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Preface

Numerical analysis is the branch of mathematics that is used to find approximations to difficult
problems such as finding the roots of non-linear equations, integration involving complex
expressions and solving differential equations for which analytical solutions do not exist. It is
applied to a wide variety of disciplines such as business, all fields of engineering, computer science,
education, geology, meteorology, and others.

Years ago, high-speed computers did not exist, and if they did, the largest corporations could only
afford them; consequently, the manual computation required lots of time and hard work. But now
that computers have become indispensable for research work in science, engineering and other
fields, numerical analysis has become a much easier and more pleasant task.

This book is written primarily for students/readers who have a good background of high-school

algebra, geometry, trigonometry, and the fundamentals of differential and integral calculus.” A
prior knowledge of differential equations is desirable but not necessary; this topic is reviewed in
Chapter 5.

One can use Fortran, Pascal, C, or Visual Basic or even a spreadsheet to solve a difficult problem.
It is the opinion of this author that the best applications programs for solving engineering
problems are 1) MATLAB which is capable of performing advanced mathematical and
engineering computations, and 2) the Microsoft Excel spreadsheet since the versatility offered by
spreadsheets have revolutionized the personal computer industry. We will assume that the reader
has no prior knowledge of MATLAB and limited familiarity with Excel.

We intend to teach the student/reader how to use MATLAB via practical examples and for
detailed explanations he/she will be referred to an Excel reference book or the MATLAB User’s
Guide. The MATLAB commands, functions, and statements used in this text can be executed
with either MATLAB Student Version 12 or later. Our discussions are based on a PC with
Windows XP platforms but if you have another platform such as Macintosh, please refer to the
appropriate sections of the MATLAB’s User Guide that also contains instructions for installation.

MATLAB is an acronym for MATrix LABoratory and it is a very large computer application
which is divided to several special application fields referred to as toolboxes. In this book we will
be using the toolboxes furnished with the Student Edition of MATLAB. As of this writing, the
latest release is MATLAB Student Version Release 14 and includes SIMULINK which is a

* These topics are discussed in Mathematics for Business, Science, and Technology, Third Edition, ISBN 0-9709511—
0-8. This text includes probability and other advanced topics which are supplemented by many practical applications using
Microsoft Excel and MATLAB.




software package used for modeling, simulating, and analyzing dynamic systems. SIMULINK is
not discussed in this text; the interested reader may refer to Introduction to Simulink with
Engineering Applications, ISBN 0-9744239-7-1. Additional information including purchasing
the software may be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098. Phone: 508 647-7000, Fax: 508 647-7001, e-mail: info@mathwork.com and web

site http://www.mathworks.com.

The author makes no claim to originality of content or of treatment, but has taken care to present
definitions, statements of physical laws, theorems, and problems.

Chapter 1 is an introduction to MATLAB. The discussion is based on MATLAB Student Version
5 and it is also applicable to Version 6. Chapter 2 discusses root approximations by numerical
methods. Chapter 3 is a review of sinusoids and complex numbers. Chapter 4 is an introduction to
matrices and methods of solving simultaneous algebraic equations using Excel and MATLAB.
Chapter 5 is an abbreviated, yet practical introduction to differential equations, state variables,
state equations, eigenvalues and eigenvectors. Chapter 6 discusses the Taylor and Maclaurin
series. Chapter 7 begins with finite differences and interpolation methods. It concludes with
applications using MATLAB. Chapter 8 is an introduction to linear and parabolic regression.
Chapters 9 and 10 discuss numerical methods for differentiation and integration respectively.
Chapter 11 is a brief introduction to difference equations with a few practical applications.
Chapters 12 is devoted to partial fraction expansion. Chapters 13, 14, and 15 discuss certain
interesting functions that find wide application in science, engineering, and probability. This text
concludes with Chapter 16 which discusses three popular optimization methods.

New to the Third Edition

This is an extensive revision of the first edition. The most notable changes are the inclusion of
Fourier series, orthogonal functions and factorization methods, and the solutions to all end-of-
chapter exercises. It is in response to many readers who expressed a desire to obtain the solutions
in order to check their solutions to those of the author and thereby enhancing their knowledge.
Another reason is that this text is written also for self-study by practicing engineers who need a
review before taking more advanced courses such as digital image processing. The author has
prepared more exercises and they are available with their solutions to those instructors who adopt
this text for their class.

Another change is the addition of a rather comprehensive summary at the end of each chapter.
Hopefully, this will be a valuable aid to instructors for preparation of view foils for presenting the
material to their class.

The last major change is the improvement of the plots generated by the latest revisions of the
MATLAB® Student Version, Release 14.

Orchard Publications
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info@orchardpublications.com
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Chapter 1

Introduction to MATLAB

for naming and saving the user generated files, comment lines, access to MATLAB’s Editor/

Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-
vided with detailed explanations. Throughout this text, a left justified horizontal bar will denote
the beginning of an example, and a right justified horizontal bar will denote the end of the exam-
ple. These bars will not be shown whenever an example begins at the top of a page or at the bot-
tom of a page. Also, when one example follows immediately after a previous example, the right
justified bar will be omitted.

T his chapter is an introduction of the basic MATLAB commands and functions, procedures

1.1 Command Window

To distinguish the screen displays from the user commands, important terms and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt EDU>>"

Helvetica Bold: MATLAB functions
Bold Italic: Important terms and facts, notes, and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a
new command from the user. We can use the Editor/Debugger to write our program, save it, and
return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. Impor-
tant! MATLAB is case sensitive, that is, it distinguishes between upper— and lower—case let-
ters. Thus, t and T are two different characters in MATLAB language. The files that we create
are saved with the file name we use and the extension .m; for example, myfileO1.m. It is a good

*  EDU>> is the MATLAB prompt in the Student Version.
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practice to save the script in a file name that is descriptive of our script content. For instance, if
the script performs some matrix operations, we ought to name and save that file as
matricesO1l.m or any other similar name. We should also use a separate disk to backup our files.

2. Once the script is written and saved as an m—file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu, and MATLAB returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the EDU>> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information

on this topic.

Henceforth, it will be understood that each input command is typed after the EDU>> prompt
and followed by the <enter> key.

The command help matlab iofun will display input/output information. To get help with other
MATLARB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab graphics. We can also get help from the Help pull-
down menu. The MATLAB User’s Guide contains numerous help topics.

To appreciate MATLAB's capabilities, we type demo and we see the MATLAB Demos menu. We
can do this periodically to become familiar with them. Whenever we want to return to the com-
mand window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the clear command. This
command erases everything; it is like exiting MATLAB and starting it again. The clc command
clears the screen but MATLAB still remembers all values, variables and equations which we have
already used. In other words, if we want MATLAB to retain all previously entered commands, but
leave only the EDU> > prompt on the upper left of the screen, we can use the clc command.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance, the statements

conv(p,q) % performs multiplication of polynomials p and q
% The next statement performs partial fraction expansion of p(x) / q(x)
are both correct.

One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either i, or j to denote the imaginary part of a complex number, such as

3 —4i or 3 —4j. For example, the statement

7=3-4]
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displays
g =

3.0000 - 4.00001

In the example above, a multiplication (*) sign between 4 and j was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function or
variable such as cos(x), we must use the multiplication sign, that is, we must type cos(x)*j or
jrcos(x).

1.2 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form [a, a, ; a, a; a]. The
elements a, of this vector are the coefficients of the polynomial in descending order. We must

include terms whose coefficients are zero.

We can find the roots of any polynomial with the roots(p) function where p is a row vector con-
taining the polynomial coefficients in descending order.

Example 1.1
Find the roots of the polynomial

p(x) = x" - 10x” + 35x° — 50x + 24 (1.1)
Solution:

The roots are found with the following two statements. We have denoted the polynomial as p1,
and the roots as roots_ p1.

p1=[1 -10 35 -50 24] % Specify the coefficients of p1(x)

pl =
1 -10 35  -50 24

roots_ p1=roots(p1) % Find the roots of p1(x)

roots_pl =
4.0000
3.0000
2.0000
1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.
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Example 1.2
Find the roots of the polynomial

py(x) = X —Tx" 4 16x° + 25x + 52 (1.2)
Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the

statements below where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2.

p2=[1 -7 0 16 25 52]

p2 =
1 -7 0 16 25 52

roots_ p2=roots(p2)

roots_ p2 =
6.5014
2.7428
-1.5711
-0.3366 + 1.32021
-0.3366 - 1.32021

The result indicates that this polynomial has three real roots, and two complex roots. Of course,

. . * .
complex roots always occur in complex conjugate pairs.

1.3 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r) func-
tion where r is a row vector containing the roots.

Example 1.3

It is known that the roots of a polynomial are 1, 2, 3, and 4. Compute the coefficients of this
polynomial.

Solution:

We first define a row vector, say r3, with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

* By definition, the conjugate of a complex number A = a + jb is A* = a—jb
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r3=[1 2 3 4] % Specify the roots of the polynomial

r3 =
1 2 3 4

poly_r3=poly(r3) % Find the polynomial coefficients

poly r3 =
1 -10 35 -50 24

We observe that these are the coefficients of the polynomial p,(x) of Example 1.1.

Example 1.4

It is known that the roots of a polynomial are —1, -2, -3, 4 + j5,and 4 —j5. Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

rd=[ -1 -2 -3 4+5] 4-5j]

rd =
Columns 1 through 4
-1.0000 -2.0000 -3.0000 -4.0000 + 5.00001
Column 5

-4.0000 - 5.00001

poly_rd=poly(r4)

poly r4d =
1 14 100 340 499 246

Therefore, the polynomial is

py(x) = x + 14x" + 100x’ + 340x° + 499x + 246 (1.3)

1.4 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial p(x) at some specified value of the indepen-

dent variable x.
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Example 1.5
Evaluate the polynomial

ps(x) = xX°=3% + 5% —4x" +3x + 2 (1.4)
atx = =3.

Solution:

p5=[1 -3 0 5 -4 3 2]; % These are the coefficients

% The semicolon (;) after the right bracket suppresses the display of the row vector
% that contains the coefficients of p5.

%

val_minus3=polyval(p5, —3)% Evaluate p5 at x=—3. No semicolon is used here

% because we want the answer to be displayed

val minus3 =
1280

Other MATLAB functions used with polynomials are the following:
conv(a,b) — multiplies two polynomials a and b

[a,r]=deconv(c,d) —divides polynomial ¢ by polynomial d and displays the quotient g and remain-
derr.

polyder(p) — produces the coefficients of the derivative of a polynomial p.

Example 1.6

Let
p, = X —3x +5x" + Ix+9 (L.5)
p, = 2x"—8x" + 4x* + 10x + 12

Compute the product p, - p, with the conv(a,b) function.

Solution:

pi=[1 -3 0 5 7 9I;

p2=[2 0 -8 0 4 10 12J;

p1p2=conv(p1,p2)

plp2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108
Therefore,
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p Pp, = 2x" - 6x"0 - 8x” + 34x° + 18x" - 24x°

_74x°-88x" + 78x° + 166x° + 174x + 108

We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.

Example 1.7
Let
7 5 3
p; = x =3x +5x +7x+9 (1.6)
Py = 2x° - 8x + 4x" + 10x + 12
Compute the quotient p;/p, using the deconv(p,q) function.
Solution:
p3=[1 0 -3 05 7 9], p4=[2 -8 0 0 4 10 12]; [q,r]=deconv(p3,p4)
q =
0.5000
r =
0 4 -3 0 3 2 3
Therefore, the quotient q(x) and remainder r(x) are
q(x) = 0.5 r(x) = 4x —3x +3x° 4+ 2x + 3
|
Example 1.8
Let
ps = 2x° = 8x" + 4xF + 10x + 12 (1.7)
Compute the derivative dps/dx using the polyder(p) function.
Solution:
p5=[2 0 -8 0 4 10 12J;
der_p5=polyder(p5)
der_pb5 =
12 0 -32 0 8 10
Therefore,
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dps/dx = 12x° —32x° + 4x° + 8x + 10

1.5 Rational Polynomials

Rational Polynomials are those which can be expressed in ratio form, that is, as

‘4 ... +bx+b,

-1 -2
Den(x) a x +a X  4a, ,x ~+..+ax+a

Num(x) _ ann+bn_1Xn_1 +bn_2Xn_

R(x) = (1.8)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

Example 1.9
Let

5 4 2
Pden 2x —8x +4x + 10x+ 12
Express the numerator and denominator in factored form, using the roots(p) function.
Solution:

num=[1 -3 0 5 7 9];den=[2 0 -8 0 4 10 12];% Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num

2.4186 + 1.07121 2.4186 - 1.0712i -1.1633
-0.3370 + 0.99611 -0.3370 - 0.99611

roots_den =
1.6760 + 0.49221 1.6760 - 0.49221i -1.9304
-0.2108 + 0.98701 -0.2108 - 0.9870i -1.0000

As expected, the complex roots occur in complex conjugate pairs.
For the numerator, we have the factored form

— (x-2.4186-{1.0712) - (x~2.4186 + 1.0712) - (x + 1.1633)-
(x + 0.3370-j0.9961) - (x + 0.3370 + j0.9961)

pnum

and for the denominator, we have

Paen = (x=1.6760—0.4922) - (x—1.6760 + j0.4922) - (x + 1.9304) -
(x + 0.2108-j0.9870) - (x + 0.2108 + j0.9870) - (x + 1.0000)
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We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that in a quadratic equation of the form

x? + bx + ¢ = 0 whose roots are x; and x,, the negative sum of the roots is equal to the coef-
ficient b of the x term, that is, —(x; + x,) = b, while the product of the roots is equal to the

constant term c, that is, x; - x, = c¢. Accordingly, we form the coefficient b by addition of the
complex conjugate roots and this is done by inspection; then we multiply the complex conjugate
roots to obtain the constant term ¢ using MATLAB as indicated below.

(2.4186+1.0712i)*(2.4186 —1.0712i) % Form the product of the 1st set of complex conjugates
ans = 6.9971

(—-0.3370+0.9961i)*(—0.3370-0.9961i) % Form the product of the 2nd set of complex conjugates
ans = 1.1058

(1.6760+0.4922i)*(1.6760-0.4922i)

ans = 3.0512

(-0.2108+0.9870i)*(—0.2108-0.9870i)

ans = 1.0186

1.6 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command which plots y versus x. Here, x is the horizontal axis (abscissa) and y is the
vertical axis (ordinate).

Example 1.10

Consider the electric circuit of Figure 1.1, where the radian frequency o (radians/second) of the

applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant. The ammeter readings were then recorded for each frequency. The magnitude
of the impedance |Z| was computed as |Z| = |V/A| and the data were tabulated in Table 1.1.

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .
Solution:

We cannot type @ (omega) in the MATLAB command window, so we will use the English letter
w instead.

Numerical Analysis Using MATLAB® and Excel®, Third Edition 1-9
Copyright © Orchard Publications



Chapter 1 Introduction to MATLAB
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Figure 1.1. Electric circuit for Example 1.10

TABLE 1.1 Table for Example 1.10

Z| Z|
® (rads/s) Ohms ® (rads/s) Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611
1000 | 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44.122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers which we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400.... % Use 4 periods to continue
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500....

1-10 Numerical Analysis Using MATLAB® and Excel®, Third Edition
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2600 2700 2800 2900 3000]; % Use semicolon to suppress display of these numbers
%

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056....

1014.938 469.830 266.032 187.052 145.751 120.353 103.111....

90.603 81.088 73.588 67.513 62.481 58.240 54.611 51.468....

48.717 46.286 44.122 42.182 40.432 38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
<enter>.

To plot z (y — axis) versus w (x — axis ), we use the plot(x,y) command. For this example, we use
plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure 1.2.

1200

1000 - b

800 - b

600 - b

400} 1

200 - B

O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Figure 1.2. Plot of impedance |z| versus frequency o for Example 1.10

This plot is referred to as the amplitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we select Figure.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The

command grid toggles them, that is, changes from off to on or vice versa. The default” is off.

* Default is a particular value for a variable or condition that is assigned automatically by an operating system, and remains
in effect unless canceled or overridden by the operator.
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box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.
xlabel(‘string’) and ylabel(‘string’) are used to label the x— and y —axis respectively.

The amplitude frequency response is usually represented with the x—axis in a logarithmic scale.
We can use the semilogx(x,y) command that is similar to the plot(x,y) command, except that the
x —axis is represented as a log scale, and the y—axis as a linear scale. Likewise, the semilogy(x,y)
command is similar to the plot(x,y) command, except that the y—axis is represented as a log scale,
and the x—axis as a linear scale. The loglog(x,y) command uses logarithmic scales for both axes.

Throughout this text, it will be understood that log is the common (base 10) logarithm, and In is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is

the natural logarithm, whereas the common logarithm is expressed as log10(x). Likewise, the loga-
rithm to the base 2 is expressed as log2(x).

Let us now redraw the plot with the above options, by adding the following statements:

semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms")

After execution of these commands, our plot is as shown in Figure 1.3.

Magnitude of Impedance vs. Radian Frequency

1200

1000

800

600

|Z] in Ohms

400

200

w in rads/sec

Figure 1.3. Modified frequency response plot of Figure 1.2.

If the y-—axis represents power, voltage, or current, the x —axis of the frequency response is more
often shown in a logarithmic scale, and the y-axis in dB (decibels) scale. A review of the decibel
unit follows.
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The ratio of any two values of the same quantity (power, voltage, or current) can be expressed in

decibels (dB). Thus, we say that an amplifier has 10 dB power gain, or a transmission line has a

power loss of 7 dB (or gain —7 dB). If the gain (or loss) is O dB the output is equal to the input.

