capacity.
It does, however, involve the additional measurement of film thickness, which
is of a different character from the measurements of R and T . This is the
primary disadvantage. There is a problem with virtually all techniques that make
independent measurements of thickness. Unless the thickness is very accurately
determined and the model used for the thin film is well chosen, the values of
optical constants that are derived may have quite serious errors. The source of
the difficulty is that the extrema of the reflectance or transmittance curves are
essentially fixed in position by the value of n and d. There is only a very small
influence on the part of k. Should the value for d be incorrect then there is no
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way in which a correct choice of n can satisfy both the value and the position
of the extremum. What happens, then, is that the extremum position is assured
by an apparent dispersion, usually enormous and quite false, and the values of n
are seriously in error, sometimes showing abrupt gaps in the curve. The situation
is often worse at the half-wave points than at the quarter-wave ones but, even in
between the extrema, there are clear errors in level which tend to be alternately
too high and then too low in between successive extremum pairs. A technique
that has been used to avoid this difficulty is to permit some small variation of d
around the measured value and to search for a value that removes to the greatest
extent the incorrect features of the variation of n.

A different approach that has been developed by Pelletier and his colleagues
in Marseille [46] and requires the use of powerful computing facilities, retains
the measurement of R and T , but, instead of an independent measure of film
thickness, adds the measurement of R′, the reflectance of the film from the
substrate side. Now we have three parameters to calculate at each wavelength
and three measurements, and it might appear possible that all three could be
calculated by a process of iteration, rather like the Hadley method, but the
Marseille group found the possible precision rather poor and it broke down
completely when there was no absorption. To overcome this difficulty, the
Marseille method uses the fact that the geometrical thickness of the film does not
vary with wavelength, and therefore, if information over a spectral region is used,
there will be sufficient redundancy to permit an accurate estimate of geometrical
thickness. Then once the thickness has been determined, a computer method
akin to refinement finds accurate values of the optical constants n f and kf over
the whole wavelength region. For dielectric layers of use in optical coatings, k f
will usually be small, and often negligible, over at least part of the region and
a preliminary calculation involving an approximate value of n f is able to yield a
value for geometrical thickness, which in most cases is sufficiently accurate for
the subsequent determination of the optical constants. Given the thickness, R and
T , as we have seen, should in fact be sufficient to determine n f and kf. But this
would mean discarding the extra information in R′, and so the determination of
the optical constants uses successive approximations to minimise a figure of merit
consisting of a weighted sum of the squares of the differences between measured
T , R and R′ and the calculated values of the same quantities using the assumed
values of nf and kf. Although seldom necessary, the new values of the optical
constants can then be used in an improved estimate of the geometrical thickness,
and the optical constants recalculated. For an estimate of precision, the changes
in nf and kf to change the values of T , R and R′ by a prescribed amount, usually
0.3%, are calculated. Invariably, there are regions around the wavelengths for
which the film is an integral number of half-waves thick, where the errors are
greater than can be accepted and results in these regions are rejected. In practice
the films are deposited over half of a substrate, slightly wedged to eliminate the
effects of multiple reflections, and measurements are made of R and R ′ and T and
T ′ on both coated and uncoated portions of the substrate. This permits the optical
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Figure 9.19. The refractive index of a film of zinc sulphide. The slight departure from a
smooth curve is due to structural imperfections suggesting that even in this case of a very
well-behaved optical material there is some very slight residual inhomogeneity. (After
Pelletier et al [46].)

constants of the substrate to be estimated; the redundancy in the measurements
of T and T ′, the transmittance measured in the opposite direction, gives a check
on the stability of the apparatus. A very large number of different dielectric thin-
film materials have been measured in this way and a typical result is shown in
figure 9.19.

A particularly useful and straightforward family of techniques is known as
the envelope method. The results that they yield are particularly stable. The
envelope method was first described in detail by Manifacier et al [47] and was
later elaborated by Swanepoel [48]. Provided the absorption in a thin film is
small then the transmittance at the quarter- and half-wave points is a fairly simple
function of nf, kf and df. Unfortunately, the transmittances at these points for one
single film can only be measured for different wavelengths. The optical constants
of the film are functions of wavelength and an iterative process involving
interpolation is necessary to extract their values. In their method, therefore,
Manifacier et al begin by interpolating the actual values of transmittance by
drawing two envelope curves around the transmittance characteristic for the film.
These envelope curves are then supposed to mark the loci of quarter-wave and
half-wave points assuming that the thickness of the film were to vary by a
small amount. This gives at each wavelength point two values of transmittance
corresponding to the two envelopes and therefore to the transmittances that a film
of thickness an integral number of half-waves or of an odd number of quarter-
waves would have at that particular wavelength. These transmittances are denoted
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by Tmax and Tmin respectively for a film of high index on a substrate of lower
index. For such a film we can write

α = C1
[
1 − (Tmax/Tmin)

1/2]
C1
[
1 + (Tmax/Tmin)

1/2] (9.12)

where

α = exp (−4π kf df/λ)

4π kf df/λ = mπ (quarter- or half-wave thickness)

C1 = (nf + n0) (nm + nf)

C1 = (nf − n0) (nm − nf) (9.13)

Tmax = 16n0 nmn2
f α/ (C1 + C2α)

2

Tmax = 16n0 nmn2
f α/ (C1 − C2α)

2 .

Then from (9.12) and (9.13), if we define N as

N = n2
0 + n2

m

2
+ 2n0nm

Tmax − Tmin

TmaxTmin
(9.14)

nf is given by

nf =
[

N +
(

N2 − n2
0n2

m

)1/2
]1/2

. (9.15)

Once nf has been determined, equation (9.12) can be used to find a value for α.
The thickness df can then be found from the wavelengths corresponding to the
various extrema and the extinction coefficient kf from the values of df and α. The
method has the advantage of explicit expressions for the various quantities, which
makes it easily implemented on machines as small as programmable calculators.
Unfortunately, as with many of the other techniques, the results can suffer from
appreciable errors in the presence of inhomogeneity.

Computers bring the advantage that we no longer need to devise methods of
optical constant measurement with the principal objective of ease of calculation.
Instead, methods can be chosen simply on the basis of precision of results,
regardless of the complexity of the analytical techniques that are required. This
is the approach advocated by Hansen [49], who has developed a reflectance
attachment making it possible to measure the reflectance of a thin film for virtually
any angle of incidence and plane of polarisation, the particular measurements
carried out being chosen to suit each individual film.

For rapid, straightforward measurement of refractive index, a method due
to Abelès [50] is especially useful. It depends on the fact that the reflectance
for p-polarisation is the same for substrate and film at an angle of incidence that
depends only on the indices of film and incident medium, and not at all on either
substrate index or film thickness, except, of course, that layers that are a half-wave
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thick at the appropriate angle of incidence and wavelength will give a reflectance
equal to the uncoated substrate regardless of index. It is fairly easy to use Snell’s
law and the expressions for equal p-admittances to give

nf sinϑf = n0 sinϑ0

and

nf/ cosϑf = n0/ cosϑ0

so that
tan θ0 = nf/n0. (9.16)

The measurement of index reduces to the measurement of the angle θ 0 at which
the reflectances are equal. Heavens [40] shows that the greatest accuracy of
measurement is, once again, obtained when the layer is an odd number of quarter-
waves thick at the appropriate angle of incidence. This is because there is then the
greatest difference in the reflectances of the coated and uncoated substrate for a
given angular misalignment from the ideal. It is possible to achieve an accuracy of
around 0.002 in refractive index provided the film and substrate indices are within
0.3 of each other, but not equal. Hacskaylo [51] has developed an improved
method based on the Abelès technique. It involves incident light that is plane
polarised with the plane of polarisation almost but not quite parallel to the plane
of incidence. The reflected light is passed through an analyser and the analyser
angle, for which the reflected light from the uncoated substrate and from the
film-coated substrate are equal, is plotted against the angle of incidence. A very
sharp zero at the angle satisfying the Abelès condition is obtained, which permits
accuracies of 0.0002–0.0006 in the measurement of indices in the range 1.2–2.3.
It is not necessary for the film index to be close to the substrate index.

Values of R and ϕ for an opaque surface, for example, define completely
and unambiguously the optical constants of the surface. Absolute reflectance is
a difficult measurement and it is more usual to measure the way in which the
unknown surface compares with a known reference—which introduces further
difficulties. Phase is even more involved, requiring an interferometric operation
as well as a known standard. Phase measurements are, therefore, quite rare and
routine measurements of reflectance are almost always comparative. A major
problem is the calibration and maintenance of suitable standards. There is,
however, a way of avoiding such difficulties. At normal incidence there is only
one value of reflectance and one of phase but at oblique incidence there are two,
one pair for s- polarisation and the other for p-polarisation. In principle, therefore,
it should be possible to use one as a reference for the other and this leads to the
method known as ellipsometry. Two quantities are involved, the ratio of p- and
s-reflectances |ρp/ρs| and (ϕp − ϕs) the relative phase shift. It is convenient to
convert |ρp/ρs| into an angle so that the parameters become the angles ψ and �,
where

tanψ =
∣∣ρp
∣∣

|ρs| and � = (
ϕp − ϕs

)
. (9.17)
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The implication ofψ and� is a change in the state of polarisation of the reflected
light with respect to the polarisation of the incident, and so they are directly and
simply related to the ellipticity and orientation of the polarisation of the beam.
ψ and � are therefore known as the ellipsometric parameters and their study is
known as ellipsometry.

Ellipsometry [52, 53] possesses several advantages and disadvantages over
other measurement techniques. Advantages are the ability to use a single
illuminated spot for both measurements and the absence of any reference samples
that must be maintained. Although high accuracy is required, the measurement is
simple involving straightforward manipulations of polarised light. Disadvantages
are that the measurement is at oblique incidence, quite far from more normal
measurements of performance, making it difficult to exercise instinct in judging
the results. Although the measurement is a ratio, nevertheless the instrument
must be carefully calibrated with regard to angle of incidence and alignment of
polarisers and analysers. A limitation is that there are two parameters only, rather
less than the number that must often be established for a complete description of
the system.

A full description of ellipsometry and its techniques is beyond the scope of
this book but some observations are appropriate. First of all the ellipsometric
convention for phase shift is different from that normally used in optical coatings.
The p-polarisation reference direction in the reflected beam is reversed, implying
a difference of 180◦ in the values for p-polarised phase shift on reflection. The
reason for this difference is the desirability in ellipsometry of arranging that the
reference directions for s- and p-polarisations should coincide with the reference
directions used in defining the elliptical polarisation state. It would be very
difficult if these were changed in the reflected beam.

Two parameters, refractive index and extinction coefficient, are sufficient to
define a simple surface. Since there are two ellipsometric parameters ψ and �,
then it should be possible to make a determination of the surface parameters from
a single ellipsometric measurement. This is indeed the case and there is a direct
analytical connection between the two descriptions. Unfortunately, this is not the
case with a thin film on a substrate. Even with the simplest film on a substrate that
is already characterised, there are at least three parameters, n, k and d, necessary
to define the film. The properties of films that are absorbing may depart only
slightly from a surface of bulk material. In such cases it is often assumed that the
extraction techniques used for a simple surface are applicable. The parameters, n
and k, that are extracted in this way are usually referred to as the pseudo-optical
constants. They exhibit, usually, the gross features of the real optical constants,
although they may not be suitable for thin-film calculations and predictions.

In spectroscopic ellipsometry, the wavelength is varied. Since the film
physical thickness is not sensitive to wavelength, this introduces an element
of redundancy. It is then sufficient to introduce a small amount of additional
information. This frequently takes the form of a prescribed spectral variation
of optical constants. Other film parameters may then also be included. If there
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is enough known information about the structure and makeup of the films the
redundancy in the measurement can become so great that even simple multilayers
may be evaluated. Spectroscopic ellipsometry does suffer from problems of
insensitivity in certain regions that can be likened to the half-wave problem at
normal incidence. The angle of incidence is another adjustable parameter that
helps in such situations and it can also add to the redundancy. The combination
is known as variable angle spectroscopic ellipsometry, frequently abbreviated to
VASE.

We illustrate the extraction process by considering the simple case of a single
wavelength, single angle measurement of a surface characterised by refractive
index n and extinction coefficient k.

Let the incident medium be of index unity and let ε = tanψ exp i�. Then

ε = ρp

ρs
=
(
η0p − ηp

)
(
η0p + ηp

) · (η0s + ηs)

(η0s − ηs)
(9.18)

where the symbols may be taken as the modified admittances and the sign
convention of � may be considered corrected to the usual thin-film convention
by adding or subtracting 180◦. Then,

ε =
(
1 − y2

)− (
ηp − ηs

)
(
1 − y2

)+ (
ηp − ηs

) (9.19)

where we have replaced the incident medium admittance by unity. Now

ηs =
√

y2 − sin2 ϑ0

cosϑ0
(9.20)

and

ηp = y2 cosϑ0√
y2 − sin2 ϑ0

(9.21)

so that after some manipulation we can write

γ = 1 − ε

1 + ε
=
(
ηp − ηs

)
(
1 − y2

) =
ηp

(
1 − ηs

ηp

)
(
1 − y2

) =
ηp

(
1 −

(
y2−sin2 ϑ0

)
y2 cos2 ϑ0

)
(
1 − y2

) (9.22)

i.e.

γ = ηp sin2 ϑ0

y2 cos2 ϑ0
= sin2 ϑ0

cosϑ0

√
y2 − sin2 ϑ0

. (9.23)

This gives

y2 = sin4 ϑ0

γ 2 cos2 ϑ0
+ sin2 ϑ0. (9.24)
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There will be two solutions and the fourth quadrant solution will be the correct
one. For more complicated systems the extraction process used is essentially a
process of refinement of the parameters of a model so that its calculated behaviour
matches the measured behaviour. The model will usually include the dispersion
of the optical constants. The more information that is available for use in setting
up a suitable model of the system the better.

Ellipsometry is especially useful for the derivation of the optical constants
of opaque metal films. Provided they have a suitable thickness, high-performance
metal films can be characterised by a measurement of a surface plasma resonance,
discussed already in chapter 8. This tool involves a rather simpler optical
arrangement than the ellipsometer but it is more limited in its application. The
film in question is deposited over the base of a prism and the resonance is
measured in the normal way. Usually a quite undemanding optical arrangement
involving a simple goniometer with laser and collimator and receiver will suffice.
The p-polarised resonance has three attributes, the angular position, the resonance
width and the resonance depth. There are three attributes of the metal coating, n, k
and d. n is primarily associated with the resonance width, k with the position, and
d with the depth, so that the extraction process is a simple process of model fitting.
There is one small problem associated with two possible solutions. The two
solutions involve quite distinct values of d, except when the minimum reflectance
is zero when the two solutions coincide. A simple technique for distinguishing the
correct set of values is to ensure that the two thickness values are sufficiently far
apart for the correct one to be recognised. This, of course, means that the sample
should be prepared so that the minimum reflectance is sufficiently far from zero,
yet the resonance is sufficiently well developed and is a limitation on the range
of thicknesses that can be used. Alternatively, measurements at more than one
wavelength may be performed. The correct solutions will be those with similar
values of d. The technique has been used, for example, in studies of the influence
of small changes in process parameters on the optical constants of metals [27].

Unfortunately, the behaviour of real thin films is often more complicated
than we have been assuming. They are frequently inhomogeneous, that is,
their refractive index varies throughout their thickness. They tend also to be
anisotropic, although little work has been done on this aspect of their behaviour,
but the possibility should be borne in mind when considering which methods to
use for index determination.

Provided that the variation of index throughout the film is either a smooth
increase or a smooth decrease, so that there are no extrema within the thickness
of the film, the highest and lowest values being at the film boundaries, then
we can use a very simple technique to determine the difference in behaviour
at the quarter-wave and half-wave points, which would be obtained with an
inhomogeneous film. We assume that the film is absorption-free and that its
properties can be calculated by a multiple-beam approach, which considers the
amplitude reflection and transmission coefficients at the boundary only. We
assume that the index of that part of the film next to the substrate is nb and that
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Figure 9.20. Inhomogeneous film quantities used in the development in the text of the
matrix expression for an inhomogeneous layer.

next to the surrounding medium is na. The corresponding admittances are yb and
ya. The only reflections that take place are assumed to be at either of the two
interfaces. There is one further complication, also indicated in figure 9.20, before
we can sum the multiple beams to arrive at transmittance and reflectance. A beam
propagating from the outer surface of the film to the inner is assumed to suffer
no loss by reflection and, therefore, the irradiance is unaltered. Since irradiance
is proportional to the square of the electric amplitude times admittance, a beam
that is of amplitude Ea, just inside interface a, will have amplitude (ya/yb)Eb
at interface b. The correction will be reversed in travelling from b back to
a. This is in addition to any phase changes. The inverse correction applies to
magnetic amplitudes. Since the correction cancels out for each double pass it
does not affect the result for resultant reflectance but it must be taken into account
when the multiple beams are being summed for the calculation of transmittance.
The derivation of the necessary expressions proceeds as in chapter 2. Here, for
simplicity, we restrict ourselves to normal incidence. Oblique incidence is a very
simple extension.

Eb = E+
1b + E−

1b

Hb = ybE+
1b − yb E−

1b

giving

E+
1b = 0.5 [(Hb/yb)+ Eb] H +

1b = 0.5 [Hb + ybEb]

E−
1b = 0.5 [− (Hb/yb)+ Eb] H −

1b = 0.5 [Hb − ybEb] .
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Then the various rays are transferred to interface a

E+
1a = 0.5 [(Hb/yb)+ Eb] (yb/ya)

1/2 eiδ

E−
1a = 0.5 [− (Hb/yb)+ Eb] (yb/ya)

1/2 e−iδ

H +
1a = 0.5 [Hb + ybEb] (ya/yb)

1/2 eiδ

H −
1a = 0.5 [Hb − ybEb] (ya/yb)

1/2 e−iδ

giving

Eb = E+
1b + E−

1b

= (yb/ya)
1/2 (cos δ) Eb + i sin δ

(yayb)
1/2

Hb

Hb = ybE+
1b − yb E−

1b

= i (yayb)
1/2 (sin δ) Eb + (ya/yb)

1/2 (cos δ) Hb.

The characteristic matrix for the layer is then given by[
(yb/ya)

1/2 cos δ i sin δ

(ya yb)
1/2

i (ya yb)
1/2 sin δ (ya/yb)

1/2 cos δ

]
(9.25)

an expression originally due to Abelès [54]. The calculation of inhomogeneous
layer properties has been considered in detail by Jacobsson [55].

Now we consider cases where the layer is either an odd number of quarter-
waves or an integral number of half-waves. We apply the expression (9.25) in the
normal way and find the well-known relations

R =
(

y0 − ya yb/ym

y0 + ya yb/ym

)2

for a quarter-wave (9.26)

and

R =
(

y0 − ya ysub/yb

y0 + ya ysub/yb

)2

for a half-wave. (9.27)

The expression for a quarter-wave layer is indistinguishable from that of a
homogeneous layer of admittance (yayb)

1/2, and so it is impossible to detect
the presence of inhomogeneity from the quarter-wave result. The half-wave
expression is quite different. Here the layer is no longer an absentee layer and
cannot therefore be represented by an equivalent homogeneous layer. The shifting
of the reflectance of the half-wave points from the level of the uncoated substrate
in absorption-free layers is a sure sign of inhomogeneity and can be used to
measure it.

The Hadley method of deriving the optical constants takes no account
of inhomogeneity. Any inhomogeneity, therefore, introduces errors. The
Marseille method, however, includes half-wave points and therefore has sufficient
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Figure 9.21. Values of mean index and the uncertainty n calculated for hafnium oxide
using an inhomogeneous film model. The Cauchy coefficients for n are: A = 1.9165,
B = 2.198 × 104 nm2, C = −3.276 × 108 nm4 and for �n/n are: A′ = −5.39 × 10−2,
B′ = −1.77 × 103 nm2. (After Borgogno et al [54].)

information to accommodate inhomogeneity. The matrix expression is a good
approximation when the inhomogeneity is not too large and when the admittances
ya and yb are significantly different from those of substrate and incident medium.
To avoid any difficulties due to the model, the Marseille group actually uses a
model for the layer consisting of at least ten homogeneous sublayers with linearly
varying values of n but identical values of k and thickness d. The half-wave
points still give the principal information on the degree of inhomogeneity. They
are also affected by the extinction coefficient k and this has also to be taken into
account. One half-wave point within the region of measurement can be used to
give a measure of inhomogeneity that is assumed constant over the rest of the
region. Several half-wave points can yield values of inhomogeneity that can be
fitted to a Cauchy expression, that is an expression of the form

�n

n
= A + B

λ 2
+ C

λ 4
. (9.28)

Details of the technique are given by Borgogno et al [56]. Some of their results
are shown in figure 9.21.

The envelope method has also been extended to deal with inhomogeneous
films using the inhomogeneous matrix expression for the calculations [57]. The
extinction coefficient k, as in the Marseille method, is assumed constant through
the film.
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Figure 9.22. Graph of the index profile of cryolite layers at λ = 633 nm, derived from
fitting a formula, n2 = A+ [B/(t2 + C)], where t is the thickness coordinate, to curves of
the variation of reflectance in vacuoof a cryolite film deposited over a zinc sulphide film
of varying thickness. A = 1.6773, B = 5.0431×102 nm2, C = 8.2986×103 nm2. (After
Netterfield [58].)

Netterfield [58] measured the variation in reflectance of a film at a single
wavelength as it was deposited. If the assumption is made that the part of the film
which is already deposited is unaffected by subsequent material, then the values
of reflectance associated with extrema can be used to calculate a profile of the
refractive index throughout the thickness of the layer. Some results obtained for
cryolite, in this way, are shown in figure 9.22.

9.3 Measurement of the mechanical properties

From the point of view of optical coatings, the importance of the mechanical
properties of thin films is primarily in their relation to coating stability, that is, the
extent to which coatings will continue to behave as they did when removed from
the coating chamber, even when subjected to disturbances of an environmental
and/or mechanical nature. There are many factors involved in stability, many of
which are neither easy to define nor to measure and there are still great difficulties
to be overcome. The approach used in quality assurance in manufacture,
discussed further in chapter 10, is entirely empirical. Tests are devised which
reproduce, in as controlled a fashion as possible, the disturbances to which the
coating will be subjected in practice, and samples are simply subjected to these
tests and inspected for signs of damage. Sometimes the tests are deliberately made
more severe than those expected in use. Coating performance specifications are
normally written in terms of such test levels.
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Stress is measured by depositing the material on a thin flexible substrate
that becomes deformed under the stress applied to it by a deposited film. The
deformation is measured and the value of stress necessary to cause it calculated.
The substrate may be of any suitable material; glass, mica, silica, metal, for
example, have all been used. The form of the substrate is often a thin strip,
supported so that part of it can deflect, and either the deflection is measured in
some way or a restoring force is applied to restore the strip to its original position.
Usually the deflection, or the restoring force, is measured continuously during
deposition. Optical microscopes, capacitance gauges, piezoelectric devices and
interferometric techniques are some of the successful methods.

A useful survey of the field of stress measurement in thin films in general
is given by Hoffman [59]. A particularly useful paper which deals solely with
dielectric films for optical coatings is that by Ennos [60]. Ennos used a thin
strip of fused silica as substrate, simply supported at each end on ball bearings
so that the centre of the strip was free to move. An interferometric technique
with a helium-neon laser as the light source was used to measure the movement
of the strip. The strip was made of one mirror of a Michelson interferometer of
novel design, shown in figure 9.23. Since the laser light was plane polarised,
the upper surface of the prism was set at the Brewster angle to eliminate losses
by reflection of the emergent beam. Apart from the more obvious advantages of
large coherence length and high collimation, the laser beam made it possible to
line up the interferometer with the bell-jar of the plant in the raised position (see
figure 9.23(b)). No high quality window in the plant was necessary, the glass jar
of quite poor optical quality proving adequate. To complete the arrangement,
the laser light was also directed on a test flat for the optical monitoring of
film thickness. A typical record obtained with the apparatus is also shown in
figure 9.23(c). The calibration of the fused-silica strip was determined both by
calculation and by measurement of deflection under a known applied load.

Curves plotted for a wide range of materials showing the variation of stress
in the films during the actual growth as a function both of film thickness and
evaporation conditions are included in the paper, some examples being shown in
figure 9.24. It is of particular interest to note the frequent drop in stress when
the films are exposed to the atmosphere. This is principally due to adsorption of
water vapour, an effect to be considered further towards the end of this chapter.

The interferometric technique has been further improved more recently
by Roll and Hoffman [61]. Then Ledger and Bastien [62] have taken the
Michelson interferometer of Ennos and replaced it by a cat’s-eye interferometer,
using circular disks as sensitive elements that are very much less temperature
sensitive, and this has enabled the measurement of stress levels in optical films
over a wide range of substrate temperatures. Examination of the differences in
thermally induced stress for identical films on different substrate materials, when
substrate temperature is varied after deposition, has permitted the measurement of
the elastic moduli and thermal expansion coefficients of the thin-film materials.
Although the measured value of expansion coefficient for bulk thorium fluoride
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Figure 9.23. (a) Film-stress interferometer. (b) Experimental arrangement for continuous
measurement of film stress during evaporation. (c) Recorder trace of fringe displacement
and film reflectance. (After Ennos [60].)

crystals is small and negative, the values for thorium fluoride thin films were
consistently large and positive, varying from 11.1 × 10 −6 to 18.1 × 10−6 ◦C.
Young’s modulus for the same samples varies from 3.9×10 5 to 6.8×105 kg cm−2

(that is 3.9 × 1010 to 6.8 × 1010 Pa).
Ledger and Bastien arranged the interferometer so that fringes were counted

as they were generated at the centre of the interferometer during the deposition of
the film and changes in the stress. An asymmetric shape to the fringes permitted
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Figure 9.24. (a) Film stress in evaporated zinc sulphide on fused silica at ambient
temperature. Evaporation rate 1:0.25 nm s−1, 2:2.2 nm s−1. (b) Film stress in magnesium
fluoride. 1: Direct evaporation from molybdenum, evaporation rate 4.2 nm s−1. 2: Indirect
radiative heating, evaporation rate 1.2 nm s−1. (c) Cryolite and chiolite evaporated
by indirect radiative heating. 1: Cryolite, evaporation rate 3.5 nm s−1. 2: Chiolite,
evaporation rate 4 nm s−1. (d) Zinc sulphide–cryolite multilayer. Twenty-one layers
(H L)10H . Resultant average stress after each evaporation plotted. Dashed curve shows
upper limit of film stress reached during the warm-up period before the evaporation of a
layer commenced. (After Ennos [60].)

the distinction between a fringe appearing and a fringe disappearing. This meant
that the stress level would be lost if the fringe count failed at any stage. A
group at the Optical Sciences Center [63] modified the interferometer to view
a sufficiently large field that included a number of fringes. The fringe pattern
was then interpreted in the manner of an interferogram to give the form of the
surface of the deformable substrate. This effectively decoupled each measurement
from all the others and permitted the stress to be determined unambiguously at
any stage even if some intervening measurements were missed or skipped. The
interferometer was used in a detailed study of titanium dioxide films deposited by
thermal evaporation with or without ion assist.

Thermally evaporated films usually exhibit a tensile stress that is a
consequence of the disorder which is frozen into the film, as freshly arriving
material covers what is already existing. An increase in the rate of deposition
gives less time for the material on the surface to reorganise itself and therefore
should lead to an increase in tensile stress. This is clearly seen in figure 9.25

Under bombardment, the tighter packing of the films leads to an increase
in compressive stress because of the transfer of momentum to the growing film;
figure 9.26. In fact it is possible by careful control of the bombardment to achieve
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Figure 9.25. The mean (tensile) stress as a function of film thickness in titania films
deposited at 0.7 nm s−1 (grey) and 0.97 nm s−1 (black). The higher rate of deposition
leads to greater tensile stress. The vertical line at the end of each curve is a relaxation
thought to be due to the disappearance of the thermal gradient present during deposition
[63].

extremely low values. Unfortunately, not all materials exhibit such a simple
relationship.

Pulker [64] has studied the relationship between stress levels and the
microstructure of optical thin films, developing further some ideas of Hoffman.
The work is surveyed in reference [25]. Good agreement between measured levels
of stress and those calculated from the model has been achieved, but perhaps the
most spectacular feature has been the demonstration, in accord with the theory,
that small amounts of impurity can have a major effect on stress. The impurities
congregate at the boundaries of the columnar grains of the films and reduce the
forces of attraction between neighbouring grains, thus reducing stress. Small
amounts of calcium fluoride in magnesium fluoride, around 4 mol%, reduce
tensile stress by some 50%. Pellicori [65] has shown the beneficial effect of
mixtures of fluorides in reducing cracking in low-index films for the infrared.

Windischmann [66] has discussed and modelled the stresses in ion-beam
sputtered thin films. He identifies momentum transfer as the important parameter.
This is in line with conclusions regarding ion-assisted deposition. The results of
figure 9.26 agree with the Windischmann model.

Abrasion resistance is another mechanical property that is of considerable
importance and yet extremely difficult to define in any terms other than
empirical. This is probably principally because abrasion resistance is not a
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Figure 9.26. The mean stress as a function of thickness of a series of titania films
deposited by ion-assisted deposition. The background gas was otxygen and the films were
bombarded with 500 eV argon ions at levels from top to bottom of 0.16, 0.32, 0.48, 0.80
and 1.02 mA cm−2 [63].

single fundamental property but rather a combination of factors such as adhesion,
hardness, friction, packing density and so on. Various ways of specifying abrasion
resistance exist but all depend on arbitrary empirical standards. The standard
sometimes involves a pad, made from rubber, which may be loaded with a
particular grade of emery. The pad is drawn over the surface of the film under a
controlled load for a given number of strokes. Signs of visible damage show that
the coating has failed the test. Because the pad in early versions of the test was a
simple eraser the test is sometimes known as the eraser test. Similar standard tests
may be based on the use of cheesecloth or even of steel wool. Wiper blades and
sand slurries have also been used to attempt to reproduce the kind of abrasion that
results from wiping in the presence of mud. Most of the tests suffer from the fact
that they do not give a measure of the degree of abrasion resistance but are merely
of a go/no-go nature. There is a modification of the test, described in chapter 10,
which does permit a measure of abrasion resistance to be derived from the extent
of the damage caused by a controlled amount of abrasion. This is probably the
best arrangement yet devised, but even here the results vary considerably with
film thickness and coating design so that it is far from an absolute measure of a
fundamental thin-film property. The scratch test, described shortly, is sometimes
used to derive an alternative measure of abrasion resistance. Abrasion resistance
is, therefore, primarily a quality-control tool. It will be considered further in
chapter 10.
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Adhesion is another important mechanical property that presents difficulties
in measurement. What we usually think of as adhesion is the magnitude of
the force necessary to detach unit area of the film from the substrate or from
a neighbouring film in a multilayer. However, accurate measures of this type
are impossible. Quality-control testing is, as for many of the other mechanical
properties, of a go/no-go nature. A strip of adhesive tape is stuck to the film
and removed. The film fails if it delaminates along with the tape. Jacobsson
and Kruse [67] have studied the application of a direct-pull technique to optical
thin films. In principle, the adhesive forces between film and substrate can be
measured simply by applying a pull to a portion of the film until it breaks away,
and, indeed, this is a technique which is used for other types of coatings, such
as paint films. The test technique is straightforward and consists of cementing
the flat end of a small cylinder to the film, and then pulling the cylinder, together
with the portion of film under it, off the substrate, in as near normal a direction
as possible. The force required to accomplish this is the measure of the force
of adhesion. Great attention to detail is required. The end of the cylinder must
be true, must be cemented to the film so that the thickness of cement is constant
and so that the axis of the cylinder is vertical. The pull applied to the cylinder
must have its line of action along the cylinder axis, normal to the film surface.
The precautions to be taken, and the tolerances that must be held, are considered
by Jacobsson and Kruse. Their cylindrical blocks were optically polished at the
ends, and, in order more nearly to ensure a pull normal to the surface, the film and
substrate were cemented between two cylinders, the axes of which were collinear.
The mean value of the force of adhesion between 250 nm thick ZnS films and a
glass substrate was found to be 2.3×107 Pa, which rose to 4.3×107 Pa when the
glass substrate was subjected to 20 minutes of ion bombardment before coating.
Zinc sulphide films evaporated on to a layer of SiO, some 150 nm thick, gave still
higher adhesion figures of 5.4 × 107 Pa. The increases in adhesion due to the ion
bombardment and the SiO were consistent, and the scatter in successive measures
of adhesion was small, some 30% in the worst case.

An alternative method of measuring the force of adhesion is the scratch test,
devised by Heavens [68], and improved and studied in detail by Benjamin and
Weaver [69, 70], who applied it to a range of metal films. Again, in principle,
it is a straightforward test that nevertheless is very complex in interpretation. A
round-ended stylus is drawn across the film-coated substrate under a series of
increasing loads, and the point at which the film under the stylus is removed from
the surface is a measure of the adhesion of the film. Benjamin and Weaver were
able to show that plastic deformation of the substrate under the stylus subjected
the interface between film and substrate to a shear force, directly related to the
load on the stylus by the expression [69]:

F =
[
a/
(
r 2 − a2

)1/2
]

− P (9.29)

where
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a = [W/(πP)]1/2

P is the indentation hardness of the substrate
r is the radius of the stylus point
a is the radius of the circle of contact
W is the load on the stylus
F is the shear force.

The shear force is roughly proportional to the root of the load on the
stylus. For the film just to be removed by drawing the stylus across it, the
shear force had just to be great enough to break the adhesive bonds. Using
this apparatus, Benjamin and Weaver were able to confirm, quantitatively, what
had been qualitatively observed before, that the adhesion of aluminium deposited
at pressures around 10−5 torr (1.3 × 10−5 mb) on glass was initially poor, of
values similar to van der Waals forces, but that after some 200 hours it improved
to reach values consistent with chemical bonding. Aluminium deposited at
higher pressures, around 10−3 torr (1.3 × 10−3 mb), gave consistently high
bonding immediately after deposition. This is attributed to the formation of an
oxide-bonding layer between aluminium and glass, and a series of experiments
demonstrated the importance of such oxide layers in other metal films on glass.
On alkali halide crystals, the initial bonding at van der Waals levels showed
no subsequent improvement with time. More recently the scratch test has been
studied by Laugier [71, 72] who has included the effects of friction during the
scratching action in the analysis. Zinc sulphide has been shown to exhibit an
unusual ageing behaviour in that it occurs in two well-defined stages. After a
period of some 18–24 hours after deposition the adhesion increases by as much
as a factor of four from an initially low figure. After a period of three days the
adhesion then begins to increase further, and after a further seven days reaches a
final maximum that can be some 20 times the initial figure. This is attributed to
the formation of zinc oxide at the interface between layer and substrate, first free
zinc at the interface combining with oxygen that has diffused through the layer
from the outer surface and then later zinc that has diffused to the boundary from
within the layer.

Commercial instruments that apply these tests are now available and help to
standardise the tests as far as is possible.

Unfortunately, none of these adhesion tests is entirely satisfactory. Some
of the difficulties are related to consistency of measurement, but the greatest
problem is the nature of the adhesion itself. The forces which attach a film to
a substrate, or one film to another, are all very large (usually greater than 100 ton
in−2 or some 109 Pa) but also of very short range. In fact, they are principally
between one atom and the next. The short range of the forces has two major
consequences. First, the forces can be blocked by a single atom or molecule of
contaminant, and so adhesion is susceptible to even the slightest contamination. A
single monomolecular layer of contaminant is sufficient to destroy completely the
adhesion between film and substrate. A small fraction of a monomolecular layer
is enough to affect it adversely. Second, although the force of adhesion is large,
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the work required to detach the coating, the product of the force and its range,
can be quite small. Coatings usually fail in adhesion in a progressive manner
rather than suddenly and simultaneously over a significant area, and in such peel
failures, it is the work, rather than the force, required to detach the coating—the
work of adhesion, as it is usually called—that is the important parameter. This
work can be considered as the supply of the necessary surface energy associated
with the fresh surfaces exposed in the adhesion failure together with any work lost
in the plastic deformation of film and/or substrate.

With some metal films, particularly deposited on plastic, there is evidence
that an electrostatic double layer gradually forms, which contributes positively to
the adhesion. In the tape test, the adhesive forces are comparatively very weak,
but their long range allows them to be applied simultaneously over a relatively
large area. Thus the film is unlikely to be detached from the substrate unless it is
very weakly bonded, and even then it may not be removed unless there is a stress
concentrator that can start the delamination process. Sometimes this is provided
by scribing a series of small squares into the coating and the tape will tend to lift
out complete squares.

In the case of the direct-pull technique, it is exceedingly difficult to avoid
a progressive failure rather than a simultaneous rupturing of the bonds over the
entire area of the pin. Unevenness in the thickness of the adhesive, or a pull that is
not completely central, can cause a progressive failure with consequent reduction
in the force measured. Even when the greatest care is taken it is unlikely that
the true force of adhesion will be obtained and the test is useful principally as
a quality control vehicle. Poor adhesion will tend to give a very much reduced
force.

The scratch test suffers from additional problems. Many of the films used
in optical coatings shatter when a sufficiently high load is applied before any
delamination from the substrate takes place. Such shattering dissipates additional
energy and thus film hardness and brittleness enter into the test results. Rarely
with dielectric materials does a clean scratch occur. Again the test becomes useful
as a comparison between nominally similar coatings rather than an absolute one.
Goldstein and DeLong [73] had some success in the assessment of dielectric films
using microhardness testers to scratch the films. Most commercial scratch testers
include a microscope, and visual examination of the nature of the failures is an
important component of the test. Some also include sensitive acoustical detectors
to detect the onset of damage. A stylus skidding over a surface is much quieter
than one that is ploughing its way through and shattering the material as it goes.

The chemical resistance of the film is also of some significance, particularly
in connection with the effects of atmospheric moisture, to be considered later. In
this latter respect, the solubility of the bulk material is a useful guide, although it
should always be remembered that, in thin-film form, the ratio of surface area to
volume can be extremely large and any tendency towards solubility present in the
bulk material greatly magnified. As in so many other thin-film phenomena, the
magnitude of the effect depends very much on the particular thickness of material,
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on the other materials present in the multilayer, on the particular evaporation
conditions, as well as the type of test used. However, a broad classification into
moisture resistant (materials such as titanium oxide, silicon oxide and zirconium
oxide), slightly affected (materials such as zinc sulphide) and badly affected
(materials such as sodium fluoride) can be made.

9.4 Toxicity

In thin-film work, as indeed in any other field where much use is made of a
variety of chemicals, the possibility that a material may be toxic should always
be borne in mind. Fortunately, most of the materials in common use in thin-
film work are reasonably innocuous, but there are occasions where distinctly
hazardous materials must be used. The thin-film worker would be wise to check
this point before using a new material. The technical literature on thin films, being
primarily concerned with physical and chemical properties, seldom mentions the
toxic nature of the materials. For example, thorium fluoride, oxyfluoride and
oxide are materials that are extensively covered in the literature, but for a long
time there was little or no mention of the radioactivity of these materials. Recently
there has been a growing realisation of the dangers associated with them and they
are gradually being phased out. Some of the thallium salts are useful infrared
materials, but these are particularly toxic.

Fortunately, manufacturers’ literature is becoming a useful source of
information on toxicity, and in any cases of doubt, the manufacturer should always
be consulted. As long as toxic material is confined to a bottle there is little danger,
but as soon as the bottle is opened, material can escape. A major objective, in the
use of toxic materials, is to confine them in a well-defined space, in which suitable
precautions may be taken. If material is allowed to escape from this space, so that
dangerous concentrations can exist outside, then it may be impossible to prevent
an accident. It may be necessary to include the whole laboratory in the danger
zone and to take special precautions in cleaning up on leaving. Special clothing,
extending to respirators, may even be required while in the laboratory. On the
other hand, machines may be isolated from the remainder of the production area
by special dust-containing cabinets complete with air circulation and filtration
units.

Most of the material evaporated in a process ends up as a coating on the
inside of the plant and on the jigs and fixtures, where it usually forms a powdery
deposit. The greatest danger is in the subsequent cleaning. Some of the solvents
and cleaning fluids that can be used in the process give off harmful vapours. A
good rule when dealing with potentially hazardous chemicals is to limit the total
quantity on the premises to a minimum and especially the amount that is out of
safe storage at any time. This puts an upper bound on the magnitude of any major
disaster but also, even if no other precautions are taken, minimises any leakage. It
is also good from the psychological point of view. It should also be remembered
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that many poisons are cumulative in action, and while a slight dose received in
the course of a short experiment may not be particularly harmful, the same dose,
repeated many times in the course of several years, may do irreparable damage.
Thus, the research worker may get away with a particular process that is operated
only enough times to prove it, but the production worker will be expected to
operate this process day in and day out, possibly for years. The safety standards in
the production shop must therefore be of the highest standard and workers should
be aware of them without being dismayed by them. It should be remembered, too,
that in an emergency the laboratory may be vacated rapidly. It is then important,
particularly for any emergency workers, that the hazardous materials should be
well contained and their situation known. Good housekeeping is indispensable.

The thin-film worker in industry should make certain that the medical officer
of the works is fully aware of the materials currently in use, so that any necessary
precautions can be taken before any trouble occurs.

There are, of course, legal requirements. But legal requirements may not
represent sufficient prudent precautions. In general, unless positively dangerous
materials are involved, the same precautions should be taken as in any chemical
laboratory.

9.5 Summary of some properties of common materials

So far, little has been said about the actual properties of the more useful materials
employed in thin-film work. The list which follows is far from being exhaustive,
but gives the more important properties of some commonly used materials. Often
the properties of a particular material appear to vary from plant to plant and
sometimes even from operator to operator. This is a symptom of the lack of tight
control, which is unfortunately a frequent feature of optical thin-film work, and
generally the worker should measure the particular parameters in his own plant
and process. Published figures tend to be more of a guide than anything else.
This lack of control, of course, is usually understood by the thin-film practitioner
and could be altered, but only with the expenditure of much time and money,
which always poses the question whether the market for a thin-film product is
sufficiently large to justify the outlay.

The material probably used more than any other in thin-film work is
magnesium fluoride. This has an index of approximately 1.39 in the visible (see
figure 9.18) and is used extensively in lens blooming. In the simplest case this
is generally a single layer. Early workers used fluorite but this was found to be
rather soft and vulnerable and was subsequently replaced by magnesium fluoride.
Magnesium fluoride can be evaporated from a tantalum or molybdenum boat, and
the best results are obtained when the substrate is hot at a temperature of some
200–300 ◦C. When magnesium fluoride is evaporated, trouble can sometimes
be experienced through spitting and flying out of material from the boat. This
is thought to be caused by thin coatings of magnesium oxide round the grains
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of magnesium fluoride in the evaporant. Magnesium oxide has a rather higher
melting point than magnesium fluoride and the grains tend to explode once
they have reached a certain temperature. It is important, therefore, to use a
reasonably pure grade of material, preferably one specifically intended for thin-
film deposition.

Magnesium fluoride tends to suffer, as do many of the fluorides, from rather
high tensile stress. In single films the total shear force transmitted across the
magnesium fluoride interface with either the substrate or underlying materials
is not usually dangerously high but in multilayers containing many magnesium
fluoride layers, such as high reflectors, the total strain energy and consequent
shear loading can become high enough for spontaneous destruction of the coating
to occur. Thus magnesium fluoride is not recommended for use in structures
containing many layers.

Probably the easiest materials of all to handle are zinc sulphide and cryolite.
They have a good refractive index contrast in the visible, the index of zinc
sulphide being around 2.35 and that of cryolite around 1.35. Both materials
sublime rather than melt, and can be deposited from a tantalum or molybdenum
boat or else from a howitzer (described on p 399). Although these materials are
not particularly robust, they are so easy to handle that they are very much used,
especially in the construction of multilayer filters for the visible and near infrared
which can subsequently be protected by a cemented cover slip. The substrates
need not be heated for the deposition of the materials when intended for the
visible region. Zinc sulphide is also a particularly useful material in the infrared
out to about 25 µm. In the infrared, however, the substrates must be heated for
the best performance. The conditions are given by Cox and Hass [4], who state
the best conditions to be on substrates which have been heated to around 150 ◦C
and cleaned with an effective glow discharge just prior to the evaporation and
certainly not more than five minutes beforehand. Films produced under these
conditions will withstand several hours’ boiling in 5% salt water, exposure to
humid atmospheres and cleaning with detergent and cotton wool.

A trick, which has sometimes been used with zinc sulphide to improve
its durability, is bombardment of the growing film with electrons. This can
be achieved by positioning a negatively biased hot filament, somewhere near
the substrate carrier, in such a way that the filament is shielded from the
arriving evaporant, but is in line of sight of the substrates. This process is
still not entirely understood, but it has been suggested [74] that an important
factor is the modification of the crystal structure of the zinc sulphide layers
by electron bombardment. Resistively heated boats produce a mixture of the
cubic zinc blende and the hexagonal wurtzite structure, while electron-beam
sources produce purely the zinc blende modification. The hexagonal form is
a high temperature modification which, it is suspected, will tend to transform
into the lower temperature cubic modification, particularly when water vapour
is present, a transformation accompanied by a weakening of adhesion, and even
delamination. Deliberate electron bombardment of growing zinc sulphide films
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from boat sources results in films with entirely cubic structure and with the
improved stability expected from that structure.

For more durable films in the visible region, use can be made of a range of
refractory oxide layers. More of these are available for the role of high-index
layer than low-index.

Cerium dioxide is a high-index material that is not now as commonly used
as it once was. It can be evaporated from a tungsten boat (it reacts strongly with
molybdenum, producing dense white powdery coatings that completely cover
the inside of the system). The procedure to be followed is given by Hass et al
[75]. Unless the material is one of the types prepared especially for vacuum
evaporation, it should first be fired in air at a temperature of around 700–800 ◦C.
If this procedure is not followed the films will have a lower refractive index. Even
with these precautions cerium dioxide is an awkward material to handle. It tends
to form inhomogeneous layers and the index varies throughout the evaporation
cycle as the material in the tungsten boat is used up. It is therefore difficult
to achieve a very high performance from cerium dioxide layers, in terms of
maximum transmission from a filter or from an antireflection coating, and its
chief use tended to be in the production of high-reflectance coatings, for high-
power lasers for example, where high reflectance coupled with low loss is the
primary requirement and transmission in the pass region is not as important.

Titanium dioxide is nowadays preferred over cerium oxide and is probably
one of the most common high-index materials for the visible and near infrared.
It has the advantage of the highest index of any of the transparent high-index
materials. It is extremely robust but has a rather high melting point of 1925 ◦C,
which makes it very difficult to evaporate directly from a boat source. Tungsten
boats are most useful. One of the most successful early methods [34] was the
initial evaporation of pure titanium metal which is then subsequently oxidised in
air by heating it to temperatures of 400–500 ◦C. To obtain the highest possible
index it is important to evaporate the titanium metal as quickly as possible at
as low a pressure as possible so that little oxygen is dissolved in the film. On
oxidation in air, indices of around 2.65 can be attained. If the deposit is partially
oxidised beforehand, the index is usually rather lower, of the order of 2.25. Other
early methods involved the reaction between atmospheric moisture and titanium
tetrachloride. Titanium dioxide is formed when atmospheric moisture mixes with
the vapour of hot titanium tetrachloride and can be made to condense on the
surface of a component that is introduced into the vapour. Best results on glass
are obtained when the temperature of the glass is maintained at around 200 ◦C.

Both of these methods are useful for single layers but are almost impossibly
complicated where multilayers are required. More modern alternative methods
involve what is known as reactive deposition using either evaporation from
electron-beam sources or sputtering.

Reactive evaporation was developed as a useful process in the early 1950s,
Auwärter and colleagues in Europe and Brinsmaid in the United States being
major contributors [76–78]. The problem with the direct evaporation of titanium
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dioxide is that the very high temperatures that are required cause the titanium
dioxide to be reduced so that absorption appears in the film. It was found that
the reduced titanium oxide can be reoxidised to titanium dioxide during the
deposition by ensuring that there is sufficient oxygen present in the atmosphere
within the chamber. It appears that the oxidation takes place actually on the
surface of the substrate rather than in the vapour stream, and the pressure of
the residual atmosphere of oxygen must be arranged to be high enough for the
necessary number of oxygen molecules to collide with the substrate surface. If
the pressure is too high, then the film becomes porous and soft. There is therefore
a range of pressures over which the process works best, usually 5 × 10 −5 to
3 × 10−4 mbar. However, it is not possible to give hard and fast figures because
they vary from plant to plant and depend on the particular evaporation conditions
such as substrate temperature and speed of evaporation. The conditions must
therefore be established by trial and error in each process. A suboxide is normally
used as starting material. There are two reasons for this. The suboxide usually
melts at a lower temperature than the dioxide or the metal and so is useful
when a tungsten boat must be used. However, the reduction of the oxide in
melting and vaporising has been mentioned. This causes the composition of
the vapour to vary unless the evaporation is what is known as congruent, that
is the composition of the vapour is the same as the composition of the material in
the source. Experimental evidence shows that congruent evaporation is obtained
when the composition is near either Ti2O3 or Ti3O5 [79]. It is usual to use a
starting material that has one or other of these compositions. The evaporation
should proceed slowly enough to ensure that complete oxidisation takes place.
This means that several minutes should be allowed for a thickness corresponding
to a quarter-wave in the visible region. Provided the rate of evaporation is kept
substantially constant then the refractive index of the film can be as high as 2.45
in the visible region. The titanium dioxide remains transparent throughout the
visible, the absorption in the ultraviolet becoming intense at around 350 nm.

Titanium oxide is also used with success in sputtering processes. Sputtering
is the process of bombardment of the material to be deposited with high-energy
positive ions so that molecules are ejected and deposited on the substrate.
Reactive sputtering is the same process except that the gas in the chamber is
one which can and does react with the material as it is sputtered. Usually this
gas is oxygen and in this case it reacts with the titanium to produce titanium
dioxide without requiring any subsequent oxidation. The problems of poisoning
of the sputtering cathodes and the various solutions have already been mentioned
in connection with reactive sputtering. The rotating cylindrical magnetron and the
mid-frequency twin magnetron are two current solutions.

The most complete account of the properties of titanium dioxide, and the way
in which they depend on deposition conditions, is that of Pulker et al [80]. The
behaviour is exceedingly complicated and the results depend on starting material,
oxygen pressure, rate of deposition and substrate temperature. The evaporation
of Ti3O5 as the starting material gave more consistent results than were obtained
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with other possible starting materials. With other forms of titanium oxide, the
composition varied as the material was used up, tending in each case towards
Ti3O5.

Apfel [81] has pointed out the slight conflict between high optical properties
and durability. Optical absorption falls as the substrate temperature is reduced
and the residual gas pressure is raised. At the same time, the durability of the
layers is adversely affected, and a compromise, which depends on the actual
application, is usually necessary. Substrate temperatures between 200–300 ◦C
are usually satisfactory, with gas pressures around 10−4 torr (1.3 × 10−4 mbar).

The low-index material that is normally used in conjunction with titanium
dioxide is silicon dioxide (silica). Indeed there is virtually no choice amongst
the oxides. The usual current method for the evaporation of silicon oxide uses
an electron-beam source. Chunks of silica or machined plates are used as source
material and a slight background pressure of oxygen may sometimes be used. The
silicon oxide forms amorphous layers that are dense and resistant. As with most
materials, a high substrate temperature during deposition is an advantage.

The high melting temperature of silica makes it difficult to evaporate it
directly from heated boats. However, it is possible to use a reactive method
[76, 77] that avoids this problem. Silicon monoxide is a convenient starting
material, which, in its own right, is a useful material for the infrared. The silicon
monoxide can be evaporated readily from a tantalum boat or, as the material
sublimes rather than melts, a howitzer source. Provided there is sufficient oxygen
present, the silicon monoxide will oxidise to the form Si2O3 that has a refractive
index of 1.52–1.55 and exhibits excellent transmission from just on the longwave
side of 300 nm out to 8 µm [82].

An interesting effect involving the ultraviolet irradiation of films of Si 2O3
has been reported [83]. With ultraviolet intensity corresponding to a 435 W
quartz-envelope Hanovia lamp at a distance of 20 cm, the refractive index of the
film, after around five hours’ exposure, drops to 1.48 (at 540 nm). This change in
refractive index appears to be due to an alteration in the structure of the film, rather
than in the composition, that remains Si2O3. At the same time as the reduction in
refractive index, an improvement in the ultraviolet transmission is observed, the
films becoming transparent to beyond 200 nm. Longer exposure to ultraviolet,
around 150 hours, does eventually alter the composition of the films to SiO 2.
These changes appear to be permanent. Si2O3 is a particularly useful material
for protecting aluminium mirrors, and this method of improvement by ultraviolet
irradiation opens the way to greatly improved mirrors for the quartz ultraviolet.
The effect has been studied in some detail by Mickelsen [84] who proposes an
explanation involving electron traps.

Heitmann [85] made considerable improvements to the reactive process by
ionising the oxygen in a small discharge tube through which the gas is admitted to
the coating chamber. The degree of ionisation is not high, but the reactivity of the
oxygen is improved enormously, and the titanium oxide and silicon oxide films
produced in this way have appreciably less absorption than those deposited by the
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conventional reactive process. The silicon oxide films show infrared absorption
bands characteristic of the SiO form rather than the more usual Si 2O3. The
technique has been further improved by Ebert [86] and his colleagues who have
developed a more efficient hollow-cathode ion source, and extended the method
to materials such as beryllium oxide, with useful transmittance in the ultraviolet.

Other materials found useful in thin films are the oxides and fluorides of
a number of the lanthanides or rare earths. Ceric oxide [75], although possibly
strictly not a rare earth, has already been mentioned. Cerium fluoride forms very
stable films of index 1.63 at 550 nm when evaporated from a tungsten boat.

Similarly, the oxides of lanthanum, praseodymium and yttrium, and their
fluorides, form excellent layers when evaporated from tungsten boats. Their
properties are summarised in chapter 15. A full account of their properties is
given by Hass et al [44]. The properties of the rare earth oxides have been shown
[87] to have improved transparency, especially in the ultraviolet, when electron-
beam evaporation is used.

A detailed study of the fluorides of the lanthanides and their usefulness in
the extreme ultraviolet, in fact there is little else that can be used in that region,
has been performed by Lingg [88, 89].

Then there is a number of other hard oxide materials which were extremely
difficult to evaporate until the advent of the high-power electron-beam gun, and
so were used only relatively infrequently, if at all. Zirconium dioxide [87, 90] is
a very tough, hard material which has good transparency from around 350 nm to
some 10µm. It tends to give inhomogeneous layers, the degree of inhomogeneity
depending principally on the substrate temperature. Hafnium oxide [87, 91] has
good transparency to around 235 nm, and an index around 2.0 at 300 nm, so that
it is a good high-index material for that region. Both yttrium and hafnium oxide
have been found to be good protecting layers for aluminium in the 8–12 µm
region [92, 93], which avoid the drop in reflectance at high angles of incidence
associated with SiO2 and with A12O3.

In the infrared many more possibilities are available. Semiconductors all
exhibit a sudden transition from opacity to transparency at a certain wavelength
known as the intrinsic edge. This wavelength corresponds to the energy gap
between the filled valence band of electrons and the empty conduction band. At
wavelengths shorter than this gap, photons are absorbed in the material because
they are able to transfer their energy to the electrons in the filled valence band by
lifting them into the empty conduction band. At wavelengths longer than this
value, the photon energy is not sufficient, and apart from a little free carrier
absorption, there is no mechanism for absorbing the energy and the material
appears transparent until the lattice vibration bands at rather long wavelengths
are encountered. For the more common semiconductors, silicon and germanium,
the intrinsic edge wavelengths are 1.1 µm and 1.65 µm respectively. Thus both
of these materials are potentially useful in the infrared. A great advantage that
they possess is their high refractive index, 3.5 for silicon and 4.0 for germanium.

Silicon, however, is not at all easy to evaporate because it reacts strongly
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with any crucible material, and almost the only way of dealing with it in thermal
evaporation is to use an electron gun with a water-cooled crucible so that the
cold silicon in contact with the crucible walls acts as its own container. The high
thermal conductivity of silicon makes it necessary to use high power. Sputtering is
a viable process and, in fact, most large-area silicon dioxide coatings are produced
by the reactive sputtering of silicon from magnetron targets. The poisoning
problem in reactive sputtering and its solutions have already been mentioned.
Germanium, on the other hand, is a most useful material and straightforward
techniques have been devised to handle it. Tungsten boats can be used provided
that the total thickness of material to be deposited is not too great, 2 or 3 µm
say, because germanium does react with tungsten. Molybdenum boats have been
used with greater success [91]. A quite satisfactory method is to use a crucible
made from graphite and heated directly or indirectly when the germanium films
obtained are extremely pure and free from absorption. Again, the method of
choice nowadays is the electron-beam source when the hearth material can be
graphite or water-cooled copper.

There are other semiconductors of use as follows. Tellurium [95, 96] has
an index of 5.1 at 5 µm, good transmission from 3.5 µm to at least 12 µm,
and can be evaporated easily from a tantalum boat. Lead telluride [5, 97–104]
has an even higher index of around 5.5 with good transmission from 3.4 µm
out to beyond 20 µm. A tantalum boat is the most suitable source. Care must
be taken not to overheat the material; the temperature should be just enough to
cause the evaporation to proceed, otherwise some alteration in the composition
of the film will take place, causing an increase in free-carrier absorption and
consequent fall-off in longwave transparency. The substrates should be heated,
best results being obtained with temperatures around 250 ◦C, but as this will be
too great for the low-index film which is usually zinc sulphide, a compromise
temperature which is rather lower, usually around 150 ◦C, is often used for both
materials. One difficulty with lead telluride is the ease with which it can be upset
by impurities that cause free-carrier absorption. It is extremely important to use
pure grades of material and this applies to the accompanying zinc sulphide as well
as the lead telluride, especially if the material is to be used at the longwave end
of its transparent region. Lead telluride also appears to be incompatible with a
number of other materials, particularly some of the halides, presumably because
material diffuses into the lead telluride generating free carriers. An annealing
process which can in certain circumstances improve the transmission of otherwise
absorbing films of lead telluride in the region beyond 12µm is described by Evans
and Seeley [99].

Lead telluride can in some circumstances behave in a curious way
immediately after deposition [101, 102]. The optical thickness of the material
is observed to grow during a period of around 15 minutes while the layer is still
under vacuum. Typical gains in optical thickness of a half-wave layer are of the
order of 0.007 full waves, although in any particular case it varies considerably
and can often be zero. The reasons for this behaviour are not clear but the layers
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do not exhibit any further instability, once they have ceased growing. It is simply
a matter of allowing for this behaviour in the monitoring process.

A wide range of low-index materials is used in the infrared. Zinc sulphide
[4, 45] in comparison with the high-index semiconductors has a relatively low
index. If an electron-beam source is not available, then zinc sulphide should
be deposited from a tantalum boat, or, better still, a howitzer, on substrates
freshly cleaned by a glow discharge and held at temperatures of around 150 ◦C,
if the maximum durability is to be obtained. Zinc sulphide films so treated will
withstand boiling for several hours in 5% salt solution, cleaning with cotton wool,
and exposure to moist air, without damage [4]. Silicon monoxide is another
possibility [4, 105]. It can also be deposited from a tantalum boat or a howitzer.
The deposition rate should be fast and the pressure low, of the order of 10 −5 torr
(1.3 × 10−5 mb) or less if possible. The refractive index is around 1.85 at 1 µm
and falls to 1.6 at 7 µm. A strong absorption band prevents use of the material
beyond 8 µm. Thorium fluoride, unfortunately radioactive, has been much used
in the past, although it is less in favour nowadays because of its radioactivity,
and there are many other materials, such as fluorides of lead, lanthanum, barium,
cerium, for example, and oxides such as titanium, yttrium, hafnium and cerium.
Some details of these and other materials are given in chapter 15.

The nitrides of silicon and aluminium are tough, hard materials with
excellent transparency from the ultraviolet through to around 10 µm in the
infrared. They have not been much used in optical coatings because of the
difficulty of thermal evaporation. The process of reactive evaporation of the
metal in nitrogen does not work because the nitrogen, unless it is in atomic
form, does not readily combine with the metal. Evaporation of aluminium, for
example, in a residual atmosphere of nitrogen results in bright aluminium films
whereas evaporation in oxygen gives aluminium oxide. The situation has changed
completely with the introduction of the energetic processes, and especially ion-
assisted deposition, into batch optical coatings. The nitrogen beam from the
ion source used in these processes reacts strongly with the metal to form dense,
hard and tough nitride films of good transparency. There is another enormous
advantage in these materials. The oxynitrides represent a continuous range of
compositions between the pure oxide and the pure nitride. The oxide is of rather
lower refractive index and the refractive index of the oxynitride ranges smoothly
with composition from that of the oxide to that of the nitride. The composition
of the film is a function of the reacting gas composition and this can readily
be varied to alter the film index in a well-controlled manner. Hwangbo and
colleagues [28] investigated the ion-assisted deposition of aluminium oxynitride.
They used aluminium metal as source material. A particularly straightforward
way of controlling the index of aluminium oxynitride films from 1.65 to 1.83 at
550 nm was to bombard the growing film with a constant flux of nitrogen from
the ion gun and to supply a variable quantity of oxygen to the process simply as a
background gas. The reactivity of the oxygen is so great that any small quantity is
taken up preferentially by the film. In fact in the oxynitride process it is virtually
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impossible to eliminate oxygen entirely and so the achievable high index does not
quite reach the value that would be associated with the pure nitride. Hwangbo was
able to construct simple rugate filters with the sole variable during the process
being the background pressure of oxygen, all other quantities, bombardment,
evaporation rate, and so on, being held constant. Placido [106] has constructed
rugate structures of very many accurately controlled cycles from aluminium
oxynitride using reactive RF sputtering of aluminium metal in a mixture of oxygen
and nitrogen.

Bovard and colleagues [107] produced silicon nitride films using low-voltage
ion plating. Here there was no oxygen in the chamber and the films were pure
nitride giving a refractive index of 2.05 at 550 nm. The range of variation in
index from silicon oxynitride films is potentially very great.

Mixtures of materials are receiving attention both in deliberately
inhomogeneous films and in homogeneous films where an intermediate index
between the two components of the mixture is required to improve the evaporation
properties of an otherwise difficult material.

Jacobsson and Martensson [108] used mixtures of cerium oxide and
magnesium fluoride, of zinc sulphide and cryolite, and of germanium and
magnesium fluoride, with the relative concentration of the two components
varying smoothly throughout the films to produce inhomogeneous films with a
refractive index variation of a prescribed law. Some of the results they obtained
for antireflection coatings were mentioned in chapter 3. To produce the mixture,
two separate sources, one for each material, were used; they were evaporated
simultaneously but with independent rate controls. Apparently no difficulty in
obtaining reasonable films was experienced, the mixing taking place without
causing absorption to appear.

Fujiwara [109, 110] was interested in the production of homogeneous films
for antireflection coatings [111]. The three-layer quarter–half–quarter coating for
glass requires a film of intermediate index which is rather difficult to obtain with
a simple material, and the solution adopted by Fujiwara was to use a mixture
of two materials, one having a refractive index lower than the required value
and the other higher. The two combinations that were tried successfully were
cerium oxide and cerium fluoride, and zinc sulphide and cerium fluoride. These
were simply mixed together in powder form in a certain known proportion by
weight and then evaporated from a single source. The mixture evaporated giving
an index that was sufficiently reproducible for antireflection coating purposes.
The range of indices obtainable with the cerium oxide–cerium fluoride mixture
was 1.60–2.13, and with the cerium fluoride–zinc sulphide mixture 1.58–2.40.
One interesting feature of the second mixture was that, although zinc sulphide
on its own is not particularly robust, in the form of a mixture with more than
20% by weight of cerium fluoride the robustness was greatly increased, the films
withstanding boiling in distilled water for l5 minutes without any deterioration.
Curves are given for refractive index against mixing ratio in the papers.

Mixtures of zinc sulphide and magnesium fluoride have also been studied
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by Yadava et al [112]. The refractive index of the mixture varies between the
indices of magnesium fluoride and zinc sulphide, depending on the mixing ratio,
and the absorption edge varies from that of zinc sulphide to that of magnesium
fluoride in a nonlinear fashion. The same authors [112, 113] have studied the
use of assemblies of large numbers of alternate very thin discrete layers of the
components instead of mixtures. For a wide range of material combinations, ZnS–
MgF2, ZnS–MgF2–SiO, Ge–ZnS, ZnS–Na3AIFs for example, the results were
similar to those expected from the evaporation of mixtures of the same materials.

Silica is a particularly difficult material to evaporate because of its high
melting point and also because of its transparency to infrared, which makes
it difficult to heat. It was found by workers at the Libbey-Owens-Ford
Glass Company [114] that silica could be thermally evaporated readily if some
pretreatment was carried out. This consisted of combining the silica with a
metallic oxide, a vast number of different oxides being suitable. The oxide can
be mixed intimately with the silica, coated on the outer surface of silica chunks
or, in some cases where the oxide has a rather lower melting temperature than the
silica, mixed very crudely. Only a small quantity of the oxide is required and the
evaporation is carried out in the conventional manner from a tungsten source. The
oxides mentioned include aluminium, titanium, iron, manganese, cobalt, copper,
cerium and zinc. Working along similar lines it has been discovered by workers
at Balzers AG [115, 116] that cerium oxide mixed with other oxides improves the
oxidation and increases the transparency and ease of evaporation. Materials such
as titanium dioxide are difficult to evaporate without absorption, and the most
successful method is reactive evaporation in oxygen, which produces absorption-
free films, although the process is rather time consuming because the evaporation
must proceed slowly. With the addition of a small amount of cerium oxide—
the mixture can vary from 1:1 to 8:1 titanium oxide (the monoxide, the dioxide or
even the pure metal) to cerium oxide—hard films free from absorption, even when
evaporated quickly at pressures of 10−5 torr, are readily obtained. Apparently this
effect is not limited to titanium oxide, and a vast range of different materials which
have been successfully tried is given. Other rare earth oxides and mixtures of rare
earth oxides can also take the place of the cerium dioxide.

Stetter and his colleagues [90] have pointed out the advantage of oxygen-
depleted materials as source material for electron-beam evaporation, in that
composition changes little if at all during evaporation, which leads to more
consistent film properties. The extra oxygen is supplied, in the usual way, from
the residual atmosphere in the plant. The depleted materials also have higher
thermal and electrical conductivity. A mixture of ZrO 2 and ZrTiO4, sintered at
high temperature under high vacuum and oxygen-depleted, was developed. This
material, designated ‘Substance no 1’, when evaporated from an electron-beam
system in a residual oxygen pressure of 1–2×10−4 torr (1.3–2.5×10−4 mb) with
substrate temperature 270 ◦C, and condensation rate of the order of 10 nm min −1,
gives homogeneous layers of refractive index 2.15 (at 500 nm). Such a value of
index is ideal for the quarter–half–quarter antireflection coating for the visible
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region. This has prompted further work on mixtures [117] and there are now
several similar materials available. H1 is from the zirconia/titania system with
index 2.1 at 500 nm and good transparency from 360 nm to 7 µm but with
some difficulties in evaporation because of incomplete melting. H2 from the
praseodymium/titanium oxide system has a similar index and the advantage of
ease of evaporation but suffers from a more restricted range of good transmittance,
400 nm to 7 µm, and localised slight absorption in the transparent region. H4
is a lanthanum/titanium oxide combination with again refractive index 2.1 at
500 nm and transmission region from 360 nm to 7 µm that melts completely
and so is normally preferred over the other two materials. M1 is a mixture
of praseodymium/aluminium oxide with index on heated substrates of 1.71 at
500 nm and good transparency from 300 nm to longer wavelengths.

Butterfield [118] has produced films of a mixture of germanium and
selenium. For composition varying from 30 to 50 atomic % of germanium, glassy
films with refractive index in the range 2.4–3.1, with good transparency from 1.5–
15 µm, could be produced. The starting material was an alloy of germanium and
selenium in the correct proportions, produced by melting the pure substances in
an evacuated quartz tube. The evaporation source was a graphite boat.

It is likely that much more work will be carried out on mixtures, because of
the apparent ease with which the deposition can be performed to give a side range
of refractive indices, many of which are not available by other means. The theory
of the optical properties of mixtures is covered in a useful review by Jacobsson
[53], who also gives further information on mixtures, and on inhomogeneous
layers.
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Chapter 10

Factors affecting layer and coating
properties

10.1 Microstructure and thin-film behaviour

One of the most significant features of optical thin films is the way in which their
properties and behaviour differ from those of identical materials in bulk form.
This is, of course, also true for thin films in areas other than optics. Almost
always, the performance of the film is poorer than that of the corresponding
bulk material. Refractive index is usually lower, although, very occasionally, for
some semiconductor materials it can be slightly higher, losses greater, durability
less and stability inferior. There is also a sensitivity to deposition conditions,
especially substrate temperature.

Heitman [1] has studied the influence of parameters, such as the residual gas
pressure within the plant and the rate of deposition, on the refractive indices of
cryolite and thorium fluoride. Raising the residual gas (nitrogen) pressure from
4 × 10−6 torr (5.3 × 10−6 mb) in one case, and 2 × 10−6 torr (2.6 × 10−6 mb)
in another, to 2 × 10−5 torr (2.6 × 10−5 mb) had no measurable effect, within the
accuracy of the experiment (±0.1% for thorium fluoride and ±0.3% for cryolite)
while a further increase in residual pressure to 2 × 10−4 torr (2.6 × 10−4 mb)
gave a drop in index of 1.5% for cryolite, and 1.4% for thorium fluoride. At
this higher pressure, the mean free path of the nitrogen molecules was less than
the distance between boat and substrate, and the decrease in refractive index was
probably caused by increased porosity of the layers. This tends to confirm that
the mean free path of the residual gas molecules should be kept longer than the
source–substrate distance, but that any further increases in mean free path beyond
this have little effect. Heitman concluded that the mean free path of the molecules
is the important parameter, not the ratio of the numbers of evaporant molecules
to residual gas molecules impinging on the substrate in unit time, which appeared
to have no effect on refractive index. He also found that changes in the rate of
deposition, from a quarter-wave in 0.5 min (measured at 632.8 nm) to a quarter-
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wave in 1.5 min, caused a decrease in refractive index of 0.6% in both cases, but
that a further decrease to a quarter-wave in 5 min produced only slight variations.

Heitman’s results are probably best interpreted in terms of slight changes in
film structure, induced by the variations in deposition conditions. Layer structure
is, in fact, the most significant factor in determining the properties of optical
thin films and the way in which they differ from the same material in bulk form.
During the past two decades, there has been an increasing interest in the structure
of, and structural effects in, optical thin films.

A useful technique for the study of thin-film structure, which immediately
yielded important results, is electron microscopy. Its use in the examination
of thin-film coatings has involved the development of techniques for fracturing
multilayers and for replicating the exposed sections. Pearson, Lissberger, Pulker
and Guenther [2–5] have all made substantial contributions in this area and
their results show that the layers in optical coatings have, almost invariably, a
pronounced columnar structure, with the columns running across the films normal
to the interfaces. To their investigations, we can add those of Movchan and
Demchishin [6] and then Thornton [7, 8], who investigated the effects of substrate
temperature and, in Thornton’s case, residual gas pressure, on the structure of
evaporated and sputtered films. This showed that a critical parameter in vacuum
deposition of thin films is the ratio of the temperature of the substrate Ts to the
melting temperature Tm of the evaporant. For values of this ratio lower than
around 0.5, the structure of the layers is intensely columnar, the columns running
along the direction of growth. Increased gas pressure forces the growth into a
more pronounced columnar mode even for slightly higher values of substrate
temperature.

Because the most useful materials in optical thin films are all of high
melting point, substrate temperatures can never be higher than a small fraction
of the evaporant melting temperature, and so the structure of thin films is almost
invariably a columnar one, with the columns running along the direction of
growth, normal to the film interfaces. The columns are several tens of nanometres
across and roughly cylindrical in shape. They are packed in an approximately
hexagonal fashion with gaps in between the columns, which take the form of pores
running completely across the film, and there are large areas of column surface
which define the pores and are in this way exposed to the surrounding atmosphere.
The columnar structure of a film of zinc sulphide is shown in figure 10.1 [9].

Packing density p defined as:

p = Volume of solid part of film (i.e. columns)

Total volume of film (i.e. pores plus columns)

is a very important parameter. It is usually in the range 0.75–1.0 for optical thin
films, most often 0.8–0.95, and seldom as great as unity. A packing density that is
less than unity reduces the refractive index below that of the solid material of the
columns. A useful expression that is reasonably accurate for films of low index
[10, 11] connects the index of the film n f that of the solid part of the film ns and
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Figure 10.1. The columnar structure of a zinc sulphide film. Part of the film has been
mechanically removed leaving the columnar structure visible in the cross section. (After
Reid et al [9].)

of the voids nv with the packing density p:

nf = pns + (1 − p) nv. (10.1)

The behaviour of films of higher index, 2.0 and above, can be rather more
complicated but in many cases a linear law as in equation (10.1) is sufficiently
accurate and is, therefore, often employed. If the value of packing density has
been derived from optical measurements by using equation (10.1), as is frequently
the case, then, of course, the expression can, and should, be used. In any event,
it gives an indication of the correct trend. For an alternative expression that is
more complicated and gives a better fit in many of the more complicated cases,
although still far from ideal, the paper by Harris and colleagues [11] should be
consulted.

Packing density is a function of substrate temperature, usually, but not
always, increasing with substrate temperature, and of residual gas pressure,
decreasing with rising pressure. Film refractive index, therefore, is also affected
by substrate temperature and residual gas pressure. The columns frequently vary
in cross-sectional area as they grow outwards from the substrate surface, which
is a major cause of film inhomogeneity. Substrate temperature is a difficult
parameter to measure and to control so that consistency in technique, heating
for the same period each batch, identical rates of deposition, pumping for the
same period before commencing deposition, and so on, is of major importance in
assuring a stable and reproducible process. Changing the substrate dimensions,
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especially substrate thickness, from one run to the next can cause appreciable
changes in film properties. Such changes are even more marked in the case of
reactive processes where the residual gas pressure is raised, and where a reaction
between evaporant and residual atmosphere takes place at the growing surface of
the film. Thus it should not be surprising that a very high proportion of test runs
are required in any manufacturing sequence.

Various modelling studies [12–15] have confirmed that the columnar growth
results from the limited mobility of the material on the surface of the growing film.
It diffuses over the surface under thermal excitation until it is buried by arriving
material. Diffusion through the bulk of the material is not significant. Thus lower
substrate temperature and higher rates of deposition lead to more pronounced
columns and reduced packing density. The energetic processes involve an element
of bombardment of the growing films. The transfer of momentum drives the
material deeper into the film and, although the columnar structure may persist to
some extent, squeezes out the voids. The packing density is normally close to or
equal to unity. The results of the higher packing density are almost all favourable.
The consequences described in this chapter of the columnar microstructure are all
less serious in the energetically deposited films. (See figure 10.2 [16].)

A second level of microstructure in thin films is their crystalline state. This is
less well understood but considerable progress has been made. Optical thin films
are deposited from vapour that has been derived from sources at comparatively
very high temperature. The substrates on which the films grow are at relatively
very low temperature. There is therefore a great lack of equilibrium between
growing film and arriving vapour. The film material is rapidly cooled or quenched,
and this not only influences the formation of the columnar microstructure but it
also affects the crystalline order. The material that is condensing will attempt
to reach the equilibrium form appropriate to the temperature of the substrate,
but the correct rearrangement of the molecules will take a certain time, and
the film will tend to pass through the higher temperature forms during this
rearrangement. If the rate of cooling is greater than the rate of crystallisation,
then a higher temperature form will be frozen into the layer. The very rapid
cooling rate normally existing in thin films implies the presence of quite high
temperature forms and there are often mixtures of phases. This explains an, at
first sight, curious behaviour of thin films. Frequently there is an inversion in the
crystalline structure in that at low substrate temperatures a predominance of high-
temperature crystalline forms are found, whereas at high substrate temperatures,
more low-temperature material appears to form. The low substrate temperature
leads to a higher quench rate and the rest follows [17]. Amorphous forms,
corresponding to a quite high temperature, can often be frozen by very rapid
cooling, and are enhanced by a higher temperature of the arriving species. For
example sputtering, where additional kinetic energy is possessed by the arriving
molecules, often gives amorphous films. The low voltage ion-plating technique,
again with high incident energy, appears virtually invariably to give amorphous
films. The high temperature forms are often only metastable and may change their
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Figure 10.2. Compact microstructure of an aluminium oxynitride rugate structure
deposited by radio frequency reactive sputtering of aluminium. The packing density is
very high but some columnar features remain. The fractures at the outer surface tend to be
in the nitrogen-rich parts of the rugate cycle leading to the stepped appearance. (Courtesy
of Professor Frank Placido [16].)

structure at quite low temperatures leading to problems of various kinds. Some
films deposited in amorphous form by sputtering may sometimes be induced
to recrystallise, in a manner described as explosive, by a slight mechanical
disturbance, such as a scratch, or by laser irradiation [18].

Samarium fluoride has two principal crystalline forms, a hexagonal high-
temperature form and an orthorhombic low-temperature form. Table 10.1
shows the results of thermal evaporation and ion-assisted deposition which both
lead to this apparently inverted structure [17]. Zirconia has three principal
structures, monoclinic, tetragonal and cubic in ascending temperature. Klinger
and Carniglia [19] found that very thin zirconia shows a cubic structure, but
becomes monoclinic when thicker than a quarter-wave at 600 nm. This behaviour
can be explained by a lower rate of quenching when the film is thicker and
less thermally conducting. Alumina, normally amorphous in thin-film form,
can recrystallise in the electron microscope when subjected to the electron
bombardment necessary for viewing [20]. Amorphous zirconia, which can occur
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Table 10.1. Samarium Fluoride (SmF3) [17].

Normal high
temperature form Hexagonal
Normal low
temperature form Orthorhombic

Thermal evaporation Substrate temperature Hexagonal (111)
of 100 ◦C
Substrate temperature Orthorhombic (111) with
≥ 200 ◦C some hexagonal

Ion-assisted deposition Substrate temperature Hexagonal (110) with
100 ◦C some (111)
Higher bombardment Hexagonal (110) with
at substrate temperature appearance of new peak
100 ◦C SmF2(111)?

when films are very thin, has been shown to exhibit similar behaviour [21].
Thin films, therefore, are complicated mixtures of different crystalline

phases, some being high-temperature metastable states. Such behaviour is
clearly very material- and process-dependent and each specific system requires
individual study. What is a good structure for one application may not be so for
another. The low scattering of the amorphous phases make them attractive for
certain applications, but their high-temperature or high-flux behaviour may not
be as satisfactory. Much more needs to be done in attempting to improve our
understanding.

The columnar structure and the crystalline structure can be considered as
essentially regular intrinsic features of film microstructure. Then, in addition,
there are defects that can be thought of as local disturbances of the intrinsic
features. A principal and very important class of defect is the nodule. Nodules
are inverted conical growths that propagate through the film or multilayer. They
can occur in all processes. They start at a seed that is usually a very small defect
or irregularity and it appears that virtually any irregularity, even minute ones,
may act as a seed. Scratches on the substrate, pits, dust, contamination, material
particles ejected from the source, loose accumulations of material in the vapour
phase, perhaps even local electric charges, can all cause nodules to start growing.
Once the nodule starts, it continues to grow until it forms a domed protrusion at
the outer surface of the multilayer. The nodule itself is very much larger than
the defect that causes it. It is not, in itself, a contaminant. It is made up of
exactly the material of the remainder of the coating. It is simply growing in a
different way. The outer surface of the nodule is a quite sharp boundary between
it and the remainder of the coating. This sharp boundary is a region of weakness
and there is frequently a fissure around the nodule, either partially or completely,
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Figure 10.3. A nodule. The film is a rugate structure of aluminium oxynitride deposited by
radio-frequency (RF) reactive sputtering of aluminium. The film has been broken across
its width to show a cross-section that includes a complete nodule. The sharpness of the
boundary is clear and the weakness is shown by the fact that the crack in the film circles
around the nodule rather than passing through it. The shape and the domed protrusion
at the outer surface (upper) of the film system are typical. (Courtesy of Professor Frank
Placido [16].)

and the nodule may sometimes be detached from the coating completely, leaving
a hole behind. Nodules are present in almost all coatings. The only way of
suppressing them appears to be a move towards perfection in the substrate, its
surface and its preparation, and in the coating deposition. The incidence of
nodules over superpolished substrates, for example, is much reduced compared
with conventional substrates. A typical nodule is shown in figure 10.3 and the
hole left by a detached nodule in figure 10.4.

Variation in refractive index is not the only feature of film behaviour
associated with the columnar structure. The pores between the columns permit the
penetration of atmospheric moisture into the film, where, at low relative humidity,
it forms an adsorbed layer over the surfaces of the columns and, at medium
relative humidity, actually fills the pores with liquid water due to capillary
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Figure 10.4. The hole left by the detachment of a nodule. Part of the outer part of the
structure has been removed along with the nodule. The stepped appearance is once again
caused by preferential cracking in the nitrogen-rich part of the aluminium oxynitride rugate
structure. (Courtesy of Professor Frank Placido [16].)

Figure 10.5. A micrograph showing the compact amorphous structure of a narrowband
filter of silica and tantala produced by ion-assisted deposition using an RF ion-gun.
(Courtesy of Shincron Co. Ltd, Tokyo, Japan.)
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Figure 10.6. The structure of a multiple-cavity filter for the far infrared constructed from
lead telluride and zinc sulphide. This particular filter was one of a set for the region
6–18 µm required to have a size of 1.2 mm × 0.45 mm for use in the High Resolution
Dynamic Limb Sounder (HIRLDS) and the high quality of the diamond sawn edge of the
component is clear from the micrograph. The scale of the micrograph can be assessed
from the 4 µm physical thickness of the cavity layers. (Courtesy of Roger Hunneman,
University of Reading, England.)

condensation. Moisture adsorption has been the subject of considerable study
by Ogura [22, 23], who used the variation in adsorption with relative humidity
to derive information on the pore structure of the films. The moisture, since it
has a different refractive index (around 1.33) from the 1.0 of the air, which it
displaces from the voids, causes an increase in the refractive index of the films.
Since the geometrical thickness of the film does not change, the increase of film
index during adsorption is accompanied by a corresponding increase in optical
thickness. Exposure of a film to the atmosphere, therefore, usually results in a
shift of the film characteristic to a longer wavelength. Such shifts in narrowband
filters have been the subject of considerable study. Schildt et al [24] found that
for freshly prepared filters of zinc sulphide and magnesium fluoride, constructed
for the region 400–500 nm, the variation in peak wavelength could be expressed
as

�λ = q log10 P

where q is a constant varying from around 1.4 for filters which had aged to
around 8.3 for freshly prepared filters, and P is the partial pressure of water
vapour measured in torr (P should be replaced by 0.76 × P if P is measured
in mb) and �λ is measured in nm. �λ was arbitrarily chosen as zero when the
pressure was 1 torr (1.3 mb). This relationship was found to hold good for the
pressure range 1 to approximately 20 torr (1.3–26 mb). The filters settled down to
the new values of peak wavelength some 10–20 minutes after exposure to a new
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(a)

Figure 10.7. Moisture-penetration patterns in a multilayer of zinc sulphide and cryolite.
(a) Sketch of the apparatus for observing the phenomenon. Short slits that are virtually pin
holes are used in the monochromator. (After Macleod and Richmond [27].) (b) Photograph
of moisture-penetration patterns in a zinc sulphide and cryolite filter some two weeks
after coating. The relative humidity was approximately 50% during this time. The upper
photograph was taken at a wavelength of 488.5 nm and the lower at 512.8 nm. The dark
patches of the upper photograph correspond to the light patches of the lower showing that
a wavelength shift rather than absorption is responsible for the patterns. (After Lee [29].)

level of humidity began. They found that the shifted values of peak wavelength
could be stabilised by cementing cover slips over the layers using an epoxy resin.
Koch [25, 26] showed that the characteristics of narrowband filters became quite
unstable during adsorption until the filters reached an equilibrium state. Macleod
and Richmond [27], Richmond [28] and Lee [29] have made detailed studies of
the effects of adsorption on the characteristics of narrowband filters. The results
are applicable to all types of multilayer coating. The shifts in the characteristics
are due, as we have seen, to the filling of the pores of the film with liquid water.
In multilayers, the pores of one film are not always directly connected with the
pores of the next, and the penetration of atmospheric moisture is frequently a
slow and complex process in which a limited number of penetration pores take
part, from which the moisture spreads across the coating in increasing circular
patches. The primary entry points for the moisture are thought to be nodules
where capillary condensation can take place in the fissures that often surround
them. The coating may take several weeks to reach equilibrium and, afterwards,
will exhibit some instability should the environmental conditions change. The
patches, which can sometimes be seen with the naked eye as a flecked or mottled
appearance, can be made more visible if the coating is viewed in monochromatic
light, at or near a wavelength for which there is a rapid variation of transmittance.
The edge of an edge filter, or the pass band of a narrowband filter, are especially
suitable. Wet patches show a shift in wavelength that changes them from high
to low transmittance, or vice versa, and they can be readily photographed as was
done in figures 10.7 and 10.8.

The drift of the filters towards longer wavelengths, which occurs on exposure
to the atmosphere, varies considerably in magnitude with both the materials and
the spectral region and there is frequently considerable hysteresis on desorption.
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(b)

Figure 10.7. (Continued)
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Figure 10.8. Moisture-penetration patterns in a multilayer of zirconium dioxide and silicon
dioxide. The photographs were taken immediately after removal from the coating chamber.
The wavelength for the upper photograph was 543 nm, and that for the lower 553 nm.
(After Lee [29].)
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In the infrared the layers are thick, and many of the semiconductor materials
that are used as high-index layers have high packing density. This means that
moisture-induced drift is less of a general problem than it is in the visible and
ultraviolet regions of the spectrum, although it is important in some applications.
In the visible region, drifts can be as high as 10 nm, and sometimes greater,
towards longer wavelengths. The gradual stabilisation of the coating as it reaches
equilibrium is frequently referred to as ageing or settling. The energetic processes
can usually suppress completely the moisture-induced drifts and have been almost
universally adopted for suitable coatings. It should be noted, however, that not
all materials respond well to the brutal bombardment that is characteristic of
the energetic processes. Metals suffer from the inevitable implantation of the
bombarding species. Their optical properties are degraded by the scattering of
conduction electrons that results. Fluorides lose fluorine and so the bombardment
must be strictly limited otherwise the concentration of vacancy defects becomes
too great. Oxygen tends to fill the vacancies and form oxyfluorides that are neither
as rugged as the original fluorides nor as useful in the ultraviolet.

It is not simply in generating optical shifts that moisture is a problem for
coatings. It has major mechanical and sometimes chemical effects as well. The
stress in the coating is transmitted across the gaps between the columns, again by
short-range forces. These forces can be very easily blocked by water molecules.
An alternative explanation of the phenomenon is that the moisture, which coats
the surfaces of the columns, reduces the surface energy to something approaching
that of liquid water. Since the surface energy is an important factor in the
stress/strain balance in the film, the result of the moisture adsorption is a change
in the stress level. The stress is usually tensile and the moisture reduces it, usually
significantly. We have already mentioned Pulker’s work [30] on impurities in
thin films and their reduction of stress levels in a similar way. Adhesion, too, is
affected by moisture. The materials used for thin films have usually very high
surface energies and then the work of adhesion is correspondingly high. The
presence of liquid water in a film can cause a reduction in the surface energy of the
exposed surfaces of at least an order of magnitude. If water is present at the site
of an adhesion failure and can take part in a process of bond transfer, rather than
bond rupture followed by adsorption, then it will reduce the work of adhesion,
and it is more likely that the failure will propagate. There is frequently enough
strain energy in a film to supply the required work. The penetration sites for the
moisture patches are probably associated with defects which may act as stress
concentrators where adhesion failures driven by the internal strain energy in the
films may originate. All the ingredients for a moisture-assisted adhesion failure
are present and it is frequently at such sites that delamination is first observed.
Blistering is a similar form of adhesion failure frequently associated with moisture
penetration sites and a compressively strained film.