By definition,

Pout

dB = 10log

in

Therefore,

10 dB represents a power ratio of 10

10n dB represents a power ratio of 10"
[t is very useful to remember that:

20 dB represents a power ratio of 100
30 dB represents a power ratio of 1, 000

60 dB represents a power ratio of 1, 000, 000
Also,

1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2

7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance,

(1.10)

4dB = 3dB+ 1 dB and since 3 dB=power ratio of 2 and 1 dB=power ratio of 1.25

then, 4 dB=ratio of (2x1.25) = ratio of 2.5

Likewise, 27 dB = 20 dB + 7 dB and this is equivalent to a power ratio of approximately

100x5 = 500

Using the relations
y = logx” = 2logx

and

= 1’7

2
P =
Z

if welet Z = 1, the dB values for voltage and current ratios become
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\Y%

out

VOU'E

dB, = 10log

v

= 20log (1.11)

in in

and

dB, = 10log|lou|’ = 20log|lour (1.12)

To display the voltage v in a dB scale on the y — axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’) switches to the current Figure Window, and displays a cross—hair
which can be moved around with the mouse. For instance, we can use the command
gtext(‘impedance |Z| versus Frequency’), and this will place a cross—hair in the Figure window.
Then, using the mouse, we can move the cross—hair to the position where we want our label to
begin, and we press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some spe-
cific location specified by x and y, and string is the label which we want to place at that location.
We will illustrate its use with the following example which plots a 3—phase sinusoidal waveform.

The first line of the script below has the form
linspace(first_value, last_value, number_of_values)

This command specifies the number of data points but not the increments between data points. An
alternate command uses the colon notation and has the format

x=first: increment: last
This format specifies the increments between points but not the number of data points.
The script for the 3—phase plot is as follows:

x=linspace(0, 2*pi, 60); % pi is a built—in function in MATLAB;

% we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;

y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);

plot(x,y,x,u,x,v); % The x—axis must be specified for each function

grid on, box on, % turn grid and axes box on

text(0.75, 0.65, 'sin(x)'); text(2.85, 0.65, 'sin(x+2*pi/3)"); text(4.95, 0.65, 'sin(x+4*pi/3)")

These three waveforms are shown on the same plot of Figure 1.4.

In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLARB allows us to specify various line types, plot symbols, and colors. These, or a combination
of these, can be added with the plot(x,y,s) command, where s is a character string containing one or
more characters shown on the three columns of Table 1.2.

MATLAB has no default color; it starts with blue and cycles through the first seven colors listed in
Table 1.2 for each additional line in the plot. Also, there is no default marker; no markers are
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drawn unless they are selected. The default line is the solid line.

Sin(x+4*pi/3)

Figure 1.4. Three—phase waveforms

TABLE 1.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue . point - solid line
g green o circle : dotted line
T red X x—mark - dash—dot line
c cyan + plus — dashed line
m magenta * star
y yellow s square
k black d diamond
w white / triangle down

Y triangle up
< triangle left
> triangle right
p pentagram
h hexagram

For example, the command plot(x,y,'m*:') plots a magenta dotted line with a star at each data
point, and plot(x,y,'rs') plots a red square at each data point, but does not draw any line because
no line was selected. If we want to connect the data points with a solid line, we must type
plot(x,y,'rs—'). For additional information we can type help plot in MATLAB’s command screen.
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The plots which we have discussed thus far are two—dimensional, that is, they are drawn on two
axes. MATLAB has also a three—-dimensional (three—axes) capability and this is discussed next.

The command plot3(x,y,z) plots a line in 3—space through the points whose coordinates are the

elements of x, y, and z, where x, y, and z are three vectors of the same length.

The general format is plot3(x1,¥1,21,51,X2,Y2,22,52,X3,Y3,23,S3,---) Where X;,, Yp, and z,, are vectors
or matrices, and sy, are strings specifying color, marker symbol, or line style. These strings are the

same as those of the two—dimensional plots.
|
Example 1.11
Plot the function

z = —2x3+x+3y2—1
Solution:

We arbitrarily choose the interval (length) shown with the script below.

x=-10:0.5: 10; % Length of vector x
y=X; % Length of vector y must be same as x
Z= -2."°XN3+x+3.7y N2-1; % Vector z is function of both x and y"

plot3(x,y,z); grid

The three—dimensional plot is shown in Figure 1.5.

3000
2000

1000

-1000

-2000 -l
10

Figure 1.5. Three dimensional plot for Example 1.11

(1.13)

*  This statement uses the so called dot multiplication, dot division, and dot exponentiation where these operations are preceded

by a dot (period). These operations will be explained in Section 1.8, Page 1—109.
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The command plot3(x,y,z,'bd-') will display the plot in blue diamonds, connected with a solid
line.

In a three—dimensional plot, we can use the zlabel(‘string’) command in addition to the xla-
bel(‘string’) and ylabel(‘string’).

In a two—dimensional plot, we can set the limits of the x— and y- axes with the axis([xmin
xmax ymin ymax]) command. Likewise, in a three—dimensional plot we can set the limits of all
three axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed
after the plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot
command. This must be done for each plot. The three-dimensional text(x,y,z,’string’) command

will place string beginning at the co-ordinate (x, y, z) on the plot.
For three—dimensional plots, grid on and box off are the default states.

The mesh(x,y,z) command displays a three—dimensional plot. Another command, contour(Z,n),
draws contour lines for n levels. We can also use the mesh(x,y,z) command with two vector argu-
ments. These must be defined as length(x) = n and length(y) = m where
[m, n] = size(Z). In this case, the vertices of the mesh lines are the triples {x(j), y(i), Z(i,j)}.

We observe that x corresponds to the columns of Z, and y corresponds to the rows of Z.

To produce a mesh plot of a function of two variables, say z = f(x, y), we must first generate the
X and Y matrices which consist of repeated rows and columns over the range of the variables x
and y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function which

creates the matrix X whose rows are copies of the vector X, and the matrix Y whose columns are
copies of the vector y.

Example 1.12

The volume V of a right circular cone of radius r and height h is given by
V = %nrzh (1.14)

Plot the volume of the cone as r and h vary on the intervals 0 <r<4 and 0 <h <6 meters.
Solution:
The volume of the cone is a function of both the radius r and the height h, thatis, V. = f(r, h)

The three—dimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, division, and exponentia-

tion. As mentioned in the footnote of the previous page, this topic will be explained in Section
1.8, Page 1-19.
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[R,H]=meshgrid(0: 4, O: 6); % Creates R and H matrices from vectors r and h
V=(pi .* R.A2.*H)./3; mesh(R, H,V)

xlabel('x—axis, radius r (meters)'); ylabel('y—axis, altitude h (meters)');

zlabel('z—axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three—dimensional plot of Figure 1.6, shows how the volume of the cone increases as the
radius and height are increased.

Volume of Right Circular Cone

e
a
o

100

a
o

z-axis, volume (cubic meters)
o
i

o

y-axis, altitude h (meters) x-axis, radius r (meters)

Figure 1.6. Volume of a right circular cone.

This, and the plot of Figure 1.5, are rudimentary; MATLAB can generate very sophisticated and
impressive three—dimensional plots. The MATLAB User’s manual contains more examples.

1.7 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m x n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-

gers m, n, and p. The possible combinations are shown in Figure 1.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.
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111
Full Screen Default
211 221 | 222
122
212 223 | 224 121
221
221 222 211 - o 722
212 223 | 224 223 2124

Figure 1.7. Possible subpot arrangements in MATLAB

1.8 Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element—by—element multiplication,
division, and exponentiation. They are explained in the following paragraphs.

In Section 1.2, the arrays [a b ¢ ...], such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character (¢) to transpose a vector. Thus, a column vector can be written either as

b=[-1; 3; 6; 11]

or as

b=[-1 3 6 11]

MATLAB produces the same display with either format as shown below.
b=[-1; 3; 6; 11]

b =
-1
3
6
11

b=[-1 3 6 11]

-1
3
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6
11

We will now define Matrix Multiplication and Element-by—Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let
A=1[a a, a ... a]

and
B=1[b b, b, ... b]

n

be two vectors. We observe that A is defined as a row vector whereas B is defined as a column
vector, as indicated by the transpose operator (’). Here, multiplication of the row vector A by
the column vector B, is performed with the matrix multiplication operator (*). Then,

A*B = [a,b, +a,b,+a;b;+... +a,b,] = single value (B.15)

For example, if

A=[1 2 3 4 5]
and

B=[-2 6 -3 8 7]

the matrix multiplication A*B produces the single value 68, that is,

A*B = 1X(=2)+2x6+3x(-3)+4x8+5%x7 = 68
and this is verified with the MATLAB script
A=[1 2 3 4 5];B=[-2 6 -3 8 7] A*B % Observe transpose operator (‘) in B
ans =

68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row—by—
row multiplication with the following MATLAB statements.

A=[1 2 3 4 5];B=[-2 6 -3 8 7]; A*B % No transpose operator (‘) here
When these statements are executed, MATLAB displays the following message:
??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
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vector B to be a column vector, not a row vector. It recognizes that B is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let
C

[c, ¢ ¢35 ... c,]
and
D = [dl d2 d3 vee dn]

be two row vectors. Here, multiplication of the row vector C by the row vector D is per-

formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

C.*D = [Cldl Czdz C3d3 coe C dn] (B.16)

n

This product is another row vector with the same number of elements, as the elements of C
and D.

As an example, let

C=1[1 2 3 4 5]
and

D=[-2 6 -3 8 7]

Dot multiplication of these two row vectors produce the following result.

C.*D = 1x(<2) 2x6 3x(-3) 4x8 5x7 = -2 12 -9 32 35
Check with MATLAB:

C=[1 2 3 4 5] % Vectors C and D must have
D=[-2 6 -3 8 7]; % same number of elements
C.*D % We observe that this is a dot multiplication

-2 12 -9 32 35

Similarly, the division (/) and exponentiation (* ) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.” ) are used for element—
by—element division and exponentiation, as illustrated with the examples above.

We must remember that no space is allowed between the dot (.) and the multiplication (*),
division ( /), and exponentiation (* ) operators.

Note: A dot (.) is never required with the plus (4+) and minus (=) operators.
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Example 1.13
Write the MATLAB script that produces a simple plot for the waveform defined as
2

y = f(t) = 3e M cos5t - 2e " sin2t + ttTi (1.17)

in the 0 <t <5 seconds interval.

Solution:
The MATLAB script for this example is as follows:
t=0: 0.01: 5; % Define t—axis in 0.01 increments

y=3." exp(—4 .* t) .* cos(5 .* 1)-2 .* exp(-3 .* t) .* sin(2 .* t) + t A2 ./ (1+1);
plot(t,y); grid; xlabel('t"); ylabel('y=f(t)"); title('Plot for Example 1.13)

Figure 1.8 shows the plot for this example.

Plot for Example 1.13
\ \

f
| |
| |
| |
- b - - — — —
| |
|
| |
|
|

f(t)

y

Figure 1.8. Plot for Example 1.13

Had we, in the example above, defined the time interval starting with a negative value equal to or
less than —1, say as —3 <t <3, MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero when
t = —1. To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to 2.2 X 107"°. It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.

The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability of
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displaying up to four windows of different plots.

Example 1.14
Plot the functions

y = sin’x, z = cos’x, w = sin’x-cos’x, v = sin’x/cos’x (1.18)

in the interval 0 < x <21 using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB script to produce the four subplots is as follows:

x=linspace(0, 2*pi,100); % Interval with 100 data points
y=(sin(x) A 2); z=(cos(x) A 2);

w=y J* z;

v=y ./ (z+eps); % add eps to avoid division by zero
subplot(221); % upper left of four subplots

plot(x,y); axis([0 2*pi 0 1]);

title('y=(sinx)2');

subplot(222); % upper right of four subplots
plot(x,z); axis([0 2*pi 0 1]);

title('z=(cosx)"2);

subplot(223); % lower left of four subplots
plot(x,w); axis([0 2*pi 0 0.3]);

title('w=(sinx)"2*(cosx)"2');

subplot(224); % lower right of four subplots
plot(x,v); axis([0 2*pi 0 400]);

title('v=(sinx)"2/(cosx)"2");

These subplots are shown in Figure 1.9.

y:(sinx)2 2

z=(cosx)
1 1

0.5 0.5
0 0
0 2 4 6 0 2 4 6
w=(sin><)2‘(cos><)2 v=(sin><)2/(cos><)2
400
0.2
200
0.1
0 0
0 2 4 6 0 2 4 6

Figure 1.9. Subplots for the functions of Example 1.14
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The next example illustrates MATLAB'’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions which display the real and imaginary parts of the complex quan-
tity z = x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-

tude) and phase angle of the complex quantity z = x + iy = r-6. We will also use the

polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example 1.15

Consider the electric circuit of Figure 1.10.

Zab —_—

~ 10 uF

A}l

b
Figure 1.10. Electric circuit for Example 1.15

With the given values of resistance, inductance, and capacitance, the impedance 7, as a function

of the radian frequency @ can be computed from the following expression.

10* ~§(10°/w)
10 +§(0.1w—10"/w)

Z, =2 =10+ (1.19)

a. Plot Re{Z} (the real part of the impedance Z) versus frequency .
b. Plot Im{Z} (the imaginary part of the impedance Z) versus frequency m.

c. Plot the impedance Z versus frequency ® in polar coordinates.
Solution:

The MATLAB script below computes the real and imaginary parts of Z,, that is, for simplicity,

denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar plot
(part c).

w=0: 1: 2000; % Define interval with one radian interval
z=(10+(10 A4 —j .10 A6 ./ (w+eps)) ./ (10 +.* (0.1 .* w —10.A5./ (w+eps))));
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%

% The first five statements (next two lines) compute and plot Re{z}
real_part=real(z); plot(w,real_part); grid;

xlabel('radian frequency w'); ylabel('Real part of Z');

%

% The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z); plot(w,imag_part); grid;

xlabel(‘radian frequency w'); ylabel('Imaginary part of Z');

% The last six statements (next six lines) below produce the polar plot of z
mag=abs(z);% Computes |Z|

rndz=round(abs(z));% Rounds |Z| to read polar plot easier
theta=angle(z);% Computes the phase angle of impedance Z
polar(theta,rndz);% Angle is the first argument

grid;

ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures 1.11, 1.12, and 1.13 respectively.
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Figure 1.11. Plot for the real part of Z in Example 1.15
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Figure 1.12. Plot for the imaginary part of Z in Example 1.15

Polar Plot of Z

Figure 1.13. Polar plot of Z in Example 1.15

Example 1.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

1.9 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m-files since both require the .m extension.

A script file consists of two or more built—in functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m—file with an editor such as the MATLAB’s
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Editor/Debugger.

A function file is a user—defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x A 3 + cos(3 .* x)
is a function file and must be saved. To save it, from the File menu of the command window, we

choose New and click on M—File. This takes us to the Editor Window where we type these two
lines and we save it as myfunction.m.

We will use the following MATLAB functions with the next example.

The function fzero(f,x) tries to find a zero of a function of one variable, where f is a string con-
taining the name of a real-valued function of a single real variable. MATLAB searches for a value
near a point where the function f changes sign, and returns that value, or returns NaN if the
search fails.

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples 1.1 and 1.2.

fplot(fcn,lims) — plots the function specified by the string fen between the x—axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y—axis limits.

The string fen must be the name of an mfile function or a string with variable x.

NaN (Not—a—Number) is not a function; it is MATLAB’s response to an undefined expression
such as 0/0, o0/, or inability to produce a result as described on the next paragraph. We can
avoid division by zero using the eps number, which we mentioned earlier.

Example 1.16

Find the zeros, maxima and minima of the function

f(x) = 1 + 1 ~10 (1.20)

(x-0.1)> +0.01  (x-1.2)" + 0.04

in the interval -1.5<x<1.5
Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script:
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x=-1.5:0.01: 1.5;
y=1./ ((x-0.1).A2 + 0.01) -1./ ((x-1.2).A 2 + 0.04) —-10;
plot(x,y); grid

The plot is shown in Figure 1.14.
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Figure 1.14. Plot for Example 1.16 using the plot command

The roots (zeros) of this function appear to be in the neighborhood of x = —0.2 andx = 0.3. The
maximum occurs at approximately x = 0.1 where, approximately, y,,,, = 90, and the minimum

occurs at approximately x = 1.2 where, approximately, y,,;, = —34.

Next, we define and save f(x) as the funczero01.m function m—file with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x-0.1)"2+0.01)-1/((x—1.2)A2+0.04)-10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot f(x) as follows:
fplot(‘funczero01’, [-1.5 1.5]); grid

This plot is shown in Figure 1.15. As expected, this plot is identical to the plot of Figure 1.14 which
was obtained with the plot(x,y) command as shown in Figure 1.14.
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Figure 1.15. Plot for Example 1.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of f(x) in Equation (1.20) more pre-
cisely. The MATLAB script below will accomplish this.

x1= fzero(‘funczero01', -0.2);

x2= fzero(‘funczero01', 0.3);

fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)

MATLAB displays the following:

The roots (zeros) of this function are rl= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function f(x) or a maximum of f(x) since a maximum
of f(x) is equal to a minimum of —f(x). This can be visualized by flipping the plot of a function

f(x) upside—down. This function is no longer used in MATLAB and thus we will compute the
maxima and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a functiony = f(x) can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable x . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x-0.1)A2+0.01)-1/((x-1.2)2+0.04)-10;...
zmin=diff(ymin)

zmin =
-1/ ((x-1/10)72+1/100)"2*(2*%-1/5)+1/((x-6/5)"2+1/25)"2* (2*%x-12/5)

When the command
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solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command prompt
and executed, produces the following:

ans =

0.6585 + 0.34371
ans =

0.6585 - 0.34371
ans =

1.2012

The real value 1.2012 above is the value of x at which the function y has its minimum value as
we observe also in the plot of Figure 1.15.