We have already mentioned in chapter 7 that changes in temperature cause
changes in the spectral characteristics of coatings, narrowband filters having
characteristics that are probably most sensitive to such alterations. We must divide
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the coatings into those that have been simply thermally evaporated and those that
have been produced by an energetic process.

Most of the work that has been reported has been in respect of conventionally
thermally evaporated coatings. For small temperature changes, the principal effect
is a simple shift towards longer wavelengths with increasing temperature. For the
materials commonly used in the visible region of the spectrum, the shift is of the
order of 0.003% ◦C−1, while for infrared filters it can be greater, and a useful
figure is 0.005% ◦C−1, although it can be as high as 0.0125% ◦C−1. It must be
emphasised that these figures depend strongly on the particular materials used.
Filters of lead telluride and zinc sulphide can actually have negative coefficients
greater than 0.01% ◦C−1 and, using these materials, it is even possible to design
a filter that has zero temperature coefficient [31]. With greater positive changes
of, say, 60 ◦C or more, it is usual for the moisture in the filter to desorb partially,
causing an abrupt shift towards shorter wavelengths (see figure 10.9). This shift is
not recovered immediately on cooling to room temperature, and so considerable
hysteresis is apparent in the behaviour [32]. Subsequent temperature cycling,
before readsorption of any moisture, will then exhibit no hysteresis. Eventually,
if maintained at room temperature, the filter will readsorb moisture and drift
gradually back to its initial wavelength. Exposure to higher temperatures still,
over 100 ◦C, can cause permanent changes which appear to be related to minute
alterations in the structure of the layers, altering the adsorption behaviour so
that some materials become less ready to adsorb moisture while others show
more rapid adsorption [27–29]. A frequently applied empirical treatment, already
mentioned in chapter 9, involves baking of filters at elevated temperatures, usually
several hundred degrees Celsius, for some hours. The baking process reduces
residual absorption, particularly in reactively deposited oxide films, and improves
the subsequent stability of the coatings. Part of the baking process appears to
involve the opening up of the pores in the films, by smoothing out restrictions, so
that moisture adsorption processes are more rapid and the films reach equilibrium
in normal atmospheres much more quickly.

Films that have been deposited by the energetic processes usually exhibit
lower temperature coefficients than thermally evaporated, even when the effects
of moisture desorption and adsorption are removed. This is at first sight a
quite surprising result. But the explanation appears to lie in the microstructure.
The lateral thermal expansion of the loosely packed columns in the thermally
evaporated films enhances the drifts due to temperature changes. In the
energetically deposited films, the material is virtually bulk-like in that there are
no voids in between any residual columns and so the material exhibits bulk-
like properties. The change in characteristics with a change in temperature
now corresponds to what would be expected from bulk materials. Indeed,
Takahashi [33] has shown that for multiple-cavity narrowband filters, once the
design and materials are chosen, the expansion coefficient of the substrate
dominates the behaviour and can even change the sense of the induced spectral
shift. The stress induced in the coating by the differential lateral expansion
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Figure 10.9. Record of the variation of peak wavelength with temperature for a filter with
L = cryolite and H = Air|(H L)′6H(L H)′|Glass zinc sulphide. (After Roche et al [32].)

and contraction of substrate and coating is translated by Poisson’s ratio into a
swelling or reduction normal to the film surfaces. As a result of this modelling
and improved understanding, temperature coefficients of peak wavelength shift
at 1550 nm of 3 pm ◦C−1 (pm is picometre, i.e. 0.001 nm so that 3 pm ◦C−1 at
1550 nm represents 0.0002% ◦C−1) have routinely been achieved in energetically
deposited tantala/silica filters for communication purposes and shifts as low as
1 pm ◦C−1 are possible.

Coatings that are subjected to very low temperatures usually shift towards
shorter wavelengths, consistent with their behaviour at elevated temperatures.
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Filters are not usually affected mechanically except for laminated components
that run the risk of breaking because of differential contraction and/or expansion.

There are losses associated with all layers, which can be divided into
scattering and absorption. In absorption, the energy, which is lost from the
primary beam, is dissipated within the coating and usually appears as heat. In
scattering, the flux lost is deflected and re-emerges from the coating in a different
direction. Absorption is a material property which may be intrinsic or due to
impurities. A deficiency of oxygen, for example, can cause absorption in most of
the refractory oxide materials. Scattering is usually due to defects in the coating
that can be classified into volume or surface defects. Surface defects are simply
a departure from the smooth flat surfaces of the ideal film. Such departures can
be due to roughness of the substrate surface which tends to be reproduced at
each interface in a multilayer, or to the columnar structure of the layers which
results in a nodular appearance of the film boundaries. Volume defects are local
variations of optical constants and are usually dust particles, pinholes or fissures
in the coating.

Losses in thin films are of particular importance in the laser field where
they determine the limiting performance of multilayers. A major problem in the
production of high-quality laser coatings is dust that emanates from the sources
and from the powdery deposit that forms on the cold walls of the chamber. If this
dust can be eliminated, only possible if the strictest attention is paid to detail and
the most involved precautions are taken, then the remaining source of scattering
loss is the roughness of the interfaces between the layers and between multilayer
and substrate. If great care is exercised, then, in the visible and near infrared
regions, the total losses, that is, absorption and scattering, can be reduced below
0.001% (for some very special applications losses towards one-tenth of this figure
have been achieved) and the power handling capability of the coatings can be of
the order of 5 J cm−2 for pulses of 1 ns or less at 1.06 µm. Recent useful surveys
of scattering in thin-film systems have been written by Duparré [34–36] and by
Amra [37, 38].

Laser damage is still a very active research topic. The best bulk crystals
can exhibit intrinsic damage thresholds that are ultimately connected with multi-
photon events causing the raising of electrons into the conduction band. Damage
in thin-film systems, on the other hand, is dominated by the defects in the
films so that the intrinsic level is not reached. In continuous wave applications,
particularly in the infrared, thermal effects associated with absorption, either local
or general, appear to be the principal source of damage, small defects appearing
less important. In most other cases local defects are the problem. The particular
nature of the defects may vary considerably, from inclusions to cracks or fissures,
but considerable attention in recent years has been paid to the nodules that tend
to grow through the films from any substrate imperfections. These nodules are
poorly connected thermally to the film and this is suspected to be an important
factor in the initiation of damage. In those spectral regions where water absorbs
strongly, considerable importance is attached to the presence of liquid water
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within the films. In other parts of the spectrum its role is less clear, but it may
well play a part. Laser damage has been surveyed recently by Koslowski [39].

10.2 Sensitivity to contamination

Optical coatings are rarely used in an ideal environment. They are subjected to all
kinds of environmental disturbances ranging from abrasion to high temperature
and humidity. These cause performance degradation that mostly originates in
an actual irreversible and usually visible destruction of the layers. However,
performance may be degraded in a rather less spectacular way by the simple
acquisition of a contaminant that may have no aggressive effect on the layers
other than a reduction of the level of performance of the coating as a whole. The
action of water vapour that is adsorbed by a process of capillary condensation
and causes a spectral shift of the coating is well known. Here we are concerned
with much smaller amounts of absorbing material, such as carbon, in the form
of submolecular thicknesses either at some point during the construction of the
coating or, more usually, over the surface after deposition.

Although there are many tests for the assessment of the resistance of a
coating to most environmental disturbances there is no standard test for the
measurement of susceptibility to contamination. Yet it can be shown that the
response of coatings can vary enormously, depending on many factors including
design, wavelength, and even on errors committed during deposition. The reason
may be that, often, careful cleaning will restore the performance but this does
not avoid the degradation in between cleanings, and more frequent cleanings are
required for more susceptible coatings.

Fortunately it is possible to make some predictions of coating response to
low levels of contamination and, especially, to make assessments of comparative
sensitivity [40, 41]. Electric field distribution and potential absorption are the keys
to understanding the phenomenon.

If the contamination layer is on the front surface then it receives the full
irradiance that enters the multilayer, and the admittance at the contamination
layer determines the reflectance as well as the potential absorptance. The key
expressions involving absorptance, A, and potential absorptance,A, have already
been derived in chapter 2.

A =
(

2πnkd

λ

)(
2

Re(Y)

)
(10.2)

and
A = (1 − R)A. (10.3)

Then we can write

A = (1 − R)A
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K for Carbon films 0.1nm thick
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Figure 10.10. Plot of K against wavelength for 0.1 nm thickness of carbon film.

=
(

4πnkd

λ

)(
1

Re(Y)

){
1 − [y0 − Re(Y)]2 + [Im(Y)]2

[y0 + Re(Y)]2 + [Im(Y)]2

}

=
(

4πnkd

λ

)(
4y0

[y0 + Re(Y)]2 + [Im(Y)]2

)
(10.4)

and equation (10.4) permits us to put on the admittance diagram contours of
absorption due to contamination on the outer surface. Before we draw actual lines
we need to define some of the quantities. It is simplest to use numbers that allow
us to scale the diagram easily. We therefore simplify the expression by defining

16πnkd

λ
= K . (10.5)

Then
A = K

y0

[y0 + Re(Y)]2 + [Im(Y)]2
. (10.6)

And if we replace Y by x + iz then the equation giving the contours of constant
A/K is

(y0 + x)2 + z2 = y0
K

A
(10.7)

that is, a circle with centre at the point (−y0, 0) on the negative branch of the real
axis.

As an example of the magnitude of K we can take the values of amorphous
carbon given by Palik [42, 43], that is optical constants of 2.26 − i1.025 at
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Figure 10.11. The contour lines of constant A/K in the admittance diagram assuming that
y0 is 1.00. From left to right (inner to outer circle) the values of A/K are 0.5, 0.2, 0.1,
0.05, 0.02, 0.01. The origin corresponds to a value of A/K of 1.00.

1000 nm, and assume a thickness of 0.1 nm. A plot of K is shown in figure 10.10
and over most of the wavelength region shown it is between 0.01 and 0.02.

To simplify matters still further we take the value of y0 as 1.00. The contour
lines for this case are then as shown in figure 10.11.

Antireflection coatings all attempt to terminate their loci at the point (y0, 0).
This implies a value of A/K of 1/(4y0), that is 0.25 for y0 of unity, and, from
figure 10.10, this gives, for a perfect antireflection coating, a range of absorptance
across the visible region from around 0.25% to 0.7% with a film of carbon 0.1 nm
thick. A slightly less than perfect coating may exhibit figures greater or less than
these. It all depends on the admittance at termination. Typical results for a four-
layer antireflection coating over the visible region are shown in figure 10.12. The
design of the coating has little influence on this result and all coatings that have
precisely zero reflectance will have exactly the same level of sensitivity.

Reflectors exhibit much greater variation. A dielectric reflector that is made
up of quarter-wave layers and terminates with a final high-admittance layer will
end its locus to the far right of the diagram and the sensitivity to contamination
will be much reduced. This, however, is not so for extended-zone high-reflectance
coatings. In such coatings at least part of the high-reflectance zone involves the
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Absorptance of 0.1nm of carbon over 4-layer AR
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Figure 10.12. The absorptance produced by a layer of carbon of thickness 0.1 nm in front
of a four-layer antireflection (AR) coating for the visible region.
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Figure 10.13. The reflectance of an extended-zone high-reflectance coating for the visible
region. The coating consists of two mutually displaced quarter-wave stacks making up a
total of 39 layers.
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Design1: Absorptance
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Figure 10.14. The absorptance produced by 0.1 nm of carbon deposited over the outer
surface of the reflector of figure 10.13.

Absorptance: Upper quarterwave. Lower halfwave
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Figure 10.15. Effect of contamination by 0.1 nm thick film of carbon on aluminium
reflector with quarter-wave of silica protecting layer (upper curve) and half-wave of silica
(lower curve).
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Calculated absorptance

Number of layers

L
og

(A
)

0 6 12 18 24 30 36
-16

-14

-12

-10

-8

-6

-4

-2

Figure 10.16. The predicted absorptance, plotted as log(A), of a quarter-wave stack as a
function of the odd number of layers. The dashed line is the simple theory. The full line is
calculated using the full matrix theory.

inner part of the coating and the outer part exhibits an admittance that circles
around from far to the right to very near the imaginary axis. The value of
A/K can then be almost as large as 1.0 so that over parts of the visible region the
absorptance due to the 0.1 nm thickness of carbon can rise to between 1.0% and
2.0%. This is illustrated by a 39-layer extended zone reflector with performance
as in figure 10.13 and absorptance behaviour as in figure 10.14.

Aluminium reflectors are normally protected by a thin layer of low index,
most often a half-wave in thickness, although a quarter-wave may also be used.
The quarter-wave thickness gives a greater fall in reflectance at the reference
wavelength and also a higher electric field. The sensitivity to contamination of
the two coatings is quite different and shown in figure 10.15

The simple quarter-wave stack is of enormous importance as the most
common high-performance reflector. We have seen how poor the extended-zone
high reflector is. What can we deduce about the quarter-wave stack? We can
take the contamination figures as at 1000 nm. At the centre wavelength, where all
layers are quarter-waves, the admittance presented by a quarter-wave stack, Y, is
real. The absorptance of the layer, using the 1000 nm figures and assuming air as
incident medium, is therefore given from equation (10.6), by

A = 0.0116

(1 + Y)2
. (10.8)
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Absorptance of contaminated stack

Wavelength (nm)

A
bs

or
pt

an
ce

(%
)

900 950 1000 1050 1100
0.00

0.01

0.02

0.03

0.04

0.05

Figure 10.17. Absorptance of the quarter-wave stack with contamination layer as a
function of wavelength.

We take a quarter-wave stack of silica and titania and calculate the absorptance as
a function of the (odd) number of layers assuming titania outermost. The result is
shown as the dashed line in figure 10.16. The results were also calculated using
the full matrix theory. Agreement is excellent up to around 15 layers and then the
full calculation shows a levelling off. The effect is due to the failure of the thin-
layer approximation. The admittance locus of the very thin contamination layer is
shifted to the extreme right and now, even though it is exceedingly thin, it swings
round towards the imaginary axis. The potential absorptance rises and, when
multiplied by the decreasing (1 − R) factor, a constant is obtained. This constant
level is very small, less than ten parts per billion. Equation (10.8) shows that for
a quarter-wave stack terminated by a low-admittance layer, where Y would be
very small, that the limiting absorptance would be 0.0116 or 1.16%. Accurate
calculation confirms this.

As the wavelength changes, however, the admittance locus for the quarter-
wave stack begins to unwind. The major effect is that the value of Re(Y)
decreases. This is accompanied by a slight decrease also in reflectance. The
result is a considerable increase in the level of absorption associated with the
contamination layer. Figure 10.17 shows the rapid increase in absorptance up
to 500 parts per million from the less than ten parts per billion at the centre
wavelength.

Thermally evaporated coatings are known to be affected by moisture. The
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Absorptance over wet patch
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Figure 10.18. The bold line shows absorptance of a contamination layer over a wet patch
in a quarter-wave stack. The dashed line shows the absorptance when deposited over a dry
area.

moisture enters in localised spots and spreads out in the form of circular patches of
increasing diameter. This changes the field distribution in a coating and therefore
alters the absorptance associated with a contamination layer (figure 10.18).

Monitoring errors that have no perceptible effect on the reflectance
of a quarter-wave stack can have quite major effects on the sensitivity to
contamination.

Some additional information on contamination sensitivity at interfaces
within the coating are included in the article by Macleod and Clark [40].
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Chapter 11

Layer uniformity and thickness monitoring

In the previous chapter we considered what is probably the most difficult aspect
of thin-film coating and filter production, that of materials. As we saw, these
are not always satisfactory, and there are still problems associated with their
stability. Once the materials have been chosen, and their properties are known,
the thin-film designer, using the methods discussed in chapters 3–7, can usually
produce a design to meet a given specification. Given suitable materials and an
acceptable design, however, there are still further difficulties to be overcome
in the construction of a practical filter. The two most important remaining
factors are, first, controlling the uniformity of layer thickness over the area of
the substrate, and second, controlling the overall thickness of each layer. Lack
of uniformity causes a shift of characteristic wavelength over the surface of the
filter, without necessarily affecting the performance in other ways, while thickness
errors usually cause a reduction in performance. The magnitude of the errors
which can be tolerated will vary from one design to another and the estimation of
this is dealt with briefly. The bulk of this chapter is concerned with the general
problem of minimising these two sources of error. One other important topic is
substrate preparation, and that is considered on pages 497–9.

11.1 Uniformity

In the evaporation process, it is usual to maintain the pressure within the chamber
sufficiently low to ensure that the molecules in the stream of evaporant will travel
in straight lines until they collide with a surface. In order to calculate the thickness
distribution in a plant, the assumption is usually made that every molecule of
evaporant sticks where it lands. This assumption is not strictly correct, but it does
allow uniformity calculations that are sufficiently accurate for most purposes. The
distribution of thickness is then calculated in exactly the same way as intensity of
illumination in an optical calculation. All that is required to enable the thickness
to be estimated is a knowledge of the distribution of evaporant from the source.

488
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Holland and Steckelmacher [1] published an early and detailed account of
techniques for the prediction of layer thickness and uniformity and established
the theory that is essentially that still used in uniformity predictions. Their
expressions were later extended by Berndt [2]. Holland and Steckelmacher
divided sources into two broad types: those which have even distribution in all
directions and can be likened to a point source, and those which have a distribution
similar to that from a flat surface, the intensity falling off as the cosine of the angle
between the direction concerned and the normal to the surface. The expressions
for the distribution of material emitted from the two types of source are as follows.

For the point source:

dM = [m/(4π)]dω

and for the directed surface source:

dM = [m/π] cosϕdω

where m is the total mass of material emitted from the source in all directions and
dM is the amount passing through solid angle dω (at angle ϕ to the normal to the
surface in the case of the second type of source).

If the material is being deposited on a surface element dS of the substrate
which has its normal at angle ϑ to the direction of the source from the element,
then the amount which will condense on the surface will be given by:

for the point source:

dM =
(

m

4π

)(
cosϑ

r 2

)
dS

and for the directed surface source:

dM =
(

m

π

)(
cosϕ cosϑ

r 2

)
dS.

In order to estimate the thickness of the deposit we need to know the density of
the film. If this is denoted by µ then the thickness will be:

for the point source:

dM =
(

m

4πµ

)(
cosϑ

r 2

)

and for the directed surface source:

t =
(

m

πµ

)(
cosϕ cosϑ

r 2

)
.

These are the basic equations used by Holland and Steckelmacher for estimating
the thickness in uniformity calculations.
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11.1.1 Flat plate

The simplest case is that of a flat plate held directly above and parallel to the
source. Here the angle ϕ is equal to the angle ϑ and the thickness is as follows.

For the point source:

t =
(

m

4πµ

)(
cosϑ

r 2

)
= mh

4πµ
(
h2 + ρ2

)3/2

and for the directed surface source:

t =
(

m

πµ

)(
cos2 ϑ

r 2

)
= mh2

πµ
(
h2 + ρ2

)2
with notation as in figure 11.1. These expressions simplify to:

for the point source:
t/t0 = [1 + (ρ/h)2]−3/2

and for the directed surface source:

t/t0 = [1 + (ρ/h)2]−2

and are plotted in figure 11.2. t0 is the thickness immediately above the source
where ρ = 0. In neither case is the uniformity at all good. Clearly the geometry
is not suitable for any very accurate work unless the substrate is extremely small
and in the centre of the plant.

11.1.2 Spherical surface

A slightly better arrangement that can sometimes be used is a spherical geometry
where the substrates lie on the surface of a sphere. A point source will give
uniform thickness of deposit on the inside surface of a sphere when the source is
situated at the centre. It can be shown that the directed surface source will give
uniform distribution similarly when it is itself made part of the surface. In fact,
it was the evenness of the coating within a sphere which led Knudsen [3] first to
propose the cosine law for thin-film deposition. The method is often used in plants
for simple blooming of components such as lenses where the uniformity need not
be better than, say, 10% of the layer thickness at the centre of the component.
However, for precise work, this uniformity is still not adequate.

A higher degree of uniformity involves rotation of the substrate carrier,
which we shall now consider.

11.1.3 Rotating substrates

The situation here is as if, in figure 11.1, the surface for coating were rotated
about a normal at distance R away from the source. As the surface rotates, the
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Figure 11.1. Diagram showing the geometry of the evaporation from a central source on
to a parallel plane surface.

Figure 11.2. Film thickness distribution on a stationary substrate from a central source.

thickness deposited at any point will be equal to the average of the thickness which
would be deposited on a stationary substrate around a ring centred on the axis of
rotation, provided always that the number of revolutions during the deposition is
sufficiently great to make the amount deposited in an incomplete revolution a very
small proportion of the total thickness. By choosing the correct distance between
source and axis of rotation, the uniformity can be made vastly superior to that for
stationary substrates.

We shall consider first the directed surface source. Figure 11.3 shows the
situation. The calculation is basically similar to that for the flat plate with a central
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Figure 11.3. Diagram showing the geometry of the evaporation from a stationary offset
source onto a rotating substrate.

source. Here we stop the plate and calculate the mean thickness around the circle
containing the point in question and centred on the axis of rotation. The radius of
the circle is ρ, and if we define any point P on the circle by the angle ψ , then the
thickness at the point is given by

t =
(

m

πµ

)(
h2(

h2 + ρ2 + R2 − 2ρRcosψ
)2

)

where r , the distance from the source to the point, is given by

r 2 = h2 + ρ2 + R2 − 2ρRcosψ.

Then, taking the mean of the thickness around the circle, we have for the thickness
of the deposit in the rotating case

t =
(

m

πµ

)(
1

2π

)∫ 2π

0

h2dψ(
h2 + ρ2 + R2 − 2ρRcosψ

)2 .

Now the integral
∫ 2π

0 dψ/(1 − a cosψ)2 can be evaluated by contour integration
giving

t =
(

m

πµ

)(
h2(

h2 + ρ2 + R2
)2
)(

1

{1 − [2ρR/(h2 + ρ2 + R2)]2}3/2

)
t

t0
= [(1 + R2/h2)2(1 + ρ2/h2 + R2/h2)]
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Figure 11.4. Theoretical film thickness distribution on substrates rotated about the centre
of the plant for various source radii and substrate heights. The sources are assumed to be
small directed surfaces parallel to the substrates.

× {[1 + ρ2/h2 + R2/h2 − 2(ρ/h)(R/h)]3/2

× [1 + ρ2/h2 + R2/h2 + 2(ρ/h)(R/h)]3/2}−1

where t/t0 is, as before, the ratio of the thickness at the radius in question to that
at the centre of the substrate holder.

Figure 11.4 shows this function plotted for several different dimensions
which are typical of medium-sized coating plants. The distribution can
immediately be seen to be vastly superior to that when the substrates are
stationary. For one particular combination of dimensions, that corresponding to
R = 7, the distribution is extremely even over the central part (radius 3.75) of
the plant. This is the arrangement used in the production of narrowband filters
where the uniformity must necessarily be very good. If the uniformity is not quite
so important, where rather broader filters or perhaps antireflection coatings are
concerned, then the sources can be moved outwards, allowing a larger area to be
coated at the expense of a slight decline in uniformity.
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A similar expression is found for a point source but this time involving
elliptic integrals. The thickness at the point P, assuming that the substrate does
not rotate, is given by

t =
(

m

4πµ

)(
h(

h2 + ρ2 + R2 − 2ρRcosψ
)3/2

)

and in the presence of rotation the thickness at any point around the ring of radius
ρ will be the mean of the expression, i.e.

t =
(

m

4πµ

)(
1

2π

)∫ 2π

0

hdψ(
h2 + ρ2 + R2 − 2ρRcosψ

)3/2

t = m

4π2µ

∫ π

0

hdψ(
h2 + ρ2 + R2 − 2ρRcosψ

)3/2
.

Now let (π − ψ)/2 = γ , then dψ = −2dγ , and the expression for thickness
becomes

t = m

4π2µ

∫ 0

π/2

−hdγ[
h2 + (R+ ρ)2 − 4ρRsin2 γ

]3/2

which can be written

t =
(

m

4π2µ

)(
h

[h2 + (R + ρ)2]3/2

)

×
∫ π/2

0

dγ{
1 − [

4ρR/
(
h2 + (R + ρ)2

)]
sin2 γ

}3/2 .

Now the integral in this expression is a standard form

1(
1 − k2

)E(k, α) =
∫ α

0

dγ(
1 − k2 sin2 γ

)3/2

where E(k, α) is an elliptic integral of the second kind, and is a tabulated function
[4]. The expression for thickness then becomes:

T =
(

hm

4π2µ

)(
E(k, π/2)

[h2 + (R + ρ)2]1/2[h2 + (R − ρ)2]

)

where

k = 4ρR/
[
h2 + (R + ρ)2

]
.

Curves of this expression are given by Holland and Steckelmacher [1], and
the shape is very similar to that for the directed surface source.
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Almost all the sources used in the production of thin-film filters, especially
the boat type, give distributions similar to the directed surface source. Holland
and Steckelmacher also describe some experiments which they carried out to
determine this point. Keay and Lissberger [5] have studied the distribution
from a howitzer source loaded with zinc sulphide, and it appears that this is
somewhere in between the point source and the directed surface source, probably
due to scattering in the evaporant stream immediately above the heater where the
pressure is high. The cloud of vapour that forms seems to act to some extent as
a secondary point source. This behaviour of the howitzer probably depends to
a considerable extent on the material which is being evaporated. Graper [6] has
studied the distribution of evaporant from an electron gun and has found that this
is somewhat more directional than the directed surface source. Its distribution can
be described by a cosx ϑ law where x is somewhere between 1 and 3, and depends
on the power input and on the amount of material in the hearth. Using zinc
sulphide and cryolite, Richmond [7] found that the distribution from an electron
gun source was best represented by a law of the form cosϑ .

Normally, in calculating the distribution to be expected from a particular
geometry, we assume that we are using directed surface sources, and then, when
setting up a plant for the first time, the sources are placed at the theoretically best
positions. The first few runs soon show whether or not any further adjustments are
necessary, and if they are, they are usually very slight and can be made by trial and
error. Once the best positions are found, it is important to ensure that the sources
are always accurately set to reproduce them. Care should be taken to make sure
that the angular alignment is correct. A source at the correct geometrical position
but tilted away from the correct direction will give uniformity errors just as much
as if it were laterally displaced. The frontispiece shows a plant that is being fitted
with a flat plate work holder for the manufacture of narrowband filters.

Where uniformity must be good over as large an area as possible but where
the ultimate is not required, it is possible to use a combination of a spherical
surface and rotating plate. A domed work holder, or calotte, is rotated about its
centre with the sources offset beneath it so that they are approximately on the
surface of the sphere, with slight adjustments made during setting up. This gives
very good results over a much larger area than would be possible with the simple
rotating flat plate. Figure 11.5 shows the interior of a machine that uses this
arrangement.

When still improved uniformity is required, it is possible to achieve it by
what is known as a planetary jig. In this arrangement, the substrates not only
rotate about the centre of the jig, but also about their own individual centres
at much greater speed, so that they execute many revolutions for each single
revolution of the jig as a whole. This carries a stage further the averaging process
that occurs with the simple rotating jig.
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Figure 11.5. Photograph showing the interior of a machine with a domed calotte.

11.1.3.1 Use of masks

It is possible to make corrections to distribution by careful use of masks. In their
simplest form they are stationary and are placed just in front of the substrates that
rotate on a single carrier about a single axis. The masks are cut so that they modify
the radial distribution of thickness. Theoretical calculations give dimensions for
masks of approximately the correct shape, which can then be trimmed according
to experimental results to arrive at the final form. For a number of reasons, it is
normal to leave the central monitor glass uncorrected. It is difficult to correct the
central part of the chamber where the mask width tends to zero, and, in any case,
the monitor is usually stationary. Furthermore, in some monitoring arrangements,
there is an advantage in having more material on the monitor than on the batch.

A further degree of freedom was introduced by Ramsay et al [8] in the form
of a rotating mask. For a large flat substrate which is approaching the dimensions
of the plant there is little other than simple rotation that can be done, in terms
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of the carrier jig, to improve uniformity. Planetary arrangements require much
more room. Stationary masks are of some help but they are somewhat sensitive
to the characteristic of the sources and are not therefore sufficiently stable for a
very high degree of uniformity. A much more stable arrangement, that has been
shown capable of uniformities of the order of 0.1% over areas of around 200 mm
diameter, involves rotating the mask about a vertical axis at a rotational speed
considerably in excess of that of the substrate carrier. This effectively corrects
the angular distribution of the source that can be positioned at the centre of the
plant. The mask rotation axis is usually placed very near the source and positioned
so that the line drawn from the source through the mask centre intersects the
perimeter of the substrate carrier. In practice the axis of rotation and the rotating
shutter are close to the source position and slight adjustment of the axis can be
made for trimming purposes. It has been found to be an exceptionally stable
arrangement.

11.2 Substrate preparation

Before a substrate can be coated, it must be cleaned. The forces which hold films
together and to the substrate are all short-range interatomic and intermolecular
forces. These forces are extremely powerful, but their short range means that we
can think of each atomic layer as being bound to the neighbouring layers only,
and being little affected by material which is further removed from it. Thus,
the adhesion of a thin film to the substrate depends critically on conditions at
the substrate surface. Even a monomolecular layer of a contaminant on the
surface can change the force of adhesion by orders of magnitude. Condensation of
evaporant, too, is just as sensitive to surface conditions that can alter completely
the characteristics of the subsequent layers. Substrate cleaning so that the
condensing material attaches itself to the substrate and not an intervening layer
of contaminant is therefore of paramount importance.

The typical symptoms of an inadequately cleaned substrate are a mottled,
oily appearance of the coating, coupled usually with poor adhesion and optical
performance. This can be caused also by such defects in the plant as
backstreaming of oil from the pumps. When these symptoms appear it is usually
advisable to extend any subsequent improvements in cleaning techniques to the
plant as well.

A good account of various cleaning methods is given by Holland [9]. A
more recent account is that of Mattox [10]. The best cleaning process will
depend very much on the nature of the contamination that must be removed and,
although it may seem self-evident, in all cleaning operations it is essential to avoid
contaminating the surface rather than cleaning it. For laboratory work, when the
substrates are reasonably clean to start with (microscope slide glass is usually
in this condition), then for most purposes it will be found sufficient to wash the
substrates thoroughly in detergent and warm water (not household detergent that
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sometimes has additives which cause smears to appear on the finished films), to
rinse them thoroughly in running warm water (in areas where tap water is fairly
pure, hot tap water will often be found adequate), and then to dry them thoroughly
and immediately with a clean towel or soft paper tissue, or, better still, to blow
them dry with a jet of clean dry nitrogen. The substrates should never be allowed
to dry themselves or stains will certainly occur which are usually impossible to
remove. Substrates should be handled as little as possible after cleaning and,
since they never remain clean for long, placed immediately in the coating plant
and the coating operation started. Wax or grease will probably require treatment
with an alcohol such as isopropyl, perhaps rubbing the surface with a clean
fresh cotton swab soaked in the alcohol and then flooding the surface with the
liquid. Care must be taken to ensure that the alcohol is really clean. A bottle of
alcohol available to all in a laboratory seldom remains clean for long and a better
arrangement is to keep it under lock and key and to allow the alcohol into the
laboratory in wash bottles that emit the alcohol when squeezed.

This basic cleaning procedure can be modified and supplemented in various
ways, especially if large numbers of substrates are to be handled automatically.
Ultrasonic scrubbing in detergent solution or in alcohol is a very useful technique,
although prolonged ultrasonic exposure is to be avoided since it can eventually
cause surface damage. It is important that the substrates should be kept wet right
through the cleaning procedure until they are dried as the final stage. Vapour
cleaning is frequently used for this. The substrates are exposed to the vapour
of alcohol or other degreasing agents so that initially it condenses and runs off,
taking any residual contamination or the remains of the agent from the previous
cleaning stage with it. The substrates gradually reach the temperature of the
vapour and then no further condensation takes place, when the substrates can
be withdrawn perfectly dry. Since the agent is condensing from the vapour phase,
it is in an extremely pure form. An alternative end to the cleaning process is a
rinse in deionised water followed by drying in a blast of dry, filtered nitrogen.

It is very difficult to see marks on the surface of the substrate with the naked
eye. Dust can be picked up by oblique illumination, but wax and grease cannot.

An old and common test for assessing the quality of a cleaning process is to
breathe on one of the substrates so that moisture condenses on it in a thin layer.
This tends to magnify the effects of any residue. The moisture acts in almost
exactly the same way as a condensing film since the condensation pattern depends
on the surface conditions. A surface examined in this way is said to exhibit a good
or bad ‘breath figure’. A contaminated surface gives a smeared pattern, while a
clean surface is completely even. Since even this step can introduce slight residual
contamination, it is better used only on a sample as an indication of the condition
of the batch.

Once the substrates are in the chamber, and they should always be loaded as
soon as possible after cleaning, they can be given a final clean by a glow discharge.
The equipment for this, which consists of a high-voltage supply, preferably
DC, together with the necessary lead-in electrodes, is fitted as standard in most
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plants. At a suitable pressure, which will vary with the particular geometry
of the electrodes but which will usually be around 0.06 mb, a glow discharge
is struck and, provided the geometry is correct, the surface of the substrates
is bombarded with positive ions. This effectively removes any light residual
contamination, although gross contamination will persist. It is not certain whether
the cleaning action actually arises from a form of sputtering or whether the glow
discharge is merely a convenient way of raising the temperature of the surfaces
so that contaminants are baked off. Generally the glow discharge is limited in
duration to five or perhaps ten minutes. It has been suggested that, although
glow discharge cleaning does remove grease, it does encourage dust particles;
for coatings where minimum dust is required, such as high-performance laser
mirrors, glow discharge cleaning is frequently omitted. Lee [11] found that the
omission of glow discharge cleaning led to a very great increase in the incidence
of moisture penetration patches in his films and consequently to a fall in the
performance of his filters.

The evaporation of the first layer should begin as soon as possible after the
glow discharge has stopped. Cox and Hass [12] used a discharge current of 80 mA
and a voltage of 5000 V for 5 min to clean substrates before coating them with
zinc sulphide, and found that the time between finishing the discharge and starting
the evaporation should be not greater than three minutes. If the time was allowed
to exceed five minutes, then the quality of the films, especially their adhesion,
deteriorated.

If, as sometimes happens, a filter is left for a period, say overnight, in an
uncompleted state, it will often be found advisable to carry out a short period of
glow discharge cleaning before starting to evaporate the remaining layers.

11.3 Thickness monitoring

Given suitable materials, clean substrates, and a machine with substrate-holder
geometry to give the required distribution accuracy, the main problem which
remains is that of controlling the deposition of the layers so that they have the
characteristics required by the coating or filter design. Of course, many properties
are required, but refractive index and optical thickness are the most important.
There is no satisfactory way, at present, of measuring the refractive index of
that portion of a film which is actually being deposited. Such measurements
can be made later but for closed loop control, dynamic measurements are
required. Normal practice, therefore, is simply to control, as far as possible,
those deposition parameters that would affect refractive index so that the index
produced for any given material is consistent. Measurements are made of the
index and the value usually obtained is used in the coating design. This procedure,
while it usually gives satisfactory results, is far from ideal and is used simply
because, at the present time, there is no better way.

Film thickness can more readily be measured and, therefore, controlled.
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The simplest systems display a signal to a plant operator who is responsible
for interpreting it and assessing the correct instant to terminate deposition. At
the other end of the scale, there are completely automatic systems in which
operator judgement plays no part and in which even operator intervention is rarely
required.

There are many ways in which the thickness can be measured. All that is
necessary is to find a parameter that varies in a suitable fashion with thickness and
to devise a way of monitoring this parameter during deposition. Thus, parameters
such as mass, electrical resistance, optical density, reflectance and transmittance
have all been used. Of all the methods, those most frequently used involve either
optical measurements of reflectance or transmittance or the measurement of total
deposited mass by the quartz-crystal microbalance.

The question of the best method for the monitoring of thin films is, of course,
inseparable from that of how accurately the layers must be controlled. This second
question is a surprisingly difficult one to answer. Indeed, it is impossible to
separate the two questions: the tolerances which can be allowed and the method
used for monitoring are closely related and one cannot be considered in depth
independently of the other.

For convenience, however, we will consider some of the more common
arrangements for monitoring, including only the most rudimentary ideas of
accuracy and then, at a later stage, consider the question of tolerances along with
some of the more advanced ideas of monitoring and its various classifications.

11.3.1 Optical monitoring techniques

Optical monitoring systems consists of some sort of light source illuminating
a test substrate which may or may not be one of the filters in the batch, and
a detector analysing the reflected or transmitted light. From the results of that
analysis, the evaporation of the layer is stopped as far as possible at the correct
point. Usually, so that the layer may be stopped as sharply as possible, the plant
is fitted with a shutter which can be inserted in front of the evaporation sources.
This is a much more satisfactory method than merely turning off the supply to the
boats, which always take a finite time to stop emitting. Such a shutter can be seen
in figure 9.4.

Almost all the early workers in the field used the eye as the detector, and the
thicknesses of the films were determined by assessing their colour appearance in
white light. In many cases they were concerned with simple single-layer coatings
such as single-layer blooming, which are not at all susceptible to errors. When
the blooming layer is of the correct thickness for visible light, the colour reflected
from the surface in white light has a magenta tint, owing to the reduction of the
reflectance in the green. The visual method is quite adequate for this purpose and
is still being widely used. A very clear account of the method is given by Mary
Banning [13], who compiled table 11.1.

In the production of other types of filter where the errors of the visual method
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Table 11.1. (After Banning [13].)

Colour change for Optical thickness
ZnS Na3AlF6 for green light

Bluish white Yellow
↓ ↓
White Magenta λ/4, first-order maximum
↓ ↓
Yellow Blue
↓ ↓
Magenta White λ/2, first-order minimum
↓ ↓
Blue Yellow
↓ ↓
Greenish white Magenta 3λ/4, second-order maximum
↓ ↓
Yellow Blue
↓ ↓
Magenta Greenish white λ, second-order minimum
↓ ↓
Blue Yellow
↓ ↓
Green Magenta 5λ/4, third-order maximum

would be too large, other methods must be used. An early paper by Polster [14]
describes a photoelectric method which is basically the same as that used most
often today. We saw in chapter 2 that if the film is without absorption, then
its reflectance and transmittance measured at any one wavelength will vary with
thickness in a cyclic manner, similar to a sine wave, although, for the higher
indices, the waves will be flattened at their tops. The turning values correspond to
those wavelengths for which the optical thickness of the film is an integral number
of quarter wavelengths, the reflectance being equal to that of the substrate when
the number is even and a maximum amount removed from the reflectance of the
substrate when the number is odd. Figure 11.6 illustrates the behaviour of films
of different values of refractive index. This affords the means for measurement.
If the detector in the system is made highly selective, for example by putting a
narrow filter in front of it, then the measured reflectance or transmittance will
vary in this cyclic way, and the film may be monitored to an integral number
of quarter-waves by counting the number of turning points passed through in
the course of the deposition. A typical arrangement to perform this operation
is shown in figure 11.7. The filter may be an interference filter or, more flexible,
an adjustable prism or grating monochromator.

Consider the deposition of a high-reflectance multilayer stack where all the
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Figure 11.6. Curves showing the variation with thickness of the reflectance of several films
with different refractive indices.

layers are quarter-waves. Let the monitoring wavelength be the wavelength for
which all the layers are one quarter-wavelength thick. The reflectance of the test
piece will vary as shown in figure 11.8 [15]. The example shown is typical of
a reflecting stack for the visible region. The reflectance can be seen to increase
during the deposition of the first layer, which is of high index, to a maximum
where the deposition is terminated. During the second layer the reflectance falls
to a minimum where the second layer is terminated. The third layer increases
the reflectance once again and the fourth layer reduces it. This behaviour is
superimposed on a trend towards a reflectance of unity so that the variable part of
the signal becomes a gradually smaller part of the total. This puts a limit on the
number of layers which can be monitored in reflectance in this way to around four,
when a fresh monitoring substrate must be inserted. In transmission monitoring,
this effect does not exist and the variable part of the signal remains a sufficiently
large part of the whole. The only problem is that the overall trend of the signal
is towards zero, so that eventually it will become too small in comparison with
the noise in the system. With reasonable optics and a photomultiplier detector the
number of layers which may be dealt with in this way is around 21. At this stage
the noise usually becomes too great.

Frequently, automatic methods of detection of the layer end point are used.
Automatic methods, however, are not universally employed and machine operator
control is still an important technique. For the greatest accuracy, the output of the
detector should be displayed on a chart recorder making it easier to determine
the turning values. With such an arrangement, a trained operator can usually



Thickness monitoring 503

Figure 11.7. A possible arrangement of a monitoring system for reflectance and
transmittance measurements.

terminate the layers to an accuracy on the monitoring substrate of around 5% or
so, depending on the index of the film, although with great care and attention
it may be possible to achieve nearer 2%. Of course, as we shall see, this does
not necessarily mean that the actual thickness of the filters in the batch will be
as accurate. Other sources of error operate to introduce differences between the
monitor and the batch.

To improve the signal-to-noise ratio it is usual to chop the light before it
enters the plant, partly because the evaporation process produces a great deal
of light during the heating of the boats, but mainly because, at the signal levels
encountered, the electronic noise without some filtering would be impossibly
great. The chopper should be placed immediately after the source of light but
before the plant, and the filter should be inserted after the plant. This arrangement
reduces the stray light to a greater extent than would placing either the filter before
the plant or the chopper after it. It is, of course, always advisable to limit as
far as possible the total light incident on the detector, partly because unchopped
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Figure 11.8. Record taken from a pen recorder of the reflectance of a monitor glass during
film deposition. (After Perry [15].)

radiation can push the detector into a nonlinear region and partly because it
can cause damage to the device especially if it is a photomultiplier. If a filter
rather than a monochromator is used, then great care should be taken to ensure
that the sidebands are particularly well suppressed. Photomultipliers and other
detectors have characteristics that can vary considerably with wavelength, and if
the monitoring wavelength lies in a rather insensitive region compared with the
peak sensitivity, then small leaks in the more sensitive region, which might not
be very noticeable in the characteristic curve of the filter, can cause considerable
difficulties from stray light, even giving spurious signals of similar or greater
magnitude than the true signal. Prism or grating monochromators are often safer
for this work, besides being considerably more flexible.

The technique in which the layer termination is at an extremum of the signal
is sometimes called turning-value monitoring. We can investigate the errors likely
to arise in this type of monitoring as follows. Suppose that in the monitoring of
a single quarter-wave layer there is an error γ in the value of reflectance at the
termination point. This will give rise to a corresponding error ϕ in the phase
thickness of the layer δ where

δ = (π/2)− ϕ.

Because of the nature of the characteristic reflectance curve of the single layer,
the error in phase thickness will be rather greater in proportion than the original
error in reflectance. The admittance of the layer will be given by the characteristic
matrix: [

cos δ (i sin δ)/y
iy sin δ cos δ

] [
1
ym

]
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where

cos δ = sinϕ and sin δ = cosϕ.

This gives

Y = sinϕ + i (ym cosϕ) /y

iy cosϕ + ym sin ϕ

where the symbols have their usual meaning. Introducing the approximations for
sinϕ and cosϕ up to and including powers of the second order, we have

Y = ϕ + i (ym/y)
(
1 − ϕ2/2

)
iy
(
1 − ϕ2/2

)+ ymϕ

and the reflectance of the monitor in vacuowill be given by

R =
∣∣∣∣∣ (ym − 1) ϕ + i (y − ym/y)

(
1 − ϕ2/2

)
(ym + 1) ϕ + i (y + ym/y)

(
1 − ϕ2/2

)
∣∣∣∣∣
2

which simplifies to

R = (y − ym/y)2

(y + ym/y)2

(
1 + 4ym

(
y2

m + 1 − y2 − y2
m/y2

)
(
y2 − y2

m/y2
)2 ϕ2

)
. (11.1)

The values of y and ϕ are related as follows:

γ = 4ym
(
y2

m + 1 − y2 − y2
m/y2

)
(
y2 − y2

m/y2
)2 ϕ2 = σϕ2 (11.2)

since the first factor in equation (11.1) is just the reflectance when γ and ϕ are
both zero.

Now, in most cases, it will not be possible to determine the reflectance at the
turning value to better than 1% of the true value. In many cases, especially where
there is noise, it will not be possible even to do as well as this. However, assuming
this value for γ , the expression for the error in the layer thickness becomes

±0.01 = σϕ2

where the sign ± is taken to agree with σϕ 2 and depends on whether or not the
turning value is a maximum or a minimum. If the error is expressed in terms
of a quarter-wave thickness which is equivalent to π/2 radians, the expression
becomes

Error = ϕ

π/2
= 0.1

(π/2) |σ |1/2
. (11.3)
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A typical case is the monitoring of a quarter-wave of zinc sulphide on a glass
substrate where y = 2.35 and ym = 1.52. Substituting these values in expression
(11.2) and using it in (11.3), the fractional error in the quarter-wave becomes
0.08. This is a colossal error compared with the original error in reflectance, and
illustrates the basic lack of accuracy inherent in this method.

In the infrared, it is often possible to use wavelengths for monitoring which
are shorter than the wavelengths of the desired filter peaks by a factor of perhaps
two or even four. This improves the basic accuracy by the same factor. For layers
similar to that considered above, the errors would then be 0.04 or 0.02. These
errors are on the limit of permissible errors, and it is clear that this simple system
of monitoring is not really adequate for any but the simplest of designs.

What makes the method particularly difficult to apply is that it is only the
portion of the signal before the turning point that is available to the operator,
who has therefore to anticipate the turning value, and the fact that trained plant
operators can achieve the theoretical figures for accuracy says much for their skill.

An alternative method, inherently more accurate, involves the termination of
the layer at a point remote from a turning value where the signal changes much
more rapidly. This consists of the prediction of the reflectance of the monitoring
substrate when the layer is of the correct thickness and then the termination of the
deposition at that point. One disadvantage is that the reflectance of the monitor,
or the transmittance, is not an easy quantity to measure absolutely, because of
calibration drifts during the process, due partly to such causes as the gradual
coating of the plant windows—almost impossible to avoid. Another is that
whereas with turning value monitoring it is often possible to use just one single
monitor, on which all the layers can be deposited, so that it becomes an exact
replica of the other filters in the batch, in this alternative method the prediction of
the reflectances used as termination values is very difficult if only one monitor is
used, because small errors in early layers affect the shape of the curve for later
layers.

Some of these difficulties may be avoided by using a separate monitor for
each and every layer. To avoid the errors due to any shift in calibration which
may occur in changing from one monitor to the next or in the coating of the
plant windows, it is wise if at all possible to choose the parameters of the system
so that the layer is thicker than a quarter-wave at the monitoring wavelength.
This ensures that the termination point of the layer is beyond at least the first
turning value, which can therefore be used as a calibration check. It will also
be found necessary to set up the reflectance scale for each fresh monitoring
substrate and the initial uncoated reflectance which will be known accurately can
be used for this. Because a large number of monitor glasses is required, special
monitor changers have been designed and are commercially available, which will
accommodate stacks of 40 or so glasses. The low-index material may have rather
poor contrast on the monitor substrates and a frequent variant of this method is
the deposition of two layers, high index followed by low index, on each monitor
substrate.
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The principal objection which most workers almost instinctively feel towards
this system is that no longer is the monitor an exact replica of the batch of filters.
This is to some extent a valid objection. The layer which is being deposited on an
otherwise uncoated substrate is condensing on top of what may be quite a different
structure from the partially finished filters of the batch. Behrndt and Doughty [16]
have noticed a definite measurable difference between layers which are deposited
on top of an already existing structure and those deposited on fresh substrates.
They compared the deposition of zinc sulphide shown by a crystal monitor (this
special type of monitor will be discussed shortly), which already had a number of
layers on it, with the layer going down on a fresh glass substrate, and found that
the layer began to grow on the crystal immediately the source was uncovered, but
that the optical monitor took some time to register any deposition. The difference
could amount to several tens of nanometres before the rates became equal. This,
they decided, was due to the finite time for nuclei to form on the fresh glass
surface and the rather small probability of sticking of the zinc sulphide until
the nuclei were well and truly formed. Once the film started to grow, all the
molecules reaching the surface would stick. On the crystal where a film already
existed, not necessarily of zinc sulphide, nucleation sites were already there and
the film started to grow immediately. The sticking coefficient of a material on
a fresh monitor surface falls with rising vapour pressure, and zinc sulphide has
a particularly large vapour pressure. Similar trouble was not experienced with
thorium fluoride, which has a much lower vapour pressure. Behrndt and Doughty
found that the problem could be solved by providing nucleation sites on the clean
monitor slides by precoating them with thorium fluoride, which has a refractive
index very close to that of glass. Some 20 nm or so of thorium fluoride was found
to be sufficient and did not affect the monitoring of zinc sulphide deposited on top.
(Since thorium fluoride is radioactive and somewhat out of favour a different low-
index fluoride would be advisable.) This effect becomes greater the greater the
surface temperature of the monitor. By changing the type of evaporation source to
an electron-beam unit, which produced less radiant heat for the same evaporation
rate, it was found possible to operate at monitor temperatures low enough to cause
the effect to disappear.

The authors also remarked on an effect which is well known in thin-film
optics. Thick substrates tend to have layers condensing on them which are thicker
than those on thin substrates in the same or similar positions in the plant. In the
case cited by the authors, the thin substrates were around 0.040 in, while the thick
ones were around half an inch thick. The difference in coating thickness was
sufficient to shift the reflectance turning values by some 40–50 nm at 632.8 nm.
This was shown, qualitatively, to be due to the difference in temperature between
the two substrates. The thicker substrates took longer to heat up than the thin
ones. The heating in this particular case was almost entirely due to radiation from
the sources and, again when electron-beam sources were introduced, the effect
was considerably reduced.

The accuracy of the monitoring process can be improved greatly if a system
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devised by Giacomo and Jacquinot [17], and known usually as the ‘maximètre’,
is employed. This involves the measurement of the derivative of the reflectance
versus wavelength curve of the monitor. At points where the reflectance is a
turning value, the derivative of the reflectance with respect to wavelength is
zero and is rapidly changing from a positive to a negative value in the case of
a maximum and vice versa in the case of a minimum. The original apparatus
consisted of a monochromator with a small vibrating mirror before the slits on
the exit side so that a small spectral interval was scanned sinusoidally. The output
signal from the detector consisted of a steady DC component, representing the
mean reflectance, or transmittance, over the interval, a component of the same
frequency as the scanning mirror representing the first derivative of the reflectance
against wavelength, a component of twice the scanning frequency, representing
the second derivative of the reflectance, and so on. A slight complication is the
variation in sensitivity of the system with wavelength that appears as a change
in the reflectance signal and hence the derivative, unless it is compensated. In
their arrangement, Giacomo and Jacquinot produced an intermediate image of
the spectrum within the monochromator, and a razor blade positioned along it
made a linear correction to the intensity over a sufficiently wide region and was
found to be accurate enough. A more usual technique today would be to make
a correction electronically. The accuracy claimed for this system is a few tenths
of a nanometre, typically 0.2–0.3 nm, and this is certainly achieved. A problem,
as we have seen in chapter 9, is that the layers are frequently insufficiently stable
themselves to retain optical thicknesses to this accuracy, especially when exposed
to the atmosphere.

A method, similar in some respects, but with some definite advantages
in interpretation, was devised by Ring and Lissberger [18, 19]. It consists of
measuring the reflectance or transmittance at two wavelengths and finding the
difference. In the original system, a monochromator was used, containing
a chopping system that switched the output of the monochromator from one
wavelength to another and back again. The AC signal from the detector was a
measure of the difference. Since the two wavelengths could be placed virtually
anywhere within the region of sensitivity of the detector, the method had greater
flexibility than the Giacomo and Jacquinot system. Greatest contrast in the two
reflectance signals as a layer was being deposited could be obtained by placing
the two wavelengths at the points of greatest opposite slope in the characteristic
of the thin-film structure at the appropriate stage. When the signals at the two
wavelengths were equal, the output of the system passed through a null, and, if
displayed on a chart recorder, made detection of the terminal point of a particular
layer, usually indicated by the null, particularly easy to detect.

More recently, the ideas inherent in these systems have been extended to
broad spectral regions. Although the principles of these more modern methods
are not new, it is the advances in detectors and in electronics and data analysis
that have made them practical. Many of the systems have been developed in
industry and frequently have not been published. In the cases of those that have
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been written up, detailed descriptions of the precise way in which they are used
have often been lacking. Usually the technique involves a comparison between
the spectral characteristic which is actually obtained at any instant, and that which
is required at the instant of termination of the particular layer. In the earlier
systems this was carried out visually by displaying both curves on a cathode-
ray tube. This works well when there is a close match between predicted and
measured performance but frequently errors in earlier layers, and changes in the
characteristics of layers from what is expected, cause the actual curves to differ
to a greater or lesser extent from the predictions. In these circumstances, there
can be great difficulty in assessing visually the correct moment to terminate a
layer. The most recent systems, therefore, are usually linked to a computer which
calculates a figure of merit which can either be displayed to a plant operator or,
better still, used in the completely automatic termination of layers.

Details of scanning monochromator systems have been published by a
number of authors. An early description of such a system is that of Hiraga et
al [20], where the scanning was carried out by a rotating helical slit assembly.

Pelletier and his colleagues in Marseilles [21, 22] have developed two such
systems. The first uses a stepping motor to rotate a grating and scan the system
over a wide wavelength region, the second uses a holographic grating with a flat
spectrum plane in which is situated a silicon photodiode array detector which can
be scanned electronically. Sullivan and his colleagues [23–25] have had great
success in implementing a completely automatic system of monitoring including
error compensation.

11.3.2 The quartz-crystal monitor

The normal modes of mechanical vibration of a quartz crystal have very high Q
and can be transformed into electric signals by the piezoelectric properties of the
quartz and vice versa. The crystal acts, therefore, as a very efficient tuned circuit
that can be coupled into an electrical oscillator by adding appropriate electrodes.
Any disturbance of its mechanical properties will cause a change in its resonant
frequency. Such a disturbance might be an alteration of the temperature of the
crystal or its mass. The principle of monitoring by the quartz-crystal microbalance
(as it is called) is to expose the crystal to the evaporant stream and to measure the
change in frequency as the film deposits on its face and changes the total mass. In
some arrangements the resonant frequency of the crystal is compared with that of
a standard outside the plant and the difference in frequency is measured, in others
the number of vibrations in a given time interval is measured digitally. Usually the
frequency shift will be converted internally into a measure of film thickness using
film constants fed in by the operator. Since the signal from the quartz-crystal
monitor changes constantly in the same direction it can be used more easily in
automatic systems than optical signals.

The mechanical vibrational modes of a slice of quartz crystal are very
complicated. It has been found possible to limit the possible modes and the
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Figure 11.9. Quartz crystal operating in shear.

coupling between them by cutting the slice with respect to the axes of the crystal
in a particular way, by proportioning the dimensions of the slice correctly and by
supporting the crystal in its holder in the correct way. Quartz-crystal vibrational
modes also vary with temperature, some having positive temperature coefficient
and some negative, and it has been found possible to cut the slice in such a
way that modes which have opposite temperature dependence are intentionally
coupled so that the combined effect is a resonant frequency independent of
temperature over a limited temperature range. The usual cut of crystal which
is used in thin-film monitors is the AT cut. This is cut from a slice which was
oriented so that it contained the x axis of the crystal and was at an angle of 35 ◦ 15′
to the z axis. The mode of vibration is a high-frequency shear mode (figure 11.9)
and the temperature coefficient is small over the range −40 ◦C to +90 ◦C, of the
order of ±10−6 ◦ C−1 or slightly greater. The coefficient changes sign several
times throughout the range so that the total fractional change in frequency over the
complete range is only around 5 × 10−5. Usually the frequency chosen is around
5 MHz although the range could be anything from 0.5 MHz to 50 or 100 MHz.

As the thickness of the evaporant builds up, the frequency of the crystal falls
and the reduction in frequency is proportional both to the square of the resonant
frequency and to the mass of the film deposited. In a typical arrangement the
measurement of mass thickness can be carried out to an accuracy of around 2%,
which should be adequate for most optical filters. Unfortunately, the sensitivity
of the crystal decreases with increasing build up of mass and the total amount
of material which can be deposited before the crystal must be cleaned is limited.
With existing crystals this makes them less useful for multilayer work, especially
in the infrared, where in most cases a single crystal could not accommodate
a complete filter. One way round this problem is to place a screen over the
filter which cuts down the material reaching it to a fraction of that reaching
the substrates in the batch. This, of course, reduces the accuracy of the system.
Because the crystal measures mass and not optical thickness, it must be calibrated
separately for each material used. One further difficulty, important only in some
applications, is that the temperature of the crystal must be limited to below 120 ◦C
(otherwise the temperature coefficient becomes excessively large), so it may not
always be possible to keep it at the same temperature as the other substrates in the
plant.

There are, however, considerable advantages in the use of quartz-crystal
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monitors. Since the output moves in a constant direction and does not reverse it
is more readily accommodated by automatic control systems. Further the crystal
does not need optical windows with their attendant difficulties of maintenance
and screening from the evaporant. Alignment is much simpler than for optical
monitors although the requirements for dimensional stability are just as severe.
In recent years there have been developments in the use of multiple-crystal
sensors distributed around the chamber able to sense changes in the plume of
material from the sources and make appropriate corrections to the monitoring
calculations. The deposition of only one material on a crystal gives much more
stable calibration than if more than one material is involved. This is because the
shear modulus of the material as well as the mass determines the shift in frequency
and hence the calibration. The common practice, therefore, is now to employ one
dedicated set of crystals for each material. With such improvements the results
that can be achieved by pure-crystal monitoring are excellent.

In the case of narrowband filters, the optical monitoring is successful because
of a built-in error compensation process. This makes it difficult for the crystal
monitor to achieve the same yield if peak wavelength is the most important
parameter. For processes where error compensation is necessary to achieve the
optical performance, optical monitoring is preferred. Then the crystal monitoring
is usually still employed, but for source and rate control sensing rather than
primary monitoring.

A useful set of instructions and tips on the quartz-crystal monitor will be
found in a paper by Riegert [26] which deals much more fully with the topics
mentioned above. Manufacturers’ manuals include good information also.

11.4 Tolerances

The question of how accurately we must control the thickness of layers in
the deposition of a given multilayer is surprisingly difficult to answer and has
attracted a great deal of attention over the years.

One of the earliest approaches to the assessment of errors permissible in
multilayers was devised by Heavens [27] who used an approximate method based
on the alternative matrix formulation in equation (2.146). His method, useful
mainly when calculations must be performed manually, consisted of a technique
for recalculating fairly simply the performance of a multilayer with a small error
in thickness in one of the layers. He showed that the final reflectance of a quarter-
wave stack is scarcely affected by a 5% error in any one of the layers.

Lissberger [28, 29] developed a method for calculating the performance of a
multilayer involving the reflectances at the interfaces. In multilayers made up of
quarter-waves, the expressions took on a fairly simple form which permitted the
effects of small errors, in any or all of the layers, on the phase change caused in
the light reflected by the multilayer to be estimated. Lissberger’s results, applied
to the all-dielectric Fabry–Perot filter, show that the most critical layer is the
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spacer. The layers on either side of the spacer layer are next most sensitive and
the remainder of the layers progressively less sensitive the further they are from
the spacer.

We have already mentioned in chapter 7 the paper by Giacomo et al [30]
where they examined the effects on the performance of narrowband filters of local
variations in thickness, or ‘roughness’, of the films. This involved the study of
the influence of thickness variations in any layer on the peak frequency of the
complete filter. The treatment was similar in some respects to that of Lissberger.
For the conventional Fabry–Perot filter, layers at the centre had the greatest effect.
If all layers were assumed equally rough, the design least affected by roughness
would have all the layers of equal sensitivity and attempts were made to find
such a design. A phase-dispersion filter gave rather better results than the simple
Fabry–Perot, but still fell short of ideal.

Baumeister [31] introduced the concept of sensitivity of filter performance
to changes in the thickness of any particular layer. The method involved the
plotting of sensitivity curves over the whole range of useful performance of a
filter, curves which indicated the magnitude of performance changes due to errors
in any one layer. His conclusions concerning a quarter-wave stack were that the
central layer is the most sensitive and the outermost layers least sensitive. An
interesting feature of these sensitivity curves for the quarter-wave stack is that the
sensitivity is greatest nearest the edge wavelength. This is confirmed in practice
with edge filters, where errors usually produce more pronounced dips near the
edge of the transmission zone than appear in the theoretical design.

Smiley and Stuart [32] adopted a different approach using an analogue
computer. There were some difficulties involved in devising an analogue
computer, but, once constructed, it possessed the advantage at the time that any
of the parameters of the thin-film assembly could be easily varied. A particular
filter, which they examined, was:

Air|4H L 4H |Air

with nH = 5.00 and nL = 1.54. Errors in one of the 4H layers and in the
L layer were investigated separately. They found that errors greater than 1%
in one 4H layer had a serious effect, errors of 5%, for example, caused a drop
in peak transmittance to 70% and errors of 10% a drop to 50%, together with
considerable degradation in the shape of the pass band. Errors of up to 10% in the
L layer had virtually no effect on either the shape of the pass band or on the peak
transmittance.

An investigation was performed by Heather Liddell as part of a study
reported by Smith and Seeley [33] into some effects of errors in the monitoring of
infrared Fabry–Perot filters of designs:

Air|H L H L H H L H L H L|Substrate

and

Air|H L H H L H L|Substrate.
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A computer program to calculate the reflectance of a multilayer at any stage
during deposition was used. Monitoring was assumed to be at or near a frequency
of four times the peak frequency (i.e. a quarter of the desired peak wavelength)
of the completed filter. It was shown that, if all layers were monitored on one
single substrate, then, provided the form of the reflectance curve during deposition
was predicted, and it was possible to terminate layers at reflectances other than
turning values, there could be an advantage in choosing a monitoring frequency
slightly removed from four times peak frequency. If no corrections were made
for previous errors, then a distinct tendency for errors to accumulate in even-order
monitoring (that is monitoring frequency an even integer times peak frequency)
was noted.

The major problem in tolerancing is that real errors cannot be treated as
small, that is to say that first-order approximations are unrealistic. The error in
one layer interacts nonlinearly with the errors in other layers and it is not possible
to treat them separately.

In recent years the most satisfactory approach for dealing with the effects
of errors and the magnitude of permissible tolerances has been found to be the
use of Monte Carlo techniques. In this method, the performance of the filter is
calculated, first with no errors and then a number of times with errors introduced
in all the layers. In the original form of the technique, introduced by Ritchie [34],
the errors are thickness errors and completely random and uncorrelated. They
belong to the same infinite population, taken as normal with prescribed mean
and standard deviation. The performance curves of the filter without errors and
of the various runs with errors are calculated. Although statistical analyses of
the results can be made, it is almost always sufficient simply to plot the various
performance curves together, when visual assessment of the effects of errors of
the appropriate magnitude can be made. The method really provides a set of
traces which reproduce, as far as possible, what would actually be achieved in a
succession of real production batches. The characteristics of the infinite normal
population can be varied and the procedure repeated. It is sufficient to calculate
some eight or perhaps ten curves for a set of error parameters. The level of
error at which a satisfactory process yield would be achieved can then readily
be determined. In the earliest version of the technique, the various errors were
drawn manually from random number tables and converted into members of a
normal population using a table of area under the error curve. (The procedure
is described in textbooks of statistics—see Yule and Kendall [35], for example.)
Later versions of the technique simply generate the random errors by computer.
Although the errors are usually drawn from a normal population, the type of
population has little effect on the order of the results. Normal distributions are
convenient to program, and since there is no strong reason for not using them and
because errors made up of a number of uncorrelated effects are well represented
by normal distributions, most error analyses do make use of them.

Figure 11.10 shows some examples of plots where the errors are simple
independent thickness errors of zero mean. From these and similar results we
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Figure 11.10. The effects of random errors in layer thickness on the performance
of thin-film filters. (a), (b) and (c) A typical longwave pass filter of design Air
|L(0.5L H0.5L)71.49H | Ge where H = PbTe (n = 5.30) and L = ZnS (n = 2.35).
(d) A DHW or two-cavity filter. Design: Air |H LL H L H L H LL H L| Ge where L =
ZnS, H = PbTe, λ0 = 9 µm. (Some of the curves have been broken for clarity.) (Courtesy
of F S Ritchie and Sir Howard Grubb, Parsons & Co. Ltd.)

find that the errors which can be tolerated in a longwave pass filter are normally
of standard deviation 5%, in a shortwave pass filter around 2.5%, and in an
antireflection coating such as the quarter–half–quarter around 3%.

In a two-cavity filter of the type in figure 11.10, the permissible errors are
not greater than 2% while, for narrower filters or filters with greater number
of cavities, the tolerances must be tighter. In fact, a rough guide is that the
permissible standard deviation is not greater than the halfwidth of the filter. In
a Fabry–Perot filter the main effect of random errors is a peak wavelength shift,
the shape of the pass band being scarcely affected even by errors as large as 10%.
The standard deviation of the scatter in peak wavelength is slightly less than the
standard deviation of the layer thickness errors so that some averaging process is
operating, although the orders of magnitude are the same.

A system of monitoring in which the thickness errors in different layers are
uncorrelated requires that each layer should be controlled independently of the
others. In this type of monitoring, therefore, we cannot expect high precision in
the centring of narrowband Fabry–Perot filters and we foresee great difficulties in
being able to produce narrowband multiple-cavity filters at all.
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Figure 11.11. The effect of 1% standard deviation reflectance error on the performance
of the Fabry–Perot filter: Air |H L H L H H L H L H | Ge. The substrate is germanium
(n = 4.0), L represents a quarter-wave of ZnS (n = 2.3) and H a quarter-wave of PbTe
(n = 5.4). The monitoring is in first order. The dashed curve is the performance with no
errors. (After Macleod [36].)

This monitoring arrangement is what we have called indirect. Systems where
each layer is controlled on a separate monitoring chip are of this type. There are
difficulties with monitoring of low-index layers on a fresh glass substrate because
of the small changes in transmittance or reflectance, and so the monitoring chips
are usually changed after a low-index layer and before a high index, two or four
layers per chip being normal. Sometimes these layers will be monitored to turning
values. More frequently what is sometimes called level monitoring will be used.
Here the layer reflectance or transmittance signal is terminated at a point removed
from the turning value where the signal is still changing, leading to an inherently
greater accuracy. This approach involves what is really an absolute measurement
of reflectance or transmittance, and so the termination point is frequently chosen
to be after a turning value rather than before, so that the extremum can be used
as a calibration. This usually implies a shorter wavelength for monitoring or the
introduction of a geometrical difference between batch and monitor, placing the
monitor nearer the source or placing masks in front of the batch.

Narrowband filters are not normally monitored in this way. Instead, all
the layers are monitored on the same substrate, usually the actual filter being
produced, a system known as direct monitoring. At the peak wavelength of
the filter, the layers should all be quarter-waves or half-waves, and so we can
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Figure 11.12. The admittance locus of the first two layers of the filter in figure 11.10 when
there is an overshoot in the first layer of around one-eighth wave optical thickness. (After
Macleod [36].)

expect a signal which reaches an extremum at each termination point. The
accuracy cannot therefore be particularly high for any individual layer and, at
first sight, it would appear that the achievable accuracy should be far short of
what must be required. Since each layer is being deposited over all previous
layers on the monitor substrate, then there is an interaction between the errors
in any layer and those in the previous layers not included in the tolerancing
calculation described above. We really require a technique which models the
actual process as far as possible and this is a quite straightforward piece of
computing. Each layer is simply considered to be deposited on a surface of optical
admittance corresponding to that of the multilayer which precedes it, rather than
on a completely fresh substrate. The results of such a simulation are shown in
figure 11.11, taken from Macleod [36], which demonstrates the powerful error
compensation mechanism that has been found to exist. The compensation has also
been independently and simultaneously confirmed by Pelletier and his colleagues
[37]. Its nature is perhaps best explained by the use of an admittance diagram.

Figure 11.12 shows such a diagram drawn for several quarter-waves. Since
both the isoreflectance contours (see chapter 2) and the individual layer loci are
circles centred on the real axis, the turning values must always occur at the
intersections of the loci with the real axis, regardless of what has been deposited
earlier. At the termination point of each layer there is the possibility of restoring
the phase to zero or to π . As far as any individual layer is concerned, it is
principally the over- or undershoot of the previous layer that affects it. If the
previous layer is too thick, the current one will tend to be thinner to compensate,
and vice versa. Of course it is impossible to cancel completely all effects of an
error in a layer. The process is actually transforming the thickness errors into
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errors in reflectance at each stage since the loci will be slightly displaced from
their theoretical position. This is not a serious error. As can be guessed from
the shape of the diagram, the reflectance error is a second-order effect. Since the
phase is self-corrected each time a layer is deposited, the peak wavelength of the
filter will remain at the desired value, that of the monitoring wavelength. The
remaining error, the residual one in reflectance, is then translated into changes
in peak transmittance and halfwidth. Since the reflectance change is always a
reduction, the bandwidth of an actual filter is invariably wider than theoretical.
The peak transmittance falls to the extent that the reflectances on either side of the
spacer layer are unbalanced. This is usually quite small and the reduction in peak
transmittance is generally much less important that the increase in bandwidth.

In this monitoring arrangement, thickness errors in any individual layer are a
combination of a compensation of the error in the previous layer together with the
error committed in the layer itself. The magnitude of the thickness errors can be
quite misleading in interpreting whether or not the filter can be made successfully.
In figure 11.10, for example, thickness errors of the order of 50% occur in some
layers and yet the filter characteristics are all useful ones.

The important characteristic is actually the error in reflectance or
transmittance in determining the turning values, and it is possible to develop
theoretical expressions which relate the reflectance or transmittance errors to
the reduction in performance of the final filter [36]. This analysis includes an
assessment of the sensitivity of each layer to errors which indicate those layers
where the greatest care in monitoring should be exercised. These can be different
from the thickness sensitivity of Lissberger [28, 29] already mentioned. With
high-index spacer layers, greatest sensitivity is found in the low-index layers
following the spacer, while with low-index spacers, the spacer itself has the
highest sensitivity. A feature of this analysis is that it demonstrates that for any
particular error magnitude, there is a point where improved halfwidth does not
result from an increase in the number of layers because the effect of errors is
increasing more rapidly than the theoretical decrease in bandwidth. Then it is
necessary to move to second- and higher-order spacers if decreased bandwidth
is to result. This corresponds to what is found in practice. The error analysis
also demonstrates that high-index spacers are to be preferred over low-index. We
have already seen in chapter 7 that high-index spacers give decreased angular
sensitivity and greater tuning range.

Formulae which permit the calculation of the errors in reflectance, in
halfwidth and in peak transmittance as a function of the magnitude of the random
errors in determining the turning values exist [36], but for most purposes a
computer simulation will suffice. It should be noted that the compensation is
effective only for the first order. Second-order monitoring, that is monitoring
at the wavelength for which the layers are all half-waves, is not effective in
preserving the peak wavelength. We can understand this because the admittance
diagram is quite different and so the compensation is of a different nature.
Likewise, third-order monitoring is not as effective as first-order, and, although
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the scatter in peak wavelength is less than that obtained with second-order
monitoring, it is, nevertheless, quite large.

Multiple-cavity filters are similar in behaviour but there are some
complications. The coupling layers in between the various Fabry–Perot sections
of the filter turn out to be particularly sensitive to errors in a rather peculiar way.
Preliminary examination of the admittance diagram for the various layers of a
multiple-cavity filter and even the standard error analysis do not immediately
reveal any marked difference in terms of error sensitivity between these layers and
those of Fabry–Perot filters. Closer investigation shows that there is always one
transition from one layer to the next occurring at or near to the central coupling
layer where a thickness error is compensated by an error of the same rather than
the opposite sense [38]. The condition is sketched in figure 11.13. An increase in
thickness in the first layer results in an increase in thickness of the subsequent
layer and vice versa. This condition must occur once between each pair of
cavities. The net result is an increase or decrease in the relative spacing of the
cavities causing the appearance of a multiple-peaked characteristic curve. The
peaks become more pronounced, the greater the relative error in spacing. One
of the peaks always corresponds to the normal control wavelength and is close
to the theoretical transmittance. The other peaks (one for a two-cavity, two for
a three-cavity, and so on) can appear on either side of the main peak depending
on the nature of the particular errors. This false compensation can be destroyed
if the second of the two layers concerned can be controlled independently of the
others, either on a separate monitor plate or by a quartz-crystal monitor, or even
by simple timing. It is essential that it should also be deposited on the regular
monitor as well, so that the compensation of the full filter should not be destroyed
[38].

Pelletier and his colleagues [39] have studied theoretically the behaviour of
the ‘maximètre’ types of monitoring systems in the production of narrowband
filters. They conclude that, as we would expect, the accuracy of the system
in the production of single layers is very much better than a single-wavelength
system. In the monitoring of narrowband filters all on one substrate there is
a compensation process operating like the turning value method but it is more
complex in operation. For very small errors in most layers the system works
adequately, but for large errors in most layers or small errors in certain critical
layers, the errors accumulate in such a way as to cause a drastic broadening
of the bandwidth of a Fabry–Perot filter or complete collapse of a multiple-
cavity filter. Pelletier has introduced two concepts to describe this behaviour.
Accuracy represents the error that will be committed in any particular layer
without reference to the multilayer system as a whole. Stability represents the
way in which the errors accumulate as the multilayer deposition proceeds. The
accuracy of the ‘maximètre’ is excellent and greater than in the turning value
method, but the stability in the control of narrowband filters is very poor and it
can easily become completely unstable. Subsidiary measurements are therefore
required to ensure stability if advantage is to be taken of the very great accuracy
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Figure 11.13. Error compensation when the admittance circles are on the same side of the
real axis. (After Macleod and Richmond [38].)

that is possible. Narrowband filters and their monitoring systems have been
surveyed by Macleod [36].

The concepts of accuracy and stability and the discovery that the one does
not ensure the other imply that different measurements may be necessary to
ensure that both are simultaneously assured. This leads to the idea of broadband
monitoring in which simultaneous measurements are made at a large number of
wavelengths over a wide spectral region and a merit function representing the
difference between actual and desired signals is computed. The merit function
can then be used as a monitoring signal and layer deposition terminated when
the merit function reaches a minimum. Although perfect deposition should
ensure a minimum of zero in the figure of merit, inevitable errors in layer index
and homogeneity will perturb the result. The accuracy and stability of such a
broadband system in the monitoring of certain components such as beam splitters
has been investigated by computer simulation [41] and evidence found for useful
error compensation. Apart from the very qualitative justification discussed above
no theory for such compensation yet exists and it may operate only in quite
specific cases. Extensions of broadband monitoring to a system that would re-
optimise those layers of a design yet to be deposited on the basis of errors
measured in earlier layers appear possible and are under investigation in a number
of laboratories. Even if successfully developed they are never likely to be able to
reduce the need for stable reproducible materials.

Quartz-crystal monitoring, in which the mass rather than optical thickness
is measured, seems unlikely to possess powerful compensation. Yet simulation
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of a simple broadband system for antireflection coatings comparing optical
monitoring with quartz crystal gave results which indicate that the quartz crystal
is in no way inferior [42]. The relative merits of quartz crystal and optical
monitoring form a subject of constant debate and published results for quartz
crystal are impressive [43, 44]. It is clear that narrowband filters, if they are to
be controlled in peak wavelength, do require direct optical monitoring, but quartz
crystal monitoring is suitable for most other filter types. The general opinion,
based to some extent on instinct, is that quartz-crystal monitoring is most suitable
for production of successive batches of identical components. For single runs
of varying coating types, optical monitoring appears normally to be preferred.
Optical monitoring is also preferred in applications such as filters for the far
infrared, where very large thicknesses of materials are deposited in each coating
run.
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Chapter 12

Specification of filters and environmental
effects

Ideally, if a filter is to be manufactured for a customer for a given application,
then the performance required by the customer, and the design, manufacturing
and test methods, should all be defined, even if only implicitly. These details
form different aspects of the specification of the filter.

There is no standard method for setting up the specification of an optical filter
or coating, the problem being much the same as for any other device. There are
three main aspects to be considered: the performance specification which lists the
details of the performance required from the filter and is usually the customer’s
specification, the manufacturing specification which defines the design and details
the steps involved in the manufacture of the filter, and the test specification laying
down the tests which must be carried out on the filter to ensure that it meets
the performance requirements, these latter aspects being mainly the concern of
the manufacturer. In the following notes a few of the more important points are
mentioned, but they do not form a complete guide to the writing of specifications,
which is a complete subject in its own right.

Optical filter specifications can conveniently be divided into two sections,
one concerned with optical properties and the other with physical or
environmental properties. We shall first of all consider the optical properties.

12.1 Optical properties

12.1.1 Performance specification

The performance specification of a filter is really a statement of the capabilities
of the filter in a language that can readily be interpreted by both system designer,
and customer, and filter manufacturer alike. It can sometimes be prepared by a
filter manufacturer from a knowledge of the performance which he knows he can
achieve, either for a customer or possibly without having a particular application

523



524 Specification of filters and environmental effects

in mind, as in the case of a standard product in a catalogue about which little
need be said here. Probably more often, the performance specification will be
written by the system designer and will state a level of performance required
from a filter in order to achieve a desired level of performance from a system. In
writing such a specification, an answer must first of all be given to the question:
what is the filter for? The purpose of the filter must be set down as clearly and
concisely as possible and this will form the basis for the work on the performance
specification. There is really no systematic method for specifying the details of
performance. Sometimes it happens that the performance of the system in which
the filter is to be used must be of a certain definite level, otherwise there will be
no point in proceeding further. The filter performance requirements can then be
quite readily set down. Often, however, it will not be quite so simple. No absolute
requirement for performance may exist, only that the performance should be as
high as possible within allowable limits of complexity or perhaps price. In such
a case, the performance of the system with different levels of filter performance
must be balanced against cost and system complexity, and a decision made as
to what is reasonable. The final specification will be a compromise between
what is desirable and what is achievable. This will often need the input of much
design and manufacturing information and close contact between customer and
manufacturer. It should always be remembered in this that specifications that
cannot be met in practice can be of only academic interest.

By way of an example let us briefly consider the case where a spectral line
must be picked out against a continuum. Clearly a narrowband filter will be
required, but what will be the required bandwidth and type of filter? The energy
from the line to be transmitted by the filter will depend on the peak transmittance
(assuming that the peak of the filter can always be tuned to the line in question),
while the energy from the continuum will depend on the total area under the
transmission curve, including the rejection region at wavelengths far removed
from the peak. The narrower the pass band, the higher the contrast between
the line and the continuum, especially as narrowing the pass band generally also
improves the rejection. However, the narrower the pass band, because of the
increased difficulty of manufacture, the higher the price, and, further, because
of the increased sensitivity to lack of collimation, the larger the tolerable focal
ratio. This latter point implies that for the same field of view, a filter with a
narrower bandwidth must be made larger to permit the use of the larger focal
ratio, which in turn will increase still further the difficulties of manufacture and,
possibly, the complexity of the entire system. Another way of improving the
performance of the filter is by increasing the steepness of edge of the pass band
while still retaining the same bandwidth. A rectangular pass-band shape gives
higher contrast than a simple Fabry–Perot of identical halfwidth and usually
possesses the additional advantage that the rejection remote from the peak of the
filter is also rather greater. This edge steepness can be specified by quoting the
necessary tenth peak bandwidth or even the hundredth peak bandwidth. Again,
inevitably, the steeper the edges, the more difficult the manufacture and the higher
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the price.
Because filters, as with any manufactured product, cannot be made exactly

to a specification in absolute terms, some tolerances must always be stated. For
a narrowband filter, the principal parameters that should be given tolerances
are peak wavelength, peak transmittance and bandwidth. Since in almost all
applications the higher the peak transmittance the better, it is usually sufficient
to state a lower limit for it. There are two aspects of peak wavelength tolerance.
The first is uniformity of peak wavelength over the surface of the filter. There will
always be some grading of the films, although perhaps small, and a limit must be
put on this. The effect is similar to that of an incident cone of illumination (which
has been discussed on pp 288–92) and it is usually best to limit the uniformity
errors in the specification to not more than one-third of the halfwidth. The second
aspect is error in the mean peak wavelength measured over the whole area of the
filter. The tolerance for this is usually made positive so that the filter can always
be tuned to the correct wavelength by tilting. For a given bandwidth the amount
of tilt that can be tolerated in any application will be determined to a great extent
by the aperture and field of the system, since the total range of angles of incidence
that can be accepted by a filter falls as the tilt angle is increased.

The bandwidth of the filter should also be specified and a tolerance put on
it, but, because of the difficulty of controlling bandwidth very accurately, it is not
usually desirable to tie it up too tightly and the tolerance should be kept as wide
as possible, not normally less than 0.2 times the nominal figure unless there is a
very good reason for it.

One other important parameter involved in the optical performance
specification, is rejection in the stopping zones, which may be defined in a number
of different ways. Either the average transmittance over a range, or absolute
transmittance at any wavelength in the range, can be given an upper limit. The first
would usually apply where the interfering source is a continuum and the second
where it is a line source, in which case the wavelengths involved should be stated,
if known.

Yet another entirely different method of specifying filter performance is by
drawing maximum and minimum envelopes of transmittance against wavelength.
The performance of the filter must not fall outside the region laid down by the
envelopes. It is important that the acceptance angle of the filter also be stated. This
type of specification is rather more definite than the first type mentioned above.
A disadvantage, however, is that it may be rather too severe since everything is
stated in absolute terms when average values may be just as good. A further
point is that it is impossible to devise a test to determine whether or not a filter
meets an absolute specification of this type. Finite bandwidth of the measuring
apparatus will ultimately be involved. It is advisable, therefore, if specifying a
filter in this way, to include a note to the effect that the performance specified at
each wavelength is the average over a certain definite interval.

There is little else that can be said in general terms about the optical
performance specification. In any one application these factors will assume
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different relative importance and each case must to a very great extent be
considered on its own merits. Clearly this is an area where it is of prime
importance that the system designer works very closely with the filter designer.

12.1.2 Manufacturing Specification

We shall now consider briefly the manufacturing specification containing the filter
design together with details of the manufacturing method. In most cases, this will
be intended for the use of the plant operator.

First, the filter design, including the materials, will be given. Most filters
contain not more than three different thin-film materials having relatively low,
medium and high refractive index. Designs are usually written in terms of quarter-
wave optical thicknesses at a reference wavelength λ0 using the symbols L, M and
H . Typical designs may be written:

L|Ge|L H L H H L H L = ZnS H = Ge

M|Si|M H L H H L H L = CaF2 M = ZnS H = Ge

the substrates being indicated by the symbols | Ge | and | Si |. Next the
constructional details should be written down. These consist of the monitoring
method to be used, including the wavelengths, and the form of the signals
together with other important details such as substrate temperature, special types
of evaporation sources, and so on. It will be found useful to arrange the whole
manufacturing specification in the form of a table that can be issued to the
plant operators for use as a checklist. Operators should always be encouraged
to observe critically the operation of the plant so that faults or anomalies can
be spotted at an early stage, and it is a help in this if they are expected to list
comments in appropriate places on the form. It will also be found convenient to
give each filter production batch a different reference number. Once the filters are
produced, the completed specification form can then be filed by the plant operator
to form the plant logbook. Additional information such as pumping performance
can also be recorded on the sheets, useful from the maintenance point of view.
For calculation purposes there is no consensus on whether the incident medium
should be at the top or the foot of a table of design. For manufacture, however,
the first layer to be deposited is necessarily next to the substrate and it is usual to
list the layers in tables of manufacturing instructions from innermost, that is next
to the substrate, to outermost.

Software products can assist in setting up the manufacturing specification,
especially the sequence of monitoring signals. In some cases these can be
automatically fed into the deposition controller so that the printed copy can be
simply for reference and record keeping.
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12.1.3 Test Specification

Probably the most important specification of all is the test specification. This
lays down the complete set of tests that will be carried out on the filters to
measure the performance. It should always be remembered that, although the
filter will have been designed to meet a particular performance specification, it
is only the performance laid down in the test specification that can actually be
guaranteed, and, although it may seem obvious, the test specification must be
written with the requirements of the performance specification always in mind. In
fact it is possible simply to specify the performance of a filter as that which will
pass the appropriate test specification. It will sometimes be found that the test
specification, if it exists at all, is a rather loose document or that sometimes the
customer’s performance specification will serve both roles. If so, then someone
somewhere along the line will be interpreting the performance specification in
order to decide on the tests which have to be applied, and it is always better to
have the tests and the method of interpretation in writing.

The first essential in any test specification is a definite statement of the
performance or the make and type of the test equipment to be used. This ensures
that results can be repeated if necessary, even if remote from the original testing
site. Next, the various tests together with the appropriate acceptance levels can be
set down.

It is in the measurement of such factors as uniformity where the tests and
the method of interpretation are particularly important. Absolute uniformity is
impossible to measure in the ordinary way. The peak wavelength would have to
be measured at every point on the filter with an infinitesimally small measuring
beam. A simpler and usually satisfactory method is to check the peak wavelength
at the centre of the filter and at four approximately equally spaced areas around
the circumference, using a specified area of measuring beam. The spread over
the filter is taken to be the spread in the values of peak wavelength over the five
separate measurements. The spectrometer used for the measurement will also
have a finite bandwidth and features of the filter which are rather less than this
will, in general, not be picked up. This applies particularly to the measurement of
rejection. Rejection must be measured over a very wide region, and for the test
to be completed in a reasonable time, a fast scanning speed must be used, which
in turn requires a broad bandwidth. This averages the measurement over a finite
region and is one of the reasons for stating the actual wavelengths of the lines if
the energy that is to be rejected has a line rather than a continuous spectrum.

A technique for measuring the rejection of films using a Fourier transform
spectrometer has been suggested by Bousquet and Richier [1]. While this is
difficult to apply in the visible region, the availability of commercial Fourier
transform spectrometers for the infrared makes it a feasible technique for infrared
filters.

Of course, inevitably, the more extensive the testing which must be carried
out on each individual filter, the more expensive that filter is going to be.
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Performance testing of low-price standard filters is, in the main, carried out on
a batch basis, with only a few details being checked on each individual filter. This
is a point which should be borne in mind by a prospective customer buying a
standard filter from a catalogue, that a superlative level of performance cannot be
absolutely guaranteed from a single given filter, which, by its price, cannot have
had more than the basic testing carried out on it.

So far we have dealt with the directly measurable optical performance of
the filter, but there are additional properties which are of a subjective nature and
rather more difficult to measure. These are connected with the quality and finish
of the films and substrates. Substrates are specified as for any optically worked
component, details such as flatness or curvature of surface, degree of polish and
allowable blemishes, sleeks and the like can all be stated. We shall not consider
substrates further here. There is a specification, used particularly in the USA,
MIL-E13830 A, which gives a useful set of standards for optical components
including substrates.

The quality of the coating can be measured by the presence or absence of
defects such as pinholes, stains, spatter marks and uncoated areas.

Pinholes are important for two reasons. First they are actually small
uncoated, or partially uncoated, areas and as such will allow extra light to be
transmitted in the rejection regions, reducing the overall performance of the filter.
Second, and this is especially so for filters for the visible region, they are unsightly
and detract from the appearance. In fact, they usually look worse to the eye than
the effect they actually have on performance. Apart from the purely subjective
appearance, the permissible level of pinholes can be defined on the basis of a given
maximum number of a certain size per unit area, calculated to reduce the rejection
in the stop bands by not more than a given amount. To calculate this figure, a
minimum area of filter that will be used at any one time must be assumed. This
will depend on the application, but in the absence of any definite information on
this a suitable figure is 5 mm × 5 mm. Obviously the smaller this area, the lower
the size of the largest pinhole. Of course, the actual counting of pinholes in any
filter would involve a prohibitive amount of labour and in practice, with visible
filters, the measurement is usually carried out visually, comparing the filter with
limit samples. A simple fixture consisting of a light box with sets of filters laid
out on it, some just inside, some on, and some just outside the limit, can be easily
constructed. For infrared filters on transparent substrates this method can also be
applied, but for filters on opaque substrates it is easier to measure actual rejection
performance.