To find the value of y corresponding to this value of x, we substitute it into f(x), that is,
x=1.2012; ymin=1/ (x=0.1) A 2 + 0.01) =1 / ((x=1.2) A 2 + 0.04) —10

ymin = -34.1812

We can find the maximum value from —f (x) whose plot is produced with the script
x=-1.5:0.01:1.5; ymax=-1./((x-0.1).22+0.01)+1./((x-1.2).72+0.04)+10; plot(x,ymax); grid

and the plot is shown in Figure 1.16.
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Figure 1.16. Plot of —f(X) for Example 1.16

Next we compute the first derivative of —f(x) and we solve for x to find the value where the max-
imum of ymax occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=—(1/((x—0.1)"2+0.01)-1/((x—1.2)"2+0.04)—-10); zmax=diff(ymax)
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zmax =
1/((x-1/10)"2+1/100)"2* (2*x-1/5)-1/((x-6/5)"2+1/25)"2* (2*x-12/5)

solve(zmax)
When the command
solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
0.6585 + 0.3437i

ans =
0.6585 - 0.34371

ans
.2012
ans

(=2 i ||

.0999

From the values above we choose x = 0.0999 which is consistent with the plots of Figures 1.15
and 1.16. Accordingly, we execute the following script to obtain the value of ymin.

x=0.0999; % Using this value find the corresponding value of ymax
ymax=1/((x-0.1) A2 + 0.01) -1/ ((x-1.2) A2 + 0.04) —-10

ymax = 89.2000

1.10 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available formats can be displayed
with the help format command as follows:
help format

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display
formats as follows:
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FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.

FORMAT SHORT E Floating point format with 5 digits.

FORMAT LONG E Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point
format with 5 digits.

FORMAT LONG G Best of fixed or floating point format
with 15 digits.

FORMAT HEX Hexadecimal format.

FORMAT + The symbols +, - and blank are printed
for positive, negative and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.
Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.
format short 33.3335 Four decimal digits (default)

format long 33.33333333333334 16 digits

format short e 3.3333e+01 Four decimal digits plus exponent
format short g 33.333 Better of format short or format short e
format bank 33.33 two decimal digits

format + only + or — or zero are printed

format rat 100/3 rational approximation
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1.11 Summary

We can get help with MATLAB topics by typing help followed by any topic available. For
example, the command help matlab\iofun will display input/output information, and help mat-
lab graphics will display help on graphics.

The MATLAB Demos menu displays MATLAB's capabilities. To access it, we type demo and

we see the different topics. Whenever we want to return to the command window, we click on
the Close button.

We type quit or exit when we are done and want to leave MATLAB.

We use the clear command if we want to clear all previous values, variables, and equations
without exiting.

The clc command clears the screen but MATLAB still remembers all values, variables and
equations which we have already used.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it
is ignored during the execution of a program. A comment can be typed on the same line as the
function or command or as a separate line.

For computations involving complex numbers we can use either i, or j to denote the imagi-
nary part of the complex number.

In MATLAB, a polynomial is expressed as a row vector of the form [a, a,_; a, a; ag]. The

elements a; of this vector are the coefficients of the polynomial in descending order. We must

include terms whose coefficients are zero.

We find the roots of any polynomial with the roots(p) function where p is a row vector con-
taining the polynomial coefficients in descending order.

We can compute the coefficients of a polynomial from a given set of roots with the poly(r)
function where r is a row vector containing the roots.

The polyval(p,x) function evaluates a polynomial p(x) at some specified value of the inde-

pendent variable x.
The conv(a,b) function multiplies the polynomials a and b.

The [q,r]=deconv(c,d) function divides polynomial ¢ by polynomial d and displays the quo-
tient q and remainder r.

The polyder(p) function produces the coefficients of the derivative of a polynomial p.

We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.
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e Rational Polynomials are those which can be expressed in ratio form, that is, as

‘4 . +bx+b

-1 -2
Den(x) a x +a X 4a, ,x ~+..+ax+a,

R(x) = Num(x) _ b x" + lonflxn_1 + b, _,x"

where some of the terms in the numerator and/or denominator may be zero. Normally, we
express the numerator and denominator of a rational function as a combination of linear and
quadratic factors.

¢ We use the MATLAB command plot(x,y) to make two—dimensional plots. This command
plots y versus x where X is the horizontal axis (abscissa), and y is the vertical axis (ordinate).

e [f a statement, or a row vector is too long to fit in one line, it can be continued to the next line
by typing three or more periods, then pressing <enter> to start a new line, and continue to
enter data.

e We can make a two—dimensional plot more presentable with the commands grid, box,
title(‘string’), xlabel(‘string’), and ylabel(‘string’). For a three—dimensional plot, we can also
use the zlabel(‘string’) command.

¢ The semilogx(x,y) command is similar to the plot(x,y) command, except that the x-—axis is
represented as a log scale, and the y—axis as a linear scale. Likewise, the semilogy(x,y) com-
mand is similar to the plot(x,y) command, except that the y—axis is represented as a log scale,

and the x—axis as a linear scale. The loglog(x,y) command uses logarithmic scales for both
axes.

¢ The function log(x) in MATLAB is the natural logarithm, whereas the common logarithm is
expressed as log10(x). Likewise, the logarithm to the base 2 is expressed as log2(x).

¢ The ratio of any two values of the same quantity, typically power, is normally expressed in deci-

bels (dB) and by definition,

POUt

dB = 10log

in

¢ The command gtext(‘string’) switches to the current Figure Window, and displays a cross—hair
which can be moved around with the mouse. The command text(x,y,’string’) is similar to
gtext(‘string’); it places a label on a plot in some specific location specified by x and y, and
string is the label which we want to place at that location.

¢ The command linspace(first_value, last_value, number_of_values) specifies the number of
data points but not the increments between data points. An alternate command uses the colon
notation and has the format x=first: increment: last. This format specifies the increments
between points but not the number of data points.
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¢ MATLAB has no default color; it starts with blue and cycles through seven colors. Also, there
is no default marker; no markers are drawn unless they are selected. The default line is the
solid line.

¢ The plot3(x,y,z) command plots a line in 3—space through the points whose coordinates are
the elements of x, y, and z, where X, y, and z are three vectors of the same length.

¢ In a two—dimensional plot, we can set the limits of the x— and y-axes with the axis([xmin
xmax ymin ymax]) command. Likewise, in a three—dimensional plot we can set the limits of
all three axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be
placed after the plot(x,y) or plot3(x,y,z) commands, or on the same line without first execut-
ing the plot command. This must be done for each plot. The three-dimensional

text(x,y,z,’string’) command will place string beginning at the co—ordinate (x, y, z) on the
plot.

e The mesh(x,y,z) command displays a three—dimensional plot. Another command, con-
tour(Z,n), draws contour lines for n levels. We can also use the mesh(x,y,z) command with
two vector arguments. These must be defined as length(x) = n and length(y) = m
where [m,n] = size(Z). In this case, the vertices of the mesh lines are the triples
{x(j), y(i), Z(i, j) } . We observe that x corresponds to the columns of Z, and y corresponds to
the rows of Z. To produce a mesh plot of a function of two variables, say z = f(x,y), we must
first generate the X and Y matrices which consist of repeated rows and columns over the
range of the variables x and y. We can generate the matrices X and Y with the [X,Y]=mesh-
grid(x,y) function which creates the matrix X whose rows are copies of the vector X, and the

matrix Y whose columns are copies of the vector y.

e MATLAB can display up to four windows of different plots on the Figure window using the
command subplot(m,n,p). This command divides the window into an m X n matrix of plotting

areas and chooses the pth area to be active.

e With MATLAB, matrix multiplication (multiplication of row by column vectors) is performed
with the matrix multiplication operator (*), whereas element—by—element multiplication is
performed with the dot multiplication operator (.*). Similarly, the division (/) and exponentia-
tion () operators, are used for matrix division and exponentiation, whereas dot division (./)
and dot exponentiation (.” ) are used for element-by—element division and exponentiation.

e To avoid division by zero, we use the special MATLAB function eps, which is a number
approximately equal to 2.2 x 107'°.

¢ The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified
by the arguments Xxmin, xmax, ymin and ymax. There are no commas between these four
arguments. This command must be placed after the plot command and must be repeated for
each plot.
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The real(z) and imag(z) functions display the real and imaginary parts of the complex quantity
z = x + iy, and the abs(z), and the angle(z) functions compute the absolute value (magnitude)
and phase angle of the complex quantity z = x + iy = r-0. The polar(theta,r) function pro-
duces a plot in polar coordinates, where r is the magnitude, and theta is the angle in radians.

MATLAB recognizes two types of files: script files and function files. Both types are referred to
as m—files. A script file consists of two or more built-in functions. Generally, a script file is one
which was generated and saved as an m—file with an editor such as the MATLAB’s Editor/
Debugger. A function file is a user—defined function using MATLAB. We use function files for
repetitive tasks. The first line of a function file must contain the word function, followed by the
output argument, the equal sign ( =), and the input argument enclosed in parentheses. The
function name and file name must be the same, but the file name must have the extension .m.

The MATLAB fmin(f,x1,x2) function minimizes a function of one variable. It attempts to
return a value of x where f(x) is minimum in the interval x; < x < x;. The string f contains

the name of the function to be minimized.

The MATLAB fplot(fcn,lims) command plots the function specified by the string fcn between
the x —axis limits specified by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also
controls the y—axis limits. The string fcn must be the name of an m-file function or a string

with variable x.

The MATLAB fprintf(format,array) command used above displays and prints both text and
arrays. It uses specifiers to indicate where and in which format the values would be displayed
and printed. Thus, if %f is used, the values will be displayed and printed in fixed decimal for-
mat, and if %e is used, the values will be displayed and printed in scientific notation format.
With these commands only the real part of each parameter is processed.

MATLAB displays the results on the screen in integer format without decimals if the result is
an integer number, or in short floating point format with four decimals if it a fractional number.
The format displayed has nothing to do with the accuracy in the computations. MATLAB per-
forms all computations with accuracy up to 16 decimal places.
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1.12 Exercises

1. Use MATLAB to compute the roots of the following polynomials:
a. p(x) = X+ 8x" + 10x + 4
5 4 3 2
b. p(y) =y + 7y + 19y + 25y + 16y + 4
2. Use MATLAB to derive the polynomials having the following roots:
a. —6.5708 —-0.7146 + j0.3132 -0.7146-j0.3132
b. Two roots at x = —2.000 and three roots at x = —3.000
3. Use MATLARB to evaluate the polynomials below at the specified values.
a. p(x) = X +8x 4+ 10x+ 4 atx = 1.25
b. p(y) = y5 + 7y4 + 19y3 + 25y2 + 16y + 4 aty = -3.75
4. In the electric circuit below, the applied voltage Vg was kept constant and the voltage Vo
across the capacitor was measured and recorded at several frequencies as shown on the table
below.
A%
R,
@
Vs
Capacitor voltage versus radian frequency
) 500 600 700 800 900 1000
VC 88.9 98.5 103.0 | 104.9 | 105.3 | 104.8
o) 1100 | 1200 | 1300 | 1400 | 1500 | 1600
VC 103.8 | 102.4 | 100.7 | 98.9 96.5 94.9
Plot V¢ (in dB scale) versus o (in common log scale) and label the axes appropriately.
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1.13 Solutions to End-of-Chapter Exercises
Dear Reader:

The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first
looking at the solutions that follow. It is recommended that first you go through and work out
those you feel that you know. For the exercises that you are uncertain, review this chapter and try
again. Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
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Px=[1 8 10 4]; roots(Px)

ans =
-6.5708
-0.7146 + 0.31321
-0.7146 - 0.31321

Py=[1 7 19 25 16 4]; roots(Py)

ans =
-2.0000
-2.0000
-1.0000
-1.0000 + 0.00001
-1.0000 - 0.00001

r1=[-6.5708 —0.7146+0.3132j —0.7146-0.3132j]; poly_r1=poly(r1)

poly_rl = 1.0000 8.0000 9.9997

p(x) = X +8x" + 10x + 4

r2=[-2 -2 -3 -3 -3]; poly_r2=poly(r2)
poly r2 =
1 13 67 171 216 108

p(z) = 2 + 132" + 672" + 1712" + 216z + 108
Pv=[1 8 10 4]; value=polyval(Pv, 1.25)
value = 30.9531

Pw=[1 7 19 25 16 4]; value=polyval(Pw, -3.75)
value = -63.6904

4.0000
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[88.9 98.5 103 104.9 105.3 104.8 103.8 102.4 100.7 98.9 96.5 94.9];

20*log10(Vc); semilogx(w,dB); grid; title('Magnitude of Vc vs. w');...

5678910111213 14 15 16]*100;

W=

Ve=

dB=

xlabel('w in rads/sec'); ylabel('|Vc| in volts')

Magnitude of Vc vs. w
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Chapter 2

Root Approximations

his chapter is an introduction to Newton’s and bisection methods for approximating roots
of linear and non-linear equations. Several examples are presented to illustrate practical
solutions using MATLAB and Excel spreadsheets.

2.1 Newton’s Method for Root Approximation

Newton’s (or Newton—-Raphson) method can be used to approximate the roots of any linear or
non-linear equation of any degree. This is an iterative (repetitive procedure) method and it is
derived with the aid of Figure 2.1.

y Tangent line (slope) to the curve
/y = f(x) at point {Xl, f(Xl)}
y = f(x)
{x, f(x)}

) i

Figure 2.1. Newton’s method for approximating real roots of a function

We assume that the slope is neither zero nor infinite. Then, the slope (first derivative) at x = x,

is

' _ y - f(x)
F'x) = X —X,
y—f(x;) = £'(x;)(x—x;) 2.1)

The slope crosses the x —axis at x = x, and y = 0. Since this point [x,, f(x,)] = (x,, 0) lies on

the slope line, it satisfies (2.1). By substitution,

0-1f(x;) = £'(x))(x,—X%)

f(x;)
=X, — 2.2
XZ Xl f '(Xl ) ( )
and in general, o0
Xn
Xn+l = Xp— F(x,) (2.3)
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Example 2.1

Use Newton’s method to approximate the positive root of

f(x) = x*-5 (2.4)
to four decimal places.

Solution:

As a first step, we plot the curve of (2.4) to find out where it crosses the x —axis. This can be
done easily with a simple plot using MATLAB or a spreadsheet. We start with MATLAB and will
discuss the steps for using a spreadsheet afterwards.

We will now introduce some new MATLARB functions and review some which are discussed in
Chapter 1.

input(‘string’): It displays the text string, and waits for an input from the user. We must enclose
the text in single quotation marks.

We recall that the polyder(p) function displays the row vector whose values are the coefficients
of the first derivative of the polynomial p. The polyval(p,x) function evaluates the polynomial p
at some value X. Therefore, we can compute the next iteration for approximating a root with
Newton’s method using these functions. Knowing the polynomial p and the first approximation
Xo, we can use the following script for the next approximation x .

g=polyder(p)
x1=x0-polyval(p,x0)/polyval(q,x0)

We've used the fprintf command in Chapter 1; we will use it many more times. Therefore, let us
review it again.

The following description was extracted from the help fprintf function.

It formats the data in the real part of matrix A (and in any additional matrix arguments), under control
of the specified format string, and writes it to the file associated with file identifier fid and contains C lan-
guage conversion specifications. These specifications involve the character %, optional flags, optional
width and precision fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E,
g, G, ¢, and s. See the Language Reference Guide or a C manual for complete details. The special for-
mats \n,\r,\t,\b,\f can be used to produce linefeed, carriage return, tab, backspace, and formfeed charac-
ters respectively. Use \\ to produce a backslash character and %% to produce the percent character.

To apply Newton’s method, we must start with a reasonable approximation of the root value. In
all cases, this can best be done by plotting f(x) versus x with the familiar statements below. The
following two lines of script will display the graph of the given equation in the interval -4 <x<4.

x=linspace(—4, 4, 100); % Specifies 100 values between -4 and 4
y=x A 2 - 5; plot(x,y); grid % The dot exponentiation is a must
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We chose this interval because the given equation asks for the square root of 5; we expect this
value to be a value between 2 and 3. For other functions, where the interval may not be so obvi-

ous, we can choose a larger interval, observe the x —axis crossings, and then redefine the inter-
val. The plot is shown in Figure 2.2.

15

10

Figure 2.2. Plot for the curve of Example 2.1

As expected, the curve shows one crossing between x = 2 and x = 3, so we take x, = 2 as our

first approximation, and we compute the next value x, as

2
XI_XO_M:Z_Q)—_S:Z_ﬂzz‘ZS (2.5)
£'(xp) 2(2) 4

The second approximation yields
f 2_
g = xy— ) s (235) =5 _ 55 00625 _ 5 53 (2.6)
F(x,) 2(2.25) 45

We will use the following MATLAB script to verify (2.5) and (2.6).