Spatter marks are caused by fragments of material ejected from the sources
and, unless gigantic, do not affect the optical performance, the danger being that
the fragments may be removed later, leaving pinholes. The incidence can be tied
down just as with pinholes, but, as the optical performance is not affected unless
the number of marks is enormous, the basis for deciding what is permissible
is entirely subjective—although usually if the spatter is particularly bad it will
be accompanied by pinholes. Often specifications will state that there must



Optical properties 529

be no spatter marks visible to the naked eye, but this is vague, particularly
when dealing with inspectors with no optical experience. Disagreements can
arise between manufacturer and customer especially when, as can happen, the
customer’s inspectors use an eyeglass to assist the naked eye. The best course is
probably to relate the test to agreed limit samples when it can be carried out in
exactly the same way as for pinholes, or else to omit it altogether.

Stains can be caused in a number of ways. The most common reason
is a faulty substrate. One type of mark that is often seen, especially when
antireflection coatings are involved, is due to a defect in the optical working.
The polishing process consists partly of a smoothing out of irregularities in the
surface by a movement of material. If the grinding, which always precedes the
polishing, has been too coarse, then the deeper pits during the polishing are filled
in with material which is only loosely bonded to the surface, although the polish
appears satisfactory to the eye. In the heating and then coating of the surface,
this poorly bonded material breaks away, leaving a patch of surface that is etched
in appearance and often possesses well-defined boundaries. The only remedy for
this type of blemish is improved polishing techniques. Other stains that may
appear can be caused by faulty substrate cleaning. If water or even alcohol
is allowed to dry on a surface without wiping, water marks appear. Droplets
should always be removed from the surface by a final vapour cleaning stage,
or by blowing with clean air (great care must be taken to make sure the air is
clean and does not carry oil vapour with it), or by wiping with a clean tissue or
cloth during the cleaning process. Water should never be allowed to dry on the
surface by itself. Stains, unless particularly bad, do not usually affect the optical
performance to anything like the extent their appearance would suggest (except
in the case of very high performance components such as Fabry–Perot plates or
laser mirrors), and the basis for judging them is again subjective.

Finally, the filter must be held in a jig during coating so that at least some
uncoated areas must exist. These usually take the form of a ring around the
periphery of the filter, perhaps around 0.5 mm wide. There will be a slight
taper in the coating at the very edge which must also be allowed for, the
combined taper and uncoated area forming a strip perhaps 1.0 mm in width. The
uncoated area actually serves a useful purpose because mechanical mounts can
grip the component at this point without damaging the coating. Damage near
the edge is dangerous because it is there that delamination is frequently initiated.
Jigs that allow the substrates to chatter as they rotate can cause such defects.
Uncoated areas should not occur within the boundary of the filter proper; when
they do it is a sign of adhesion failures that may recur. They may be due to
substrate contamination or to moisture penetration with weakening of adhesion,
as described in chapter 9, but they are always cause for rejection of the component.
Blisters, too, which are a slightly different version of the same fault, are also cause
for immediate rejection.
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12.2 Physical properties

As far as the physical properties of the filter are concerned, there are two primary
aspects. First, the dimensions of the filter must meet the requirements laid
down. This is purely a matter of mechanical tolerances that we need not go into
any further here. Second, the filter must be capable of withstanding, as far as
possible, the handling it will receive in service and also of resisting any attack
from the environment. The assessment of the robustness of the coating will now
be considered in greater detail.

The approach almost invariably used in defining and testing the robustness
of a coating is to combine the performance and test specifications. A series of
tests reproducing typical conditions likely to be met in practice is set up, and then
performance is defined as being a measure of the ability to pass the particular tests.
This avoids the difficulty in setting up a more general performance specification.

There is one basic difference between the tests of optical performance and
those we are about to discuss. Optical tests are all nondestructive in nature while
tests of robustness are, in the main, destructive. The filters are tested deliberately
to cause damage, and the extent of the damage, if it can be measured, used as
a measure of the robustness of the filter. It is thus not possible to carry out the
whole series of tests on the actual filter that is to be supplied to the customer and
it is normal to use a system of batch testing. A number of filters is made in a batch
and either one or perhaps two chosen at random for testing. Provided these test
filters are found acceptable then the complete batch is assumed satisfactory. This
arrangement is, of course, not peculiar to thin-film devices. Another aspect of this
batch testing is involved in what is known as a type test. Often if a large number
of filters, all of the same type and characteristic, are involved, a series of very
extensive and severe tests will be carried out on a sample of filters from a number
of production batches. The test results will then be assumed to apply to the entire
production of this type of filter. Once the filters have passed this type test, normal
production testing is carried out on a reduced scale. It is imperative that once the
type test has been successful there are no subsequent changes, even of a minor
nature, in the production process, otherwise the type test would be invalidated.

12.2.1 Abrasion Resistance

Coatings on exposed surfaces, such as the antireflection coating on a lens, will
probably require cleaning from time to time. Cleaning usually consists of some
sort of rubbing action with a cloth or perhaps lens tissue. Often there may
be dust or grit on the surface of the lens, which may not be removed before
rubbing. The result of such treatment is abrasion and it is important to have the
abrasion resistance of exposed coatings as high as possible. An absolute measure
of abrasion resistance is not at all easy to establish because of the difficulty of
defining it in absolute terms, and the approach which has been adopted has been to
reproduce, under controlled conditions, abrasion similar to that likely to be met in
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Figure 12.1. Schematic arrangement of an abrasion machine. The reciprocating table is
supported by two horizontal bars not shown in the diagram. (After Holland and van Dam
[2].)

practice only rather more severe. The degree to which the coating withstands the
treatment is then a guide to its performance in actual use. In the UK a great deal
of work was carried out on standardising this test by the Sira Institute (formerly
the British Scientific Instrument Research Association). Their method involved a
standard pad made from rubber loaded with emery powder, which, with a precise
load, is drawn across the surface under test a given number of times—typically
20 times with a loading of 5 lb in−2. Their work was directed mainly towards the
assessment of the performance of magnesium fluoride single-layer antireflection
coatings for the visible. It has been established that sufficiently robust coatings
of this type do not show signs of damage under the normal test conditions given
above. Abrasion resistance, however, has been found to be not just a function
of the film material but also of the thickness. Multilayer coatings are generally
much more prone to damage than either of the component materials in single-
layer form. It is therefore necessary to establish fresh standards for each and every
type of coating. There are also difficulties in achieving exactly the same abrading
performance from different batches of abrading pad. Similar tests using pads
that may or may not include abrading particles are widely used. In the spectacle
industry it is not uncommon to find similar tests using rough cloth and even steel
wool.

Unfortunately such tests do not normally produce an actual measure of
the abrasion resistance, but merely decide whether or not a given coating is
acceptable. Because of this, some investigations into a better arrangement were
carried out by Holland and van Dam [2]. Their test is based on the principle that a
measurement of abrasion resistance must involve actual damage to the films. The
measure of the damage can then be taken as a measure of the abrasion resistance.
Their method was to subject the films to abrasive action that varied in intensity
over the surface and that was, at its most intense point, sufficiently severe to
remove completely the coating. The point at which the coating just stopped being
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completely removed was then found. Of course the method is still relative in
that a different standard must be set up for every thin-film combination, but it
does permit comparison of the abrasion resistance of similar coatings, impossible
with the previous method. The apparatus is shown in figure 12.1. It consists of
a reciprocating arm carrying the abrasive pad of the Sira type, and is 0.25 in in
diameter, loaded with 5.5 lb. The table carrying the sample under test rotates
approximately once for every three strokes of the pad. The pad traces out a series
of spirals on the surface of the sample and the geometry is arranged so that the
diameter of the abraded area is approximately 1.25 in. The abrasion takes the
form of a gradual fall off in intensity towards the outside of the circle, and the
test is arranged to carry on for such a time that the central area of the coating
is completely removed while the outside not at all. Holland and van Dam found
that some 200 strokes were sufficient to do this with single layers of magnesium
fluoride. They then defined the abrasion resistance measure of the coating by the
formula

w =
(
d2/D2

)
× 100%

where d is the diameter of the circle where the coating has been completely
removed and D is the diameter of the area that has been subjected to abrasion.
Holland and van Dam studied particularly the case, as had Sira, of the single-
layer magnesium fluoride antireflection coating for the visible region and they
quote a wide range of most interesting results.

They investigated many different conditions of evaporation including angle
of incidence and substrate temperature. A common value for the abrasion
resistance of a typical magnesium fluoride layer of thickness to give antireflection
in the green is between two and five, depending on the exact conditions of
deposition. Best results were obtained when the substrate temperature during
evaporation was 300 ◦C and the glow-discharge cleaning before coating lasted
for 10 min. There was a significant reduction in abrasion resistance if either the
temperature were allowed to drop to 260 ◦C or if there were only 5 min of glow-
discharge cleaning. They also found that the abrasion resistance of the film is
increased considerably by burnishing with a Selvyt cloth or by baking further at
400 ◦C in air after deposition. Another significant result obtained concerns the
occurrence of a critical angle of vapour incidence during film deposition, beyond
which the abrasion resistance falls off extremely rapidly. This critical angle varies
slightly with film thickness but is approximately 40◦ for thicknesses in excess of
300 nm and rises as the thickness decreases.

The test appears never to have received general recognition in specifications.
It should be extremely useful as a quality-control test in manufacture, especially
as a reduction in quality can be detected long before it drops below the level of
the normal abrasion test, and remedial action can be taken before any coatings are
even rejected.
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12.2.2 Adhesion

Adhesion has already been discussed in chapter 9. In the simplest type of adhesion
test, a piece of adhesive tape is stuck down on the surface of the coating and pulled
off. Whether or not this removes the film is taken as an indication of whether the
adhesion of the film to the substrate is less than or greater than that of the tape to
the film. The test is again of the go–no-go type.

It is important if consistent results are to be obtained that some precautions
are taken in carrying out the test. The first is that the tape should have a consistent
peel adhesion rating, which should be stated in the specification. Peel adhesion
is measured by sticking a freshly cut piece of tape on a clean surface, usually
metal, and then steadily pulling it off, normal to the surface. The tension per
unit tape width, usually expressed in grams per inch, is the measure of the peel
adhesion rating of the tape. The rating obtained in this way is usually virtually the
same as the rating obtained when the tape is removed from a thin-film coating.
Some precautions in applying the test are necessary. Fresh tape should always be
used. The tape should be stuck firmly to the coating, exerting a little pressure and
smoothing it down. It should be removed steadily, pulling it at right angles to the
surface, and never snatched off, which would put an uncontrolled impulsive load
on the film and would certainly lead to inconsistent results. The same thickness
of tape should be used for all testing. With thicker tape of the same peel adhesion
rating, the test would be slightly less severe. The width of the tape, however, does
not matter. A rating which is often used is 1200 g in−1 width. If necessary, the
adhesion rating of any tape can easily be checked using a spring balance. For
obvious reasons the test is often called the ‘Scotch Tape test’.

Attempts have been made to devise quantitative techniques for adhesion
measurement and a number of these have also been discussed in greater detail in
chapter 9. The simplest and most straightforward is the direct-pull test, involving
the attachment of the flat end of a cylindrical pin to the coating, followed by
measurement of the force necessary to pull it off. Provided the coating is detached
with the pin, the force required divided by the area of the pin is then the measure
of adhesion. An alternative test that has some advantages as well as disadvantages
is the scratch test, in which a loaded stylus is drawn across the coating with
gradually increasing load. At each stroke the coating is examined under a
microscope for signs of damage. The load at which the coating is completely
removed is taken as the measure of adhesion. The Goldstein and DeLong [3]
technique involving the use of a microhardness tester as a scratch tester has also
been mentioned in chapter 9.

12.2.3 Environmental Resistance

One further aspect of thin-film performance is also of very great importance. This
is the resistance that the film assembly offers to environmental attack. Probably
the most important aspect of the environmental performance of the filter is the
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resistance to the effects of humidity but the resistance to other agents, such as
temperature, vibration, shock, and corrosive fluids such as salt water, may all be
important.

There are two possible approaches. Either the filter may be expected to
operate satisfactorily while actually undergoing the test or it may only be expected
to withstand the test conditions without suffering any permanent damage,
although the performance need not be adequate during the actual application of
the test. The latter is usual as far as interference filters are concerned, and in such
a case the specification is known as a ‘derangement specification’ because it is
sufficient that the performance is not permanently deranged by the application of
the test conditions. In what follows we shall assume that the type of specification
is the derangement type. Derangement specifications are easier to apply than the
other type because the normal performance measuring equipment can be used
remote from the environmental test chamber.

Of all the agents which are likely to cause damage, atmospheric moisture is
probably the most dangerous. For most applications, particularly where severe
environments are excluded, it will be found sufficient for the filter to be tested
by exposing it for 24 h to an atmosphere of relative humidity 98% ± 2% at a
temperature of 50 ◦C ± 2 ◦C. It is often found that although the coatings are not
removed by this test they are softened, and it is useful to carry out this test before
the adhesion or abrasion-resistance tests, which can follow on immediately after.

A great deal of work has been carried out by government bodies on the
environmental testing of equipment and components for the Services. This
has resulted in specifications that are equivalent to the most severe conditions
ever likely to be met in both tropical and polar climates. These specifications
include in the UK DEF133 and DTD1085 for aircraft equipment. Relevant
specifications in the USA include MIL-C-675, MIL-C-14806, MIL-C-48497 and
MIL-M-13508. The tests vary from one specification to another but can include
exposure to the effects of high humidity and temperature cycling over periods of
28 days, exposure conditions equivalent to dust storms, exposure to fungus attack,
vibration and shock, exposure to salt, fog and rain, and immersion in salt water.
It is not always possible for coatings to meet all tests in these specifications and
concessions are often given if the coatings are to be enclosed within an instrument.
Humidity and exposure to salt fog and water are particularly severe tests. Fungus
does not normally represent as severe a problem to the coatings as it does to
the substrates. Certain types of glass can be damaged by fungus and in such
cases coatings, even if they themselves are not attacked, will suffer along with the
substrates. Most instruments likely to be exposed to sand or dust are adequately
sealed since their performance is likely to suffer if dust or sand is permitted to
enter. Thus dust storms are usually a danger only to those elements with surfaces
on the outside of an instrument.
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Chapter 13

System considerations: applications of
filters and coatings

It is only rarely that thin-film filters or coatings are used by themselves. They
usually form part of an optical system and it is in integrating coatings into such
systems where many problems appear. There is an unfortunate tendency to leave
coatings until late in the design process and some of the most severe problems
occur during the attempted integration of coatings once the remainder of the
design has been frozen. Such problems could frequently have been avoided had
the incorporation of coatings been studied at a time when there was still some
design flexibility.

Coatings cannot automatically be deposited with equal ease on any surface.
Furthermore some tolerances must be permitted on coating performance. Then
there is the shift in coating characteristics with angle of incidence, with
temperature and with atmospheric humidity. Coatings often possess considerable
intrinsic strain and the resulting stress can cause distortion that is significant in
substrates of interferometric quality if they are not sufficiently thick. Lack of
uniformity in coatings can also cause problems. Some of these difficulties arise
from coating characteristics that show rapid change of phase with wavelength,
characteristics frequently possessed by broadband reflectors. A lack of uniformity
in the coating, if it is dielectric, is equivalent to a wavelength variation over the
surface and if the phase dispersion is high then the resulting phase errors can be
out of all proportion to the errors in thickness. The net result is an apparent loss of
figure of the coated component that may show surprisingly large variations with
wavelength. Extended-zone reflectors frequently exhibit rapid phase dispersion
and so should be used with caution in applications where interferometric quality
is required. All of these points have been discussed elsewhere in this book and
the intention of repeating them here is simply to reinforce the point that coatings
are like any other component and must be designed into the system as an integral
part and not simply added at a later stage.

Coatings rarely stretch right to the edge of a substrate. Substrates must be
held in jigs during coating and it is normal to do this by a lip that obscures the rim
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of the substrate leaving an uncoated ring. This is not entirely a disadvantage.
Delamination is always most likely to start at the edge of a coating and the
uncoated rim around the coating gives it a much more regular edge and reduces
the risk of delamination. Further, the mount for the component need not make
contact with the coating where it could damage it and increase the chance of
spontaneous delamination. The uncoated ring can, however, be a disadvantage if
the component is a filter that rejects certain wavelength regions because stray
light can leak through the uncoated part unless precautions to baffle it are
taken. The uncoated area can be considerably reduced by the use of wire clips
to hold the substrates by the edges during deposition, a technique frequently
used with components such as sunglasses, but problems with stray light leakage
can sometimes lead to the requirement that there should be no uncoated area
whatsoever. The normal method for achieving this is to cut the component after
coating. This should be carried out only if absolutely necessary. It increases the
cost considerably because of the risk of failure involved in the cutting operation
and it inevitably leaves a coating edge that is uneven on a microscopic scale and
more likely to include stress concentrators that can initiate delamination.

It is always more difficult to coat a curved surface than a plane one and the
difficulties increase with the curvature. Difficult coatings with tight tolerances
should wherever possible be deposited on plane surfaces. Narrowband filters can
be tuned to shorter wavelengths by tilting. If small tilts can be permitted (by the
use of wedged holders for example) then the tolerances on peak wavelength can
be relaxed.

Standard size components are always to be preferred. The manufacturer
already has the necessary jigs and fixtures and the substrates are available in
quantity. Fewer test runs are required and there are fewer unexpected difficulties.
When something goes wrong with the process an entire batch of components is
usually lost. Such failures are more likely with components of unusual shape or
size, and so a greater number of uncoated components must be produced to ensure
the correct number of final coated components. All of this means that the cost of
nonstandard components is considerably greater than standard.

Most filters will consist of a series of components some of which are
designed to reject radiation in regions outside the pass bands. Surprisingly
disappointing performance can be achieved in cases where the rejected light
is reflected rather than absorbed. We can illustrate this by considering two
surfaces having reflectances and transmittances of R1, T1, R2 and T2. Light can
be considered as being reflected backwards and forwards between the surfaces
and being combined incoherently. The net transmittance is then given by the
expressions in section 2.14 (p 70) as:

T = T1T2

1 − R1 R2
.

If R1 and R2 are zero, that is, what is not transmitted is absorbed, then we have
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the expected result

T = T1T2.

However, if R1 = 1 − T1 and R2 = 1 − T2 then the result becomes similar to
equation (2.140):

T = 1

(1/T1)+ (1/T2)− 1
.

Consider the case where T1 = T2 = 0.01. The first expression gives T =
(0.01)2 = 0.0001, a very satisfactory figure, while the second expression gives

T = 1

100 + 100 − 1
= 1

199
= 0.005

very disappointing from the point of view of rejection. The solution is somehow to
reduce the effect of R1 and R2 either by ensuring that the reflected beams rapidly
walk out of the system aperture, by, for example, tilting the components relative
to each other, or by placing absorbing components in between the two surfaces so
that the beams are rapidly attenuated.

Sometimes reflecting and absorbing components will be combined in a
system. Examples of this might be a heat-reflecting filter coating consisting
of an interference shortwave pass filter deposited on a heat-absorbing glass or
a narrowband filter consisting of an all-dielectric interference section, a metal–
dielectric coating and an absorption glass. It is usually best in such cases to
assemble the components such that the low-loss interference section faces the
source. This ensures that the maximum amount of energy is rejected by reflection
and minimises the temperature rise and possible resulting long-term damage. In
the case of the narrowband filter assembly, the overall rejection performance of
the filter is assisted by placing the absorbing glass component in between the two
interference sections for the reasons discussed above.

Polarisation effects can sometimes be the cause of unexpected performance
variation. We can illustrate this with the somewhat extreme case of a simple
single-layer dielectric beamsplitter shown in figure 13.1. The performance of
such a coating, assuming a quarter-wave (monitored at normal incidence) of zinc
sulphide (n = 2.35) immersed in glass (n = 1.52) at an angle of incidence of 45 ◦,
is given by

Rs = 33.15% Rp = 4.03% Rmean = 33.15%
Ts = 66.85% Tp = 95.97% Tmean = 81.41%

Let us assume that the reflecting surface has a reflectance of 100% and
calculate the irradiance of the output beam as a fraction of the input irradiance. A
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Figure 13.1. Arrangement of a single-layer dielectric beamsplitter used for calculation of
efficiency discussed in the text.

simple calculation involves the unpolarised figures for T and R and yields T R=
(18.59% × 81.41%) = 15.13%. However, this calculation has taken no account
of the polarising effect of the beam splitter itself. The true figure for unpolarised
incident light should be 0.5(RsTs + RpTp) = 13.01% (a difference greater than
10% of the previous figure). Polarisation of the input beam alters the results
still further. With s-polarised input light the figure would be RsTs = 22.16%
while with p-polarised light it would be as low as RpTp = 3.87%. Thus with
varying degrees of polarisation of the input light the efficiency of the system can
vary from 3.87% to 22.16%. To avoid performance fluctuations resulting from
such effects, a quarter-wave plate with axis at 45◦ to the plane of incidence is
often inserted in the input side of a system to convert both s- and p-polarised
light to circularly polarised, which makes the overall performance of the system
equivalent to unpolarised light. (It is unlikely that the input light should be already
circularly polarised, but of course in that case the quarter-wave plate could make
the situation worse.) Metal layers suffer less from polarisation effects, but they,
too, do still have significant polarisation-sensitive behaviour.

That was an example of an immersed coating. Note that immersed coatings
always have very high effective angles of incidence since the important quantity
for Snell’s law is n0 sinϑ0 rather than ϑ0. Thus, in immersed coatings, angle-
of-incidence effects are invariably enhanced. Polarisation effects are particularly
pronounced but so also are the simple wavelength shifts associated with a change
in angle of incidence.

Even in coatings that are not immersed, the changes in angle of incidence
associated with a highly divergent or convergent beam can cause problems,
especially if the component is tilted with respect to the axis. Sometimes the
problems can be eased by deliberately introducing a variation in coating thickness
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over the surface of the component. This can be particularly effective when a point
source is used close to a component when the small source dimensions ensure
that only a small range of angles of incidence correspond to each point on the
component surface.

A point to watch concerns polarisation effects associated with skew rays.
p- and s-polarisation performance is calculated with respect to the plane of
incidence. A skew ray possesses a plane of incidence that is usually rotated with
respect to the principal plane of incidence containing the axial ray of the system.
This can cause problems in large aperture polarisers, for example, where, although
the s-transmittance for the skew rays can be very low, the corresponding plane of
polarisation is actually rotated and can lead to an appreciably large leakage of
light which is s-polarised with reference to the plane of incidence of the axial ray.
As a rough example we can consider a cone of 1◦ half-angle incident at 45◦ on
a polarising beam splitter. The plane of incidence of the marginal azimuthal rays
will be rotated at an angle of approximately 1◦/ sin 45◦, or 1.4◦ with respect to the
plane of incidence of the axial ray. Let us assume that both axial ray and marginal
ray have zero transmittance for s-polarised light and unity for p-polarised light.
Because of the rotation of the plane of incidence the effective transmittance of the
marginal ray in the s-plane of the axial ray will then be sin 2 (1.4◦) or 0.06%.

A very useful account of problems associated with the integration of thin-
film coatings into optical systems has been written by Matteucci and Baumeister
[1].

13.1 Potential energy grasp of interference filters

It is worthwhile considering why interference filters are used in preference
to other types of wavelength-selecting devices such as prism and grating
monochromators. Of course the size and mechanical stability of the thin-film
filter are in themselves powerful arguments in favour of its use, and, especially in
cases where space and weight are at a premium, in satellite-borne instruments for
example, they are probably sufficient. However, there is an even more compelling
reason for adopting thin-film filters and this is the greatly increased potential grasp
of energy over dispersive systems.

Compared with a grating monochromator, for instance, the thin-film filter
with the same bandwidth is capable, provided the rest of the system is correctly
designed round it, of collecting several hundred, and in some cases thousand,
times the amount of energy collected by the monochromator. This section,
therefore, is devoted to a comparison of the interference filter with the diffraction
grating, particularly from the point of view of the potential total energy grasp.

In order to compare the energy-gathering properties of various components,
we have to assume that each is used in an ideal system designed to make
maximum use of its energy-gathering powers, that the bandwidths of the various
systems are equal, and that any dispersive components are used well within their
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Figure 13.2. An idealised dispersive monochromator. (After Jacquinot [2].)

limiting resolutions so that their response functions are not complicated by large
diffraction effects. We shall also assume that the source of illuminations is of
equal brightness in all cases and that the collecting condensing optics are such that
the entrance apertures of all systems are completely filled. The energy grasp under
these conditions is then computed in each case as a function of the appropriate
area of the component, and the comparison made on the basis of these figures.

In fact this analysis has been carried out by Jacquinot [2] for a diffraction
grating, a prism and a Fabry–Perot interferometer. He has shown first that there
is always a clear advantage in using a diffraction grating rather than a prism,
the advantage varying from around three to perhaps 100 with the dispersion of
the prism materials. Because of this, the comparison that primarily concerns us
is between the interference filter and the diffraction grating. Jacquinot has also
compared the Fabry–Perot interferometer having an air spacer with the diffraction
grating, and showed that there is a clear gain of 300–400 times in the energy grasp
of an interferometer over a grating of the same area. The case of an interference
filter is similar but the spacer layer has an index appreciably greater than unity,
especially in the infrared, which increases its grasp still further. In the analysis
below, we shall follow the main lines of Jacquinot’s argument, but shall extend
the analysis to include a spacer of index other than unity.

Jacquinot considers a spectrometer consisting of an input slit, a collector and
collimator of some description, a dispersive element which here is a grating, and
an output element imaging the entrance slit on the exit slit, the final element in
the system. It is assumed that the resolution is limited by the width of the slits
and that the grating is capable of higher resolution if required. This means that
we can define the resolution purely in terms of slit width and dispersion. In this
condition the maximum luminosity for a given resolution will be achieved when
the entrance and exit slit widths, expressed in terms of spectral interval, are equal,
when a triangular response function will be obtained from the instrument. It is
assumed that the source, which is an extended one, is monochromatic and of
uniform brightness.

There will be some sort of imaging system which will produce an image of
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the source on the entrance slit. The brightness of the source image will be equal to
that of the actual source, except for the transmission of the imaging system, which
we can take to be unity without affecting the final result, since all systems to be
compared will have a similar arrangement before the entrance aperture. Given
that the brightness of the image is identical to that of the source, it only remains
for the aperture of the imaging system to be made large enough for the aperture
of the collector and collimator before the grating to be completely filled. Again
we can assume that this has been carried out in all arrangements without any loss
in generality. The situation is sketched in figure 13.2. The notation used here is,
as far as possible, exactly that used by Jacquinot in his original paper to make the
comparison easier. Let the brightness of the source image be denoted by B. Let
the monochromator be adjusted so that the image of the entrance slit falls directly
on the exit slit and let both slits have the same width and length. This corresponds
to the apex of the triangle. The energy transmitted by the system will be given by

E = BSωT

where ω is the solid angle subtended by either slit at the appropriate collector
element and S the area of the beam at the collector. Sω will be the same for
both the entrance and the exit slit since we have arranged for the image of one
to coincide with the other. T is the transmittance of the monochromator. If the
width of the exit slit is α2 and the length β2, then the expression becomes

E = BSTβ2α2.

If we denote the resolving power of the system by R, then we have that α 2 =
λD2/R where D2 is the angular dispersion of the system referred to the output
slit, i.e.

E = BSTβ2 (λD2/R) .

For the grating monochromator the angular dispersion is derived from the
equation

σ (sin i1 + sin i2) = mλ

where σ is the grating constant, i.e. the interval between grooves, m is the order
number, and i 1 and i 2 are the angles of incidence and diffraction, respectively, at
the grating.

D2 = di2

dλ
= m

σ cos i2
= sin i1 + sin i2

λ cos i2

i.e.

λD2 = sin i1 + sin i2

cos i2
.
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Now

S= A cos i 2

where A is the area of the grating and we assume that it is completely illuminated
and that no light is lost, so that

SλD2 = A (sin i1 + sin i2) .

Jacquinot shows that SλD2 is a maximum for the Littrow mounting (where i 1 and
i2 are as nearly equal as possible) used on the blaze angle which we denote by ϕ.
For that mounting

SλD2 = 2A sinϕ

and

E = (BTβ2/R) 2A sinϕ.

ϕ we can take as 30◦, say, when sinϕ = 1
2 and

E = BTβ2 A/R.

We shall now consider the interference filter and compare it with the
diffraction grating. The case considered by Jacquinot is that of the conventional
Fabry–Perot interferometer made up of a pair of plates in an etalon with a spacer
of unity refractive index. Here we are more concerned with the interference
filter where the spacer layer has an index greater than unity. As on p 284, we
introduce the concept of an effective index of refraction which governs the angular
behaviour of the filter. We shall use a similar analysis to that of Jacquinot, but
recast it in the form of the results of chapter 7.

Jacquinot suggests that the filters be used with an acceptance angle such as
to make the effective bandwidth of the filter

√
2 × the value at normal incidence.

Equation (7.40) gives

W2
� = W2

0 + (
�ν′)2

where W0 and W� are the halfwidths corresponding to collimated light at normal
incidence and to a cone of semiangle �. If � is measured in air then

�ν′ = ν0�
2/2n∗2.

For W� = √
2W0 we must have W0 = �ν′, i.e.

W0 = ν0�
2/2n∗2

and, from equation (7.41),

T̂� = (
W0/�ν

′) tan−1 (�ν′/W0
) = tan−1(1) = π/4 = 0.78 (13.1)
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Figure 13.3. An arrangement of a monochromator using an interference filter.

where T̂� is the effective peak transmittance of the filter for a cone of incident
light of semiangle � referred to the incident medium, which we are assuming is
air.

If R0 is the resolving power for perfectly collimated light at normal incidence
and R� that for a cone of semiangle �, then

R0 = ν0/W0

and since �ν ′ is small compared with ν0

R� = ν0/W� = R0/
√

2.

But W0 = �ν′ so that

R0 = ν0/�ν
′ = 2n∗2/�2

and so
�2 = √

2n∗2/R�. (13.2)

If B is again the brightness of the source and A is that area of the filter that
is fully illuminated, then the energy collected will be

E = B AT(π/4)ω (13.3)

whereω is the solid angle subtended by the aperture and T is the normal incidence
transmittance. The factor (π/4) is included from (13.1). From figure 13.3

ω = 2π(1 − cos�) ≈ π�2. (13.4)

Then, from equations (13.2), (13.3) and (13.4),

E = B AT
π2

2

n∗2

√
2R�

.

This is similar to the form given by Jacquinot except for the factor n ∗2 which is
missing in his expression.
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We are now in a position to compare efficiencies. The relative energy grasp
of the two systems is

Efilter

Egrating
=

B AT
(
π2/2

)
n∗2/

(
R
√

2
)

BTβ2 A/R
. (13.5)

We can assume for this comparison that the resolution and areas and
transmittances of the two systems are equal (that is transmittance at normal
incidence in collimated light for the interference filter). Equation (13.5) then
simplifies to

Efilter

Egrating
=
(

π

2
√

2

)(
n∗2

β2

)
= 3.4

n∗2

β
.

Jacquinot estimates the usual value of β to be 0.01 radian. With extreme
care in design, values of 0.1 have been achieved, although this represents the very
limit. For an n∗ of unity, then, the value of the energy ratio varies between 34 and
340.

However, n∗ in the visible region is usually in excess of 1.5, which alters the
range to 76–760. For the infrared the advantage of the filter is even greater, for
n∗ is usually of the order of 3.0, so that the range becomes 306–3060, a massive
advantage. This means that we can happily make the interference filter much
smaller than the grating and still have a very significant increase in energy grasp
over it.

This analysis dealt with the single Fabry–Perot type of filter. The advantage
with the DHW type of filter is slightly greater still, since the effective transmittance
in a cone of illumination is higher than that of the Fabry–Perot.

13.2 Narrowband filters in astronomy

The problem of detecting faint astronomical objects is rendered even more
difficult, than it would otherwise be, by the light of the night sky. This light
consists mainly of starlight scattered by dust both in the atmosphere and in
interstellar space (including light from our own sun) together with emission from
the upper atmosphere, and may be considered to be mainly of a continuous
spectral nature although there are a number of emission lines as well. The sky
light causes an overall fogging of the photographic plates, which are the most
common detectors used in this work (although in recent years increasing use has
been made of image tubes). Maximum contrast between the photographic image
of a star or other object and the sky background is obtained when the sky fog is
just apparent on the plate. The exposure time is chosen to give just this amount
of fogging. The efficiency of the photographic detector falls off rapidly on either
side of this optimum. The limit of detection of a faint object will be reached when
the image is just discernible against the background.
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The way in which the limit of detection varies with the parameters of the
system has been studied particularly by Baum [3]. A simplified account of the
analysis is given by Bowen [4] and it is this latter form that we follow here. The
notation used by Bowen, which we also use here, differs slightly from that used
by Baum.

The signal which is received from the object will consist of discrete photons
arriving at a constant mean rate but randomly spaced. Provided the mean rate is
sufficiently small (satisfied for the signals we are considering) we can consider
the photons as forming a Poisson distribution (the distribution which deals with
sequences of events where the probability of an occurrence in any particular time
interval is vanishingly small, but where the total observing time is sufficiently
long to ensure a finite number of events). For the Poisson distribution the standard
deviation of successive measures of the number of photons N arriving in a certain
constant time is simply

√
N.

Let D be the telescope aperture diameter, f the focal length of the telescope,
t the observation time, β the diameter of the image of the object, n the number of
photons from the object received per unit area of telescope aperture per second, s
the number of background photons received per unit area of telescope aperture per
unit solid angle of sky per second, p the limit of linear resolution of the emulsion,
q the quantum efficiency of the entire system which includes the photographic
emulsion and the transmission of the optical system, and m the number of photons
recorded per unit area of photographic plate which will produce the correct level
of background fog.

In his paper, Bowen defines the faintness of a star or object as 1/n. We shall
now examine the way in which the limiting detectable faintness varies with the
parameters of the system. The fractional error in a measurement is denoted by B
and is defined as the standard deviation associated with the measurement divided
by the measurement itself. Thus in a measurement of a number of photons N, the
fractional error would be B = (

√
N)/N = 1/

√
N.

The number of photons recorded from the object and from an equal area of
sky in time t is given by

D2ntq + β2sD2tq

where we are omitting factors of π/4. The standard deviation in successive
measurements will be (

D2ntq + β2sD2tq
)1/2

and the fractional error in the measurement will be

B =
(
D2ntq + β2sD2tq

)1/2

D2ntq

=
(
n + β2s

)1/2

Dnt1/2q1/2
.
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For very faint objects, n � β 2 so that

B = βs1/2

Dnt1/2q1/2 (13.6)

and the limiting faintness is given by

(
1

n

)
1

= B1Dt1/2q1/2

βs1/2 (13.7)

where B1 is the highest possible value of B where the object is still just detectable.
Bowen suggests that B1 should be 0.2. This formula applies as it stands to
photoelectric detectors and shows how the faintness which can be detected
increases with increasing aperture. For the photographic detector, however, the
position is not quite the same. Here the time of exposure t must be chosen to
give the correct background fog. The efficiency of the plate drops so quickly if
the density of the background is incorrect that any other exposure time is of very
much less value. This correct exposure time t0 is given by

D2t0sq = m f2

i.e.

t0 = m f2

D2sq

and, substituting in equation (13.7),

(
1

n

)
1

= B1Dq1/2

βs1/2

√(
m f2

D2sq

)
= B1m1/2 f

βs
. (13.8)

In the equation we are assuming that β is larger than the resolution limit of the
plate. If this is not the case, where f is small for example, then β must be replaced
by p/ f , giving (

1

n

)
1

= B1m1/2 f 2

ps
. (13.9)

These results, obtained by Bowen, are not what we might have expected,
because they seem to show that the all-important parameter for photographic
detection of faint objects is the focal length of the telescope and not the aperture.
The longer the focal length, the greater the faintness which may be observed,
regardless of the diameter of the aperture of the system. So far, however, we have
neglected to notice that observation time is limited to one night. Increasing the
focal length without a corresponding increase in aperture increases the necessary
exposure time, which varies as the square of the focal length. Let t m be the longest



548 System considerations: applications of filters and coatings

allowable exposure time. Then, for any given system, the largest value of focal
length fm will be given by

f 2
m = tmD2sq

m
i.e. fm = t1/2

m Ds1/2q1/2

m1/2 (13.10)

which when substituted in equation (13.8) and (13.9) gives for f large or β large

(
1

n

)
1

= B1t1/2
m Dq1/2

βs1/2
(13.11)

and for f small and β small(
1

n

)
1

= B1m1/2tmD2sq

psm
= B1tmD2q

pm1/2
. (13.12)

These expressions1 show that, indeed as might be expected, there is a gain in
going to larger telescopes.

Given the maximum possible value of D and f , how can the situation be
improved by the use of filters? If there is a difference in spectral distribution of
the radiation from the object and the sky background, then it is possible that a
filter inserted in the system might modify the ratio of photons received from the
object to those received from the sky. If this process results in a reduction in n by a
factor x to xn, and a reduction in s to ys, then the ratio n/s becomes xn/ys, and if
x/y is sufficiently large, then a positive gain in faintness may result. Substituting
these values in the expression for the case where the resolution of the emulsion is
not the limiting factor, equation (13.11) becomes

(
1

n

)
1

= x B1t1/2
m Dq1/2

y1/2βs1/2

and, assuming we adjust the focal length of the system as before to give the
longest exposure time tm, then the result is obtained that a gain in 1/n is
achievable provided that x >

√
y2.

For the case where the emulsion resolution is a limiting factor, the expression
(13.12) for 1/n shows that there is no possibility of altering the situation by
filtering. The filtering will work only when the object is extended, or when the
focal length of the telescope is large enough, or when the grain of the plates is
fine enough, to ensure that the plate resolution is not a limiting factor.

The great bulk of the sky light is scattered light which has a more or
less continuous spectrum. Only the emission from the upper atmosphere has a
1 Reciprocity failure, which effectively means that q is reduced slightly as t increases, has been
neglected in the derivation.
2 This, at first sight, odd result follows from the assumption made early in the derivation that the
object is faint so that n � β2s.
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component consisting of discrete lines. Since, for a gain due to filtering, it is
not sufficient to ensure that x > y but that x >

√
y, in cases where n has

a continuous spectral distribution and there is no great difference between the
distributions of n and s, there is probably very little to be gained by filtering.
In fact, slight enhancement of the ratio of detected photons accompanied by a
drop in transmittance could lead to a loss in performance rather than a gain.
However, there are classes of objects which are characterised by line spectra and
in these cases it is possible by using filters centred on the lines to retain n only
slightly reduced, but to have s greatly reduced. Such a class of objects is the
hydrogen emission nebulae. It is now known that hydrogen is one of the elements
of interstellar gas—probably the most abundant. Where hydrogen clouds are near
bright stars, the atomic hydrogen is ionised by the x-ray and extreme ultraviolet
radiation from the stars, and, when the electrons and protons recombine, the
characteristic hydrogen spectra are produced. The principal line emitted in the
wavelength range detectable at the surface of the Earth is the first line of the
Balmer series, Hα at 656.3 nm, which, although not always the brightest line, is
the one where contrast can be greatly improved.

The use of an interference filter centred on 656.3 nm greatly increases the
contrast between the nebulae and the night sky, and gives a large increase in the
faintness of nebulae which can be detected.

Equation (13.10) shows that when the interference filter is installed the focal
ratio of the telescope must be adjusted to give the correct level of background fog.

f

D
= t1/2

m

m
(ys)1/2 q1/2.

Generally, with typical interference filters, the focal ratio should be near unity.
Such a focal ratio incident directly on a narrowband interference filter would have
a disastrous effect on both the bandwidth and peak transmission. However, the
optical arrangement of the big telescopes permits an alternative arrangement. The
primary mirror of a large telescope usually produces a pencil of focal ratio around
f/5. As we have seen in chapter 7, a narrowband filter for the visible region
with a bandwidth of around 1% of peak wavelength will accept such a pencil
quite satisfactorily, and it is usual to insert the interference filter at or very near
the prime focus. Beyond the prime focus a camera is installed which reduces
the focal ratio of the system to the desired value. The arrangement is shown in
figure 13.4(a). With this layout the variation with field angle of the pass band of
the filter (due to angle of incidence variation) is kept very small. If necessary it
could be eliminated altogether by use of an extra lens, as in figure 13.4(b).

In figure 13.4, the filter acts as a field stop and may limit the field of view
of the instrument. Filters up to 6 in in diameter have been constructed, although
4 in is probably a more usual figure. Filters with a diameter of 2 in are readily
available.

Some particularly fine examples of photographs taken with relatively broad
combinations of coloured-glass filters and ones with interference filters of
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Figure 13.4. A narrowband filter in an astronomical telescope. The primary is shown here
as a lens, but in the big telescopes would usually be a mirror. If necessary an additional
element can be added as in (b) to alter the inclination or the off-axis pencils so that the
effective peak wavelength of the filter is constant over the entire field.

very much narrower bandwidths are given by Courtes [5]. Ring was the
first successfully to use all-dielectric filters for this purpose, pioneering the
development of these filters in the UK, and a paper by him [6] includes several
photographs. A paper by Meaburn [7], who took the excellent photographs in
figure 13.5 illustrates extremely well the type of problem solved by interference
filters and is well worth reading. Since this section appeared in the first edition,
a particularly useful book by Meaburn [8] has been published and should be
consulted for further information.

13.3 Atmospheric temperature sounding

In the mid-1960s work began on a series of radiometers to be flown in satellites
with the aim of measuring the distribution of temperature in the upper atmosphere.
This programme was extremely successful. The first of these radiometers was
designed by a joint team from the Universities of Oxford and Reading in the UK,
the team at Reading moving to Heriot-Watt University at a late stage of the project.
The radiometer was flown in the Nimbus IV spacecraft. The radiometer was
known as the selective chopper radiometer (SCR) because of the basic principles
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(a)

Figure 13.5. (a) Nebulosities in the Cetus arc. Hα photographs of 1-h exposure taken
on a 6-in f/ l Schmidt camera through a 4-nm bandwidth filter. (After Meaburn [7].)
(b) Nebulosities in the galactic anti-centre. Photograph taken through a 4-nm bandwidth
filter centred on Hα (656.3 nm) with a 6-in aperture Schmidt camera. The exposure was
1.75 h. (Courtesy of Dr J Meaburn.)

of its design and it made extensive use of filters. It made measurements, with a
height resolution of 10 km, of the temperature of that part of the atmosphere of
height between 15 and 50 km, that is the troposphere and part of the stratosphere.
The basic method used in the SCR and in other subsequent radiometers for
temperature sounding is the detection and measurement of the radiation from
atmospheric carbon dioxide.

Some ideas of the temperature structure of the atmosphere had already been
formed, typical temperatures being of the order of 200 K at a height of 10 km
rising to 240–280 K at heights of around 50 km. The peak of the black-body
curve for a temperature of 200 K lies at a wavelength of 15 µm, while that for
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(b)

Figure 13.5. (Continued)

280 K is at 11 µm. The most favourable wavelength region for the measurement
of the temperature of the atmosphere by detection of emitted radiation is therefore
the band 11–15 µm. Of course the atmosphere will emit radiation only in the
regions where it absorbs (the equivalence of absorptance and emittance is a basic
physical principle) and this, coupled with the fact that the radiation emitted from
a given level must traverse the remainder of the atmosphere above that level to
reach the detector in the spacecraft, allows an ingenious method to be used for the
deduction of the temperature structure which was first suggested by Kaplan [9].