% Approximation of a root of a polynomial function p(x)

% Do not forget to enclose the coefficients in brackets [ ]
p=input('Enter coefficients of p(x) in descending order: ');
xO=input(‘Enter starting value: );

g=polyder(p); % Calculates the derivative of p(x)
x1=x0—-polyval(p,x0)/polyval(q,x0);

fprintf(\n'); % Inserts a blank line

%

% The next function displays the value of x1 in decimal format as indicated
% by the specifier %9.6f, i.e., with 9 digits where 6 of these digits

% are to the right of the decimal point such as xxx.xxxxxx, and

Numerical Analysis Using MATLAB® and Excel®, Third Edition 2-3
Copyright © Orchard Publications



Chapter 2 Root Approximations

% \n prints a blank line before printing x1

fprintf(‘'The next approximation is: %9.6f \n', x1)

fprintf(\n'); % Inserts another blank line
%

fprintf('Rerun the program using this value as your next....
approximation \n');

The following lines show MATLAB’s inquiries and our responses (inputs) for the first two
approximations.

Enter coefficients of P(x) in descending order:
[1 0-5]

Enter starting value: 2

The next approximation is: 2.250000

Rerun the program using this value as your
next approximation

Enter polynomial coefficients in

descending order: [1 0-5]

Enter starting value: 2.25

The next approximation is: 2.236111

We observe that this approximation is in close agreement with (2.6).

In Chapter 1 we discussed script files and function files. We recall that a function file is a user—
defined function using MATLAB. We use function files for repetitive tasks. The first line of a
function file must contain the word function followed by the output argument, the equal sign (=),
and the input argument enclosed in parentheses. The function name and file name must be the
same but the file name must have the extension .m. For example, the function file consisting of
the two lines below

function y = myfunction(x)
y=x /A 3 + cos(3 .* x)
is a function file and must be saved as myfunction.m

We will use the while end loop, whose general form is

while expression
commands ...
end
where the commands ... in the second line are executed as long as all elements in expression of the
first line are true.

We will also be using the following commands:
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disp(x): Displays the array x without printing the array name. If x is a string, the text is displayed.
For example, if v = 12, disp(v) displays 12, and disp(‘volts’) displays volts.

sprintf(format,A): Formats the data in the real part of matrix A under control of the specified
format string. For example,

sprintf('%d',round(pi))

ans =
3

where the format script %d specifies an integer. Likewise,
sprintf('%4.3f',pi)

ans =

3.142

where the format script %4.3f specifies a fixed format of 4 digits where 3 of these digits are allo-
cated to the fractional part.

Example 2.2

Approximate one real root of the non-linear equation

f(x) = X+ 4X + 3 + sinx — xcosx 2.7)
to four decimal places using Newton’s method.
Solution:

As a first step, we sketch the curve to find out where the curve crosses the x — axis. We generate
the plot with the script below.

x=linspace(—pi, pi, 100); y=x A2 + 4 .* x + 3 + sin(x) — x .* cos(x); plot(x,y); grid

The plot is shown in Figure 2.3.

The plot shows that one real root is approximately at x = —1, so we will use this value as our first
approximation.

Next, we generate the function funcnewt01 and we save it as an m—file. To save it, from the File
menu of the command window, we choose New and click on M-File. This takes us to the Editor
Window where we type the following three lines and we save it as funcnewtO1.m.

function y=funcnewt01(x)
% Approximating roots with Newton's method
y=X A2 +4 . x + 3 + sin(x) — x .* cos(x);
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We also need the first derivative of y; Thisis y' = 2x + 4 + xsinx

The computation of the derivative for this example was a simple task; however, we can let MAT-
LAB do the differentiation, just as a check, and to introduce the diff(s) function. This function
performs differentiation of symbolic expressions. The syms function is used to define one or
more symbolic expressions.

syms X
y = X"2+4*x+3+sin(X)—Xx*cos(x); % Dot operations are not necessary with
% symbolic expressions, but correct
% answer will be displayed if they are used.
y1=diff(y) % Find the derivative of y
vyl =

2*x+4+x*sin (x)

Now, we generate the function funcnewt02, and we save it as m-file. To save it, from the File
menu of the command window, we choose New and click on M—File. This takes us to the Editor
Window where we type these two lines and we save it as funcnewt02.m.

function y=funcnewt02(x)

% Finding roots by Newton's method

% The following is the first derivative of the function defined as funcnewt02
y=2." X + 4 + X .* sin(x);

Our script for finding the next approximation with Newton’s method follows.

x = input('Enter starting value: ');
fx = funcnewt01(x);
fprimex = funcnewt02(x);
xnext = x—fx/fprimex;
X = Xnext;
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fx = funcnewt01(x);
fprimex = funcnewt02(x);
disp(sprintf('First approximation is x = %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)");
xnext=x—fx/fprimex;
X=xnext;
fx=funcnewt01(x);
fprimex=funcnewt02(x);
disp(sprintf('Next approximation is x = %9.6f \n', x))
end;
disp(sprintf('%9.6f \n', x))

MATLAB produces the following result with —1 as a starting value.

Enter starting value: -1

First approximation is: -0.894010

Next approximation? (<enter>=no,l=yes)1
-0.895225

Next approximation? (<enter>=no,l=yes) <enter>

We can also use the fzero(f,x) function. It was introduced in Chapter 1. This function tries to
find a zero of a function of one variable. The string f contains the name of a real-valued function
of a single real variable. As we recall, MATLAB searches for a value near a point where the func-
tion f changes sign and returns that value, or returns NaN if the search fails.

2.2 Approximations with Spreadsheets

In this section, we will go through several examples to illustrate the procedure of using a spread-

sheet such as Excel” to approximate the real roots of linear and non-linear equations.

We recall that there is a standard procedure for finding the roots of a cubic equation; it is
included here for convenience.
A cubic equation of the form

y3+py2+qy+r =0 (2.8)
can be reduced to the simpler form

X +ax+b = 0 (2.9)
where

* We will illustrate our examples with Excel, although others such as Lotus 1—2—3, and Quattro can also be used. Hence-
forth, dll spreadsheet commands and formulas that we will be using, will be those of Excel.
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X =y+

WIS

a = 13q-p?) = Lap®—opq+271) (2.10)
3 27
For the solution it is convenient to let

3 2 3 3 2 3
A= |2y bya po_ by b @.11)
2 7T 2 727

Then, the values of x for which the cubic equation of (2.11) is equal to zero are

x, =A+B x,=-A¥B,A-B 5 - _A+B A-B 3 (2.12)
2 2 2 2
If the coefficients p, q, and r are real, then (2.13)
b2 a3
If 1 + ;—7 >0 one root will be real and the other two complex conjugates
b’ a’

If T + > <0 the roots will be real and unequal

2 3
If % + ;—7 = 0 there will be three real roots with at least two equal

While MATLAB handles complex numbers very well, spreadsheets do not. Therefore, unless we
know that the roots are all real, we should not use a spreadsheet to find the roots of a cubic equa-
tion by substitution in the above formulas. However, we can use a spreadsheet to find the real
root since in any cubic equation there is at least one real root. For real roots, we can use a spread-

sheet to define a range of x values with small increments and compute the corresponding values
of y = f(x). Then, we can plot y versus x to observe the values of x that make f(x) = 0. This
procedure is illustrated with the examples that follow.

Note: In our subsequent discussion we will omit the word cell and the key <enter>. Thus B3,
C11, and so on will be understood to be cell B3, cell C11, and so on. Also, after an entry has been
made, it will be understood that the <enter> key was pressed.

|
Example 2.3
Compute the roots of the polynomial

y = f(x) = X =7+ 16x— 12 (2.14)
using Excel.
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Solution:

We start with a blank worksheet. In an Excel worksheet, a selected cell is surrounded by a heavy
border. We select a cell by moving the thick hollow white cross pointer to the desired cell and we
click. For this example, we first select Al and we type x. We observe that after pressing the
<enter> key, the next cell moves downwards to A2; this becomes the next selected cell. We type
0.00 in A2. We observe that this value is displayed just as 0, that is, without decimals. Next, we
type 0.05 in A3. We observe that this number is displayed exactly as it was typed.

We will enter more values in column A, and to make all values look uniform, we click on letter A
on top of column A. We observe that the entire column is now highlighted, that is, the back-
ground on the monitor has changed from white to black. Next, from the Tools drop menu of the
Menu bar, we choose Options and we click on the Edit tab. We click on the Fixed Decimal check
box to place a check mark and we choose 2 as the number of decimal places. We repeat these
steps for Column B and we choose 3 decimal places. Then, all numbers that we will type in Col-
umn A will be fixed numbers with two decimal places, and the numbers in Column B will be fixed
with three decimal places.

To continue, we select A2, we click and holding the mouse left button down, we drag the mouse
down to A3 so that both these two cells are highlighted; then we release the mouse button.
When properly done, A2 will have a white background but A3 will have a black background. We
will now use the AutoFill” feature to fill-in the other values of x in Column A. We will use values

in 0.05 increments up to 5.00. Column A now contains 100 values of x from 0.00 to 5.00 in incre-
ments of 0.05.

Next, we select B, and we type f(x). In B2, we type the equation formula with the = sign in front
of it, that is, we type

= A2"3-T*A2"2 + 16*A2-2

where A2 represents the first value of x = 0.00. We observe that B2 displays the value —12.000.
This is the value of f(x) when x = 0.00 Next, we want to copy this formula to the range
B3:B102 (the colon : means B3 through B102). With B2 still selected, we click on Edit on the
main taskbar, and we click on Copy. We select the range B3:B102 with the mouse, we release the
mouse button, and we observe that this range is now highlighted. We click on Edit, then on Paste
and we observe that this range is now filled with the values of f(x). Alternately, we can use the
Copy and Paste icons of the taskbar.

* To use this feature, we highlight cells A2 and A3. We observe that on the lower right corner of A3, there is a small black
square; this is called the fill handle. If it does not appear on the spreadsheet, we can make it visible by performing the
sequential steps Tools>Options, select the Edit tab, and place a check mark on the Drag and Drop setting. Next, we point
the mouse to the fill handle and we observe that the mouse pointer appears as a small cross. We click, hold down the mouse
button, we drag it down to A102, and we release the mouse button. We observe that, as we drag the fill handle, a pop—up
note shows the cell entry for the last value in the range.
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To plot f(x) versus x, we click on the Chart Wizard icon of the Standard Toolbar, and on the
Chart type column we click on XY (Scatter). From the displayed charts, we choose the one on top
of the right side (the smooth curves without connection points). Then, we click on Next, Next,
Next, and Finish. A chart similar to the one on Figure 2.4 appears.

X f(x)

0.00 -12.000 f(x)

0.05 -11.217

0.10 -10.469 20

015 -9.754 151 /
0.20 -9.072 12’

025 -8.422 0 - __—

0.30 -7.803 5

035 -7.215 -10 /

040 -6.656 -15

045 -6.126 0 1 2 3 4 5 6
050 -5.625

055 -5.151

Figure 2.4. Plot of the equation of Example 2.3.

We will modify this plot to make it more presentable, and to see more precisely the x — axis
crossing(s), that is, the roots of f(x). This is done with the following steps:

1. We click on the Series 1 box to select it, and we delete it by pressing the Delete key.

2. We click anywhere inside the graph box. Then, we see it enclosed in six black square handles.
From the View menu, we click on Toolbars, and we place a check mark on Chart. The Chart
menu appears in two places, on the main taskbar and below it in a box where next to it is
another small box with the hand icon. Note: The Chart menu appears on the main taskbar and
on the box below it, only when the graph box is selected, that is, when it is enclosed in black
square handles. From the Chart menu box (below the main taskbar), we select Value (X) axis,
and we click on the small box next to it (the box with the hand icon). Then, on the Format axis
menu, we click on the Scale tab and we make the following entries:

Minimum: 0.0
Maximum: 5.0
Major unit: 1.0
Minor unit: 0.5

We click on the Number tab, we select Number from the Category column, and we type 0 in the
Decimal places box. We click on the Font tab, we select any font, Regular style, Size 9. We click
on the Patterns tab to select it, and we click on Low on the Tick mark labels (lower right box).
We click on OK to return to the graph.

3. From the Chart menu box we select Value (Y) axis and we click on the small box next to it (the
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box with the hand icon). On the Format axis menu, we click on the Scale tab, and we make the
following entries:

Minimum: —-1.0
Maximum: 1.0
Major unit: 0.25
Minor unit: 0.05

We click on the Number tab, we select Number from the Category column, and we select 2 in
the Decimal places box. We click on the Font tab, select any font, Regular style, Size 9. We click
on the Patterns tab, and we click on Outside on the Major tick mark type (upper right box). We
click on OK to return to the graph.

4. We click on Chart on the main taskbar, and on the Chart Options. We click on Gridlines, we
place check marks on Mgjor gridlines of both Value (X) axis and Value (Y) axis. Then, we click
on the Titles tab and we make the following entries:

Chanrt title: f(x) = the given equation (or whatever we wish)
Value (X) axis: X (or whatever we wish)
Value (Y) axis: y=f(x) (or whatever we wish)

5. Now, we will change the background of the plot area from gray to white. From the Chart
menu box below the main task bar, we select Plot Area and we observe that the gray back-
ground of the plot area is surrounded by black square handles. We click on the box next to it
(the box with the hand icon), and on the Area side of the Patterns tab, we click on the white
square which is immediately below the gray box. The plot area on the chart now appears on
white background.

6. To make the line of the curve f(x) thicker, we click at any point near it and we observe that
several black square handles appear along the curve. Series | appears on the Chart menu box.
We click on the small box next to it, and on the Patterns tab. From the Weight selections we
select the first of the thick lines.

7. Finally, to change Chart Area square corners to round, we select Chart Area from the Chart
menu, and on the Patterns tab we place a check mark on the Round corners box.

The plot now resembles the one shown in Figure 2.5 where we have shown partial lists of x and
f(x). The given polynomial has two roots at x = 2, and the third rootis x = 3.

We will follow the same procedure for generating the graphs of the other examples which follow;
therefore, it is highly recommended that this file is saved with any name, say polyOl.xls where.xls
is the default extension for file names saved in Excel.
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X flx) ™
0.00 -12.000 f(x) =X’ - 75 + 16x- 12

005 -11.217

010 -10.469 8-22 |

015 -9.754 050

020 -9.072 0.05 |

025 -8.422 = 000

030 -7.803| ~ -025-

035 -7.215 -0.50

040 -6.656 -0.75

045 -6.126 -1.00 !

050 -5625 o 1 2 3 4 5
055 -5151 x

060 -4.704 \_ %
065 -4.283

070 -3.887 X f(x) x (x)
075 -3516 190 0011 290 -0.081
080 -3.168 195 0003 295 -0.045
085 -2.843 Roots — 200 0.000—» 300  0.000
090 -2.541 205 -0002 305 0055
095 -2.260 210 -0009 310 0.121
1.00 -2.000 f(x) =0 at x=2 (double root) and at x=3

Figure 2.5. Modified plot of the equation of Example 2.3.

|
Example 2.4

Find a real root of the polynomial

y = f(x) = 3x° 2% +6x—8 (2.15)
using Excel.

Solution:

To save lots of unnecessary work, we invoke (open) the spreadsheet of the previous example, that
is, polyOl.xls (or any other file name that was assigned to it), and save it with another name such
as poly02.xls. This is done by first opening the file polyOl.xls, and from the File drop down menu,
we choose the Save as option; then, we save it as poly02.xls, or any other name. When this is
done, the spreadsheet of the previous example still exists as polyOl.xls. Next, we perform the fol-
lowing steps:

1. For this example, the highest power of the polynomial is 5 (odd number), and since we know
that complex roots occur in conjugate pairs, we expect that this polynomial will have at least
one real root. Since we do not know where a real root is in the x—axis interval, we arbitrarily
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choose the interval —10 <x < 10. Then, we enter —10 and -9 in A2 and A3 respectively. Using
the AutoFill feature, we fill-in the range A4:A22, and we have the interval from —10 to 10 in
increments of 1. We must now delete all rows starting with 23 and downward. We do this by
highlighting the range A23:B102, and we press the Delete key. We observe that the chart has

changed shape to conform to the new data.

Now we select B2 where we enter the formula for the given equation, i.e.,
=3*A2A5-2*A2/3+6*A2-8

We copy this formula to B3:B22. Columns A and B now contain values of x and f(x) respec-
tively, and the plot shows that the curve crosses the x—axis somewhere between x = 1 and
x = 2.

A part of the table is shown in Figure 2.6. Columns A (values of x), and B (values of f(x)),
reveal some useful information.

X f(x)
-10.00| -298068.000
-9.00| -175751.000
0.00 -8.000

1.00 -1.000 )
2.00 84.000|~— Sign Change
9.00 175735.000
10.00 298052.000
Figure 2.6. Partial table for Example 2.4

This table shows that f(x) changes sign somewhere in the interval from x = 1 and x = 2.
Let us then redefine our interval of the x values as 1 <x <2 in increments of 0.05, to get bet-
ter approximations. When this is done Al contains 1.00, A2 contains 1.05, and so on. Our
spreadsheet now shows that there is a sign change from B3 to B4, and thus we expect that a
real root exists between x = 1.05 and x = 1.10. To obtain a good approximation of the real
root in that interval, we perform Steps 2 through 4 below.