Carbon dioxide is evenly distributed in the atmosphere and has extensive
absorption bands around 15 µm so that it can be used as an indicator of
the temperature of the atmosphere as a whole. Fortunately, over most of the
important region, carbon dioxide is the only constituent of the atmosphere
showing absorption (water vapour would interfere but is important only near the
ground, and O3 at 14µm in the 25–40 km region can be avoided) which simplifies
considerably the calculations. The absorption spectrum of CO 2 consists, at very
low pressures, of a number of discrete lines which become gradually broader with
increasing pressure. The detector in the spacecraft is arranged so that it responds
to only a very narrow band of wavelengths in the CO 2 spectrum. If a waveband
is chosen within which the absorption is high, then the radiation emitted at the
bottom of the atmosphere will not reach space because the transmission of the
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atmosphere above it is low. At greater heights a much greater proportion of the
energy emitted will reach the detector.

However, also at greater heights, the energy emitted by the atmosphere
will fall, because of decreasing density and pressure of CO2, and, at a height
which will depend on the absorption within the particular waveband chosen, the
second process will overtake the first with the result that a major portion of the
energy received by the detector will emanate from a narrow range of depths in the
atmosphere. The mean depth can be changed by varying the centre wavelength of
the band which is being detected, and so altering the variation of absorption with
height. The experiment and apparatus are described in various articles [10–14].

The following account is a much simplified version which follows directly
work by John Houghton (now Sir John). First we find the emittance of any layer
by calculating the absorptance which is equivalent to the emittance. Consider
a layer of the atmosphere situated at a depth z below the spacecraft. Let the
transmittance of the atmosphere, at frequency ν, above this layer be Tz. In passing
through a layer of thickness dz of the atmosphere the fractional intensity lost by
unit intensity of radiation will be the absorptance of the layer. Next, consider
radiation of initial intensity F at frequency ν at depth z. The fraction of this which
appears at the detector in the spacecraft will be either FTz, or (F − dF)T(z−dz)
and as these quantities will be equal we can write

(F − dF)T(z−dz) = FTz.

With some adjustment we find

Adz = dF

F
= Tz − T(z−dz)

T(z−dz)
= −(dTz/dz)dz

T(z−dz)

where Adz is the absorptance and hence emittance of the layer. If T is the mean
temperature of the layer, then the black-body emission per unit frequency interval
associated with it will be given by B(T ) at frequency ν. The energy actually given
out by the layer will be given by this expression multiplied by the emittance, i.e.

dIz = K T(z−dz)AdzBν(T )

where dIz is the energy per unit frequency interval received by the radiometer
which emanates from a layer of thickness dz at depth z and K is a constant.

Then

dIz = −K
dTz

dz
Bν(T )dzdν.

If the detector in the spacecraft has a bandwidth of �ν, then the expression for
the energy over this band becomes∫

�ν

dIzdν =
∫
�ν

−K
dTz

dz
Bν(T )dzdν
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and if Rν/K is the response of the radiometer at frequency ν then the output of
the instrument will be given by

Dz/dz =
∫
�ν

−Rν
dTz

dz
Bν(T )dzdν.

We can choose the frequency interval �ν small enough for Bν(T ) to be a
constant over the interval. Bν(T )dz can then be moved outside the integral sign.
What is left is the function

Wz =
∫
�ν

−Rν
dTz

dz
dν

which is known as the weighting function, and represents the response of the
system to radiation from depth z. We shall now look a little closer at the form of
the weighting function, assuming that a single isolated absorption line is involved.

The absorption coefficient kν for radiation of frequency ν is defined by the
relationship

dIν = −kzIzdu

where dIν is the change in intensity Iν after traversing path length du of the
absorbing gas. u is measured in terms of the quantity of gas traversed rather than
physical distance and has such units as g cm−2 or atmo-cm (the equivalent path
length in the gas at normal atmospheric pressure and temperature). The strength
of the line S is defined as the absorption coefficient integrated over the whole
width of the line.

For radiation of wavenumber ν near the centre of a single gaseous absorption
line, kν , is given by the Lorentz formula for pressure broadening 3:

kν =
(

S

π

)(
γ

(ν − ν0)
2 + γ 2

)
.

γ is the halfwidth of the line, which is proportional to pressure and can be written
γ = γ0(p/p0). (γ is also inversely proportional to the square root of the absolute
temperature, but, as this exhibits much less variation than pressure through the
part of the atmosphere which we are considering, we can omit temperature from
the calculation.)

If the frequency ν is such that γ 2 � (ν − ν0)
2 then we can write

kν =
(

S

π

)(
γ0 p

p0 (ν − ν0)
2

)
= βp.

3 See for example p 47 of Houghton J and Smith S D 1966 Infra-Red Physics(Oxford: Oxford
University Press).
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Now CO2 is uniformly mixed through the atmosphere so that the mass of CO 2
per unit area between the top of the atmosphere and depth z will be proportional
to the atmospheric pressure at that depth, i.e.

u = cp

where c is a constant. The transmittance of the atmosphere above depth z, at
which the pressure is p, will therefore be

Tz = exp

(
−
∫ p

p=0
kνdu

)

= exp

(
−
∫ p

p=0
ckνdp

)

= exp

(
−1

2
cβp2

)
.

To simplify the analysis we can assume that p varies linearly with z, i.e.

p = f z

(or alternatively we could use p as the measure of the depth z since it is a
single-valued function of z which increases continuously with z). The weighting
function for a single monochromatic line of frequency ν, assuming that R = 1, is
then

Wz = −dTz

dz
= βc f 2zexp

(
−1

2
β f 2cz2

)
.

The form of this function is shown in figure 13.6. For the purposes of drawing
this, a new variable y = ( 1

2β f 2c)1/2z has been introduced so that

−dTz

dz
=
(

2βcf 2
)1/2

ye−y2

and the function which is actually plotted in figure 13.6 is ye −y2
.

By choosing the appropriate wavelength, the form of the variation of the
absorption coefficient can, to some extent, be controlled and the position of the
maximum in terms of the height, or rather depth, varied. The absorption spectrum
of CO2, at 15 µm consists of a large number of separated lines. The teams at
Oxford and Reading have made a special study of these, tabulating the positions
and strengths, and have been able to choose a series of wavelengths to permit
examination of the temperature structure of the atmosphere between 15 and 50 km
with a resolution of 10 km.

One of the difficulties which exist is the finite bandwidth of the radiometer.
The bandwidths of practical filters cannot be made arbitrarily small and, because
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Figure 13.6. The form of the radiometer weighting function.

the CO2 absorption coefficient varies with wavelength, the bandwidth of the
radiometer will cause a reduction in the height resolution. For the channels
designed to look deep into the atmosphere, the bandwidth does not affect the result
too much and can be 10 cm−1—well within the capabilities of an interference
filter. The channels designed to look at the top of the atmosphere, however, must
be positioned on the centres of the most intense lines, the Q-branch at 667 cm −1,
and the bandwidth must not effectively be greater than 1 cm −1. This is beyond
the current state of the art at 15 µm. The ingenious solution that has been adopted
and gives the radiometer its name is the use of a chopper filled with CO 2.

To explain the action of this selective chopper we shall first consider the
operation of the simpler channels with the acceptable filters. In these channels,
partly to ensure that the noise in the electronics is sufficiently low, and partly
to ensure that the radiometer registers radiation from the atmosphere only and
not from the components of the radiometer itself, which will all be emitting at
15 µm, a chopper is placed in the entrance aperture. Radiation emanating from
the atmosphere will be chopped, while radiation from the radiometer itself will not
and will escape detection. Of course the chopper will also radiate and so the usual
method of alternately inserting and removing a blanking shutter in front of the
radiometer entrance aperture would be quite useless, because the radiation from
the shutter would also be chopped and detected along with the signal. The method
which is used is extremely neat. The entrance aperture of each channel is divided
into two equal parts so that one-half of the aperture views, reflected in a fixed
mirror, deep space, which can be assumed to be at a temperature of absolute zero
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and to represent a reference of zero radiation provided the reflectance of the mirror
is sufficiently high, while the other half views the Earth’s atmosphere reflected in a
second mirror, which can be varied in position for calibration purposes. A chopper
consisting of a vibrating black blade is arranged so that it obscures the fixed and
variable mirrors alternately and, therefore, effectively chops the incoming signal.
The radiation from the chopper blade is not detected because the blade remains
within the aperture of the system all the time.

The selective chopper channel of the radiometer is similar to these other
channels. However, a narrower filter is used, having a bandwidth of 3.2 cm −1 at
667 cm−1, which is the narrowest yet obtainable at this frequency. In addition, a
cell containing CO2 is included in front of each section of the entrance aperture
and the black blade of the chopper is exchanged for a mirror which looks at deep
space. If the chopper mirror were completely removed, both parts of the entrance
aperture would look at the atmosphere, reflected in a mirror, which again can
be varied in position. With the chopper mirror in position and vibrating, one
section of the aperture will look at deep space while the other section will look
at the atmosphere through the appropriate CO2 cell, and vice versa. The effect is
just as if the input radiation were being chopped by alternate cells of CO 2. The
simplest arrangement is to have one cell empty and one filled with CO 2, when,
provided the CO2 is at the correct pressure, the chopping will be effective only
over the line centres. This, together with the narrowband filter, gives an effective
bandwidth of around 1 cm−1. Since the cells of CO2 are within the aperture of
the system all the time, the radiation from them will not be chopped and will not
be detected. The radiation detected in this way originates from the very top of
the atmosphere. The addition of a little CO2 to the empty cell absorbs out the
narrow line centres, leaving an extremely narrow width on either side of centre
and giving a still sharper weighting function which allows regions just below the
top of the atmosphere to be examined. Various combinations of filter and chopper
have been proposed and a set of weighting functions is shown in figure 13.7. Each
satellite installation consists of six separate channels.

To maintain the accuracy of the instrument in flight, it is possible to
recalibrate it. The principal components in the calibration system are the variable
mirrors which are placed in front of each channel and which normally reflect
radiation from the atmosphere into the apertures. These mirrors are driven by
small stepping motors and can be tilted to view the atmosphere, deep space, or a
calibration black body giving a reference for both gain and zero in each channel.
The proposed calibration sequence, which will repeat itself indefinitely in flight,
is atmospheric radiation for 20 min, space for 2 min and calibration black body
for 2 min. The channels having the extra CO2 cells also have a balance calibration
which ensures that the only difference between each half of the aperture is due to
the CO2 in the chopper cells. The narrowband filter which is used in the channel is
replaced by a broadband filter at a wavelength outside the CO 2 absorption region
which views the Earth’s surface. Any signal detected under these circumstances
is due to a difference in sensitivity between the two halves of the channel, which
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Figure 13.7. Proposed weighting functions for a satellite radiometer. The letters P, Q, R,
S, T and U refer to different channels. (Courtesy of Dr S D Smith.)

can be corrected if necessary.
Curves showing the measured transmittance of two of the basic filter

elements are reproduced in figure 13.8. The sidebands are suppressed in the
instrument by filters of the type shown in figure 6.20. The interference section
of the blocking filter is deposited on one of the germanium lenses and an indium
antimonide filter is fitted to the end of the light pipe over the detector. In addition,
since it was found that the suppression in the wings of the Fabry–Perot filter was
not quite high enough, a filter centred on the same wavelength but of the type

L|Ge|L H L H H L H L H L H H L H |Air

which is a rather broader DHW type of around 20 cm −1 halfwidth, rather broader
than that of figure 13.8(b), is placed in series with each Fabry–Perot. The
composite filter possesses the narrow halfwidth of the Fabry–Perot together with
the high sideband rejection typical of the DHW.

The construction of the radiometer is shown in figure 13.9. The optical
system has been designed to use the full area of the narrowband filters together
with the maximum range of angles which can be accommodated without
destroying the spectral profile. It was this which prompted the work of Pidgeon
and Smith on the angular dependence of filter characteristics discussed on pp 283–
92.
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Figure 13.8. Measured transmittance of filters manufactured for the radiome-
ter. The dashed curves are merely the full line curves × 10. (a) Air
|H L H H L H L H L H L H H L H L| Ge substrate |L| Air. Peak transmittance 78% at
694.4 cm−1. (b) Air |H L H L H H L H L H L| Ge substrate |L| Air. Peak transmittance
58% at 666.4 cm−1. L = ZnS; H = PbTe. (Courtesy of Dr S D Smith and Sir Howard
Grubb, Parsons & Co. Ltd.)

The radiometer was successfully launched in April 1970 and made
exceptionally useful temperature surveys of the upper atmosphere revealing much
that was novel and unexpected. An early account of the instrument will be found
in several articles [15–17].

13.4 Order-sorting filters for grating spectrometers

There is a considerable advantage in using a diffraction grating rather than a prism
for the selection of wavelengths in a monochromator or spectrometer because the
luminosity is so very much greater for the same resolution. A problem exists,
however, with the diffraction grating which does not exist with the prism. This
is the appearance of other orders in the spectrum which must be eliminated. The
problem is particularly severe in the infrared, and the solution usually adopted has
been the use of a low-resolution prism monochromator in series with the higher-
resolution grating monochromator. The lower resolution of the prism section,
which is all that is necessary since order sorting is its sole function, means that the
luminosity can be made as high as the grating section and the advantage associated
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Figure 13.9. Schematic diagram of the selective chopper radiometer. (Courtesy of Dr S D
Smith.)

with the grating thereby retained. The grating and prism must be driven so that
their respective wavelengths remain in step, a difficulty being that their angular
dispersions vary in quite different ways. A simpler and attractive alternative is a
longwave pass thin-film filter. Recently several instruments have appeared on the
market which use this system rather than the prism.

A paper by Alpert [18] gives an account of the various factors involved in the
specification of such filters for infrared instruments. The most important feature
is the rejection required in the stop regions. Before we can make an estimate of
this rejection, we must first consider the way in which the energy varies in the
various grating orders. Included in the assessment must be the characteristics of
both the source and the detector.

A simple theory of the diffraction grating is considered in most textbooks on
optics. For our present purpose it is sufficient to note two points. The first is that
the angles of incidence and diffraction for any particular wavelength are given by
the grating equation

sinϑ + sinϕ = ±mλ/π (13.13)

where ϑ and ϕ are the angles of incidence and diffraction, respectively, the sign
convention being as shown in figure 13.10(a). σ is the grating constant, that is
the spacing of the grooves, and m is the order number. From equation (13.13)
we can see immediately the source of our present problem, that the angles
corresponding to any wavelength, λ, in the first order also exactly correspond
to λ/2 in the second order, λ/3 in the third order, and so on. A second point
is that the energy distribution in the various diffracted orders of any wavelength
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Figure 13.10. (a) Sign convention for θ and φ. θ and φ have the same sign if they are on
the same side of the grating normal. One side is chosen arbitrarily as positive. (b) Sign
convention for α and β. α and β have the same sign if they are on the same side of the blaze
normal. They are chosen positive when they have the same sense as the positive direction
of θ and φ.

will be given by the pattern of lines in equation (13.13) modulated by the single-
slit diffraction pattern of any one of the grooves at the appropriate wavelength.
Modern diffraction gratings are invariably of the reflection type with the grooves
‘blazed’ or tilted, so that the single-slit diffraction pattern has its maximum at a
particular wavelength in the first order, known as the blaze wavelength, rather than
in the zero order, which increases considerably the efficiency of the grating over
a range of wavelengths. In order to estimate the shape of the energy distribution
we can assume the form of the grooves to be as in figure 13.10(b), although in
practice the form may vary from that shown. α and β are the angles of incidence
and diffraction referred to the normal to the groove, instead of the grating normal,
but with the same sign convention applying. The intensity of the diffracted beam
is given by an expression of the form

I = I0
sin2 [πνσ cosψ (sinα + sinβ)]

[πνσ cosψ (sinα + sinβ)]2
(13.14)

where it is assumed that the grating will be sufficiently large to intercept the entire
incident beam regardless of the angle of incidence. This expression is not strictly
accurate over the entire range because at some angles the steps at the ends of
the grooves may interfere slightly with the process, but it is good enough for our
purpose. ψ is the angle between the grating and the blaze normal.

Most monochromators are of a type where the entrance and exit slits are fixed
in position and the grating is rotated to scan the spectrum, and where the angle of
incidence is almost equal to the angle of diffraction. Little is lost by assuming
that they are equal. With this assumption the curves shown in figure 13.11
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Figure 13.11. Intensity distribution in the various orders of a typical diffraction grating
(theoretical) blazed for 2000 cm−1 (5 µm) in the first order.

have been derived for a typical grating and show how the intensities vary in the
various orders. An important point is that, for the groove arrangement shown
in figure 13.10(b), the dispersion, which is inversely proportional to the groove
spacing, balances the alteration in the width of the diffraction pattern as the groove
width varies, with the result that the variation of intensity with wavelength in any
order depends solely on the blaze wavelength. A useful rule, which is generally
used, is that the useful range of a grating which is blazed for a wavelength of λ 0
in the first order is from 2λ0/3 to 2λ0 in the first order, from 2λ0/5 to 2λ0/3 in the
second order, and from 2λ0/(2n+1) to 2λ0/(2n−1) in the nth order. This is rather
simpler in terms of wavenumber, the range being given by ν 0 ± 1

2ν0 in the first
order and nν0 ± 1

2ν0 in the nth order. The bandwidth is more or less constant in
terms of wavenumber. Measurements which have been made on gratings confirm
the shape of the curves in figure 13.11. Some such measurements are reproduced
by Alpert.

Now let us make the assumption that the diffraction grating is to be used
in the first order and that the filter problem is the elimination of the second and
higher orders. As far as the filter is concerned, the parameter which matters is the
ratio of the detector signal in the first order to that in any of the other higher orders.
The factors involved are, first of all, the variation of sensitivity of the detector;
second, the variation in efficiency of the grating, already dealt with above; third,
the dispersion of the grating in the various orders so that the energy in any order
which is transmitted by the slits in the monochromator can be calculated; and
last, the variation of output of the source. Of course, in some applications there
may well be other factors which operate, such as the transmission of some optical
components or the variation of reflectance of mirrors.

The detectors commonly used in this part of the infrared are thermal
detectors which have reasonably flat response curves. In what follows we assume
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that they are perfectly flat. Any variation can be readily included in the analysis
if required.

At any wavelength, the slits will pass a small band of wavelengths. If we
assume that the slits are narrow enough so that energy variations over the range
of wavelengths passed by the slit are negligible, then the energy transmitted in
any order will be inversely proportional to the bandwidth of the slits in that
order. From equation (13.13), the bandwidth is inversely proportional to the order
number, which does help to reduce the requirements for filter performance.

In this part of the infrared, the sources which are generally used are either
Nernst filaments or globars. For our present purpose we can assume, without too
much error, that the source will be a black body probably peaking at around 2µm,
although this particular wavelength does not matter very much. The variation of
energy with wavelength for a black-body source is given by Planck’s equation:

Eλ = c1

λ5
[
exp (c2/λT)− 1

] (13.15)

where Eλ is the spectral emissive power, and c1 and c2 are the first and second
radiation constants with values 3.74 × 10−16 W m2 and 1.4388 × 10−2 m K,
respectively.

For any wavelength λ, let the efficiency of the grating be denoted by ε λ, and
the transmittance of the order sorting filter by Tλ. Then the stray light due to the
mth order, expressed as a fraction of the energy in the first order, will be given by

rm = ελ/mEλ/mTλ/m

mελEλTλ
= ελ/m (λ/m) Eλ/mTλ/m

ελλEλTλ

where we have multiplied the numerator and denominator by λ. The permissible
magnitude of rm depends on the number of orders which are involved in producing
significant interference. Let this number be N and let the total amount of
permissible stray light be given by S, which is expressed as a fraction of the
total first-order energy. Then we can require that

rm = S/N

and the maximum transmission which can be permitted at wavelength λ/m is
given by

Tλ/m = Tλ

(
S

N

)(
λEλ

(λ/m) Eλ/m

)
ελ

ελ/m
. (13.16)

Now ελ/ελ/m will be greater than unity except on the blaze wavelength. Without
affecting the accuracy too greatly, we can make the assumption that each order m
is effective only over the range 2λ0/(2m + 1) to 2λ0/(2m − 1) and that ελ/ελ/m

is unity over this range. Elsewhere we can assume that the mth order does not
produce interference and omit it.

To complete the calculation, we need the value of λEλ/(λ/m)Eλ/m. The
function λEλ is plotted in figure 13.12. To make it possible to apply this figure
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Figure 13.12. Curve showing the variation of λEλ with wavelength for a black-body
source.

generally, the variables have been normalised in the manner shown and the scales
are logarithmic so that any particular set of conditions can be reproduced simply
by sliding the scales along the axes.

The first step in drawing up the specification for a practical set of filters will
be to decide on the required number of filters. Even one single diffraction grating
has a useful wavelength range of 3:1, which is greater than the range which can
be covered by just one filter.

Let the limits of the wavelength region over which the grating or set of
gratings are to be used be λF and λS, where λF > λS. If we start with the
longest wavelength, then the final filter in the series must block wavelengths λF/2
and shorter. An ideal longwave pass filter would have a rectangular edge shape
and it would be possible to use it over the whole of the range λF/2 to λF. Real
filters have sloping edges and must be allowed some tolerance in edge position
otherwise manufacture becomes impossible. This means that the specification
must show the start of the transmission region of the final filter as (1 + α)λF/2.
Assuming that all the filters in the set are of more or less similar construction, then
the same expression will also apply to the next filter in the set, which will have a
transmission region specified to start at a wavelength given by [(1+α) 2/22]λF and
to finish at [(1+α)/2]λF. The regions for the other filters are found in exactly the
same way. If there are n filters in the set, then the first filter must have the specified
start wavelength at [(1 + α)n/2n]λF. We can equate this start wavelength to λS
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Table 13.1.

Longwave edge of
Filter number Pass region (µm) rejection zone (µm)

5 19–30 15
4 12–19 9.5
3 7.6–12 6
2 4.8–7.6 3.8
1 3–4.8 2.4

and solve for α:

α = 2(λS/λF)
1/n − 1.

This expression can be evaluated in a practical case for several possible values
of n and the set of filters giving the optimum arrangement of filters and the best
degree of tightness of tolerance selected.

The advantage of using this type of specification is that any particular filter
from any set of filters made to the specification is interchangeable with the
corresponding filter in any other set. If this interchangeability is not required,
it is possible to slacken the tolerances slightly, but this makes the problem of
making up each individual set rather more of a puzzle.

To illustrate the method, let us consider the specification for a set of filters
for use with a pair of gratings for the region 3–30 µm. The first grating can be
the one already considered with blaze at 5 µm, while the second will be a similar
one with blaze at 15 µm. The region 3–3.3 µm will not be covered with quite
as great efficiency as the rest of the region, but the source will be rather more
efficient here, which in fact counterbalances the fall off in grating efficiency to
some extent.

First we decide on the number of filters. By inspection we arrive at the
conclusion that the minimum number of filters is four, but that this number leads
to a specification which is rather tight, and it is better to use five filters. If we
assume that the tolerances should be shared equally amongst them, then the limits
of the pass regions and the edges of the rejection zones are as shown in table 13.1.

We then decide on the acceptable level of stray light in this case as, say, 1%
of the true first-order signal. We must also decide on the acceptable minimum
transmittance of the filters in the pass region, say 50%. In practice the level will
almost certainly be rather greater than this, but the use of a low figure in setting up
the specification gives a pessimistic figure for the specified levels in the rejection
region.

Next we compute the regions over which the various orders are effective
in producing stray light. The results are shown in table 13.2. Both the actual
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Table 13.2.

Corresponding range
Order Range (µm) in the first order (µm)

15 µm grating
1st 30–10 30–10
2nd 10–6 20–12
3rd 6–4.29 18–12.85
4th 4.29–3.33 17.15–13.33
5th 3.33–2.72 16.70–13.65
6th 2.72–2.31 16.35–13.85
7th 2.31–2.00 16.15–14.00
8th 2.00–1.76 16.00–14.10
9th 1.76–1.58 15.90–14.20

10th 10th and higher order beyond germanium edge
5 µm grating
1st 10–3.33 10–3.33
2nd 3.33–2.00 6.67–4.00
3rd 2.00–1.43 6.00–4.28
4th 4th and higher orders beyond germanium edge

wavelength of the interfering energy and the corresponding wavelengths in the
first order with which it interferes are given. We can choose to use germanium
as substrate material for the filters and therefore safely neglect all wavelengths
shorter than 1.6 µm, because they will be effectively suppressed by the intrinsic
absorption of the germanium.

The first filter we consider is filter number 4, which includes the blaze
wavelength of the longer-wave grating in its transmission region. At the blaze
wavelength, the highest significant order is the ninth and N therefore is 8, i.e.

Tλ0 S/N = 0.5 × 0.01/8 = 0.000 625.

We therefore set the scale on the right-hand side of figure 13.12 to correspond to
0.000 625 at 15 µm and read off the allowable transmissions at the higher-order
wavelengths from the curve. This is shown in figure 13.13.

To simplify the task of setting up the specification, we assume that the
transmission levels which are thus established apply to the complete range for
each appropriate order, i.e. for the mth order, the transmission found in this way
applies to the range 2λ0/(2m + 1) to 2λ0/(2m − 1), a slightly pessimistic result.
The only exception which we make to this is that portion of the rejection zone
immediately beside the edge of the transmission zone. Here it is important that
the specification should not be tighter than is strictly necessary. The end of the
transmission region is 19 µm. From the range of the higher order interference
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Figure 13.13. How the maximum transmittance levels are established for filter 4.

we see that only one order, the second, is effective at that wavelength. TλS/N is
therefore 0.5 × 0.01/1.0 = 0.005. Setting this value on the right-hand scale of
figure 13.13 against the point on the curve corresponding to 19 µm, we read off
0.0009 against 9.5 µm, which is therefore the maximum allowable transmittance
at that wavelength. At 18 µm, the second and third orders are involved and
the value of TλS/N becomes 0.0025. Setting this against the point on the
curve corresponding to 18 µm, we read off 0.0004 against 9 µm, which is the
maximum allowable transmission at that point. At 17.15µm there are three orders
involved so that the transmission at 8.6 µm should be not greater than 0.0003.
This procedure is repeated at each wavelength where a further order becomes
significant until the full number of orders is reached. Points corresponding to
these are plotted on a diagram and a horizontal line through each is linked with a
vertical line through the adjacent point on the shortwave side. The specification
for the filter is then completed by adding a minimum transmittance level of 0.50
from 12–19 µm. Figure 13.14 shows the complete arrangement.

Next we consider the longest-wave filter, number 5. Here the conditions are
not nearly so severe, because the filter is being used for a region that does not
include the first-order blaze wavelength and there is therefore only slight higher-
order interference. According to table 13.2 the second-order interference is falling
off sharply beyond 20 µm and the third order is not effective anywhere within the
pass region. The critical region is therefore 9.5–10 µm.

TλS/N is once again 0.005 and setting this value against the point
corresponding to 20 µm in figure 13.12, we find the permissible transmission in
the rejection region at 10 µm as 0.0009. Outside the 9.5–10 µm range the simple
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Figure 13.14. Specification of filter 4.

theory which predicts no interference at all is once again not sufficiently accurate.
A convenient pessimistic assumption is that the transmission at the very edge of
the rejection zone, i.e. at 15µm, should be around 0.01 and then a straight line can
be drawn from this point to that at 10 µm. On the shortwave side of 9.5 µm we
can retain the transmittance as 0.0009. The resulting transmission specification
for the filter is given in figure 13.15.

Filter number 3 covers the changeover from one grating to the next. Beyond
10 µm, the grating is blazed at 15 µm. The significant range for second-order
interference is 12–20µm so that, except just at 12 µm, second-order interference
will be low. At 12 µm, TλS/N is 0.005, and from figure 13.13 the permissible
transmission at 6 µm is just over 0.001. We can specify this level of transmission
as far as 5 µm, which corresponds to 10 µm in the first order, the grating
changeover wavelength. On the short wavelength side of 10 µm the 5 µm grating
is used. Table 13.2 predicts that there will be no interference from the edge of the
pass band at 7.6 µm right to 10 µm. However to be safe we assume that there
will be second-order interference at 7.6 µm, and setting a value of 0.005 against
7.6 µm in figure 13.13, we establish a value for the transmittance at 3.8 µm, the
second-order wavelength. This is shown in figure 13.15 and we further assume
that it applies to the whole region between the germanium edge and 5 µm.
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Figure 13.15. Specification of filters 3 and 5.

The specification for filter number 2 (figure 13.16) is set up in exactly the
same way as for filter number 4 since it includes the blaze wavelength. However,
the requirements are not nearly so severe, because both the peak of the source and
the absorption edge of the germanium substrates are much closer to the pass band
of the filter.

Filter 1 is similar to the others (figure 13.17). The short band from 1.6–
2µm, where the simple theory predicts no higher order interference (second order
missing and third order corresponding to first-order wavelengths beyond 4.8 µm,
the edge of the pass band), is filled in by a horizontal line at the same level as the
allowable transmission at 2 µm.

As far as the optical performance of the filters is concerned, there is only
one further point to be specified, the bandwidth of the measuring spectrometer
used for inspecting the filters. The requirement here is that the bandwidth should
be not greater, nor appreciably less, than the bandwidth of the final instrument
in which the filters are to be used4. Any spikes of transmittance not resolved by
this arrangement will not be resolved by the instrument itself. There is clearly
no point in carrying out too strict a test, which would not only be an unnecessary

4 i.e. the fractional bandwidth of the measuring instrument should be equal to the fractional bandwidth
of the final instrument in the transmission region of the particular filter under test.
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Figure 13.16. Specification of filter 2.

waste of time and expense, but could also lead to a filter being rejected when in
fact it is perfectly satisfactory for the job.

Once the specification has been established, the design of the filters is just
a straightforward application of the principles discussed in chapter 6. A study
of the results suggests some general rules. The first is that the filters which
include the first-order blaze wavelength in their pass regions are the most critical
in their specifications, and to ease, as far as possible, their edge steepness the
blaze wavelength should be arranged to be nearer the shortwave limit of the pass
region than the longwave limit. The second point is that since the filters which do
not include the first-order blaze have very much reduced rejection requirements,
it is useful to make sure that the longest-wave filter, which will be the most
difficult to fabricate, has a pass region clear of the blaze wavelength even if in
some applications it means an extra filter.

13.5 Glare suppression filters and coatings

Glare is a term that is extensive in its coverage. What we mean by the term in this
context is specular reflection of illumination from a bright source that enters the
eyes and masks a, usually weaker, desired visual image.
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Figure 13.17. Specification of filter 1.

Polarising sunglasses represent an early example of glare reduction. Sunlight
reflected by water or silica sand is a common source of glare. When the sun is
at an angle that makes the glare a problem the reflection is usually in the vertical
plane and at or near the Brewster angle so that the reflected light is principally
s-polarised. A person who is upright will receive this glare light as primarily
linearly horizontally polarised and it can therefore be virtually eliminated by a
suitably oriented polariser.

This solution depends on reflection in the vicinity of the Brewster angle and
is not available for the now common glare caused by unsuitable lighting where
visual display units are concerned. In this case the signal light from an emitting
phosphor at the rear surface of a glass plate is masked by specularly reflected
ambient light from the two surfaces of the plate. The orientation of the plane
of incidence can vary enormously and the glare can be reflected at angles that
are near normal. A solution that has been much used in electronic instruments
consists of a circular polariser inserted before the display. Specular reflection at
near normal incidence reverses the handedness of the circularly polarised glare
light that has already passed through the polariser on its inward journey, and
makes it impossible for it to pass through it again on the outward journey. This
works well when the specular reflectance of the outer surface of the polariser is
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Figure 13.18. The principle of an external antiglare filter. Glare light passes through the
filter twice while signal light passes through only once.

appreciably less than that of the underlying display. In other cases the reflectance
must be reduced by application of an antireflection coating. Since the circular
polariser protects against glare from its own rear surface the antireflection coating
is required over the front surface only.

Later it was found that a quite satisfactory reduction in glare could be
achieved by replacing the circular polariser by a simple neutral density filter
such as a sheet of absorbing glass or plastic. Specular reflectance from the
filter is eliminated by antireflection coatings front and back. Glare light then
passes through the filter twice while signal light passes through only once. This
nominally reduces the glare-to-signal ratio by a factor equal to the transmittance
of the filter. However, the brightness of the display can be raised to compensate
and so a typical glare reduction is equal to the square of the transmittance. A
transmittance of 50%, then, reduces the glare by a factor of four, a quite acceptable
figure.

The glare reduction filter of this type is a separate component that is fitted at
a late stage to the display unit as an accessory. A very recent tendency is to make
the glare reduction component an integral part of the display unit. In its simplest
form this is a coating that prevents absorption and acts also as an antireflection
coating. The simplest way of achieving this is to replace the normal completely
transparent high-index materials by high-index absorbing materials. The most
common arrangement takes the four-layer high-efficiency antireflection coating
and replaces the usual zirconia or titania with indium tin oxide (ITO). A good
antireflection coating that is completely transparent reduces the glare by 50%.
Normally it is arranged to have a certain amount of absorption that acts to reduce
the glare still further. Figure 13.20 shows a calculated characteristic that uses ITO
data from Gibbons et al [19]. The overall transmittance of the coating is around
90% and so the glare is further reduced by a factor of 0.8. The glass in the display
faceplate is frequently absorbing also and this contributes also to a reduction. The
ITO in the coating is a conducting material and acts to reduce electromagnetic
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Figure 13.19. Glare-reduction filter applied to the face of a display. The high-index
material is made both absorbing and conducting.
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Figure 13.20. Response of a four-layer antireflection coating using silica and ITO. The
ITO constants are taken from Gibbons et al [19].

emission and static electric fields, but not low-frequency magnetic fields.
To enhance the absorption still further and increase the glare reduction

materials that are still more absorbing may be used. Transition metal nitrides,
such as titanium nitride, are one possibility [20]. Wolfe [21] has used layers
of silver and nickel to increase the absorption and at the same time assure the
electrical conductance. Silver was incorporated in the form of a subsystem
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consisting of around 8 nm of silver surrounded by 1.2–2.0 nm of NiCrN x that
was in turn surrounded by some 20–30 nm of SiN x or SiZrNx. An outer layer
of SiO2 then completed the coating. Alternatively a layer of nickel, perhaps 6–
9 nm thick surrounded by protecting layers of SiN x to protect it from oxidation
was found satisfactory. Coatings involving these materials could be made to have
transmittances in the range of 30% to 80%.

An ingenious family of two-layer coatings for glare reduction has recently
been proposed. Early development was carried out by a group at the Asahi Glass
Company Ltd in Japan [22]. A further description is given by Ishikawa and Lippey
[23]. Absorbing two-layer coatings are also discussed in detail by Zheng and
colleagues [24].

At the shortest wavelength the coating can be considered to consist
essentially of a typical V-coat with a thin high-index layer next to the substrate
and a rather thicker low-index layer outermost. For simplicity the substrate in
this description is transparent but this is not a necessary condition. Now let
the wavelength move to a longer value. The physical thicknesses of the layers
will remain constant but in the absence of dispersion both optical thicknesses
will become smaller fractions of the wavelength and so the admittance loci will
shrink. Now imagine that as the wavelength changes the reflectance of the coating
remains at zero. The outermost low-index layer can be considered to be a normal
dielectric material, like silica, and so it will exhibit negligible dispersion. The
end point is firmly fixed at unity on the real axis, the admittance of the incident
medium, and so, since the locus is shorter, the starting point moves around the
existing circle. Similarly, if the index of the high-index inner layer remains
constant and the starting point is firmly fixed at the admittance of the substrate on
the real axis, the end point will move around the high admittance circle and a gap
will open up in the locus so that it is no longer valid. Now let the optical constants
of the inner layer, the high-index layer, be completely adjustable. By adjusting
both the index of refraction and the extinction coefficient, the end point of the
locus can be swept over a quite large area of the admittance diagram. The gap
in the admittance locus can be closed so that it becomes valid and the reflectance
remains at zero. By arranging for appropriate smooth variations in both n and k
the reflectance can be retained at zero over the entire visible region.

The properties of tungsten-doped titanium nitride are very close to ideal.
Measured values taken from Ishikawa and Lippey (estimating from their graph)
are given in table 13.3. The thicknesses of the tungsten-doped titanium nitride
film and the silica film were 10 nm and 80 nm respectively.

We use a cubic spline interpolation to smooth the constants given in the
table and then calculate the performance assuming a normal dispersive index for
the glass substrate and arrive at the performance given in figure 13.21. This is
impressive.

The calculated transmittance of the coating is shown in figure 13.22. It
is surprisingly neutral and will contribute to a satisfactory reduction in glare.
Although no figures are given, the authors mention that the coating also reduces
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Table 13.3.

Refractive Extinction
Wavelength index coefficient

405.00 2.5 0.7
510.00 1.8 1.3
632.80 1.2 1.7
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Figure 13.21. The performance calculated for design: Air | SiO2: 80 nm | TiNxWy: 10 nm
| Glass. (Calculation parameters from Ishikawa and Lippey [23].)

emissions from the display unit.
The admittance diagram in figure 13.23 shows clearly the way in which the

dispersion of the optical constants of the absorbing layer holds the termination
of the locus in the vicinity of the incident medium admittance and keeps the
reflectance low.

13.6 Some coatings involving metal layers

13.6.1 Electrode films for Schottky-barrier photodiodes

A simple diode photodetector consists of a metal layer deposited over a
semiconductor forming a Schottky barrier. High quantum efficiency can be
achieved. The incident light passes through the metal layer into the depletion
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Figure 13.22. The calculated transmittance of the coating of figure 13.21.
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Figure 13.23. The admittance locus of the antireflection coating of figure 13.21 showing
how the dispersion of the optical constants of the layer next to the substrate compensates
for the shortening of the locus as the wavelength increases.
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layer of the diode where it creates electron–hole pairs. The metal contact layer
must transmit the incident light and since it has intrinsically high reflectance, it
must be coated to reduce its reflection loss. We give here a very simple approach
to the design of a combination of electrode and antireflection coating. A number
of workers [25–27] have made contributions in this area with probably the most
complete account of an analytical approach being that of Schneider [27].

The substrate for the thin films is the semiconducting part of the diode
and it is fixed in its optical admittance. The metal layer goes directly over the
semiconductor (in some arrangements there is a very thin insulating layer that has
negligible optical interference effect) and so the potential transmittance is fixed
entirely by the thickness of the metal. All that can be done to maximise actual
transmittance is simply to reduce the reflectance to zero.

We take as an example a gold electrode layer deposited on silicon. We
assume a wavelength of 700 nm and optical constants of 0.131 − i3.842 for gold
and 3.92 − i0.05 for silicon [28]. The optical constants of silver and copper
are quite similar to those of gold at this wavelength and the results apply almost
equally well to these two alternative metals. The admittance locus of a single
gold film on silicon is shown in figure 13.24. An antireflection coating must
bridge the gap between the appropriate point on the metal locus to the point (1,
0) corresponding to the admittance of air. We can assume that the maximum
and minimum values of dielectric layer admittance available for antireflection
coating are 2.35 and 1.35, respectively. Using these values, we can add to the
admittance diagram two circles that pass through the point (1, 0) and correspond
to admittance loci of dielectric materials of characteristic admittances 2.35 and
1.35, respectively. These loci define the limits of a region in the complex plane.
Provided a metal locus ends within this region, then it will be possible to find a
dielectric overcoat of admittance between 1.35 and 2.35 that, when the thickness
is correctly chosen, will reduce the reflectance to zero. It is clear from the
diagram that the thicker the metal film, the higher must be the admittance of
the antireflection coating. Once the metal locus extends beyond this region, a
single dielectric layer can no longer be used and a multilayer coating (or a single
absorbing layer, although it would reduce transmittance and so would not be
very useful in this particular application) becomes necessary. We have already
considered multilayer coatings in the section on induced transmission filters. Here
we limit ourselves to a single layer and take the highest available index of 2.35.

The remaining task in the design is then to find the thicknesses of metal
and dielectric corresponding to the trajectories between the substrate and the
point of intersection, and between the point of intersection and the point (1, 0)
in figure 13.24. The points marked along the metal locus correspond to intervals
of 0.005λ0 in geometrical thickness, that is to thickness intervals of 3.5 nm.
Visual estimation suggests a value of 0.013λ0 for the thickness to the point of
intersection. A more accurate calculation gives 0.0133λ0, that is a thickness of
9.3 nm. The dielectric layer has an optical thickness of somewhere between an
eighth- and a quarter-wave, and accurate calculation yields 0.186λ 0.
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Figure 13.24. Admittance diagram showing some of the factors in the antireflection of
a metal electrode layer in a photodiode. The optical constants of gold are assumed to be
(0.131 − i3.842) at a wavelength λ0 of 700 nm. The gold is deposited on silicon with
optical constants (3.92 − i0.05). The crosses on the gold locus mark thickness increments
of 0.005λ0 i.e. 3.5 nm. Also shown are loci corresponding to dielectric layers of indices
1.35 and 2.35 that terminate at the point 1.00.

Figure 13.25. The calculated transmittance, including dispersion, of the gold electrode
film and antireflection coating designed in the text.

The calculated performance of this coating is shown in figure 13.25. Of
course, the thickness of the metal film is rather small and it is unlikely that
the values of optical constants measured on thicker films would apply without
correction, but the form of the curve and the basic principles of the coating are as
discussed here.
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13.6.2 Spectrally selective coatings for photothermal solar energy conver-
sion

Coatings for application in the field of solar energy represent a complete subject
in their own right. They have been discussed in detail by Hahn and Seraphin
[29]. Here we consider simply a limited range of coatings based on antireflection
coatings over metal layers that have much in common with the electrode film of
the previous section.

Solar absorbers that operate at elevated temperatures can lose heat by
radiation unless steps are taken to reduce their emittance in the infrared. Yet
to operate efficiently they must have high solar absorptance in the visible and
near infrared. Optimum results are obtained from an absorbing coating that
exhibits a sharp transition from absorbing to reflecting at a wavelength in the
near infrared that varies with the operating temperature of the absorber. One
way of constructing such a coating is to start with a thick metal film or a metal
substrate and apply an antireflection coating that is efficient over the visible but
which becomes ineffective in the infrared, so that at longer wavelengths the
reflectance is high and the thermal emittance, as a result, low. Fortunately, we
are interested simply in a reduction of reflectance. Transmittance is unimportant.
The energy that is not absorbed in the coating is absorbed in the substrate. Thus
the antireflection coating can include absorbing layers.

A useful approach to the design is the use of a semiconducting layer over
a metal. The semiconductor becomes transparent in the infrared beyond the
intrinsic edge and so in that region the reflectance of the underlying metal
predominates. In the visible and near infrared the absorption in the semiconductor
is sufficient to suppress the metallic reflectance, and to complete the design it is
sufficient to add an antireflection coating to reduce the reflectance of the front face
of the semiconductor. Since the metal is to dominate the infrared performance
either the semiconductor layer must be relatively thin in the infrared or the metal
must have sufficiently high k/n to be only slightly affected by the high index of
the semiconductor in its transparent region. From the point of view of optical
constants, silver is therefore the most favourable metal but it suffers from a lack
of stability at elevated temperatures that cause it to agglomerate so that its optical
constants are shifted and its reflectance reduced. Seraphin and his colleagues (see
their article [29] for a readily available summary and more detailed references)
have developed coatings in which the silver is stabilised by layers of chromium
oxide (Cr2O3) which act as diffusion inhibitors. The silicon films are produced
by chemical vapour deposition in which the silicon–hydrogen bonds in silane gas
flowing over the substrate are broken by elevated substrate temperature and, as
a result, silicon deposits. Adding oxygen or nitrogen to the gas stream gives an
antireflection coating of silicon oxide or nitride that can be graded in composition
by continuous variation of gas-stream composition. Such coatings can withstand
temperatures in excess of 600 ◦C without degradation.