2. On the View menu, we click on Toolbars and place a check mark on Chart. We select the graph
box by clicking inside it, and we observe the square handles surrounding it. The Chart menu
on the main taskbar and the Chart menu box below it, are now displayed. From the Chart
menu box (below the main taskbar) we select Value (X) axis, and we click on the small box
next to it (the box with the hand). Next, on the Format axis menu, we click on the Scale tab
and make the following entries:

Minimum: 1.0
Maximum: 1.1
Major unit: 0.02
Minor unit: 0.01

Numerical Analysis Using MATLAB® and Excel®, Third Edition 2-13
Copyright © Orchard Publications



Chapter 2 Root Approximations

3. From the Chart menu we select Value (Y) axis, and we click on the small box next to it. Then,
on the Format axis menu, we click on the Scale tab and make the following entries:

Minimum: —-1.0
Maximum: 1.0
Major unit: 0.5
Minor unit: 0.1

4. We click on the Titles tab and make the following entries:

Chant title: f(x) = the given equation (or whatever we wish)
Value (X) axis: X (or whatever we wish)

Value (Y) axis: y=f(x) (or whatever we wish)

Our spreadsheet now should look like the one in Figure 2.7 and we see that one real root is

approximately 1.06.

X

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

f(x)

-1.000
-0.186

0.770

1.892

3.209

4.749

6.545

8.631
11.047
13.832
17.031
20.692
24 .865
29.605
34.970
41.021
47.823
55.447
63.965
73.455
84.000

4 f(x)=3x5-2x3+6x-8‘ A
1.00
0.50 - /
Z 000 //
-0.50 /
-1.00
1.00 1.02 1.04 106 1.08 1.10
X
\ /
X f(x)
1.00 -1.000
Real Root betwee 1.05 -0.186
10 0.770
1.15 1.892
1.20 3.209

f(x) = —0.007 at x = 1.06

Figure 2.7. Graph for Example 2.4

Since no other roots are indicated on the plot, we suspect that the others are complex conjugates.
We confirm this with MATLAB as follows:

p=[3 0 -2 0 6 -8]; roots_p=roots(p)

2-14
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roots_p =
-1.1415 + 0.82121
-1.1415 - 0.82121
0.6113 + 0.94761
0.6113 - 0.94761

1.0604

|
Example 2.5
Compute the real roots of the trigonometric function
y = f(X) = cos2x + sin2x + x — 1 (2.16)
using Excel.

Solution:

We invoke (open) the spreadsheet of one of the last two examples, that is, polyO1.xls or poly02.xls,
and save it with another name, such as poly03.xls.

Since we do not know where real roots (if any) are in the x—axis interval, we arbitrarily choose the
interval -1 <x<6. Then, we enter —1.00 and —0.90 in A2 and A3 respectively, Using the Auto-
Fill feature, we fill-in the range A4:A72 and thus we have the interval from —1 to 6 in increments
of 0.10. Next, we select B2 and we enter the formula for the given equation, i.e.,

=COS(2*A2)+SIN(2*A2)+A2—1
and we copy this formula to B3:B62.

There is a root at x = 0; this is found by substitution of zero into the given equation. We observe
that Columns A and B contain the following sign changes (only a part of the table is shown):

X f(x)
120  0.138 :
130 0,041~ Sign Change

2.20] -0.059 _
230 0.194 = Sign Change

We observe two sign changes. Therefore, we expect two more real roots, one in the
1.20 <x < 1.30 interval and the other in the 2.20 <x <2.30 interval. If we redefine the x — axis
range as 1 to 2.5, we will find that the other two roots are approximately x = 1.30 and x = 2.24.

Approximate values of these roots can also be observed on the plot of Figure 2.8 where the curve
crosses the x —axis.
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X f(x)
-1.00 3325 f(x) = cos2x + sin2x + x- 1
-0.90 -3.101
-0.80 -2.829 6
070  -2515 4 /
060  -2170 . /\
-0.50 1801 | X

= 5 .
-0.40 -1.421 ~~ T
-0.30 -1.039 2 /
-0.20 -0.668 -4
-0.10 -0.319 14 0 1 2 3 4 5 6
0.00 0.000 x
0.10 0.279
0.20 0.510
0.30 0.690 X f(x)
0.40 0.814 Real Root at————0.00 0.000
0.50 0.882 1.20 0.138
0.60 0.894 Real-Roet between<:1.30 -0.041
0.70 0.855 Real Roc)tbetween<‘:2.2o -0.059
0.80 0.770 2.30 0.194
0.90 0.647

Figure 2.8. Graph for Example 2.5

We can obtain more accurate approximations using Excel’s Goal Seek feature. We use Goal Seek
when we know the desired result of a single formula, but we do not know the input value which

satisfies that result. Thus, if we have the function y = f(x), we can use Goal Seek to set the
dependent variable y to the desired value (goal) and from it, find the value of the independent
variable x which satisfies that goal. In the last three examples our goal was to find the values of x
for which y = f(x) = 0.

To illustrate the Goal Seek feature, we will use it to find better approximations for the non—zero
roots of Example 2.5. We do this with the following steps:

1. We copy range A24:B24 (or A25:B25) to two blank cells, say J1 and K1, so that J1 contains
1.20 and K1 contains 0.138 (or 1.30 and —0.041 if range A25:B25 was copied). We increase the
accuracy of Columns ] and K to 5 decimal places by clicking on Format, Cells, Numbers tab.

2. From the Tools drop menu, we click on Goal Seek, and when the Goal Seek dialog box appears,
we make the following entries:

Set cell: K1
To value: 0

By changing cell: J1

3. When this is done properly, we will observe the changes in J1 and K1. These indicate that for
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x = 1.27647,y = f(x) = 0.00002.

4, We repeat the above steps for the next root near x = 2.20, and we verify that for
x = 2.22515,y = f(x) = 0.00020.

Another method of using the Goal Seek feature, is with a chart such as those we’ve created for the
last three examples. We will illustrate the procedure with the chart of Example 2.5.

1. We point the mouse at the curve where it intersects the x—axis, near the x = 1.30 point. A
square box appears and displays Series 1, (1.30, -0.041). We observe that other points are also
displayed as the mouse is moved at different points near the curve.

2. We click anywhere near the curve, and we observe that five handles (black square boxes) are
displayed along different points on the curve. Next, we click on the handle near the x = 1.30
point, and when the cross symbol appears, we drag it towards the x—axis to change its value.
The Goal Seek dialog box then appears where the Set cell shows B24. Then, in the To value box
we enter 0, in the By changing cell we enter A24 and we click on OK. We observe now that A24
displays 1.28 and B24 displays 0.000.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a template
(model spreadsheet) with the appropriate formulas and then enter the coefficients of the polyno-

. 3 . * . . . .
mial to find its real roots . This is illustrated with the next example.

|
Example 2.6

Construct a template (model spreadsheet), with Excel, which uses Newton’s method to approxi-
mate a real root of any polynomial with real coefficients up to the seventh power; then, use it to
compute a root of the polynomial

y = f(x) = x —6x°+5x —axt+3x° —2xP +x - 15 (2.17)
given that one real root lies in the 4 <x <6 interval.

Solution:

1. We begin with a blank spreadsheet and we make the entries shown in Figure 2.9.

* There exists a numerical procedure, known as Bairstow’s method, that we can use to find the complex roots of a polyno-
mial with real coefficients. We will not discuss this method here; it can be found in advanced numerical analysis textbooks.
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Al B] c| b] E ] F | G H
Spreadsheet for finding approximations of the real roots of polynomials
up the 7th power by Newton's Method.

Powers of x and corresponding coefficients of given polynomial p(x)

Enter coefficients of p(x) in Row 7

7 6 5 4 3 2
X X X X X X X Constant

Coefficients of the derivative p'(x)

Enter coefficients of p'(x) in Row 12

6 5 4 3 2
X X X X X X Constant

Approximations: X,.1 = X, — p(X,)/p"'(Xn)
Initial (xq) 1st (x4) | 2nd (x;) | 3rd (x3) | 4th (x4) | 5th (x5) | 6th (xg) | 7th (x;)

alalalalnl2|alo|e|~|o|o|sfw|v] =

Figure 2.9. Model spreadsheet for finding real roots of polynomials.

We save the spreadsheet of Figure 2.9 with a name, say template.xls. Then, we save it with a dif-
ferent name, say Example 2 6.xls, and in B16 we type the formula

=A16-($A$7*A16°7+$BS7*A16"6+$C$7*A16"5+$D$S7*A16"4
+$ES7*A16"3+$F$7*A16/2+$GE7*A167M1+$HST7)/
($B$12*A16"6+$C$12*A16"5+3D$12*A16"4+$E$12*A16"3
+$F$12"A16"2+$G$12*A16M+$H$12)

The use of the dollar sign ($) is explained in Paragraph 4 below.

The formula in B16 of Figure 2.10, is the familiar Newton’s formula which also appears in Row
14. We observe that B16 now displays #DIV/0! (this is a warning that some value is being
divided by zero), but this will change once we enter the polynomial coefficients, and the coeffi-
cients of the first derivative.

2. Since we are told that one real root is between 4 and 6, we take the average 5 and we enter it in
A16. This value is our first (initial) approximation. We also enter the polynomial coefficients,
and the coefficients of the first derivative in Rows 7 and 12 respectively.

3. Next, we copy B16 to C16:F16 and the spreadsheet now appears as shown in the spreadsheet
of Figure 2.10. We observe that there is no change in the values of E16 and F16; therefore, we
terminate the approximation steps there.
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A |l B|] c]| b|] E| F | G H

Spreadsheet for finding approximations of the real roots of polynomials

up the 7th power by Newton's Method.

Powers of x and corresponding coefficients of given polynomial p(x)

Enter coefficients of p(x) in Row 7

7 6 5 4 3 2
X X X X X X X Constant

1 -6 5 -4 3 -2 1 -15

Coefficients of the derivative p'(x)

Enter coefficients of p'(x) in Row 12

6 5 4 3 2
X X X X X X Constant

7 -36 25 -16 9 -4 1

Approximations: X1 = X, — p(X,)/p"(Xn)
Initial (xq) 1st (x4) | 2nd (x;) | 3rd (x3) | 4th (x;) | 5th (x5) | 6th (xg) | 7th (x;)
5.0| 5.20409| 5.16507| 5.163194|5.163190|5.163190

alalalaols|2lalelc| N ool fw|n] =

Figure 2.10. Spreadsheet for Example 2.6.

4. All cells in the formula of B16, except A16, have dollar signs (§) in front of the column letter,
and in front of the row number. These cells are said to be absolute. The value of an absolute
cell does not change when it is copied from one position to another. A cell that is not absolute
is said to be relative cell. Thus, B16 is a relative cell, and $B$16 is an absolute cell. The con-
tents of a relative cell changes when it is copied from one location to another. We can easily
convert a relative cell to absolute or vice versa, by first placing the cursor in front, at the end,
or between the letters and numbers of the cell, then, we press the function key F4. In this
example, we made all cells, except A16, absolute so that the formula of B16 can be copied to
C16, D16 and so on, without changing its value. The relative cell A16, when copied to the
next column, changes to B16, when copied to the next column to the right, changes to C16,
and so on.

We can now use this template with any other polynomial by just entering the coefficients of the
new polynomial in row 7 and the coefficients of its derivative in Row 12; then, we observe the
successive approximations in Row 16.

2.3 The Bisection Method for Root Approximation

The Bisection (or interval halving) method is an algorithm ™ for locating the real roots of a function.

* This is a step—by—step problem—solving procedure, especially an established, recursive computational procedure for solving
a problem in a finite number of steps.
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The objective is to find two values of x, say x; and x,, so that f(x,) and f(x,) have opposite
signs, that is, either f(x,)>0 and f(x,) <0, or f(x,) <0 and f(x,) > 0. If any of these two condi-
tions is satistied, we can compute the midpoint x,, of the interval x; <x <x, with

- 172 2.1
i = (2.18)

Knowing x, , we can find f(x,,) . Then, the following decisions are made:

1. If f(x,,) and f(x,) have the same sign, their product will be positive, that is, f(x,,) - f(x,)>0.
This indicates that x,, and x, are on the left side of the x—axis crossing as shown in Figure 2.11.

In this case, we replace x, with x .

f(x,) and f(x,,) are
both positive and thus
their product is positive

f(x;) and f(x,,) are
both negative and thus
their product is positive

X xmw X X /X,

Figure 2.11. Sketches to illustrate the bisection method when f(x,) and f(x,,) have same sign

2. If f(x,,) and f(x,) have opposite signs, their product will be negative, that is, f(x,,) - f(x,) <0.
This indicates that x,, and x, are on the right side of the x-axis crossing as in Figure 2.12. In

this case, we replace x, with x .

f(x;) and f(x,,) have f(x;) and f(x,,) have
opposite signs and thus opposite signs and thus
their product is negative their product is negative

X1\ Xm X2 Xl, Xm X2

Figure 2.12. Sketches to illustrate the bisection method when f(x,) and f(x,,) have opposite signs

After making the appropriate substitution, the above process is repeated until the root we are
seeking has a specified tolerance. To terminate the iterations, we either:

a. specify a number of iterations

b. specify a tolerance on the error of f(x)
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We will illustrate the Bisection Method with examples using both MATLAB and Excel.

Example 2.7
Use the Bisection Method with MATLAB to approximate one of the roots of

y = f(x) = 3x° - 2x  + 6x -8 (2.19)
by

a. by specifying 16 iterations, and using a for end loop MATLAB program

b. by specifying 0.00001 tolerance for f(x), and using a while end loop MATLAB program
Solution:

This is the same polynomial as in Example 2.4.

a. The for end loop allows a group of functions to be repeated a fixed and predetermined num-
ber of times. The syntax is:

for x = array
commands...
end

Before we write the program script, we must define a function assigned to the given polyno-
mial and save it as a function m—file. We will define this function as funcbisectO1 and will save
it as funcbisectO1.m.

function y= funcbisect01(x);

y=83."XA5-2"XA"A3+6."x-8;

% We must not forget to type the semicolon at the end of the line above;
% otherwise our script will fill the screen with values of y

On the script below, the statement for k = 1:16 says for k = 1,k = 2, ...,k = 16, evaluate all

commands down to the end command. After the k = 16 iteration, the loop ends and any
commands after the end are computed and displayed as commanded.

Let us also review the meaning of the fprintf('%9.6f %13.6f \n', xm,fm) line. Here, %9.6f and
%13.6f are referred to as format specifiers or format scripts; the first specifies that the value of
xm must be expressed in decimal format also called fixed point format, with a total of 9 digits, 6
of which will be to the right of the decimal point. Likewise, fm must be expressed in decimal
format with a total of 13 digits, 6 of which will be to the right of the decimal point. Some other
specifiers are %e for scientific format, %s for string format, and %d for integer format. For
more information, we can type help fprintf. The special format \n specifies a linefeed, that is, it
prints everything specified up to that point and starts a new line. We will discuss other special
formats as they appear in subsequent examples.
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The script for the first part of Example 2.7 is given below.

x1=1; x2=2; % We know this interval from Example 2.4, Figure 2.6
disp(" xm fm') % xm is the average of x1 and x2, fm is f(xm)

disp(' ) % insert line under xm and fm

for k=1:16;

f1=funcbisect01(x1); f2=funcbisect01(x2);
xm=(x1+x2) / 2; fm=funcbisect01(xm);
fprintf('%9.6f %13.6f \n', xm,fm) % Prints xm and fm on same line;
if (f1*fm<0)

X2=xm;

else

X1=xm;

end
end

When this program is executed, MATLAB displays the following:

xm fm
1.500000 17.031250
1.250000 4.749023
1.125000 1.308441
1.062500 0.038318
1.031250 -0.506944
1.046875 -0.241184
1.054688 -0.103195
1.058594 -0.032885
1.060547 0.002604
1.059570 -0.015168
1.060059 -0.006289
1.060303 -0.001844
1.060425 0.000380
1.060364 -0.000732
1.060394 -0.000176
1.060410 0.000102

We observe that the values are displayed with 6 decimal places as we specified, but for the
integer part unnecessary leading zeros are not displayed.

b. The while end loop evaluates a group of commands an indefinite number of times. The syntax
is:

while expression
commands...
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end

The commands between while and end are executed as long as all elements in expression are
true. The script should be written so that eventually a false condition is reached and the loop
then terminates.

There is no need to create another function mfile; we will use the same as in part a. Now we
type and execute the following while end loop program.

x1=1; x2=2; 10l=0.00001;
disp(' xm fm'); disp(' )
while (abs(x1-x2)>2*tol);
f1=funcbisect01(x1); f2=funcbisect01(x2); xm=(x1+x2)/2;
fm=funcbisect01(xm);
fprintf('%9.6f %13.6f \n', xm,fm);
if (f1*fm<0);
X2=xm;
else
X1=xm;
end
end

When this program is executed, MATLAB displays the following:

xm fm

1.500000 17.031250
1.250000 4.749023
1.125000 1.308441
1.062500 0.038318
1.031250 -0.506944
1.046875 -0.241184
1.054688 -0.103195
1.058594 -0.032885
1.060547 0.002604
1.059570 -0.015168
1.060059 -0.006289
1.060303 -0.001844
1.060425 0.000380
1.060364 -0.000732
1.060394 -0.000176
1.060410 0.000102
1.060402 -0.000037
1.060406 0.000032
1.060404 -0.000003
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Next, we will use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has the
following syntax.