The design of such coatings is straightforward. First of all, the thickness
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of silicon must be such that the visible absorption is sufficiently high to mask
the underlying silver but not so thick that interference effects reduce reflectance
and increase emittance in the infrared. In the visible region, the light that enters
the silicon layer and is reflected from the silver at the rear surface should be
sufficiently attenuated that only a very small proportion ever re-emerges. We
can assume that the attenuation of this light depends on a law of the form
exp(−4πkd/λ) and for the entire round trip from front surface to rear of film
and back again to the front surface we should have a value roughly in the range
0.01–0.05. Let us choose a design wavelength of 500 nm in the first instance at
which silicon in thin-film form has optical constants of 4.3 − i0.74 [28]. Then
for exp(−4πkd/λ) to be 0.05, the value of d must be 160 nm. Since this is for
the entire round trip, the film thickness should be half this value, or 80 nm. An
antireflection coating must then be added to reduce the visible reflectance of the
front surface of the silicon layer. Since we have reduced the interference effects to
a low level, the front surface will be similar to bulk silicon with optical constants
characteristic of the material. Seraphin and his colleagues used a graded-index
film of silicon nitride and silicon dioxide, but for simplicity we assume here a
homogeneous film of roughly 2.0 admittance and a quarter-wave thick at 500 nm.
We can take zirconium dioxide with its characteristic admittance of 2.07 as an
example. The performance of the complete coating is shown in figure 13.26.
The extra dip at 600 nm is a result of the thickness of the silicon. The silicon
admittance locus spirals around, converging on the optical constants. At 600 nm,
the spiral is somewhat shorter but the end point is passing through a region where
the zirconium oxide layer can act as a reasonably efficient antireflection coating
once again and so the dip appears. The silver begins to assert itself at around
700 nm in this design. We can shift the reflectance trough to a longer wavelength,
say 750 nm, by carrying out a completely similar procedure but this time using
4.17 − i0.37 for the optical constants. Now a double-pass reduction of 0.05 leads
to a round-trip thickness of 480 nm, representing a film thickness of 240 nm. The
performance is also shown in figure 13.26. In both traces the optical constants of
silicon and silver were derived from [28].

An alternative arrangement makes use of metal layers as part of an
antireflection coating for silver. The great problem in designing an antireflection
coating for a high-efficiency metal using entirely dielectric layers is that the
admittance where the locus of the first dielectric layer, that is the layer next to the
metal, first cuts the real axis is far from the point (1, 0) where we want to terminate
the coating, and with each pair of subsequent quarter-waves we can modify that
admittance by only (nH/nL)

2. Many quarter-waves are needed, as we have seen
with the induced transmission filters. A metal layer, on the other hand, follows a
different trajectory from a dielectric layer, cutting across dielectric loci, and can
be used to bridge the gap between the large radius circle of the dielectric next to
the metal and a dielectric locus that terminates at (1, 0).

The metal locus itself can be arranged to pass through (1, 0) but the extra
dielectric layer is capable of giving a slightly broader characteristic and also some
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Figure 13.26. The calculated performance including dispersion of solar absorber coatings
consisting of antireflected silicon over silver. Designs

(a) ZrO2 Si Ag λ0 = 500 nm
0.25λ0 80 nm

(b) ZrO2 Si Ag λ0 = 750 nm
0.25λ0 240 nm

Further details are given in the text.

protection to the metal layer. Silver could be used as the matching metal but
its high k/n ratio leads to rather narrow spike-like characteristics even with the
terminating dielectric layer, and a metal with rather greater losses is better. We
use chromium here as an illustration with aluminium oxide as dielectric. These
materials have figured in published coatings (see Hahn and Seraphin [29] for
further details). We choose a wavelength of 500 nm for the design and the optical
constants we assume for our materials are silver: 0.05 − i2.87; aluminium oxide:
1.67; and chromium; 2.86 − i4.11. Again the optical constants of the metals
were obtained from Hass and Hadley [28] with interpolation if necessary. An
admittance diagram of a coating of design:

Air
Al2O3 Cr Al2O3

0.184λ0 7.5 nm 0.184λ0
Ag (λ0 = 500 nm)

is shown in figure 13.27. The chromium locus bridges the gap between the two
dielectric layers. Because of its rather lower k/n ratio than silver its trajectory
is flatter and the entire characteristic less sensitive to wavelength changes. The
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Figure 13.27. Admittance diagram at λ0 of an absorber coating of design:

Al2O3 Cr Al2O3
Air Ag

0.184λ0 7.5 nm 0.184λ0

λ0 = 500 nm. See the text for an explanation.

arrangement helps to keep the final end point of the coating in the vicinity of (1,
0) as the loci increase or decrease in length with changing wavelength or g.

No attempt was made to refine this design although clearly, because of the
wide range of possible thickness combinations that would lead to zero reflectance
at the design wavelength, there must be scope for performance improvement by
refinement. The characteristic of the coating is shown in figure 13.28. The
reflectance minimum can be shifted to longer wavelengths by repeating the design
process with appropriate values of the optical constants. This gives the desired
zero but then at shorter wavelengths, where the dielectric loci are departing further
and further from ideal and the chromium layer is unable to bridge the gap between
them, a peak of high reflectance is obtained. At still shorter wavelengths, there is
a second-order minimum where the dielectric layers make a complete revolution
and are once again in the vicinity of the correct position. For the ideal values
we have used in these calculations the central peak of high reflectance is very
high indeed. Practical coatings also show this double minimum (see Hahn and
Seraphin [29]), but the central maximum is very much less prominent, the most
likely explanation being that the layers in practice have much greater losses than
we have assumed. In particular, the thin chromium layers are unlikely to have
ideal optical constants. High losses would make the loci spiral in towards the
centre of the diagram and reduce the wavelength sensitivity.

The major problems associated with such coatings are not their design but
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Figure 13.28. The calculated performance, including dispersion, of the absorber coating
of figure 13.27.

the necessary high-temperature stability. Spectrally selective solar absorbers are
only economically viable when they are used to produce high temperatures and,
indeed, it is only at high temperatures that they offer an advantage over the more
conventional spectrally flat black absorbing surfaces that can be produced very
much more cheaply. They are used under vacuum to eliminate gas conduction
heat losses and so the major degradation mechanism is diffusion within the
coatings. Silver is particularly prone to agglomerate at high temperatures and
much development effort has resulted in the incorporation of thin diffusion
barriers such as chromium oxide that inhibit diffusion and agglomeration of the
components without affecting the optical properties. The achievements in terms
of lifetime at high temperatures are impressive. Further details will be found in
Hahn and Seraphin [29].

13.6.3 Heat reflecting metal–dielectric coatings

There are several applications where a cheap and simple heat-reflecting filter
would be valuable. For example, a normal, spectrally flat solar absorber can
be combined with such a filter so that the combination acts as a spectrally
selective absorber. It is possible to construct a very simple band-pass filter
that has the desired characteristics from a single metal layer surrounded by two
dielectric matching layers [30–33]. The filter is similar in some respects to the
induced transmission filter, although the maximum potential transmittance that is
theoretically possible cannot usually be achieved. One design technique uses the
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Figure 13.29. Admittance diagram of a metal–dielectric heat-reflecting filter. The diagram
shows the locus at a wavelength of 600 nm of a ZnS | Ag | ZnS combination deposited on
glass.

Figure 13.30. Transmittance, calculated with dispersion included, of the heat-reflecting
coating of figure 13.29. Details of the design are given in the text.

admittance diagram and we can illustrate it with an example in which we consider
a glass substrate and an incident medium of air or vacuum. Silver, with optical
constants of 0.06 − i3.75 at 600 nm, can serve as the metal and we assume a
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dielectric layer material of index 2.35. Zinc sulphide, which has such an index,
has been used in this application, but the most durable and stable coatings are
ones incorporating a refractory oxide. Figure 13.29 shows an admittance diagram
in which one dielectric locus begins at the substrate and a second terminates at
(1, 0) corresponding to the incident medium. If the complete coating is to have
zero reflectance then the remaining layers must bridge the gap between these two
loci. Once again, it is easy to see that a metal layer can do this and also that the
particular optical constants of the metal are unimportant; they will simply alter
somewhat the points of intersection with the two loci. The loci shown correspond
approximately to the thickest silver film that will still give zero reflectance. To
increase the silver thickness without sacrificing the zero reflectance requires that
the indices of the two dielectric layers be increased. A small increase in thickness
of metal without a gross alteration in the design could be achieved by the insertion
of a low-index quarter-wave layer next to the substrate to move the starting point
of the next high-index dielectric layer, the upper one in the admittance diagram,
further along the real axis towards the origin. The new locus would be outside the
existing one demanding a thicker metal matching layer. In the absence of such a
low-index layer, the final three-layer design is:

Air ZnS Ag ZnS Glass
1.0 2.35 0.06 − i3.75 2.35 1.52

0.146λ0 15 nm 0.141λ0

λ0 = 600 nm

with performance shown in figure 13.30. The steep fall towards the infrared
is partly due to the drop in efficiency of the matching, but an inspection of
the admittance diagram quickly reveals that the reduction in length of each
locus accompanying an increase in wavelength should not by itself change the
reflectance grossly. The dispersion of the silver, however, keeps the value of
(2πkd/λ) high and, hence, the locus long, and is primarily responsible for the
increase in reflectance in the infrared. The coating could be based on virtually
any metal with high infrared reflectance and high-index dielectric material. Gold
and bismuth oxide have been successfully used [33].
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336–49

[12] Houghton J T 1961 The meteorological significance of remote measurements of
infra-red emission from atmospheric carbon dioxide Quart. J. R. Meteorological
Soc.87 102–4

[13] Houghton J T and Shaw J H 1965 The deduction of stratospheric temperature from
satellite observations of emission by the 15 micron CO2 band Memoires Soc. R.
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Chapter 14

Other topics

14.1 Rugate filters

The term rugate is derived from biology where the meaning is essentially that
of corrugated. It was introduced to describe a structure exhibiting a regular
cyclic variation of refractive index resembling a sine or cosine wave. Such
structures have the property of reflecting a narrow spectral region and transmitting
all others. They exhibit properties similar to a quarter-wave stack but without
the higher-order reflection bands. Thus they are notch filters and particularly
useful in removing bright spectral lines from weaker continua. Many of their
applications involve laser sources and they are especially relevant in the field of
laser protection.

It can easily be shown that all the beams emerging from the front surface of
a multilayer constructed from a series of quarter-wave layers of alternate high and
low index are exactly in phase. This leads to high reflectance but it is limited in
width in terms of wavelength or frequency because the constructive interference
condition applies only to the wavelength for which the layers are exact quarter-
waves. Outside the zone of high reflectance it is the transmittance that is high.
The quarter-wave stack, therefore, acts as a notch filter. The lower the ratio of
the high-to-low refractive index at the interfaces, the lower will be the amplitude
reflection coefficients and the greater the number of beams required to achieve
a given reflectance. The rate at which the interference condition decays with
change in wavelength determines the width of the high reflectance zone. Smaller
index contrast implies more beams, faster decay of the constructive interference
and hence, narrower reflectance zones. A narrow zone of high reflectance in turn
implies a large number of layers of low-index contrast. All this is considered in
greater detail in chapters 4 and 5.

A limitation of systems made up of discrete dielectric layers is that a change
in wavelength does not change the amplitude of the beams, except for slight
changes due to dispersion. The same beams with the same amplitudes exist over
a wide spectral region. It is impossible to distinguish between the interference

588
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Figure 14.1. A typical characteristic of a quarter-wave stack used as a notch filter showing
the higher orders at g of 3, 5 and 7. The fringes in the pass regions are so tightly packed
they cannot be distinguished.

effect between two beams with phase difference ϕ and two beams of exactly the
same amplitude and phase difference ϕ ± 2mπ where m is an integer. In the case
of the quarter-wave stack, the interference condition that exists at wavelength λ 0
also exists at wavelengths λ0/3, λ0/5, λ0/7 and so on, leading to the higher-order
reflectance zones that limit its usefulness as a notch filter. A typical characteristic
curve plotted in terms of g, that is λ0/λ, is shown in figure 14.1.

The higher orders may not present any problem in certain applications and
for these the discrete layer design will be quite satisfactory. For those others where
the peaks are a problem, we do need to suppress them. They have their origins in
the interference between beams reflected at all the interfaces. In other words their
origin is distributed throughout the multilayer. We need, therefore, a distributed
solution. We need to retain the beams at the fundamental peak at g = 1.0, but
we must remove them at all other integral values of g. An antireflection coating
that does not affect the performance at g = 1, but that operates at values of g
greater than unity, is required for each interface. An inhomogeneous layer is such
an antireflection coating.

We shall return shortly to the derivation of performance of such systems.
For the moment let us accept the two possible profiles for inhomogeneous layers
shown in figure 14.2. If we assume that the layers have an optical thickness of
one quarter wavelength at g = 1.0 then the performances, in terms of reflectance
against g, are those shown in figure 14.3.
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Index profiles. Quintic (thin) and sine (thick)
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Figure 14.2. Inhomogeneous layer profiles rising from 1.50 to 1.80. The layers are
one-quarter of a wavelength in optical thickness and the profile of refractive index follows
a sine law (shallower curve—thick line) or a fifth-order polynomial (steeper curve—thin
line) with zero first and second derivatives with respect to thickness at the end points.

This antireflection coating must now be inserted at each interface in the
discrete layer coating. Figure 14.4 shows the resulting profile of optical
admittance. The coating now has a sinusoidal variation of index throughout and
is known as a rugate structure because of the smooth cyclic variation.

The new variation of reflectance is shown in figure 14.5. Note the small
residual peak at g = 2.0. This is due to the failure of the sinusoidal variation
of refractive index to act completely like the absentee half-wave layers of the
discrete design. The slight residual reflectance change accumulates in a coating
with a large number of layers and gives the slight perturbation from the regular
fringe pattern that appears elsewhere. Southwell [1] has pointed out that an
inhomogeneous layer based on an exponential sine does act as an absentee layer
at even values of g, even though its profile is almost indistinguishable from that
of a sine function.

The inhomogeneous antireflection coating is a very robust one from the point
of view of errors. There is an insensitivity to the actual profile of the index. As
long as the thickness at a given wavelength is greater than roughly a half-wave
then the reflectance at that wavelength should be very low. Thus even quite large
errors in the profile of a rugate filter are not normally serious unless they are
systematic and lead to a change in the pitch of the cycle. Such errors tend to
broaden the fundamental peak. Quite severe errors are required before the higher-
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Figure 14.3. Reflectance against g for the inhomogeneous layers shown in figure 14.2. The
sine law variation is less steep than the fifth-order polynomial so the curve of reflectance
(left-hand curve—thick line) drops faster but the fifth-order polynomial (right-hand
curve—thin line) gives lower reflectance at greater values of g.

order peaks begin to return. This has useful implications for the manufacturing of
such filters.

The control of the deposition of rugate filters is a rather more involved task
than for a simple discrete-layer quarter-wave stack. In discrete-layer deposition,
it is optical thickness that has always been the object of the closed loop control
system. Refractive index has been considered to be characteristic of the particular
material being deposited and so the control of that aspect of the layers has been
open loop. The deposition methods have concentrated on the control of source
temperature, rate of deposition and so on. The rugate filter represents a greater
challenge because there is no natural material that yields the desired profile of
refractive index. It must be engineered. Compositional changes are necessary
and, in the true rugate filter, these changes should be smooth. This tends to imply
some form of active index control.

The absence of the need for direct index control, however, makes discrete
layers very attractive. Although they are not strictly true rugates, nevertheless
it is possible to create discrete-layer structures that have, up to a point, similar
properties. To replace a rugate structure by a discrete-layer structure, we can
imagine slicing a rugate period into a large number of thin layers of equal optical
thickness. Each thin slice has an inhomogeneous index profile but we can convert
it into a homogeneous index that has simply the central value. This gives a
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Index profiles. Discrete (thin) and rugate (thick)
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Figure 14.4. The result of replacing each discrete interface (square plot—thin line) by one
graded to have a sine profile (rounded plot—thick line). This gives the rugate structure.

Rugate with sine profile
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Figure 14.5. The reflectance curve of the rugate filter. The variation of index is shown in
figure 14.4 except that the filter actually calculated had the equivalent of 64 discrete layers.
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RUGATE#1: Index Profile
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Figure 14.6. The profile of a rugate filter with a cycle consisting of ten discrete layers
rather than a continuously varying profile.

staircase profile of index. In fact, and we return to this point later in this section,
the calculation of the properties of rugate filters with arbitrary profile is normally
carried out in this way with the thicknesses chosen to be so thin that further
subdivision makes no changes to the results. Here we use rather thicker slices.

Figure 14.6 shows the profile of a rugate filter that has been converted in
this way. The steps are arranged so that in each rugate cycle there are ten of
them. This means that at the reflectance peak where the rugate cycle is one
half-wave thick, the individual discrete layers are just one-twentieth of a wave
thick. As long as the individual layers are thin compared with a quarter-wave,
then the discrete version works well. However, as the wavelength reduces, the
phase thickness of the individual layers increases and eventually becomes much
thicker compared with a wavelength. However, the behaviour of the system does
not just simply deteriorate but is quite regular and understandable. At a value of g
of zero, the layers are effectively of zero phase thickness and so the reflectance of
the system is that of the uncoated substrate. At g = 1.0, the rugate cycle is now
a half-wave and the reflectance is high. As g increases, the cycle, at first, retains
its antireflecting properties and the higher-order peaks are suppressed. Now let
us jump to the case where g is large enough for the layers to be of half-wave
thickness. Here we have absentee layers and the reflectance is that of the uncoated
substrate. At this value of g we still have exactly the same beams taking part in the
interference as at all other values of g. The phase shifts between them, however,
are exactly the same as at g = 0 except that, in every case, there is an additional
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RUGATE#1: Reflectance
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Figure 14.7. The performance of the rugate of figure 14.6 as a function of g showing the
harmonic peak at g = 9.0. Note the subtle differences in the low reflectance performance
from g = 0 to g = 2 and from g = 8 to g = 10. This is due [1] to the use in figure 14.6 of
a half cycle that is the mirror image of the alternate half cycle only if the outer layers are
half the thickness of the others.

wavelength, that is 360◦, which is indistinguishable from zero. Furthermore, as
we now reduce g from this value, we find exactly the same interference pattern as
a function of the reduction in g that we find as a function of the increase in g from
zero in the normal way. Thus, if we have ten equal steps or discrete layers making
up the rugate cycle with a fundamental peak at g = 1, then there will be a similar
peak at g = 9. A cycle made up of four layers will have a further peak at g = 3
and so on. Figure 14.7 illustrates this for the rugate of figure 14.6. Figure 14.8
shows similar performance for a rugate with a four-layer cycle. In this case the
harmonics begin at g = 3 and so the sole peak that is eliminated is at g = 2. This
may not appear to be any different from a two-layer cycle but, in fact, the extra
layers help to suppress the half-wave-hole peak that appears at g = 2 when the
coating based on the two-layer cycle is tilted.

Southwell [1] has pointed out that the slight lack of symmetry in the result
in figure 14.7 is a consequence of the use of a set of sublayers of identical
thickness such that there are no two adjacent sublayers with the same index. This
effectively makes the rugate period symmetrical only if the two outermost layers
are considered to be half the thickness of the others. A rearrangement where the
outermost sublayers have the same index and the full sublayer thickness, implying
a merging of the innermost layer pair and the ending layer of each cycle with the
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Design1: Reflectance
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Figure 14.8. The performance of a rugate similar to that of figure 14.6 except that the cycle
is made up of four discrete layers of equal thickness. The harmonic peak appears now at
g = 3.0.

starting of the next, gives a perfectly symmetrical performance.
An alternative technique for the replacement of the continuous variation with

a series of discrete layers uses two materials with fixed indices of refraction. One
of the indices must be equal to or less than the lowest in the rugate structure and
the other equal to or greater than the highest. The method uses the properties of
the characteristic matrices of the films. There are two variants. The first uses
the result that the matrix of any symmetrical arrangement of layers, absorbing
and inhomogeneous layers included, can be replaced by the characteristic matrix
of a single equivalent homogeneous layer [2, 3]. This equivalence is dealt with
more fully in chapter 3 and is a purely analytical relationship and certainly not
physical, but it is valid wherever the properties involve only the characteristic
matrices. This relationship can be reversed so that the homogeneous film matrix
can be replaced by the matrix of a symmetrical combination of layers. Since
the eventual result involves identical matrices, properties such as reflectance and
transmittance at one particular angle of incidence and wavelength are unchanged
when the equivalent sequences are interchanged. One of the most useful aspects
of this relationship is the replacement of a layer of intermediate index by a
symmetrical combination of layers of given high and low index. At one angle of
incidence and one wavelength this equivalence holds completely for any property
that can be calculated using the characteristic matrices. For the equivalence to
be retained exactly with changes in wavelength demands a particular dispersion
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Design6: Index Profile
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Figure 14.9. A 22-layer representation of a single half-wave rugate cycle. The layers are
either of high (1.8) index or low (1.5) and their thicknesses are varied so that the overall
effect is similar to the smooth variation of the classical rugate.

of the indices of the replacement layers. This implies that when real layers
are involved with their natural dispersion the equivalence becomes gradually
poorer as the wavelength changes, especially as the wavelength decreases. The
equivalence strictly does not extend to changes in angle of incidence although the
deterioration is not usually very rapid. The second variant uses an approximate
method based on pairs of layers. When both members of a layer pair are thin
compared with a wavelength then the characteristic matrix of the combination
of the two layers is equivalent to that of a single layer of intermediate index
[4]. Again this relationship is not valid for changes in angle of incidence and it
becomes poorer as the wavelength decreases. Both variants can take the staircase
approximation to the rugate cycle and convert it into an equivalent series of
alternate high- and low-index layers of differing thicknesses.

We illustrate the method by using the second variant, the two-layer
approximation. Figure 14.9 shows a single cycle. (There is an extra layer at
the end that is strictly the first layer of a following cycle.) The performance of a
rugate filter based on 14 of these cycles in series is shown in figure 14.10.

The important point about these calculations is that a discrete-layer
approximation to a rugate filter can give performance that is nevertheless
acceptable. The range of transparency of the materials is rarely greater than
the clear ranges shown in figures 14.7 and 14.9. Many of the techniques for
coating production lend themselves much better to the construction of discrete-
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Figure 14.10. The performance of the rugate of figure 14.9. The performance has
characteristics similar to those of the stepped version from which it was derived.

layer systems than to the creation of smoothly varying index profiles.
We now consider the theoretical problems in more detail. Figure 14.11 shows

a representation of an inhomogeneous layer that is linking two media. The optical
admittance, y, is plotted against the optical thickness, z. Accurate calculation
of such layers involves the slicing of them into sufficiently thin homogeneous
sublayers and then using the normal calculation techniques. The slices should be
rather thinner than a quarter-wave at the shortest wavelength in the calculation. To
test the adequacy of the approximation, the layers can be made still thinner and
the calculation repeated. A completely unchanged performance is an indication
that the approximation is satisfactory. For the design of such structures it is usual
to employ an approximate technique based on what is essentially an application
of the vector method. If the performance is to be calculated at the plane denoted
by z = 0 then the vector that is derived from the step at the plane z will be given
by

ρ exp (−i2δ) = �y

2y
exp (−i2κz)

where κ , the wavenumber, is given by 2π/λ, λ being the free space wavelength.
If we represent twice the optical thickness, z, by x then we can write the sum of
all the various vectors as ∑ �y

2y
exp (−iκx) . (14.1)
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In the simple vector method this sum is simply equal to the amplitude reflection
coefficient. However, when many such vectors are involved with a quite thick
inhomogeneous structure, a correction may be made that represents a better
approximation. The conversion of the sum of (14.1) to an integral then yields

∫ ∞

−∞
dy

dx

(
1

2y

)
[exp(−iκx)]dx = Q(κ) exp [iϕ(κ)] (14.2)

connecting a function of performance with a function of the distribution of
characteristic admittance through a Fourier integral expression. This may be
inverted so that the distribution of y may be calculated from the distribution of
performance. Q is a function of performance, κ = 2π/λ, and x is twice the
optical path. ϕ(κ) is a phase factor that must be an odd function to ensure that n(κ)
is real. Although multiple beam effects are neglected, a judicious choice of Q can
reduce the errors that arise from this approximation. Note that equation (14.2) is
frequently written with a positive argument for the exponential. This is simply a
consequence of the particular sign convention that is used.

Functions that have been proposed and used for Q include (the first
represents the simple amplitude reflection coefficient):

Q = √
R

Q =
√

R

T

Q =
√

1

2

(
1

T
− T

)
(14.3)

Q =
√

1√
T

− √
T .

The great advantage of this approach is the analytical connection in either
direction of a function of design with a function of performance. If we know
the performance we can find a design and vice versa. Disadvantages are that
the technique is approximate and considerable skill and experience are required
in the choice of the appropriate Q function and phase factor ϕ. Although the
resulting design is a continuously varying admittance profile, it can be converted
into a discrete-layer design, the thicknesses being chosen thin enough not to affect
performance at the shortest wavelength of interest.

Finally we note that the term rugate is sometimes used for any layer system
in which there is a deliberate attempt to induce an inhomogeneity, whether or not
it is of a cyclic kind, in spite of the rather more restricted meaning of the original
term.
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Figure 14.11. To derive an expression for the performance of a dielectric inhomogeneous
layer we first divide the layer into a series of separate steps. These steps are chosen close
enough so that closer spacing still yields an unchanged result. Each step has an amplitude
reflection coefficient of −�y/(2y).

14.2 Ultrafast coatings

Traditionally, coating designers have been able to rely on the steady-state nature of
the effects they seek to produce. There are now laser systems, known as ultrafast,
capable of generating pulses of light that are short enough for transient response
to become significant. A normal high reflector consisting of a quarter-wave stack
might be some 25 quarter-waves in thickness. At a wavelength of 1 µm this
implies a trip length for light travelling from the front to the rear of the coating
and back again of 12.5 µm or a trip time of around 42 fs (one femtosecond is
1/1000 picoseconds). Pulses that are around 50 fs in length are now common and
the shortest current pulses are some 5 fs in length. It is clear that the transient
response of coatings must now be considered important in such applications, but
the effects, in fact, can be significant even with pulses some two or three orders
of magnitude longer. The idea that coating properties should have an influence
on short pulses and that they might be engineered to have prescribed effects is not
new. It is, however, only recently that the field has expanded and the technology
advanced to the stage where the application is becoming of major importance.

A short pulse can be thought of as an envelope over a carrier. The carrier
contains the phase information associated with the pulse and it travels at what is
known as the phase velocity. The energy is obviously associated with the envelope
that travels at what is known as the group velocity. In the presence of dispersion,
the group velocity and the phase velocity are different, normal dispersion making
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Figure 14.12. A short Gaussian-shaped pulse consisting of an envelope over a carrier of
constant frequency. The carrier phase may move faster than the pulse when it will appear
to run through the envelope as it travels.

the phase velocity greater. Thus the carrier appears to run through the pulse
envelope. A short pulse with Gaussian envelope is shown in figure 14.12.

The pulse may also be visualised in a different way, as a collection of
monochromatic component waves with a continuous distribution of frequencies
over a given band. The coherent combination of these monochromatic waves
yields the envelope and carrier of the alternative model. Both of the models are
entirely equivalent and, if we wish, we can pass from one to the other by way of
a Fourier transform.

Pulse envelopes frequently have a Gaussian shape [5, 6]. For simplicity we
can look at the temporal variation at the origin of our coordinates, z = 0, and
then, if the peak of the pulse corresponds to t = 0,

F(t) = Ae
− t2

2µ2 (14.4)

where µ has the dimension of time. The Fourier transform gives the frequency
distribution and it is also a Gaussian function,

G(ω) = Be−µ2(ω−ω0)
2

2 . (14.5)

If the time between the half-maximum points is τ and the width of the pulse
(angular) frequency distribution also at half-maximum is �ω then

τ�ω = 4lne2.

Note that both these quantities are functions of µ. For example,

τ = (2
√

lne2)µ.
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The centre of the pulse is the point where all of the component waves are exactly
of identical phase. If all the component waves travel at the speed of light in vacuo
then the phase coincidence will also travel at that speed and the centre of the pulse
will move with it. Similarly if all waves slow down equally then the pulse will
slow down to the same extent but will otherwise be unchanged.

The relative phase of the carrier within the pulse is set by the value of the
phase where all the component waves coincide. If the phase of the waves is zero
then the carrier will have a peak exactly at the peak of the pulse. We can find the
position of the pulse peak at any time by a simple procedure.

The pulse can be considered to be made up of monochromatic component
waves. As these propagate the phase relationships between them will change,
but if the pulse shape is unaltered as it propagates then at any particular time
there must be a distance along the path where the phase is identical for all the
component waves, and this must correspond to the pulse centre. We use the
normal thin-film convention of (ωτ − κz) in the phase factor where κ = 2πn/λ
with λ the free space wavelength. We write the component wave phase at distance
z and time t as ϕ − ϕ0 +�ϕ. Then for coincidence of all component phases, �ϕ
must be zero.

This condition is

(ω0 + �ω) t − (κ0 + �κ) z = ϕ0 +�ϕ

ω0t − κ0z = ϕ0

�ϕ = 0 = �ωt −�κz (14.6)

z = �ω

�κ
t = vgt .

The quantity �ω/�κ is known as the group velocity, vg, and clearly it must
remain constant if the position z is to be the same for all the component waves
and the shape of the pulse is to remain unchanged.

An alternative visualisation involves a simple diagram. We plot the z-
direction horizontally and ω vertically. We sketch the bundle of component waves
making up the pulse as a set of lines through the appropriate values of ω and
parallel to the z axis. We mark contours of constant ϕ on the lines. Provided
there is one contour that runs normally across the lines then the pulse peak will
be positioned there and the pulse shape will be unchanged.

In a nondispersive medium the phase at the peak will be zero because all the
component waves will be travelling at identical velocity even though it may be
less than the velocity in free space. In a dispersive medium, the component waves
travel at different velocities according to the particular value of refractive index.
Provided the variation in velocities still permits a phase coincidence somewhere,
then the pulse will appear there and will be unchanged in shape, although the
phase of the carrier wave will be altered. It is clear from equation (14.6) that the
critical condition is for the group velocity to remain constant across the frequency
spectrum of the pulse.
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Figure 14.13. Sketch showing the component waves of the pulse as horizontal lines along
the direction of propagation and with their relative phases marked as contour lines across
them. The pulse peak coincides with the position where the phase of all the components is
exactly equal.

In a dispersive medium, the refractive index changes with frequency. We can
calculate the group velocity in terms of this change.

κ = 2πn (ω)

λ
= ωn(ω)

c

dk

dω
= n(ω)

c
+
(
ω

c

)
dn(ω)

dω

vg = c

n(ω)+ ω d(ω)
dω

. (14.7)

In a medium with normal dispersion, this is not constant.
There is thus no guarantee that the group velocity should be constant with

changing frequency. If the second derivative ofω with respect to κ is nonzero then
there can be no phase coincidence and the pulse will be perturbed. Again we can
consider the operation in two different equivalent ways. If we limit ourselves to
the second derivative then we can write the expression for the phase of an arbitrary
component wave as:

(ω0 +�ω) t −
(
κ0 +�ω

dκ

dω

∣∣∣∣
0
+ 1

2
(�ω)2

d2κ

dω2

∣∣∣∣
0

)
z = ϕ +�ϕ (14.8)

and we can immediately identify a problem. The third term in the coefficient
of z is even in �ω and so cannot be compensated by the other terms. We must
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therefore split the frequency distribution of the pulse into two parts, one with
positive �ω and the other with negative �ω, and look at each separately. In each
case we ensure that the value of �ϕ is zero. This gives two equations instead of
the usual one. We keep the value of z the same in each and introduce a different
time t representing the interval in time between the pulse centres that correspond
to each part of the split distribution. If the spectral width of the split distribution
were halved then each component pulse would have twice the basic pulse width.
As a crude correction for this effect, therefore, we treat the �ω in the following
expressions as the width of the frequency distribution of the basic initial pulse.

�ωt1 −�ω
dκ

dω

∣∣∣∣
0
z − 1

2
(�ω)2

d2κ

dω2

∣∣∣∣
0
z = 0

−�ωt2 + �ω
dκ

dω

∣∣∣∣
0
z − 1

2
(�ω)2

d2κ

dω2

∣∣∣∣
0
z = 0.

Then, since

d

dω

(
dκ

dω

)
=
(

− 1

v2
g

)
d

dω

(
vg
)

�t = (t1 − t2) = −�ω
(

d2κ

dω2

)
z = �ω

(
dvg

dω

)(
1

v2
g

)
z (14.9)

and the result, (14.9), is similar to that of a much more strict derivation using
Gaussian pulses. The pulse is broadened and the carrier frequency of each part of
the pulse is different. A pulse with a varying carrier frequency along its length is
said to be chirped.

Alternatively we can use the diagram to see the way in which the phase
coincidences are affected by the variation of group velocity. Figure 14.14
shows the modified arrangement of the various component waves and their
contours of equal phase. The phase broadening itself causes a widening of the
pulses corresponding to each band of frequencies and so there is a still greater
broadening as the pulse propagates.

The effect, because it is due to a change in the group velocity across the
frequency range of the pulse, is usually known as group velocity dispersion.
Similar effects occur in waveguides and optical fibres. Group velocity dispersion,
often abbreviated to GVD, is measured in units of (time) 2 (length)−1 and is given
by

group velocity dispersion = d2κ

dω2

∣∣∣∣
0
. (14.10)

If the original pulse is of Gaussian shape as in (14.4) then if we write:

τ 2
g = d2κ

dω2

∣∣∣∣
0
z
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Figure 14.14. The pulse frequency distribution is now split into two parts, each of which
represents a component pulse with its own centre position. Since the group velocity is
different for the two component pulses they separate such that one lags behind the other
and the combined pulse is broadened.

it can be shown [5] that the new pulse width is given by

τnew = τ

[
1 + τ 4

g

µ4

] 1
2

. (14.11)

All of these effects are linear and so they can be undone by a similar but opposite
effect. Further, the order in which the effects occur is unimportant. A dispersive
broadening may be cancelled by an opposite dispersion.

A pulse, consisting of an envelope over a carrier, may be subjected to a
modification, by passing through a crystal modulator for example, in which the
phase of the carrier is gradually varied throughout the length of the pulse. If this
variation is a linear function of time then the effect is just as though the frequency
of the carrier had been changed. There is little other effect. However, if the phase
is changed as a quadratic function of time then it is as though the frequency of the
carrier were shifted gradually throughout the length of the pulse [6]. The pulse
has sliding frequency and is therefore chirped.

cos
(
ωt + at2

)
= cos [(ω + at) t] (14.12)

has frequency (ω+at). This chirped pulse appears indistinguishable from a short
pulse that has been dispersion broadened, except that the apparent dispersion can
be opposite in sign to normal dispersion. The pulse can then be subjected to the
action of a dispersive medium where there is significant group velocity dispersion.
Provided this dispersion is of the correct magnitude and sense then it will undo the
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artificially induced effect in the pulse leaving it considerably narrowed. Various
components have been used for this purpose but the flexibility of optical coatings
makes them particularly attractive in this application [7–9].

Optical coatings affect both the amplitude and the phase of incident light.
They can therefore, in principle, make the kinds of adjustments to incident light
that we have been considering. They have an advantage over dispersive systems
in that the correction is made immediately. We first must consider the nature of
the effect that thin-film coatings have on the pulse.

Amplitude reduction over part of the range of frequencies leads to pulse
broadening because the narrower the frequency spectrum the broader is the
pulse. We therefore limit ourselves to consideration of those systems that have
flat performance in terms of either transmittance or reflectance and that make
adjustments to the phase. The sign convention is important. We use the normal
thin-film convention.

The coordinate system has its origin at the surface where the reflection is said
to be taking place and the phase shift is measured at that surface. The electric field
retains its incident positive direction. An incident wave, say, E cos(ωt−κz+ϕ inc),
say, suffers a phase change ϕref at the surface z = 0. The electric field at that
surface for the reflected beam therefore becomes E cos(ωt − κz + ϕ inc + ϕref).
This then forms a reflected beam that has expression E cos(ωt +κz+ϕ inc +ϕref).
The returned beam is now propagating along the negative direction of the z axis.
We can avoid the sign change in z if we introduce the idea of the total path
travelled by the wave that we denote by x, which always increases as the wave
propagates and is along the positive direction of the z axis before reflection and
along the negative direction after reflection. (Note the temptation when using the
alternative phase factor convention of (κz − ωt) to reverse the direction of the
wave by incorrectly writing (κz+ωt), reversing the direction of time rather than,
correctly, (−κz − ωt), reversing the propagation direction.)

The expression for the wave now becomes

E cos (ωt − κx + ϕinc + ϕref) (14.13)

where x is always positive for increasing propagation length.
Now let us examine the effects of the various phase angles on the pulse and

its components. We take equations (14.7) and we rewrite the left-hand side to
include a change of phase on reflection. Then

ω0t − κx +�ωt −�ω
dκ

dω

∣∣∣∣
ω0

x − 1

2
(�ω)2

d2κ

dω2

∣∣∣∣
ω0

x + ϕ0 +�ω
dϕ

dω

∣∣∣∣
ω0

+ 1

2
(�ω)2

d2ϕ

dω2

∣∣∣∣
ω0

= (ω0t − κx)+�ω

{
t −

(
dκ

dω

∣∣∣∣
ω0

x − dϕ

dω

∣∣∣∣
ω0

)}
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Figure 14.15. The calculated group delay dispersion for a 19-layer classical quarter-wave
stack of zinc sulphide and cryolite, the zinc sulphide outermost. Reference wavelength
is 550 nm. The effect is clearly quite small and this is normal for quarter-wave stacks in
general.

− 1

2
(�ω)2

(
d2κ

dω2

∣∣∣∣
ω0

x − d2ϕ

dω2

∣∣∣∣
ω0

)
. (14.14)

−(dϕ/dω) has units of time and we can identify it as equivalent in its effect
to the group delay due to dispersion and it is therefore known as the group
delay, sometimes abbreviated to GD. The next term, −(d 2ϕ/dω2) has an effect
equivalent to the group velocity dispersion. Since the negative first derivative is
known as group delay this second derivative is known as group delay dispersion,
abbreviated to GDD, and has units of (time)2. Although we have said little about
it here, the third derivative is sometimes called the third-order dispersion, with
units of (time)3, and abbreviated to TOD. Third-order dispersion is usually small
but, if it is significant, it can adversely affect the shape of the pulse. The group
delay dispersion is particularly important because it can be adjusted in sign and
therefore can be used to offset the effects of group velocity dispersion and also to
operate on chirped pulses.

For most simple reflectors, ϕ increases with wavelength. This is the case
with the classical quarter-wave stacks. ϕ increases slowly with λ, the rate of
change being a minimum at the central wavelength, and the greater the index
contrast in the layers, the slower the change. An outer low-index layer actually
reduces still further the rate of change. The calculated group delay dispersion
for a zinc sulphide and cryolite quarter-wave stack is shown in figure 14.15. The
outermost layer in this case is zinc sulphide. Cryolite outermost leads to a slight
gain but gives an antinode of electric field at the outer surface and may, therefore,
be undesirable. It is obvious that the calculated group delay dispersion for quarter-
wave stacks will normally be very small and so it is a particularly safe type of
reflector to use with short pulses.
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Figure 14.16. The group velocity dispersion in fs2 cm−1 for SK7 glass calculated from
the manufacturer’s data.

Transparent optical materials with normal dispersion show a refractive index
n that reduces as wavelength increases. The rate of reduction, however, falls with
increasing wavelength through most of the transparent region and so the second
derivative of n with λ is positive. Since

κ = 2πn

λ

the group velocity dispersion is

d2κ

dω2
=
(

λ3

2πc2

)(
d2n

dλ2

)
. (14.15)

For typical optical materials the group velocity dispersion can be of the order of
1000 fs2 cm−1. Figure 14.16 shows the group velocity dispersion calculated from
the manufacturer’s data for SK7 glass [10].

The net group delay dispersion is given by(
d2κ

dω2

∣∣∣∣
0
L − d2ϕ

dω2

∣∣∣∣
0

)
. (14.16)

Straightforward quarter-wave stacks show small group delay dispersion implying
that although useful in reflecting short pulses, it is not likely to be useful in
compensating for the group velocity dispersion of a reasonable thickness of
optical material. Some way of increasing the magnitude of the negative values
of group delay dispersion of an optical coating is required. The addition of a
weak cavity to the front of the quarter-wave stack has been shown to be one fairly
successful way of achieving this result provided the wavelength region is limited,
that is the pulse is reasonably long. Such an arrangement is usually known as
a Gires–Tournois interferometer after the originators [11, 12]. The weak cavity
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Figure 14.17. The group delay dispersion calculated for the coating in expression (14.17).

Figure 14.18. The resultant group delay dispersion for the system of SK7 and coating.
Over a short spectral region the group delay dispersion has been reduced to the vicinity of
zero.

does not reduce the reflectance too much but the effect is a very rapid change of
phase on reflection that leads to the desired effect.

We can assume a 1-cm thick slice of SK7 glass and attempt the compensation
of the resulting group delay dispersion by the use of the interferometer.
Figure 14.17 shows the group delay dispersion of a Gires–Tournois interferometer
of design

Air
∣∣H L 6H (L H )9

∣∣Glass (14.17)

using zinc sulphide and cryolite as materials. Over a limited region the group
delay dispersion is capable of compensating for the effect of the 1 cm of
SK7. Figure 14.18 shows the composite group delay dispersion and it is near
zero at wavelengths just shorter than 550 nm, the central wavelength of the
interferometer.
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Table 14.1. Design of chirped reflector. (Courtesy of Thin Film Center Inc.)

λ0 700 nm

Optical Optical
Layer Material thickness Layer Material thickness

Medium Air Massive
1 TiO2 0.048 13 TiO2 0.282
2 SiO2 0.239 14 SiO2 0.285
3 TiO2 0.336 15 TiO2 0.275
4 SiO2 0.208 16 SiO2 0.291
5 TiO2 0.231 17 TiO2 0.306
6 SiO2 0.197 18 SiO2 0.324
7 TiO2 0.225 19 TiO2 0.362
8 SiO2 0.292 20 SiO2 0.320
9 TiO2 0.292 21 TiO2 0.355

10 SiO2 0.287 22 SiO2 0.323
11 TiO2 0.279 23 TiO2 0.273
12 SiO2 0.288 Substrate Glass Massive

This version of the interferometer is quite weak in its effect. It is possible to
increase the group delay dispersion by much more than an order of magnitude by
appropriate design so that the effect of much greater thicknesses of material can
be accommodated. The limitation of the interferometer is its rather small spectral
range of correction so that its principal application must be to longer pulses.

The principle of coatings of this type is that light may penetrate into them to
a rapidly varying extent and therefore show rapid phase dispersion, which in turn
is translated into the high group delay dispersion that is required for the system.
Broadband reflectors with extended zones also exhibit this effect, and incidentally
may have a considerable broadening effect when used as simple reflectors. They
are, however, useful for operating on chirped pulses [8, 13] and because they often
have a structure that exhibits a gradual tapering of layer thickness through the
structure they are often known as chirped mirrors. Table 14.1, figures 14.19 and
14.20 show the details of the design and calculated performance of such a coating
with a group delay dispersion of −30◦ over the region 750–900 nm. This is an
example of a design arrived at purely by synthesis with no starting information
other than the materials silica and titania that were to be used. Szipöcs and
Köházi-Kis [14] give a detailed account of a more systematic approach to the
design of such chirped mirrors.
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Chirped reflector
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Figure 14.19. Calculated reflectance of the coating of table 14.1.
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Figure 14.20. Calculated group delay dispersion of the coating of table 14.1

14.3 Automatic methods

Given a possible solution to a thin-film design problem, can we devise an
objective method to change the parameters so that it becomes a better design? Can
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we continue the process to make the design as good as possible? And, of course,
can we finally devise a way of achieving all this using an automatic computer?
The answer to all these questions is a conditional affirmative.

An automatic process that makes adjustments to an already existing design
without making major changes is known as refinement. An automatic process
that involves an element of design construction is usually known as synthesis.
The term synthesis may denote anything from a mild complication of an almost
acceptable design to a process that builds an acceptable design from nothing more
than a list of materials and a performance specification. The term optimisation
simply means improving performance and includes both refinement and synthesis.
These are not by any means universal definitions and there is no universal
agreement on the meanings of the terms.