=|F(logical_test,value_if true,value_if false)

where

logical_test: any value or expression that can be evaluated to true or false.
value_if_true: the value that is returned if logical_test is true.

If logical_test is true and value_if true is omitted, true is returned. Value_if true can be another
formula.

value_if_false is the value that is returned if logical test is false. If logical test is false and
value_if false is omitted, false is returned. Value_if false can be another formula.

These statements may be clarified with the following examples.

=IF(C11>=1500,A15, B15):If the value in C11 is greater than or equal to 1500, use the value in
A15; otherwise use the value in B15.

=IF(D22<E22, 800, 1200):If the value in D22 is less than the value of E22, assign the number
800; otherwise assign the number 1200.

=IF(M8<>N17, K7*12, L8/24):If the value in M8 is not equal to the value in N17, use the value in
K7 multiplied by 12; otherwise use the value in L8 divided by 24.

|
Example 2.8

Use the bisection method with an Excel spreadsheet to approximate the value of /5 within
0.00001 accuracy.

Solution:

Finding the square root of 5 is equivalent to finding the roots of x>~ 5 = 0. We expect the posi-
tive root to be in the 2 <x <3 interval so we assign x; = 2 and x, = 3. The average of these
values is x,, = 2.5. We will create a template as we did in Example 2.6 so we can use it with any
polynomial equation. We start with a blank spreadsheet and we make the entries in rows 1
through 12 as shown in Figure 2.13.

Now, we make the following entries in rows 13 and 14.

A13:2
B13:3
C13: =(A13+B13)/2
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A | B | ¢ | b | E | F G H
1 |Spreadsheet for finding approximations of the real roots
2 |of polynomials using the Bisection method
3 |
4 |Equation: |y=f(x)=x*-5=0
5
6 |Powers of x and corresponding coefficients of given polynomial f(x)
7 |Enter coefficients of f(x) in Row 9
8 x’ x° X x* x° x* X | Constant
9 0.00000| 0.00000| 0.00000f 0.00000| 0.00000f 1.00000 0 -5
10
11 X4 X, Xm f(x4) f(Xm) | F(X)f(Xrm)
12 (X4+x,)/2

Figure 2.13. Partial spreadsheet for Example 2.8

D13: =$A$9*A13/7+$B$9*A13"6+$C$9*A135+$D$9*A13"4
+$E$9*A1343+$F$9*A13/2+$G$9*A137+$HEI*A1370
E13: =$§A$9*C1327+$B$9*C1376+$C$9*C1375+$D$9*C1374
+$E$9*C1373+$F$9*C13/2+$G$9*C1311+$H$9*C 1310
F13: =D13*E13
A14: =IF(A14=A13, C13, B13)
B14: =IF(A14=A13, C13, B13)

We copy C13 into C14 and we verify that C14: =(A14+B14)/2

Next, we highlight D13:F13 and on the Edit menu we click on Copy. We place the cursor on D14
and from the Edit menu we click on Paste. We verify that the numbers on D14:F14 are as shown
on the spreadsheet of Figure 2.14. Finally, we highlight A14:F14, from the Edit menu we click on
Copy, we place the cursor on A15, and holding the mouse left button, we highlight the range
A15:A30. Then, from the Edit menu, we click on Paste and we observe the values in A15:F30.

The square root of 5 accurate to six decimal places is shown on C30 in the spreadsheet of Figure
2.14.
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Al B | c¢c | bl E | F G H
1 |Spreadsheet for finding approximations of the real roots
2 |of polynomials using the Bisection method
3
4 |Equation: ly=f(x)=x*-5=0
5 |
6 |Powers of x and corresponding coefficients of given polynomial f(x)
7 |Enter coefficients of f(x) in Row 9
8 x’ x° X x* x x X | Constant
9 0.00000{ 0.00000| 0.00000| 0.00000| 0.00000| 1.00000 0 -5
10
11 X1 Xz Xm f(x4) f(Xm) | F(x1)f(xmm)
12 (x4+x,)/2

13 | 2.00000 | 3.00000 | 2.50000 | -1.00000 | 1.25000 | -1.25000
14 | 2.00000 | 2.50000 | 2.25000 | -1.00000 | 0.06250 | -0.06250
15| 2.00000 | 2.25000 | 2.12500 | -1.00000 | -0.48438 | 0.48438
16 | 2.12500 | 2.25000 | 2.18750 | -0.48438 | -0.21484 | 0.10406
17 | 2.18750 | 2.25000 | 2.21875 | -0.21484 | -0.07715 | 0.01657
18 | 2.21875 | 2.25000 | 2.23438 | -0.07715 | -0.00757 | 0.00058
19| 2.23438 | 2.25000 | 2.24219 | -0.00757 | 0.02740 | -0.00021
20| 2.23438 | 2.24219 | 2.23828 | -0.00757 | 0.00990 | -0.00007
21| 2.23438 | 2.23828 | 2.23633 | -0.00757 | 0.00116 | -0.00001
22 | 2.23438 | 2.23633 | 2.23535 | -0.00757 | -0.00320 | 0.00002
23| 2.23535 | 2.23633 | 2.23584 | -0.00320 | -0.00102 | 0.00000
24 | 2.23584 | 2.23633 | 2.23608 | -0.00102 | 0.00007 | 0.00000
25| 2.23584 | 2.23608 | 2.23596 | -0.00102 | -0.00047 | 0.00000
26 | 2.23596 | 2.23608 | 2.23602 | -0.00047 | -0.00020 | 0.00000
27 | 2.23602 | 2.23608 | 2.23605 | -0.00020 | -0.00006 | 0.00000
28 | 2.23605 | 2.23608 | 2.23607 | -0.00006 | 0.00000 | 0.00000
29| 2.23605 | 2.23607 | 2.23606 | -0.00006 | -0.00003 | 0.00000
30| 2.23606 | 2.23607 | 2.23606 | -0.00003 | -0.00001 | 0.00000

Figure 2.14. Entire spreadsheet for Example 2.8
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2.4 Summary

Newton’s (or Newton—Raphson) method can be used to approximate the roots of any linear or
non-linear equation of any degree. It uses the formula

_ f(x,)
Xn+1 _Xn_fv(x)
n

To apply Newton’s method, we must begin with a reasonable approximation of the root value.
In all cases, this can best be done by plotting f(x) versus x.

We can use a spreadsheet to approximate the real roots of linear and non-linear equations but
to approximate all roots (real and complex conjugates) it is advisable to use MATLAB.

The MATLAB the while end loop evaluates a group of statements an indefinite number of
times and thus can be effectively used for root approximation.

For approximating real roots we can use Excel’s Goal Seek feature. We use Goal Seek when
we know the desired result of a single formula, but we do not know the input value which sat-
isfies that result. Thus, if we have the function y = f(x), we can use Goal Seek to set the
dependent variable y to the desired value (goal) and from it, find the value of the indepen-
dent variable x which satisfies that goal.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a tem-
plate (model spreadsheet) with the appropriate formulas and then enter the coefficients of the
polynomial to find its real roots.

The Bisection (or interval halving) method is an algorithm for locating the real roots of a
function. The objective is to find two values of x, say x; and x,, so that f(x,) and f(x,) have
opposite signs, that is, either f(x;) >0 and f(x,) <0, or f(x,) <0 and f(x,) > 0. If any of these
two conditions is satisfied, we can compute the midpoint x,, of the interval x; < x <x, with
X4 + X5
Ym = =g

We can use the Bisection Method with MATLAB to approximate one of the roots by specify-
ing a number of iterations using a for end or by specifying a tolerance using a while end loop
program.

We can use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has
the =IF(logical_test,value_if true,value_if false)
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2.5 Exercises

1. Use MATLAB to sketch the graph y = f(x) for each of the following functions, and verify
from the graph that f(a) and f(b), where a and b defined below, have opposite signs. Then,
use Newton’s method to estimate the root of f(x) = 0 that lies between a and b.

a. f(x) =x +x-3 a=1 b=2
b. £,(x) = J2x+1-Jx+4 a=2 b=4
Hine: Start with x, = (a+b)/2

2. Repeat Exercise 1 above using the Bisection method.

3. Repeat Example 2.5 using MATLAB.
Hint: Use the procedure of Example 2.2
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2.6 Solutions to End-of-Chapter Exercises

1.
a.
x=-2:0.05:2; f1x=x."+x-3; plot(x,f1x); grid
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From the plot above we see that the positive root lies between x = 1 and x = 1.25 so we
choose a = 1 and b = 1.25 so we take x, = 1.1 as our first approximation. We compute
the next value x, as
fi 4 _ _
o xg '(Xo) _ DL (20436) | o
f£'(x) 411 + 1 6.324
The second approximation yields
fi 4 _
X = %, 10D e (1169) £ L1693 _ )y o9 00365 _ | 1
£'(x;) 4(1.169)° + 1 7.39
Check with MATLAB:
pa=[1 0 0 1 -3]; roots(pa)
ans =
-1.4526
0.1443 + 1.32411
0.1443 - 1.32411
1.1640
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b.
x=-5:0.05:5; f2x=sqgrt(2.*x+1)-sqrt(x+4); plot(x,f2x); grid
Warning: Imaginary parts of complex X and/or Y arguments ignored.
0.5
0
-0.5
o
1.5
2
From the plot above we see that the positive root is very close to x = 3 and so we take
X, = 3 as our first approximation. To compute the next value x, we first need to find the
first derivative of f,(x). We rewrite it as
1/2 1/2
f(x) = V2x+1-Jx+4 = 2x+1) " —(x+4)
Then,
d 1 -1/2 1 -1/2 1 1
L) ==-2x+ )22 x4V 201 = -
dx 2 2 2 P2x+1 2./x+4
and
f _
g = XO_& _ 3 A2x3+1-B+4 _ 5 0 _,
f£'(x) 1/J7-1/2J7) 1/(27)
Thus, the real root is exactly x = 3. We also observe that since f(x,) = J1-47 =0,
there was no need to find the first derivative f'(x,).
Check with MATLAB:
syms x; f2x=sqrt(2.*x+1)-sqrt(x+4); solve(f2x)
ans =
3
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2.

a. We will use the for end loop MATLAB program and specify 12 iterations. Before we write
the program script, we must define a function assigned to the given polynomial and save it
as a function m—file. We will define this function as exercise2 and will save it as
exercise2.m
function y= exercise2(x);
y=xX/N4+x-3;

After saving this file as exercise2.m, we execute the following program:
x1=1; x2=2; % x1=a and x2=b
disp(" xm fm’) % xm is the average of x1 and x2, fm is f(xm)
disp(' Y % insert line under xm and fm
for k=1:12;
f1=exercise2(x1); f2=exercise2(x2);
xm=(x1+x2) / 2; fm=exercise2(xm);
fprintf('%9.6f %13.6f \n', xm,fm)% Prints xm and fm on same line;
if (f1*fm<0)
X2=xm;
else
x1=xm;
end
end
MATLAB displays the following:
xm fm
1.500000 3.562500
1.250000 0.691406
1.125000 -0.273193
1.187500 0.176041
1.156250 -0.056411
1.171875 0.057803
1.164063 0.000200
1.160156 -0.028229
1.162109 -0.014045
1.163086 -0.006930
1.163574 -0.003367
1.163818 -0.001584

b. We will use the while end loop MATLAB program and specify a tolerance of 0.00001.
We need to redefine the function m—file because the function in part (b) is not the same as
in part a.

Numerical Analysis Using MATLAB® and Excel®, Third Edition 2-31

Copyright © Orchard Publications



Chapter 2 Root Approximations

function y= exercise2(x);
y = sqrt(2.*x+1)—-sqrt(x+4);

After saving this file as exercise2.m, we execute the following program:

x1=2.1; x2=4.3; t0l=0.00001; % If we specify x1=a=2 and x2=b=4, the program
% will not display any values because xm=(x1+x2)/2 = 3 = answer
disp(" xm fm’); disp(’ )
while (abs(x1-x2)>2*tol);

f1=exercise2(x1); f2=exercise2(x2); xm=(x1+x2)/2;

fm=exercise2(xm);

fprintf('%9.6f %13.6f \n', xm,fm);

if (f1*fm<0);
X2=xXm;

else

X1=xm;

end

end

When this program is executed, MATLAB displays the following:

xm fm
3.200000 0.037013
2.650000 -0.068779
2.925000 -0.014289
3.062500 0.011733
2.993750 -0.001182
3.028125 0.005299
3.010938 0.002065
3.002344 0.000443
2.998047 -0.000369
3.000195 0.000037
2.999121 -0.000166
2.999658 -0.000065
2.999927 -0.000014
3.000061 0.000012
2.999994 -0.000001
3.000027 0.000005
3.000011 0.000002
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3.
From Example 2.5,
y = f(Xx) = cos2x + sin2x +x—1

We use the following script to plot this function.

x=-5:0.02:5; y=cos(2.*x)+sin(2.*x)+x—1; plot(x,y); grid

6

Let us find out what a symbolic solution gives.
syms X; y=C0s(2*x)+sin(2*x)+x—1; solve(y)

ans =

(0]
(2]

The first value (0) is correct as it can be seen from the plot above and also verified by substi-
tution of x = 0 into the given function. The second value (2) is not exactly correct as we can
see from the plot. This is because when solving equations of periodic functions, there are an
infinite number of solutions and MATLAB restricts its search for solutions to a limited range
near zero and returns a non—unique subset of solutions.

To find a good approximation of the second root that lies between x = 2 and x = 3, we write
and save the function files exercise3 and exercise3der as defined below.

function y=exercise3(x)
% Finding roots by Newton's method using MATLAB
y=co0s(2.*x)+sin(2.*x)+x—-1;

function y=exercise3der(x)
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% Finding roots by Newton's method
% The following is the first derivative of
% the function defined as exercise3
y=—2.*sin(2.*x)+2.*cos(2.*x)+1;

Now, we write and execute the following program and we find that the second root is
x = 2.2295 and this is consistent with the value shown on the plot.

x = input('Enter starting value: ');
fx = exercise3(x);
fprimex = exercise3der(x);
xnext = x—fx/fprimex;
X = Xnext;
fx = exercise3(x);
fprimex = exercise3der(x);
disp(sprintf('First approximation is x = %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)");
xnext=x—fx/fprimex;
X=xnext;
fx=exercise3(x);
fprimex=exercise3der(x);
disp(sprintf('Next approximation is x = %9.6f \n', x))
end;
disp(sprintf('%9.6f \n', x))

Enter starting wvalue: 3

First approximation is x = 2.229485
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Chapter 3

Sinusoids and Phasors

soids are discussed and the frequency, phase angle, and period are defined. Voltage and cur-
rent relationships are expressed in sinusoidal terms. Phasors which are rotating vectors in
terms of complex numbers, are also introduced and their relationships to sinusoids are derived.

T his chapter is an introduction to alternating current waveforms. The characteristics of sinu-

3.1 Alternating Voltages and Currents

The waveforms shown in Figure 3.1 may represent alternating currents or voltages.

Time Time

VIV B

Voltage or Current
Voltage or Current

Time Time

Voltage or Current
Voltage or Current

)

T

Figure 3.1. Examples of alternating voltages and currents

Thus an alternating current (AC) is defined as a periodic current whose average value over a period
is zero. Stated differently, an alternating current alternates between positive and negative values
at regularly recurring intervals of time. Also, the average of the positive and negative values over a

period is zero.
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As shown in Figure 3.1, the period T of an alternating current or voltage is the smallest value of
time which separates recurring values of the alternating waveform.

Unless otherwise stated, our subsequent discussion will be restricted to sine or cosine waveforms
and these are referred to as sinusoids. Two main reasons for studying sinusoids are: (1) many phys-
ical phenomena such as electric machinery produce (nearly) sinusoidal voltages and currents and
(2) by Fourier analysis, any periodic waveform which is not a sinusoid, such as the square and saw-
tooth waveforms on the previous page, can be represented by a sum of sinusoids.

3.2 Characteristics of Sinusoids

Consider the sine waveform shown in Figure 3.2, where f(t) may represent either a voltage or a
current function, and let f(t) = Asint where A is the amplitude of this function. A sinusoid (sine
or cosine function) can be constructed graphically from the unit circle, which is a circle with radius
of one unit, thatis, A = 1 as shown, or any other unit. Thus, if we let the phasor (rotating vector)
travel around the unit circle with an angular velocity w, the coswt and sinwt functions are gen-
erated from the projections of the phasor on the horizontal and vertical axis respectively. We
observe that when the phasor has completed a cycle (one revolution), it has traveled 2n radians or
360° degrees, and then repeats itself to form another cycle.

£(t) Sine Waveform
/2 (90°)
Phasor
Direction g
__ xof rotation S
o ! O
n(180°) ® ') 0(0° 5
N——— (0]
21(360°) &
E)
>
A

3n/2 (270°)

Figure 3.2. Generation of a sinusoid by rotation of a phasor

At the completion of one cycle, t = T (one period), and since ® is the angular velocity, com-
monly known as angular or radian frequency, then

oT = 2=n or T = %t (3.1

The term frequency in Hertz, denoted as Hz, is used to express the number of cycles per second.
Thus, if it takes one second to complete one cycle (one revolution around the unit circle), we say
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that the frequency is 1 Hz or one cycle per second.

The frequency is denoted by the letter f and in terms of the period T and (3.1) we have

f= or o = 2nf (3.2)

1
T

The frequency f is often referred to as the cyclic frequency to distinguish it from the radian fre-
quency ® .

Since the cosine and sine functions are usually known in terms of degrees or radians, it is conve-
nient to plot sinusoids versus ot (radians) rather that time t. For example, v(t) = V,, cosmt,

and i(t) = 1, sinwt are plotted as shown in Figure 3.3.

Vo o e .

max

n74 ot

Figure 3.3. Plot of the cosine and sine functions

By comparing the sinusoidal waveforms of Figure 3.3, we see that the cosine function will be the
same as the sine function if the latter is shifted to the left by /2 radians, or 90°. Thus, we say
that the cosine function leads (is ahead of) the sine function by m/2 radians or 90°. Likewise, if we
shift the cosine function to the right by m/2 radians or 90°, we obtain the sine waveform; in this
case, we say that the sine function lags (is behind) the cosine function by ©t/2 radians or 90°.

Another common expression is that the cosine and sine functions are out-of-phase by 90°, or there is
a phase angle of 90° between the cosine and sine functions. It is possible, of course, that two sinusoids
are out-of-phase by a phase angle other than 90°. Figure 3.4 shows three sinusoids which are out-
of-phase. If the phase angle between them is 0° degrees, the two sinusoids are said to be in-phase.

We must remember that when we say that one sinusoid leads or lags another sinusoid, these are of
the same frequency. Obviously, two sinusoids of different frequencies can never be in phase.
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1.25sin(wt — @)

sinmt

\ _’ " 0.75sin(wt + 0)
/ /.

A

9

Figure 3.4. Out-of-phase sinusoids

[t is convenient to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, it is acceptable to express

v(t) = 100sin(20007t — 7t/6)
as
v(t) = 100sin (20007t — 30°)

since the subtraction inside the parentheses needs not to be performed.

When two sinusoids are to be compared in terms of their phase difference, these must first be writ-
ten either both as cosine functions, or both as sine functions, and should also be written with pos-

itive amplitudes. We should remember also that a negative amplitude implies 180° phase shift.
I
Example 3.1
Find the phase difference between the sinusoids
i, = 120cos(100mt—30°)
and
i, = —6sin(1007t —30°)
Solution:
We recall that the minus (=) sign indicates a £180° phase shift, and that the sine function lags the

cosine by 90°. Then,

—sinx = sin(x 1800) and sinx = cos(X — 900)
and
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6sin (1007t —210°) = 6sin(1007t+ 150°)

= 6¢cos(100mt + 150° = 90°) = 6cos (100t + 60°)

and comparing i, with i,, we see that i, leads i, by 90°, or i, lags i, by 90°.

In our subsequent discussion, we will be using several trigonometric identities, derivatives and
integrals involving trigonometric functions. We, therefore, provide the following relations and
formulas for quick reference. Let us also review the definition of a radian and its relationship to
degrees with the aid of Figure 3.5.

\ 1 radian = 57.3 deg

)

N

T radians

Figure 3.5. Definition of radian

As shown in Figure 3.5, the radian is a circular angle subtended by an arc equal in length to the
radius of the circle, whose radius is r units in length. The circumference of a circle is 27r units;
therefore, there are 2m or 6.283... radians in 360° degrees. Then,

360° .
=573 (3.3)

1 radian =

The angular velocity is expressed in radians per second, and it is denoted by the symbol ® . Then,

a rotating vector that completes n revolutions per second, has an angular velocity ® = 27n radi-
ans per second.

Some useful trigonometric relations are given below for quick reference.

c0s0° = ¢0s360° = cos2m = 1 (3.4)
c0s30° = cos” = ﬁ = 0.866 3.5
6 2
c0s45° = cosT = Q = 0.707 (3.6)
4 2
c0s60° = cos® = L = 05 3.7)
3 2
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c0s90° = cos%E =0 (3.8)
cos120° = cos2—7c ) g -0.5 (3.9)
3 2
cos150° = cos% = # = —0.866 (3.10)
cos180° = cosm = -1 (3.11)
c0s210° = cos%“ - ‘% = _0.866 (3.12)
0s225° = cos2® = ‘2£ = 0707 (3.13)
€0s240° = cos4—n ) g -0.5 (3.14)
3 2

c0s270° = cos%t =0 (3.15)
c0s300° = coss?n = 0.5 (3.16)
c0s330° = cos%E = 0.866 (3.17)
sin0° = sin360° = sin2mw = 0 (3.18)
sin30° = sinZ = 1_ 0.5 (3.19)

6 2
sinds® = sin™ = 22 = 0707 (3.20)

4 2
sin60° = sin™ = 1 = 0.866 (3.21)

3 2
$in90° = sing =1 (3.22)
sin120° = sinz?n - —{3- = 0.866 (3.23)
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sin150° = sin2% = L = 05 (3.24)
6 2

sin180° = sinm = 0 (3.25)
sin210° = sin7—1;c i -0.5 (3.26)

6 2
§in225° = sin%“ - ‘zﬁ = _0.707 (3.27)
§in240° = sin%” - }ﬁ = _0.866 (3.28)
sin270° = sin?%E = -1 (3.29)
sin300° = sins?n - }ﬁ = _0.866 (3.30)
sin330° = sinil® = =l = o5 (3.31)
cos(—0) = cosHO (3.32)
c0s(90° +0) = —sinb (3.33)
cos(180°—-0) = —cos6 (3.34)
sin(—0) = —sin0® (3.35)
sin(90° +0) = cosO (3.36)
sin(180° - 0) = sin® (3.37)
tan@ = 309 (3.38)

cos0
cotg = €280 _ L (3.39)

sin® tan©

secd = —L (3.40)

cosO
csed = —— (3.41)

sin©
tan(90° + 0) = —cotO (3.42)
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tan(180° - 0) = —tan6 (3.43)
cos(B+¢) = cosBcosd — sinBsind (3.44)
cos(0—0) = cosOcosd + sinOsind (3.45)
sin(0 + ¢) = sinBcosd + cosOsind (3.46)

sin(0 —¢) = sinBcosdp—cosOsind (3.47)
_ tanBO + tan¢
tan(0 + ¢) = 1 tanbtand a6 tant (3.48)
_ o) — _tanB—tan¢ 4
tan(6 - ¢) 1 + tanBtand (3.49)
2 .2
cos O+sin® = 1 (3.50)
c0s20 = cos 6 — sin’0 3.51)
sin20 = 2sinBcosO (3.52)
tan20 = 2200 (3.53)
1 —tan"0

cos’0 = %(1 + c0s260) (3.54)

) 1
sin"0 = 5(1 —¢0s20) (3.55)
cosOcosd = %cos(6+(|))+%cos(6—q)) (3.56)
cosOsing = %sin(e + q>)—% sin(0 — ¢) (3.57)
sinBcos¢ = %sin(6+¢)+%sin(6—¢) (3.58)
sinfsin¢ = %cos(6—¢)—%cos(6+¢) (3.59)
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Let Figure 3.6 be any triangle.

Figure 3.6. General triangle
Then,

by the law of sines,
a _ b _ ¢
sinot  sinf}  siny

by the law of cosines,
2 2. 2
a~ = b +c —2bccosa

2 2 2
b” = a” +c¢” —2accosP

d=a’+b - 2abcosy
and by the law of tangents,

1 1
b tanz(oc—[?)) tanz(B—y)

b—c _

tan%(y —-qa)

c—a _

a+b tan%(oc+[3) bt tan%(B+y)

cta tan%(y + )

(3.60)

(3.61)
(3.62)

(3.63)

(3.64)

The following differential and integral trigonometric and exponential functions, are used exten-

sively in engineering.

%( sinv) = COSVS_Z (3.65)

;—X(cosv) = —sinvg—z (3.66)

4 = N (3.67)

Jsinaxdx = —allcosax +c (3.68)

jcosaxdx = isinax +c (3.69)

Jeax = 1e 4 (3.70)
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3.3 Inverse Trigonometric Functions

The notation cos™!y or arccosy is used to denote an angle whose cosine is y . Thus, if y = cosx,

1

thenx = cos”'y. Similarly, if w = sinv, then v = sin"'w, and if z = tanu, then u = tan~'z.

These are called Inverse Trigonometric Functions.
|

Example 3.2

Find the angle 0 if cos™10.5 = 0
Solution:

Here, we want to find the angle 6 given that its cosine is 0.5. From (3.7), cos60° = 0.5. Therefore,
0 = 60°

3.4 Phasors

In the language of mathematics, the square root of minus one is denoted as i, thatis, i = /~1.In
the electrical engineering field, we denote i as j to avoid confusion with current i. Essentially, j is
an operator that produces a 90° counterclockwise rotation to any vector to which it is applied as a
multiplying factor. Thus, if it is given that a vector A has the direction along the right side of the
x -axis as shown in Figure 3.7, multiplication of this vector by the operator j will result in a new
vector jA whose magnitude remains the same, but it has been rotated counterclockwise by 90°.
Also, another multiplication of the new vector jA by j will produce another 90° counterclockwise
direction. In this case, the vector A has rotated 180° and its new value now is —A . When this
vector is rotated by another 90° for a total of 270°, its value becomes j(-A) = —jA . A fourth 90°

rotation returns the vector to its original position, and thus its value is again A . Therefore, we

conclude that j* = -1, = —j, j* = 1, and the rotating vector A is referred to as a phasor.

Note: In our subsequent discussion, we will designate the x -axis (abscissa) as the real axis, and the
y -axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as

. . . . . . . . *
“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.

An imaginary number is the product of a real number, say r, by the operator j. Thus, r is a real
number and jr is an imaginary number.

* A more appropriate nomenclature for the real and imaginary axes would be the axis of the cosines and the axis of the sines
respectively.
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iA A
A\
,I
iGA) = PA =-A |,/ A
<€ > X

iA) = A = A

v
i-A) = J3A = A
Figure 3.7. The j operator

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number A = a+jb where a and b are both real numbers, is a complex number.
Then, a = Re{A} and b = Im{A} where Re{A} denotes real part of A, and b = Im{A} the
imaginary part of A. When written as A = a +jb, it is said to be expressed in rectangular form.

Since in engineering we use complex quantities as phasors, henceforth any complex number will
be referred to as a phasor.

By definition, two phasors A and B where A = a+jb and B = ¢ +jd, are equal if and only if
their real parts are equal and also their imaginary parts are equal. Thus, A = B if and only if
a=candb =d.

3.5 Addition and Subtraction of Phasors

The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we change
the signs of the components of the subtrahend and we perform addition. Thus, if A = a+jb and
B = c¢+jd, then

A+B =(a+c)+j(b+d)
and
A-B = (a-c)+j(b-d)

|
Example 3.3
[t is given that A = 3+j4,and B = 4-j2.Find A+B and A-B

Solution:
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A+B=0B+j4)+(4-j2) = B+4)+j(4-2) = T+]2
A-B=(3+j4)-(4-j2) = 3-4)+]j(4+2) = -1+j6

3.6 Multiplication of Phasors

Phasors are multiplied using the rules of elementary algebra, and making use of the fact that
j2 = —1.Thus,if A = a+jb and B = c+jd, then

A-B = (a+jb)-(c+jd) = ac +jad + jbc +j*bd
and since j? = -1, it follows that
A-B = ac+jad +jbc-bd = (ac—bd) +j(ad + bc) 3.71)
I
Example 3.4
Itis giventhat A = 3+j4 and B = 4—j2.Find A-B
Solution:

A-B=(3+j4)-(4-j2) = 12-j6+j16—j28 = 20+]10

The conjugate of a phasor, denoted as A*, is another phasor with the same real component, and

with an imaginary component of opposite sign. Thus, if A = a+jb, then A* = a—jb.
|

Example 3.5

It is given that A = 3 +j5. Find A*

Solution:

The conjugate of the phasor A has the same real component, but the imaginary component has

opposite sign. Then, A* = 35

If a phasor A is multiplied by its conjugate, the result is a real number. Thus, if A = a +jb, then
A-A* = (a+jb)(a—jb) = a>—jab+jab—j’b® = a’+ b’
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Example 3.6
It is given that A = 3 +j5. Find A - A*

Solution:

A-A% = (3+j5)(3-j5) = 3 +5 = 9425 =34

3.7 Division of Phasors

When performing division of phasors, it is desirable to obtain the quotient separated into a real
part and an imaginary part. This procedure is called rationalization of the quotient, and it is done by
multiplying the denominator by its conjugate. Thus, if A = a+jb and B = ¢ +jd, then,

A _a+jb _ (a+jb)(c—jd) _ A B* _ (ac+bd)+j(bc—ad)

B ctjd (ctjd)(c—jd) B B ¢+ d?

(ac +bd) +j(bc —ad)

2 2
i+ d? ¢ +d

(3.72)

In (3.72), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we
see that the quotient is easily separated into a real and an imaginary part.

I
Example 3.7

It is given that A = 3+j4,and B = 4+j3. Find A/B
Solution:

Using the procedure of (3.72), we get

A _ 3+!4 _ (3+_!4)(4—J3) _ 12-79+316+ 12 _ 24 +37 _ 2—4+j—7— = 0.96+0.28
B 443 (4+j3)(4-3) 4?43 25 25 72

5

3.8 Exponential and Polar Forms of Phasors

The relations

e’ = coso +jsin® (3.73)

and
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e = cos 0—jsin® (3.74)

are known as the Euler’s identities.
Multiplying (3.73) by the real positive constant C we get:
ce'’® = Ccosd + jCsin6 (3.75)
This expression represents a phasor, say a + jb, and thus
ce!® = a+jb (3.76)
Equating real and imaginary parts in (3.75) and (3.76), we get

a=Ccos0 and b = Csinb (3.77)

Squaring and adding the expressions in (3.77), we get

a’ +b% = (Ccos0)’ +(Csin®)” = C*(cos’0 + sin’0) = C?
Then,
C2 = 212+b2

or

C = Ja’+b? (3.78)
Also, from (3.77)

b _ Csin® ~ tan®

a Ccoso
or

0= tanl(g) (3.79)

Therefore, to convert a phasor from rectangular to exponential form, we use the expression

(b
a+jb = A/az+b2ej(tan 1 5) (3.80)

To convert a phasor from exponential to rectangular form, we use the expressions

ce!® = Ccoso +jCsin
o _ . (3.81)
Ce °° = Ccos6—jCsinb
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The polar form is essentially the same as the exponential form but the notation is different, that is,

ce'® = cro (3.82)

where the left side of (3.82) is the exponential form, and the right side is the polar form.

We must remember that the phase angle 0 is always measured with respect to the positive real axis,
and rotates in the counterclockwise direction.

In Examples 3.8 and 3.9 below, we will verify the results with the following MATLAB co-ordi-

nate transformation functions:
[theta,r] = cart2pol(x,y) — transforms from Cartesian to polar co—ordinates.
[x,y] = pol2cart(theta,r) — transforms from polar to Cartesian co—ordinates
——————————————
Example 3.8
Convert the following phasors to exponential and polar forms:

a. 3+j4 b. —1+j2 c. —2-j d.4-j3
Solution:

a. The real and imaginary components of this phasor are shown in Figure 3.8.

Figure 3.8. The components of 3 + j4

Then,
314 = f32eaP i D _ 5 3B g gs g0
Check with MATLAB:
x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi; disp(magx); disp(thetax)
5
53.1301
or
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X = 3; y = 4; [theta,r] = cart2pol(x,y), deg = theta*180/pi
theta =
0.9273
r =
5
deg =
53.1301

We can also verify the result with Simulink®" as shown in the model of Figure 3.9. The K
value for the Gain block has been specified as 180/m to convert radians into degrees.

—i
) ] Display 1 - Magnitude
4 —."_“‘—iu
Constant Complex to
hagnitude-Angle 5313

Eain Dizplay 2
Angle in degrees

Figure 3.9. Simulink model for Example 3.8 (a)

b. The real and imaginary components of this phasor are shown in Figure 3.10.

Figure 3.10. The components of — 1 +j2
Then,

142 = J12a 2% D o 5N B 11660 = 2.236.2116.6°
Check with MATLAB:
y=—1+j*2; magy=abs(y); thetay=angle(y)*180/pi; disp(magy); disp(thetay)

The reader who is not familiar with Simulink may skip this model and dll others without loss of continuity. For
an introduction to Simulink, please refer to “Introduction to Simulink with Engineering Applications”, ISBN 0-

9744239-7-1. A brief introduction to Simulink is provided in Appendix B.
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2.2361

116.5651

or

x = —1;y = 2; [theta,r] = cart2pol(x,y), deg

theta

2.0344

2.2361

deg
116.5651

= theta*180/pi

Check with the Simulink model of Figure 3.11:

— 2236
1yl Dizplay 1 - Magnitude
B e (T
Coanstant Complex to

hagnitude-Angle

116.6

Display 2
Angle in degrees

>

ain

Figure 3.11. Simulink model for Example 3.8 (b)

c. The real and imaginary components of this phasor are shown in Figure 3.12.

Then,

= [5.2206.6° = J5¢ TP 2 2236.,-153.4°

Im
206.6°
-2 Re
f o
&126'6/7\—153.4°(Measured
~/5 || Clockwise)

Figure 3.12. The
Check with MATLAB:

components of —2 —j

v=—2—j"1; magv=abs(v); thetav=angle(v)*180/pi; disp(magv); disp(thetav)
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2.2361
-153.4349
or
x = -2;y =-1; [theta,r] = cart2pol(x,y), deg = theta*180/pi
theta =
-2.6779

2.2361
deg =
-153.4349
Check with the Simulink model of Figure 3.13:

— zoae
] 1l Cisplay 1 - Magnitude
N e B
Constant Complex to
Magnitude-fngle -153.4

&ain Dizplay 2
Angle in degrees

Figure 3.13. Simulink model for Example 3.8 (c)

d. The real and imaginary components of this phasor are shown in Figure 3.14.