Before we can make a coating better, we must define what we mean by better,
and our definition must be one that can be applied to automatic methods. At the
current stage of development of the subject the concept is invariably expressed in
terms of changes in a single number, the figure of merit. The usual arrangement
is for a smaller figure of merit to be better than a larger one and a figure of
merit to be zero if the coating has exactly the desired performance. However,
automatic processes can work as well with a figure of merit that increases as the
merit improves. The figure of merit is derived from a comparison of the actual
calculated performance of a design and a specification of a desired performance.
The derivation involves the application of a set of rules and it is important that the
rules should yield a completely unambiguous figure of merit.

Performance may include any attributes of the coating that can be quantified,
but it is frequently taken as the reflectance, or transmittance, or some such normal
expression of performance, at specified points over a prescribed wavelength
range. Each individual expression of performance is known as a target. Usually
the form of the rules for calculating the figure of merit will be similar to the
following expression:

F =
∑

j

[
Wj

∣∣Tj − Pj
∣∣q]∑

j Wj
(14.18)

where F is the figure of merit, Tj is the j th target, Pj is the corresponding
calculated value of performance and Wj is a weight that indicates the relative
importance of the particular target, or its tolerance, and may include an allowance
for the scale of the particular performance attribute represented in the target. It
is usual to normalise the expression so that the refinement or synthesis process
has always approximately the same working range and this is indicated in
equation (14.18) by dividing by the sum of the weights. The quantity q, the
power to which the performance gap is raised, may be completely free for the
user to choose or may, in some procedures, be completely defined. Experience
shows that a value of q of 2 works well in many cases. Increasing the value of q
makes the process more responsive to larger performance gaps at the expense of
smaller.
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The figure of merit depends on the particular set of design parameters and
we can consider it as a function of the design parameters as variables. In this case
we call it the function of merit. For efficient and reliable optimisation the function
of merit should be a continuous, single-valued function of the parameters. Abrupt
changes in the function of merit as parameters vary inhibit efficient refinement
and should be avoided. Hard constraints on the process can have the same effect
as abrupt changes and so it is often more efficient to soften the constraints by
expressing their effect in terms of penalty functions attached to the function of
merit rather than rigid boundaries.

If we have the same number of targets in the definition of the merit function
as we have parameters in the design, then in principle, provided the targets are
attainable and not mutually exclusive, the problem should be completely soluble,
although it may require impossible optical constants or thicknesses. In most
cases, however, we will have rather fewer parameters, or those that we have
will be incapable of achieving completely the desired performance, and then the
objective of the optimisation process becomes to make the figure of merit as small
as possible. We can visualise the function of merit as represented by a surface in
multidimensional space, one dimension for each adjustable parameter and one
for the figure of merit. Making the figure of merit as small as possible, then, is
translated into finding a minimum of the merit function, and thence into finding
the lowest possible minimum, or, as it is known, the global minimum. If there are
constraints on the parameters, such as permissible ranges, then the lowest possible
minimum within the constraints is known as the constrained global minimum.
Since there always are constraints (we cannot permit infinite thicknesses for
instance) the minimum that concerns us will be the constrained global minimum.
Unfortunately, although it is relatively easy to find a minimum of the merit
function, it is not nearly as easy to find, or even to be sure that one has found,
the constrained global minimum. Unless the function of merit is analytically
friendly, the only way to be absolutely sure is to carry out an exhaustive search
of the given parameter region. We can illustrate the problems involved in this by
assuming a 20-layer design with 20 possible values of thickness for each layer,
where refractive indices are already prescribed. Assume that one complete figure
of merit can be generated in 1 ns. Then an exhaustive search of all possible
designs will occupy a time of 2020 ns, that is around 2 × 109 years. This
problem is considerably constrained, but already it gives some idea of what is
involved in an exhaustive search. All optimisation techniques, therefore, carry out
a more limited procedure that arrives at a local minimum that may be as good a
minimum as is economically possible. The adjective global is sometimes applied
to processes that essentially search in constrained parameter space for more than
one merit function minimum so that they have an improved chance of finding the
constrained global minimum.

We may have major gaps in our ideas of a starting design. Perhaps we do
not have any idea of the indices for the layers beyond the range of possibilities
that are available, or we may not know the number of layers beyond perhaps a



Automatic methods 613

prescribed maximum. In that case we have the synthesis problem. If we have
a reasonably good design which simply needs minor adjustment then we have
refinement. Synthesis clearly has rather greater dimensions than refinement. To
begin we will concentrate on refinement and assume that we have a starting design
of a certain number of layers that the process will alter only in some limited way
such as in terms of layer thicknesses or refractive indices, or possibly both.

In optical thin-film design we do have many techniques capable of
establishing good designs that can be already almost satisfactory. In other words,
they are already in the region of an acceptable minimum of the merit function and
all that is required is to reach the actual minimum as quickly as possible. This
is the objective of many of the optimisation techniques that are used in optical
coating work. Such is the complicated nature of the function of merit that all
do not necessarily find the same minimum from the same starting design. Then
there are techniques designed especially so that they do not necessarily choose
a neighbouring minimum. Instead they range over a region of the parameter
space, in a gradually more and more constrained manner. This permits them the
opportunity of discovery of any other merit function minimum that might offer
improved performance over that nearest to the point of departure.

There are many ways of classifying the various optimisation techniques.
They can be divided into those that use a single design that is gradually altered
in prescribed ways until a minimum is reached, and those that use a family of
designs, rejecting members of the family and replacing them by other designs,
and reaching the minimum in this way. They may also be classified as those that
attempt continuously to move towards a minimum of the merit function and those
that may take some time before they finally choose the particular merit function
minimum, and, therefore, have greater chance of finding a more satisfactory
minimum.

Only an analytical technique can involve continuous alteration of parameters.
In computer optimisation the parameters are altered in finite steps that are
usually adjusted in size as the process continues. It consists, essentially, of
probing the merit function surface. The results of previous probing are used
to guide the choice of future ones. The optimisation is normally divided into
repeated units called iterations. Each iteration will usually involve a single or
multiple adjustment of the design or designs according to a set prescription and
a reassessment of a new figure of merit. The process is continued until either
a satisfactory outcome is attained or fresh iterations are unable to achieve any
further improvement. The nature of the adjustment of the design and the way in
which it is predicted is what principally distinguishes the various techniques [15].

It is tempting to find the best slope of the merit function as a function of
the adjustable design parameters and simply to move down this slope as quickly
as possible by changing the design parameters depending on the steepness of the
slope. However, it is easy for the technique to become violently unstable with
one overcorrection following another if precautions are not taken. The steepest
descentmethod picks the maximum slope and follows it but the parameter



614 Other topics

changes are usually restrained according to the derivative of the slope. If this is
high, indicating that the slope appears to be changing rapidly, then the parameter
changes are kept small. In the method of damped least squaresthe steepest slope
down which the optimisation will travel is chosen as the slope that minimises the
sum of the squares of the differences between the desired changes in the merit
function parameters and the changes predicted from the local slope. The rate of
travel along that direction is restrained by the introduction of a damping parameter
and this avoids the slope change instabilities. Then there are several univariate
search techniquesin which only one parameter is altered at each iteration. The
most common is probably the golden sectiontechnique. Here a minimum of the
merit function is achieved for each parameter in turn. The parameters may be
chosen in the order of some prescribed scheme or at random. The search for the
minimum in each case involves the process of bracketing, where three values of
the parameter are maintained, with the figure of merit of the central one less than
either of the two outer values. This means that a minimum exists between the
two outer parameters. By always dividing the appropriate region in the ratio of
1:(3 −√

5)/2, that is 1:0.382, the golden section, the most efficient search can
be performed. Linear search techniques are like the univariate search techniques
but they may freely choose the directions along which they search in parameter
space. The most effective techniques change the directions from time to time
based on previous progress. They are usually called direction set methods. The
most efficient try to find a set of conjugate directions, that is a set of directions
that are decoupled from each other with respect to the minimisation process—
minimising along a second direction after a first should not alter the minimum of
the first direction. Just one pass through the directions is then sufficient to reach
the minimum. This works perfectly for simple quadratic functions. Unfortunately
the thin-film functions are very complicated and they have to be searched over
quite large regions so they rarely reach the final minimum in just one pass but
the search can be made more efficient if a continuous attempt is made to achieve
conjugate directions.

Flip-flop optimisation[4] is a relatively new term. It is a digital technique,
in a sense. A design is set up consisting of a large number of very thin layers
of equal geometrical or optical thickness. These thin layers may have either of
only two possible indices, or admittances, usually a high value and a low value.
A merit function is set up and the figure of merit calculated. Now the layers of
the design, from one end to the other, are scanned. At each iteration step, the
figure of merit of the coating is assessed, with the index of the appropriate layer
set to both of the permitted values in turn. The better arrangement, in the sense
of a lower figure of merit, is chosen, and the index of the layer set to that value.
The process then passes to the adjacent layer, and so on. Several complete passes
of the design may be employed, and the order in which the layers are examined
may be changed. Usually the design stabilises at a minimum of the merit function
after only a few passes. The designs often consist of quite long blocks of one
or the other index, corresponding to normal discrete layers, separated by blocks
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that clearly correspond to discrete layers of intermediate index, and occasionally
a structure that represents a thicker inhomogeneous layer is obtained. The process
appears very stable. It is relatively easy to take a normal discrete layer design and
turn it into a suitable starting design for this process, although it appears to work
quite well with all layers initially set to one or the other of the two indices.

A process that does not immediately necessarily choose the minimum
towards which it shall move, is simulated annealing[15]. This uses a Bolzmann
probability distribution:

Prob(E) = exp(−E/kT) (14.19)

where E is replaced by a merit function and kT by an annealing parameter T .
Then if the existing figure of merit is E1 and a suggested new design has E2, the
probability that the new design is accepted in place of the old is

p = probability = exp[−(E2 − E1)/T ] (14.20)

except that for E2 < E1 the probability is unity. The process involves calculating
a new figure of merit based on a random choice of parameters within an assigned
domain. If the merit function is less than the old the new design replaces the old.
If the merit function is greater than the old it will be accepted with probability p
based on the drawing of a random number. An annealing scheduleis required that
decides on the way in which T is allowed to fall until no further improvement is
achieved.

One of the better techniques, that uses a family of designs rather than
one single one, is the simplextechnique, sometimes called nonlinear simplex
to distinguish it from a similarly named technique in linear programming. The
family of designs is known as the simplex, and numbers one more than the number
of design parameters involved. At each iteration the worst design, that is the
design with the greatest figure of merit, is rejected in favour of a new better design.
The alternative new designs are generated in three possible ways. First the worst
design is reflected in the centre of gravity of the simplex and the figure of merit
calculated. If this yields a better design then a further equal move is made in the
same direction and, again, the corresponding figure of merit calculated. The better
of these two designs replaces the existing worst design. If the first move fails to
yield a better performance then the worst design is moved halfway towards the
centre of gravity, which will then normally be an improvement. In the rare cases
where none of the alternatives yields a better design, a completely new simplex
is generated by moving all the designs half way towards the existing best design
[15].

The statistical testingmethod of Tang and Zheng [16] also involves a family
of designs. Like simulated annealing it does not move immediately down a
particular slope but takes rather longer and so has a better chance of finding a
more acceptable minimum. A starting region of parameter space is chosen and
then this region gradually shrinks around, it is hoped, a good, and perhaps even a
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global, minimum. Designs are chosen at random within the starting domain until a
prescribed number have been found with merit function less than a starting target.
The region then shrinks until it contains only those designs, and a new target that
is now the mean of the merit functions is chosen. The process is repeated until a
final minimum is reached.

There is a great deal of debate about which technique is better than another
and it is clear that there are differences in performance for different starting
designs and coating types. A few comparative studies have been performed
[17, 18] but they have not unambiguously identified any technique always superior
to all others. The secret of success in refinement is a good starting design that
offers scope for improvement. In that context, there is little difference between
the various methods.

Synthesis is similar to refinement but involves some construction of the
design beyond the adjustment of the existing layers. The number of possible
designs is infinite and so the synthesis problem can be solved only by introducing
some constraints. Imagine that we have a very efficient refinement technique that
is capable of dealing with starting designs that are rather far from ideal. Let us
now set up targets and merit function in the normal way. Next we create a starting
design that uses a very small number of layers, perhaps only one. We refine this
design until it is optimum. Then we add layers according to some prescribed rules.
Perhaps the figure of merit will now be rather larger than before, but we refine
again and eventually achieve an optimum figure of merit that is lower. Again
we add layers according to our prescription and refine as before. We continue
this process until we reach a stage where no improvement is taking place and at
that stage we accept the best design. This is a viable synthesis technique and
represents fairly well the few techniques that are sometimes used in practice. The
way in which layers are added is the major difference between them. Dobrowolski
[19] was the major pioneer in this field. He recognised that the addition of one
single layer was often ineffective and addition of more layers was indicated.
Some spectacular results have been obtained by the needle variationmethod [20].
This searches the design for the best place to add a thin slice of material. The
definition of best is the maximum negative derivative of the merit function with
respect to the added layer thickness. The addition of this thin slice, known as the
needle, effectively adds two layers because it cuts the existing layer in two. Some
commercial techniques, not otherwise published, add varying numbers of layers
depending on the stage of the synthesis and on the constraints. All depend on a
powerful and efficient refinement technique. The statistical refinement techniques
tend to be less suitable because already they use considerable computer time and
it is more usual to use either the gradient, damped least squares or linear search
techniques in synthesis.

It may sometimes be said in support of a particular technique that it opens
up new possibilities in design and arrives at performance levels that cannot be
achieved in any other way. However, any design, however achieved, lies in the
constrained parameter space. We may think of it as already existing. All that
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the various techniques can do is to search the constrained parameter space to find
a suitable merit function minimum. They cannot find a minimum that does not
exist. Although it may seem that synthesis is an ideal technique, the difficulties
in finding the constrained global, or even a very good, minimum, which are
compounded by the rapid increase in complexity as layers are added, mean that
the final design may not be as good as one arrived at by a process of establishing
a very good starting design and then carrying out a minimum of refinement [21].
In some techniques quite thin layers that are difficult to manufacture may form
part of the final design that must then be processed to remove them. The needle
method, for example, introduces such thin layers as a necessary part of the process
and they may remain at termination. Synthesis is therefore best used when the
designer is hard pressed with little idea of how to proceed and it works most
effectively when the total number of layers is not large.

Refinement and synthesis work best when the targets call for high
transmittance. High reflectance presents certain problems. The performance of
an optical coating is essentially a set of interference fringes. Refinement targets
should be set so that they are closer together than the fringe spacing otherwise
the performance in between the targets may be seriously in error. The problem is
sometimes called aliasing. For sine or cosine fringe profiles avoidance of aliasing
implies roughly that if the film is m quarter-waves thick then the spacing for
wavelength target points should be λ/m. We often tend to work in constant
increments of wavelength rather than wavenumber and so the target for a film
m quarter-waves thick at λ should have m + 1 points to cover the octave λ

to 2λ. A film that is 25 wavelengths thick then should have a target function
with 100 wavelength points per octave. This modest requirement is adequate
for coatings with low reflectance but, unfortunately, completely inadequate for
coatings where reflectance must be high [22]. The reason is that fringe profiles are
not always approximately sine or cosine functions. In an antireflection coating,
the reflectance is small and multiple beam interference is weak. The fringes are
then virtually sinusoidal and so the simple calculation applies. In high reflectance
coatings the fringes are invariably the result of multiple-beam interference and
therefore are very narrow. This increases enormously the required number
of targets necessary to ensure that a fringe cannot creep in between them.
Additionally, there is a definite tendency for narrow fringes of lower reflectance to
appear in coatings where high reflectance is required. We can readily understand
the reason. Figure 14.21 shows the reflectance curves of two similar coatings.
One is a quarter-wave stack with high reflectance. The other is derived from it
by increasing the thickness of one of the central quarter-waves to one half-wave.
Although this converts the coating into a single-cavity narrowband filter, the width
of the high-reflectance zone is considerably increased. The price is a very narrow
central fringe. A density curve, figure 14.22, of the same filter, shows that there
is really no fundamental gain but most merit functions are based on reflectance
or transmittance, and would assign a lower figure of merit to the broader curve.
Small changes in the thickness of the nominal half-wave layer can then adjust the
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Figure 14.21. The insertion of a narrow fringe into the centre of a high-reflectance coating
can actually cause an apparent increase in the width of the high-reflectance zone. The basic
quarter-wave stack high reflector is the dashed line.

lateral position of the fringe with virtually no other changes. Thus the appearance
of such features, sitting in between the target points in broadband reflectors, is not
surprising. They are persistent and exceedingly difficult to eliminate, particularly
by automatic means. Adding extra target points at the fringe is not very successful
because a simple adjustment of the cavity layer thickness can move the fringe to
where the target points are wider. It is therefore a very simple process for the
refinement to alter slightly the thickness of one layer and move the sharp fringe
exactly midway between two target points, with resulting substantial decrease
of the figure of merit. This is a much easier operation for the process than the
removal of a fringe, and sharp deep fringes are, therefore, persistent features that
naturally position themselves between the target points, because a small change
in the thickness of virtually any layer, but especially the cavity layer, will simply
translate the fringe with almost no change in shape.

The fringe peaks are at their narrowest when the coating takes the form of
a single cavity in the centre of the coating surrounded by maximum reflectors.
Let us assume a total thickness for the coating of x full waves and arrange it as
a series of quarter-waves of alternate high and low index and with a central half-
wave cavity layer. The halfwidth of such an assembly is given approximately
by

�λ

λ
= 4y2x−1

L ysub

π y2x
H

(14.21)

where we neglect any dispersion of phase shift. The spacing of the wavelength
points should be perhaps half this value:

�λ

λ
=
(

2

π

)(
y2x

L

y2x
H

)
(14.22)

where we have assumed the substrate admittance equal to yL . We can take the



Automatic methods 619

Density comparison

Wavelength (nm)

D
en

si
ty

400 500 600 700 800 900 1000
5

4

3

2

1

0

Figure 14.22. A look at the density variation shows that the performance is not better but
most merit functions are based on transmittance or reflectance not density and would prefer
the broader zone in figure 14.21.

wavelength interval as λ to 2λ, say, and the ratio of admittances as
√

2, so that the
total number of points in the specification becomes:

N = π 2x−1 ≈ 2x. (14.23)

Every time another full wave is added the number of points in the specification
for the merit function should double.

It can be argued that the calculations are too pessimistic but it is certainly
clear that there is an inexorable increase in computing requirements with coating
thickness. The increased burden of calculation becomes rapidly severe if not
impossible. Many of the newer processes are capable of very large numbers of
layers and, especially in the case of polymeric films, coatings with thousands of
layers are achievable.

Automatic methods have revolutionised the design of coatings. They have
not eliminated the older techniques but have rather changed their role. The
drudgery of hand calculation has been completely removed. However, as the
complexity of optical coatings increases, the completely automatic methods
approach a barrier to further progress in the form of suitable measures of merit
and further developments in design techniques are required. The advent of
the computer has certainly not reduced the need for the skill, experience and
innovation that has characterised the field until now.
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[13] Szipöcs R and Krausz F 1998 Dispersive Dielectric MirrorUSA Patent 5 734 503
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Chapter 15

Characteristics of thin-film dielectric
materials

This list gives some details of the more common thin-film dielectric materials. It
is not a definitive list but is intended to show the wide range of available materials.
The metals exhibit enormous dispersion and so an abbreviated table of values is
of little use. For extended tables of the optical constants of metals consult [1–4].
Surveys of many thin-film materials are given by Ritter [5, 6] and by Palik [2–4].
For a fuller account of the fluorides of the rare earths consult Lingg [7].

In most cases the materials in the table can be deposited by many different
processes. Where thermal evaporation is possible it is the main process listed.
Many of the materials, with the principal exception of the fluorides, can be
sputtered in their dielectric form by either radio frequency sputtering or neutral
ion-beam sputtering. A few materials, the nitrides especially, are not capable of
evaporation or reactive evaporation and require an energetic process such as ion-
assisted deposition.

The optical properties of thin films are very dependent on deposition
conditions and other factors. The values quoted should be interpreted simply
as values that were reported at some time, and not as necessarily intrinsic and
repeatable properties of the materials.
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Index

abrasion resistance, 440–441
absorbers, spectrally selective, 579–

583
absorbing media,

antireflection of, 34–35
normal incidence, 29
oblique incidence, 36–39

absorptance, 43–45
absorption, 204–208, 477
absorption coefficient, 18
absorption filters,

shortwave pass, 246
thin-film, 210–211

adhesion, 442–444
aluminium, 443
direct pull measurement, 442
scratch test, 442–443
zinc sulphide, 442

admittance diagram,
electric field, 60–66
electric field losses, 62–66
electric field theory, 60–66
theory, 55–66

admittances, modified, 349–353,
350

advanced plasma source, 411, 414
all-dielectric Fabry–Perot filter, see

Fabry–Perot
aluminium, 158, 167, 264–265, 265
aluminium nitride, 453–454
aluminium oxide (Al2O3), 163–164,

622
aluminium oxynitride (AlOxNy),

453–454, 622

aluminium source, 398, 402
aluminium, reflectance, 159
amplitude reflection coefficient, 22
amplitude transmission coefficient,

22
angle of incidence, effect of, 283–

292
antimony sulphide (Sb2S3), 622
antimony trioxide (Sb2O3), 193,

318, 622
antireflection coatings, 86–159

antireflection, single layer, 110
antireflection, single layer, 87–92
buffer layer, 148–152
double layer, 111–118
double layer, 92–101
double layer, admittance diagram,

118
double layer, admittance diagram,

119
double layer, admittance diagram,

95
double layer, vector diagram, 94
double layer, vector diagram, 94
Epstein, 137
equivalent admittance, 137
for visible and infrared, 144
four-layer, 128
Frank Rock, 132
glass, 111–156
high-index substrates, 87–108
inhomogeneous layers, 152–155
low-index substrates, 108–156
Mouchart, 143
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multilayer, 102–108
multilayer, 118–156
multilayer, vector diagram, 103
Musset and Thelen technique,

104–108
quarter–half–quarter coating, 129
Reichert, 134–136
Thetford’s technique, 118–126
two zeros, 139–144
V-coat, 113
Vermeulen technique, 132
Vermeulen technique, 137
W-coat, 120
W-coat, 127
Young’s technique, 108

apparent curvature of reflector, 200–
203

applications of coatings, 536–585
arsenic triselenide, 100
arsenic trisulphide, 100
astronomical applications of filters,

545–550
atmospheric temperature sounding,

550–559
automatic methods of design, 610–

619

baking, 417
baking and adhesion, 418
band-pass filters, 257–345
barium fluoride substrate, 200
beam splitters,

considerations, 538–540
dielectric, 172–176
oxide (BeO), 623
polarisation, 538–540

bismuth oxide (Bi2O3), 114, 622
bismuth trifluoride (BiF3), 622
blocking of sideband, 293
boosted reflectors, 164–167
Boyle, Robert, 1
Brewster angle, 28–29, 350

polarising beam splitter, 362–366
broad band-pass filters, 257–260

buffer layer, 148–152

cadmium sulphide (CdS), 623
cadmium telluride (CdTe), 623
caesium iodide, 274
calcium fluoride (CaF2), 193, 624
ceric oxide (CeO2), 193, 405, 448,

623
ceric oxide (CeO2), 89, 127, 193,

623
cerous fluoride (CeF3), 96
characteristic matrix, 39
characteristic optical admittance, 16
characteristic shifts due to tempera-

ture, 474–477
chemical vapour deposition, 413–

415
chiolite (5NaF·3AlF3), 199, 623
chirped mirrors, 609
chirped pulse, 603, 604
Chromel A, 176–177
chromium, 159, 170–172
chromium oxide (Cr2O3), 623
Ciddor, 200–203
circle diagrams, 80–85
coating edge, 536–537
coatings with metal layers, 575–585
columnar growth, 463, 464
complex refractive index, 14
computer refinement, 195, 233,

613–616
contamination, sensitivity to, 478–

485
copper, reflectance, 159
critical angle, definition, 350
cryolite (Na3AlF6), 192–193, 193,

196, 197, 203, 264, 274,
279, 318, 364, 405, 447, 623

cryolite, temperature coefficient of
optical thickness, 344

cube polarisers, 367

DC planar magnetron sputtering,
405–408
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defects in microstructure, 467–468
delta, definition, 40
deposition parameters, influence on

film properties, 462–463
DHW filter, 257, 300, 393–300
didymium fluoride, 96
dielectric materials beyond critical

angle, 357–359
direct monitoring, 515
direct turning value monitoring,

515–517
layer sensitivity, 518

disilicon trioxide (Si2O3), 625
distribution, see alsouniformity

boats, 495
electron beam source, 495
howitzer, 495

E, equivalent optical admittance,
216–220

edge filter, 210–255
design,
edge steepness, 255
extending rejection zone, 246–

248
extending transmission zone,

248–253
practical filters, 244–246
reducing transmission zone, 253–

254
Seeley lumped circuits, 240–244
Thelen shifted periods, 238–240
with inhomogeneous matching

layer, 155
Young and Crystal, 234–238

effect of temperature, 474–477
effective index, in tilting, 284
electrode films for Schottky-barrier

photodiodes, 575–578
electron beam source, 399–403

distribution, 495
energetic processes, 405–413
energy grasp, 540–545
environmental effects, 530–534

Epstein, 259
equivalent optical admittance, 216–

220
equivalent phase thickness, 216–220
error compensation in direct turning

value monitoring, 516–518
evaporation, reactive, 448–449
extended high reflectance zones,

193–200
extinction coefficient, 14–15

Fabry–Perot filter,
absorption, 275–280
absorption all-dielectric, 275–280
absorption metal–dielectric, 265–

266
all-dielectric, 266–280
bandwidth, 268–274
fused silica spacer, 281
germanium solid etalon, 282
germanium spacer, 274
mica spacer, 280–281
Mylar spacer, 282
resolving power, 262–263
sensitivity to errors, 265–266
solid etalon, 280–283
solid etalon, infrared, 282–283
solid etalon, requirements, 281–

282
structure, 267
typical, 274
uniformity, 279
Yttralox spacer, 282

Fabry–Perot interferometer, 179–
185

film performance, influence of mi-
crostructure, 462–478

film properties, influence of deposi-
tion parameters, 462–463

filters,
astronomical applications, 545–

550
effect of intense illumination,

344–345
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effect of temperature, 344–345
finesse, 181

flattening characteristic using
halfwave layer, 120, 128,
132

Fraunhofer, Joseph, 2–4
Fresnel rhomb, 384
Fresnel, Augustin Jean, 2
fringe order, m, 181
frustrated total reflectance, seeFTR
FTR filter, 390
FTR, frustrated total reflectance,

361, 390

g, definition, 91–92
gadolinium fluoride (GdF3), 623
gallium arsenide substrate, 89
gamma, equivalent phase thickness,

216–220
GD, 606
GDD, 606
Geffcken, W, 4
germanium (Ge), 96, 193, 274, 451,

623
absorption filter, 210–211
source, 399
substrate, 100, 104, 106, 155,

231, 89, 90, 91, 96
glare suppression filters and coat-

ings, 570–575
gold, 185

reflectance, 159
Greenland and Billington, 362
group delay, 606
group delay dispersion, 606
group velocity, 599, 602
group velocity dispersion, 603, 604
GVD, 603

hafnium dioxide (HfO2), 623
hafnium fluoride (HfF4), 623
half-wave layer, flattening, 120,

128, 132
half-wave retardation, Lostis, 384

half-wave thicknesses, theory, 52–
53

hard coat on plastic substrates, 415
heat reflector, triple stack, 254
heavy absorption in optical property

measurement, 423
Herpin index, 72–73, 213–232

application to nonquarterwave
stacks, 216–220

hexamethyldisiloxane, 415
high reflectance coatings, 179–208
high reflectance zones, extended,

193–200
high-reflectance zone width, 188–

192
history of optical thin films, 1–4
HMDSO, 415
Hooke, Robert, 1
howitzer source, 399, 403

distribution, 495

incident cone of light, effect on
filter, 288–292

indirect monitoring, 515
indium antimonide substrate, 89
induced transmission filter, 327–342

bandwidth, 340
design examples, 331–340
uv, measured performance, 343
manufacture, 340–342
matching stack, 345–347

inhomogeneous layers, 152–155,
589–590

intense illumination, effect on fil-
ters, 344–345

introduction, 1
ion-assisted deposition, 410–412
ion-beam sputtering, 408
ionised plasma-assisted deposition,

411–412, 414
irradiance, 17

Kretschmann and Raether coupling,
361
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lanthanum fluoride (LaF3), 624
lanthanum oxide (La2O3), 624
laser damage, 477–478
lead chloride (PbCl2), 193, 624
lead fluoride (PbF2), 318, 624
lead telluride (PbTe), 193, 274, 452–

453, 624
absorption filter, 211
temperature coefficient, 345

lithium fluoride (LiF), 624
longwave pass filter,

design, 232
practical performance, 246

losses, 477
losses in reflectors, 204–208
low-voltage ion plating, 408–410
lutetium fluoride (LuF3), 624

MacNeille polarising beam splitter,
351, 362–366

magnesium fluoride (MgF2), 104,
110, 112, 114, 127, 164,
167, 193, 193, 264, 265,
319, 405, 446–447, 624, 96,
97

optical property measurement,
421, 422

magnesium oxide (MgO), 624
magnetron sputtering, 405–408
manufacturing specification, 526
Mary Banning, 362
material properties, summary, 446–

456
materials

aluminium, 158, 167, 264–265,
265

aluminium nitride, 453–454
aluminium oxide (Al2O3), 164,

622
aluminium oxynitride (AlOxNy),

453–454, 622
aluminium source, 398, 402
aluminium, reflectance, 159
antimony sulphide (Sb2S3), 622

antimony trioxide (Sb2O3), 193,
318, 622

arsenic triselenide, 100
arsenic trisulphide, 100
beryllium oxide (BeO), 622
bismuth oxide (Bi2O3), 114, 622
bismuth trifluoride (BiF3), 622
cadmium sulphide (CdS), 622
cadmium telluride (CdTe), 622
caesium iodide, 274
calcium fluoride (CaF2), 193, 623
ceric oxide (CeO2), 193, 405,

448, 623, 89
cerous fluoride (CeF3), 96, 127,

193, 623
chiolite (5NaF·3AlF3), 199, 623
Chromel A, 176–177
chromium, 159, 177–172
chromium oxide (Cr2O3), 623
cryolite (Na3AlF6), 192–193,

193, 196, 197, 203, 264,
274, 279, 318, 364, 405,
447, 623

cryolite, temperature coefficient
of optical thickness, 344

didymium fluoride, 96
disilicon trioxide (Si2O3), 625
gadolinium fluoride (GdF3), 623
germanium (Ge), 97, 193, 274,

451, 623
gold, 185
gold, reflectance, 159
hafnium dioxide (HfO2), 451,

623
hafnium fluoride (HfF4), 623
lanthanum fluoride (LaF3), 318,

624
lanthanum oxide (La2O3), 624
lead chloride (PbCl2), 193, 624
lead fluoride (PbF2), 318, 624
lead telluride (PbTe), 193, 274,

452–453, 624
lithium fluoride (LiF), 624
lutetium fluoride (LuF3), 624
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magnesium fluoride (MgF2), 96,
97, 104, 110, 112, 114, 127,
164, 167, 193, 264, 265,
319, 405, 446–447, 624

magnesium fluoride, optical prop-
erty measurement, 421, 422

magnesium oxide (MgO), 624
material mixtures, seemixtures
neodymium fluoride (NdF3), 624
neodymium oxide (Nd2O3), 625
Nichrome, 159, 176–177
samarium fluoride (SmF3), 625
sapphire, 164
scandium oxide (Sc2O3), 625
silicon (Si), 104, 451–452, 625
silicon dioxide (SiO2), 198, 415,

450–451, 625
silicon monoxide (SiO), 193, 398,

453, 625, 89–90
silicon nitride (Si3N4), 453–454,

625
silicon oxide, 164, 193
silicon oxynitride, 453–454
silicon substrate, 89, 90
silver, 169, 185, 264, 265
sodium fluoride (NaF), 625
stibnite, 199
strontium fluoride (SrF2), 625
Substance H1, 456, 627
Substance H2, 456, 627
Substance H4, 456, 627
Substance M1, 456, 627
tantalum pentoxide (Ta2O5), 626
tellurium (Te), 452, 626
thallous chloride (TlCl), 626
thorium fluoride (ThF4), 193,

453, 626
thorium oxide (ThO2), 626
titanium dioxide (TiO2), 193,

405, 449–450, 626
ytterbium fluoride (YbF3), 626
yttrium oxide (Y2O3), 626
zinc selenide (ZnSe), 626
zinc sulphide (ZnS), 89, 192–195,

196, 197, 198, 203, 274,
279, 364, 398, 405, 447,
453, 626

zirconium dioxide (ZrO2), 127,
193, 451, 627

matrix, characteristic, 39
maximum potential transmittance,

331
Maxwell, James Clerk, 2
Maxwell’s equations, 12
measured performance of filters,

342–345
measured performance, induced

transmission filter for uv,
343

measurement of optical constants,
see optical property mea-
surement

mechanical property measurement,
436–445

stress, titanium oxide, 439, 441
metal with dielectric overcoat,

p-polarisation reflectance dip,
357–358

s-polarisation reflectance dip,
356–357

tilted performance, 355–357
metal–dielectric filters, see also

induced transmission filters
characteristic, 261
drift, 265
Fabry–Perot filter, 260–266
heat reflecting coatings, 583–585
manufacture, 264–266
typical bandwidth, 264
typical performance, 264

metals at oblique incidence, 353–
355

methyltrimethoxysilane, 415
mica as Fabry–Perot spacer, 280–

281
microstructure, 462–478

columnar growth, 463, 464
crystalline, 465–467
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defects, 467–468
influence on film behaviour, 462–

478
nodules, 469, 471

mid-frequency sputtering, 406–407
mirrors,

aluminium, 158–169
neutral, 158–169

mixtures,
cerium fluoride and zinc sulphide,

454
cerium oxide and cerium fluoride,

454
cerium oxide and magnesium

fluoride, 454
germanium and magnesium fluo-

ride, 454
germanium and selenium, 456
oxides, 455–456
silica, mixed with other oxide,

455
various, 454–456
zinc sulphide and cryolite, 454
zinc sulphide and magnesium

fluoride, 455
modified admittances, 349–353, 350
moisture adsorption, 468–474
molybdenum boats, 397
monitoring,

accuracy and stability, 518–519
direct , 515
direct turning value, 515–517
error compensation in direct turn-

ing value, 516–518
layer sensitivity, 518
optical, seeoptical monitoring
quartz crystal, 509–511
quartz crystal error compensa-

tion, 519–520
simulation, 513–520
tolerances, seetolerances in mon-

itoring
MTMOS, 415
multilayer phase retarders, seephase

retarders
multiple-cavity filters, 293–306

effect of tilting, 315
higher performance, 306–319
improved matching, 308–319
Knittl’s method, 299
losses, 316–319
metal–dielectric filters, 325–342
ripple, 304–306
Smith’s method, 294–300
Thelen’s method, 300–306

Musset and Thelen technique, 104–
108

Mylar, as Fabry–Perot spacer, 282

n and k extraction, see optical
property measurement

narrowband filters, 260–345
neodymium fluoride (NdF3), 624
neodymium oxide (Nd2O3), 625
neutral density filters, 176–177
neutral mirrors, 158–169
Nevière and Vincent, 357
Newton, Sir Isaac, 2
Nichrome, 159, 176–177
nodules, 467–468, 469, 471
non-polarising coatings, 368–377

reflectors, high angles of inci-
dence, 374–377

reflectors, Thelen’s technique,
376–377

non-quarterwave monitoring, 506

oblique incidence, 23–30
oblique incidence metals, 353–

355
oblique incidence optical admit-

tance for, 27–28
optical admittance, 16

characteristic admittance, 16
equivalent admittance, 216–220
oblique incidence, 27–28

optical distance, 15
optical monitoring,
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broadband systems, 508–509
maximètre, 508, 518–519
non-quarterwave, 506
photoelectric, 501
precision in turning value, 504–

506
reflectance or transmittance?, 502
Ring and Lissberger, 508
techniques, 500–509
temperature effects, 507
turning value, 504
typical arrangement, 501, 503
visual method, 501
zinc sulphide problems, 507

optical path, 15
optical property measurement, 418–

436
Abelès technique, 428–429
Cauchy expression, 435
ellipsometric technique, 429–432
envelope technique, 427–428
Hacskaylo technique, 429
Hadley method, 425–426
inhomogeneous films, 432–436
Netterfield method, 436
Pelletier method, 426–427
quarterwaves, 420–421

optical tunnel filters, 389–390
Baumeister, 389

order-sorting filters for grating spec-
trometers, 559–570

Otto coupling, 361
oxide mixtures, 455–456

packing density, 463–464
effect on film index, 463–464

pass band, transmission in, 226–228
peak transmittance, variation over

surface, 343–344
PECVD, 415
performance of filters, measured,

342–345
performance specification, 523–529
Pfund, A H, 4

phase retarders, 482–389
Apfel’s technique, 385–389
multilayer, 385–389
quarter and half wave, 382–389

phase shift on reflection, ϕ, 45, 186
phase shift, on transmission, 45
phase thickness, equivalent, 216–

220
phase velocity, 600
phase-dispersion filter, 319–325
physical vapour deposition, 394–

413
plane waves, 14
plasma enhanced chemical vapour

deposition, 415
plasma polymerisation, 415–416
plate polariser, 366–368
platinum, 159
polariser cube, 367
polariser plate, 366–368
polarising beam splitter, 351, 362–

366
potential absorptance, 204–205
potential transmittance, 45, 50–52,

327–333
maximum, 331

Poynting vector, 17
p-polarised light, definition, 24
praseodymium oxide (Pr6O11), 625
production methods, 393–456
production of thin films, 394–418
protection of metal films, 160–169
PVD, physical vapour deposition,

394–413

quarter and half wave retarders,
382–389

quarter-wave stack, 185–193, 211–
213

Herpin index, 215–220
quarter-wave thicknesses, theory,

52–53
quartz, 193
quartz crystal monitoring, 509–511
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error compensation, 519–520

race track, 405
radio frequency sputtering, 408
Ramsay and Ciddor, 200
Rayleigh criterion, 183
Rayleigh, Lord, 3–4
reactive evaporation, 448–449
reactive low-voltage ion plating,

408–410
refinement and synthesis,

problems, 617–619
refinement, 195, 233, 611–616
synthesis, 611, 616–617
techniques, 613–617

reflectance, 23, 43–45
reflectance of a thin film, theory, 39–

44
reflection, incoherent at two or more

surfaces, 67–72
reflectors,

apparent curvature, 200–203
losses, 204–208
multilayer dielectric, 185–208
non-polarising, high angles of

incidence, 376–377
refractive index, 14

complex, 14
resolution, 183
retarders, seephase retarders
rhodium, reflectance, 159
ripple,

advanced elimination, 233–244
origin of, 227
reduction of in pass band, 228–

230
Rouard, Pierre, 4
rugate filters, 588–598

Fourier expression for design,
598

Q function, 598

samarium fluoride (SmF3), 625
sapphire, 164

scandium oxide (Sc2O3), 625
Schuster diagram, 97, 100, 112
sensitivity to contamination, 478–

485
shortwave pass filter,

absorption filters, 246
design, 232

sideband blocking, 293
silica, mixed with other oxide, 455
silicon (Si), 104, 452, 625
silicon dioxide (SiO2), 198, 415,

450–451, 625
silicon monoxide (SiO), 89–90, 193,

398, 453, 625
silicon nitride (Si3N4), 454, 625
silicon oxide, 164, 193
silicon oxynitride, 454
silver, 169, 185, 264, 265

admittance loci, 355
metal–dielectric filters, 326–342
reflectance, 159

simple boundary, 18–27
simulation of monitoring, 513–520
Smith chart, 77–80
Smith’s method, 75–77
sodium fluoride (NaF), 625
sol–gel process, 416
solid etalon filter, 280–283
specification of filters, 523–534

performance, 523–529
spectrally selective absorbers, 579–

583
s-polarised light, definition, 24
sputtering, 405–408

DC planar magnetron, 405–408
mid-frequency, 406–407
radio frequency, 408
twin magnetron, 407

stibnite, 199
stop band,

transmission at centre, 225–226
transmission at edge, 223–225

stress, effects of impurities, 440
Strong, John, 4
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strontium fluoride (SrF2), 626
Substance H1, 456, 627
Substance H2, 456, 627
Substance H4, 456, 627
Substance M1, 456, 627
substrate cleaning, 497–498

glow discharge, 498–499
preparation, 497–499

substrate temperature during depo-
sition, 403–405

substrates, series of, 67–72
surface plasma wave, 361
surface plasmon, 361
surface, effect of second, 67–72
symmetrical multilayers, 213–232
symmetrical periods, 72–73

in multiple-cavity filters, 300–
306

synthesis, see refinement and syn-
thesis

TADI filter, 294
tangential components of field, defi-

nition, 26
tantalum boat, 397, 402
tantalum pentoxide (Ta2O5), 626
target poisoning, 406
Taylor, Dennis, 4
tellurium (Te), 452, 626
temperature,

cycling of filters, 344
effect on filters, 344–345, 474–

477
of substrate during deposition,

403–405
TEOS, 415, 416
test specification, 527–529

abrasion resistance, 530–532
adhesion, 533
environmental resistances, 533–

534
jig marks, 529
physical properties, 530–534
pinholes, 528

Scotch tape test, 533
spatter, 528–529
stains, 529

tetraethoxysilane, 415
tetraethylorthosilicate, 416
tetramethoxysilane, 415
thallous chloride (TlCl), 626
theory,

alternative method, 73–75
basic, 12–85
summary of important results,

46–50
thermal evaporation, 395–405

boats, 397–401
thickness distribution, see unifor-

mity
thickness monitoring, 499–511
thin films, production, 394–418
thin-film absorption filters, 210–211
thin-film dielectric materials, prop-

erties, 621–627
thin-film materials, 446–456
third order dispersion, 606
thorium fluoride (ThF4), 193, 453,

626
thorium oxide (ThO2), 626
THW filter, 257, 299–300
tilted antireflection coatings, 377–

382
p-polarisation, 378–379
s-polarisation, 379–381
s- and p-polarisation, 381–382

tilted coatings, 348–391
tilted non-polarising edge filter,

368–374, 379
tilting,

effect on multiple-cavity filters,
315

effect on single-cavity filters,
283–292

effective index, 284
Pidgeon and Smith method of

calculation, 284–292
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titanium dioxide (TiO2), 193, 449–
450, 626

measurement of stress, 439, 441
titanium tetraethoxide, 416
TMMOS, 415
TMOS, 415
TOD, seethird order dispersion
tolerances,

in monitoring, 511–520
Monte Carlo methods, 513–514
permissible in various coatings,

514
survey of early work, 511–513

toxicity, 445–446
transmittance, 23, 43–45

potential, seepotential transmit-
tance

symmetry of, 53–54
trimethylmethoxysilane, 415
tungsten boat, 397, 402
tunnel filters, see optical tunnel

filters
turning value monitoring, 504
twin magnetron sputtering, 407

ultrafast coatings, 599–609
ultraviolet, materials for, 451
uniformity, 488–497

directed surface source, 489
domed work holder, 495, 496
flat plate, 490

Holland and Steckelmacher’s
method, 489–495

planetary jigs, 495
point source, 489
rotating substrates, 490–495
spherical surface, 490
use of masks, 496–497

units, 46

variation of peak wavelength with
temperature, 344

varying angle of incidence, 283–292
vector method, theory, 66–68

WADI filter, 293, 299

Young, Thomas, 2
Young’s technique, 108
ytterbium fluoride (YbF3), 626
Yttralox, as Fabry–Perot spacer, 282
yttrium oxide (Y2O3), 626

zinc selenide (ZnSe), 626
zinc sulphide (ZnS), 192–195, 193,

196, 198, 203, 274, 279,
364, 398, 405, 447, 453,
626, 89

temperature coefficient of optical
thickness, 344

zirconium dioxide (ZrO2), 127, 193,
451, 627
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