Figure 3.14. The components of 4 —j3
Then,

4-j3 = 47432 I O3 _ 5o BB _ 5 39300 2 5077 2 536,90
Check with MATLAB:
w=4-j*3; magw=abs(w); thetaw=angle(w)*180/pi; disp(magw); disp(thetaw)

3-18 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Exponential and Polar Forms of Phasors

5
-36.8699

or
x = 4; y = -3; [theta,r] = cart2pol(x,y), deg = theta*180/pi
theta =

-0.6435

deg =
-36.8699
Check with the Simulink model of Figure 3.15:

N —

Display 1 - Magnitude

) rallll
A3 Ty

Constant Complex to
Magnitude-Angle -36.87

&ain Dizplay 2
Angle in degrees

Figure 3.15. Simulink model for Example 3.8 (d)

|
Example 3.9
Express the phasor —2./30° in exponential and in rectangular forms.

Solution:

We recall that —1 = j?. Since each j rotates a vector by 90° counterclockwise, then —2.230° is
the same as 2.230° rotated counterclockwise by 180°. Therefore,

-2/30° = 2/£(30°+180°) = 2£210° = 2.£-150°

The components of this phasor are shown in Figure 3.16.
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Im
210°
-1.73 Re
: ~150°(Measured
Clockwise)

Figure 3.16. The components of 2./—150°
Then,

2/-150° = 2e
Check with MATLARB:
r = —-2; theta = 30/pi; [x,y] = pol2cart(theta*180/pi,r)

o

0T 2 2(cos150° - jsin150°) = 2(-0.866 - j0.5) = — 1.73 - ]

X =

-0.9541
Check with the Simulink model of Figure 3.17:

-2

Constant 1 U]~ -
Magnitude P | 173z - i
Magnitude-Angle Lrisplay =+iy
207 pifg0 — to Complex
Constant 2

Angle in radians

Figure 3.17. Simulink model for Example 3.9

Note: The rectangular form is most useful when we add or subtract phasors; however, the expo-
nential and polar forms are most convenient when we multiply or divide phasors.

To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add
the phase angles, that is, if

A =MZLO and B =NLo
then,

jo Jj(@+0)

AB = MNZ(0+0) = Me''Ne’® = MNe (3.83)
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Example 3.10
Multiply A = 12.58.274.3° by B = 7.22/-118.7°

Solution:

Multiplication in polar form yields
AB = (12.58 X 7.22)Z[74.3° + (—118.7°)] = 90.83 /—44.4°

and multiplication in exponential form yields

j74.3° —-j118.7° j(74.3°-118.7° —j44.4°
AB = (12.58¢ ") (7.22¢ 7'"%7") = 90.83¢ ¢ ) = 90.83¢ ™
Check with MATLAB:
r1=12.58; r2=7.22; deg1=74.3; deg2=—-118.7; r=r1"r2, deg=deg1+deg2
r =
90.8276
deg =
-44.4000
. . . . *
Check with the Simulink model of Figure 3.18 :
12.58
Constant 1 m
- u
hdagnitude, Phasor A _Fgu} | 3908+ 12.177]
. Magnitude-Angla Drisplay =1+iv1
74.37pirE0 to Complex, A L ——
Constant 2 — ' gl 59 - 63 551
Angle in radians, Phasaor A Froduct Dizplay =2+iv
_ul
T
=
722 Complexto -
Magnitude-Angle S0/p] DISFI.|EI'!,I'
Constant II P! tdagnitude
hiagnitude, Fhasor B — 1= -
o | 3457 - 6.3231 e ain
. Magnitude-Angle Drisplay =2+iy2
=118 7 pira — to Complex B
Drizplay
Constant 4 Angle in degrees

Angle in radians, Phasor B

Figure 3.18. Simulink model for Example 3.10

* It would certainly be a waste of time to use Stmulink for such an application. It can be done faster with just
MATLAB. The intent here is to introduce relevant Simulink blocks for more complicated models.
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To divide one phasor by another when both are expressed in exponential or polar form, we divide
the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase angle of
the divisor from the phase angle of the dividend, that is, if

A=M/6 and B =NLo
then,

J M j(6-
20-0) = == = ﬁej( ®) (3.84)

wi>

M Mee
N

Ne

I
Example 3.11

Divide A = 12.58£74.3° by B = 7.22/-118.7°
Solution:

Division in polar form yields

A _ 125847437 _ 54 /743° - (<118.7°)] = 1.742193° = 1.74/-167°

B 7.22/-118.7°

Division in exponential form yields

j74.3°

A _ 12.58e - | 74e j74.3°e jns7e _ | 74e j193° _ | 74e —j167°
B 72067

Check with MATLAB:

r1=12.58; r2=7.22; deg1=74.3; deg2=-118.7; r=r1/r2, deg=deg1-deg2

r =

1.7424
deg =
193
Check with the Simulink model of Figure 3.19%;
*  Same comment as on the footnote of the previous page.
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12 .58
Constant 1 m
hagnitude, Fhasor & Pl - -
ol o~ | 3404 + 12,111
. Magnitude-Angle Drisplay =1+iy1
Fazpinen — P e A Ll —
Constant 2 — = .'l . . |
Angle in radians, Phasor A Divide Display x2+iy1
vl
T
£ 1732
Complex to
F22 -
Magnitude-fingle anip) D'SF'_IEY
Constant 3 m bagnitude
Magnitude, Phazar B g [El i -
g ol s | -3.867 - 6.3321 Bain
.. Magnitude-Angle Display x2+iyz -167
118 pifgo — to Complex B S

Constant 4
Angle in radians, Phasor B

Angle in degrees

Figure 3.19. Simulink model for Example 3.11
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3.9 Summary

An alternating current (or voltage) alternates between positive and negative values at regularly
recurring intervals of time.

The period T of an alternating current or voltage is the smallest value of time which separates
recurring values of the alternating waveform.

Sine and cosine waveforms and these are referred to as sinusoids.
The angular velocity o is commonly known as angular or radian frequency and o T = 27

The term frequency in Hertz, denoted as Hz, is used to express the number of cycles per sec-
ond. The frequency is denoted by the letter f and in terms of the period T, f = 1/T. The fre-
quency f is often referred to as the cyclic frequency to distinguish it from the radian frequency
0.

The cosine function leads (is ahead of) the sine function by /2 radians or 90°, and the sine
function lags (is behind) the cosine function by /2 radians or 90°. Alternately, we say that

the cosine and sine functions are out-of-phase by 90°, or there is a phase angle of 90° between
the cosine and sine functions.

Two (or more) sinusoids can be out-of-phase by a phase angle other than 90°.

[t is important to remember that when we say that one sinusoid leads or lags another sinusoid,
these are of the same frequency since two sinusoids of different frequencies can never be in
phase.

[t is customary to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, we write v(t) = 100sin(20007t —t/6) as v(t) = 100sin(20007t —30°)

When two sinusoids are to be compared in terms of their phase difference, these must first be
written either both as cosine functions, or both as sine functions, and should also be written
with positive amplitudes.

A negative amplitude implies 180° phase shift.

The radian is a circular angle subtended by an arc equal in length to the radius of the circle,
whose radius is r units in length. The circumference of a circle is 2mr.

The notation cos™'y or arccosy is used to denote an angle whose cosine is y. Thus, if

y = cosx, thenx = cos~ly. These are called Inverse Trigonometric Functions.

A phasor is a rotating vector expressed as a complex number where j is an operator that
rotates a vector by 90° in a counterclockwise direction.
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e Two phasors A and B where A = a+jb and B = c+jd, are equal if and only if their real
parts are equal and also their imaginary parts are equal. Thus, A = B ifand only if a = ¢ and
b =d.

® The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we

change the signs of the components of the subtrahend and we perform addition. Thus, if
A =a+jband B = c+jd,then A+B = (a+c)+j(b+d) and A-B = (a—c)+j(b-d)

¢ Phasors are multiplied using the rules of elementary algebra. If A = a+jb and B = ¢ +jd,
then A-B = ac+jad +jbc—bd = (ac—bd) +j(ad + bc)

¢ The conjugate of a phasor, denoted as A*, is another phasor with the same real component,
and with an imaginary component of opposite sign. Thus, if A = a +jb, then A* = a—jb.

e When performing division of phasors, it is desirable to obtain the quotient separated into a
real part and an imaginary part. This is achieved by multiplying the denominator by its conju-
gate. Thus, if A = a+jb and B = ¢ +jd, then,

A _a+jb _ (a+jb)(c—jd) _ (ac+bd)+j(bc—ad) _ (ac+bd)+j(bc—ad)

B c+jd  (c+jd)(c—jd) ¢’ +d’ ¢ +d’ ¢’ +d’
o The relations e'® = cos0 + jsin® and e = cos0-jsin® are known as the Euler’s identi-
ties.

e To convert a phasor from rectangular to exponential form, we use the expression

. -1b
. 2 tan -
a+jb = Ja +b2ej( J
e To convert a phasor from exponential to rectangular form, we use the expressions

ce’ = Ccosd +jCsin6
Ce® = Ccos0-jCsin®
¢ The polar form is essentially the same as the exponential form but the notation is different,
that is,
i0
Ce’” = CZ6b
and it is important to remember that the phase angle 0 is always measured with respect to the

positive real axis, and rotates in the counterclockwise direction.

e The rectangular form is most useful when we add or subtract phasors; however, the exponen-
tial and polar forms are most convenient when we multiply or divide phasors.
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e To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we
add the phase angles, that is, if
A =MZ6 and B =NZLo
then,

AB = MNZ(0+06) = Me!"Ne'® = MNe/@+®)

e To divide one phasor by another when both are expressed in exponential or polar form, we
divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the
phase angle of the divisor from the phase angle of the dividend, that is, if

A=Ms6 and B=NLo

then,
j0 .
A_M Me! M _j®-9)
= = 540-¢0) = —— = e
B N Nel® N
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3.10 Exercises

1.

Perform the following operations, and check your answers with MATLAB.
a. 2-j4)+B+j4) b. (-3+j5)-(1+j6) c. (2-j3)-(2-j3)* d. (3-j2)-(3-j2)*

e. (2-j4)-(3+j5) £.(3-j2)-(-2-j3) g (2-j4)-(3+]5)-(3-j2)-(-2-]3)

. Perform the following operations, and check your answers with MATLAB.

22+j6 ( 8+j6 120 4 (3-j2)
3+j2 T =3-j T 4-jl0 T (3_j2)*

. Any phasor A can be expressed as

A = a+jb = r(cosO+jsinB) = rel®

. . o i0 ino i0 0/
Using the identities (re’”) = r"e’™ or ¥re! = %re’™", compute:

a. 8/12+j5 b. 4100,2(1-j)
Check your answers with MATLAB

Compute the exponential and polar forms of

9+j5 b -8+j3
—4-j2 T -2+j4

Check your answers with MATLAB.

a.

. Compute the rectangular form of

L 44300 eI
D 5701500 T a0

Check your answers with MATLAB

9—j4
-5+jx

Find the real and imaginary components of
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3.11 Solutions to End-of-Chapter Exercises

1.
a. 2-j4)+(3+jd) =5+0=75

b. (=3+j5)=(1+j6) = —4—]

c. (2-j3)-(2-j3)* = (2-j3)—=(2+]3) = 0—j6

d. (3-j2)-(3-j2)* = 3-j2)-(3+j2) = 9+j6-j6+4 = 13

e. (2-j4)-(3+j5) = 6+j10-j12+20 = 26—j2

f. (3-j2)-(-2-j3) = -6-j9+j4—-6 = —12-j5
(2-j4)-(3+j5)-(3-j2) - (=2-j3) = (6+j10—-j12+20)- (-6 —j9 +j4—6)

g = (26-j2)- (- 12-j5)
= —312-j130+j24—10 = - 322106
Check with MATLAB:
(2—4))+(3+4j), (-3+5))—(1+6j), (2-3j)—(2+3j), (3-2))*(3+2j),...
(2-4))*(3+5j), (3-2))*(-2-3j), (2-4j)"(3+5})"(3-2))*(-2-3;)
ans =
5

ans =

-4.0000 - 1.00001
ans =

0 - 6.00001
ans =
13

ans =

26.0000 - 2.00001
ans =

-12.0000 - 5.00001
ans =
-3.2200e+002 - 1.0600e+0021
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2.
o, 22+.j6 _ 22+'j6.3—]:2 _ 66-j44+j18+12 _ 78 -j26 _ 6-i2
3+j2 3+j2 3-j2 32492 13
b, 8+j§ _ 8+j6"—3+i _ —24+j8-j18-6 _ =30-j10 _ _3-j
-3-j =3-] =3+]j 32412 10
c 12.0 _ 12.0 -4+]:10=480+j1200=4&+j-1—2@=@+j-§99
4-j10  4-j10 4+j10 4% + 10> 116 116 29 29
4 B-i2) _G-j2) G-j2) 9-j6-j6-4 _5-jl2 _ 5 ;12
(3-j2)x (3+j2) (3-j2) 32492 13 13 13
Check with MATLAB:
22+6j)/(3+2j), (8+6j)/(-3-j), 120/(4-10j), (3-2j)/(3+2))
ans =
6 - 21
ans =
-3 - 11
ans =
120/29 + 300/291
ans =
5/13 - 12/131
3.
a.
m _ W _ %‘ej0.3948/6 _ 13176 4300658
= 1.5334(c0s0.0658 + jsin0.0658) = 1.53 +j0.10
b.
4/100[2(1_” _ ﬁ/looﬁ.ﬁe—jn/4:(looﬁ.ﬁe_jn/4)l/4:(100,\/2)1/4‘A/§1/4e—jn/16
= (3.4485 % 1.0905)(cos(n/16) —jsin(n/16)) = 3.6883 —j0.7337
Check with MATLAB:
(12+5j)M(1/6), (100*sqrt(2)*(1-j))N(1/4)
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ans =
1.5301 + 0.10081
ans =

3.6883 - 0.73371

4.
a.
. -1 .
9+j5 _ 92 4 5%, ltn 5/9) _ /106 - 10071 _ 530006 309!
—4-j2 [ 50 i) g e P02 '
= 2.3022¢ 7% 2 2 3020 2-177.5081°
-8+j3 _ J8t+3%. ejtanil(y_g) _ J73 ' ¢ )08 . 1.9]105¢ 107483
b. —2+j4 242 G @) 20 M '
= 1.9105¢!** = 1.9105 242.8744°
Check with MATLAB:
x=(9+5j)/(—4-2j); abs(x), angle(x)*180/pi,...
y=(-8+3))/(—2+4j); abs(y), angle(y)*180/pi
ans =
2.3022
ans =
-177.5104
ans =
1.9105
ans =
42 .8789
5.
a.
AL30° _4/5).,180° = —0.8
5/-150°
160° j90°
b. = 0.5¢' = 20.5(c0s90° +jsin90°) = —0.5(0 +j) = —j0.5
—2¢7"
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Check with MATLAB:
4*(cos(pi/6)+sin(pi/6)*j)/(5*(cos(—5*pi/6)+sin(—=5*pi/6)*})),...
exp(pi*j/3)/(—2*exp(—pi*j/6))
ans =

-0.8000 - 0.00001
ans =

-0.0000 - 0.50001

6.
9-j4 _ 9-j4 5-jx _ -45-j9x+j20-4x _ —4x-45  .—9x+20
T5+ix  —5+ix —5-ix 2 2 -2 T
SHIx TIX —5X 5%+ x x+25  x*+25
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Chapter 4

Matrices and Determinants

his chapter is an introduction to matrices and matrix operations. Determinants, Cramer’s
T rule, and Gauss’s elimination method are introduced. Some definitions and examples are

not applicable to subsequent material presented in this text, but are included for subject
continuity, and reference to more advance topics in matrix theory. These are denoted with a dag-
ger () and may be skipped.

4.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

2 3 7 b3l
{ } or 2 1-5

1 -1 5
4 -7 6

In general form, a matrix A is denoted as

app ap Ay ... Ay
dy1 Ay dpy ... Apy
A = 4.1

_aml A Am3 -+ App

The numbers a; are the elements of the matrix where the index i indicates the row, and j indi-

cates the column in which each element is positioned. Thus, a,; indicates the element posi-
tioned in the fourth row and third column.

A matrix of m rows and n columns is said to be of m x n order matrix.

If m = n, the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five rows
and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements a,,, a,,, as;, ..., a,, are called the main diagonal elements.
Alternately, we say that the matrix elements a,;, a,,, aj;, ..., a,, , are located on the main
diagonal.
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T The sum of the diagonal elements of a square matrix A is called the trace” of A.

T A matrix in which every element is zero, is called a zero matrix.

4.2 Matrix Operations
Two matrices A = [aij] and B = [bg] are equal, thatis, A = B, if and only if

aIJ = bl_l 1 = 1,2,3,...,11’1 J = 1,2,3,...,1‘1 (42)
Two matrices are said to be conformable for addition (subtraction), if they are of the same order
mxn.
If A = [aij] and B = [bij are conformable for addition (subtraction), their sum (difference) will

be another matrix C with the same order as A and B, where each element of C is the sum (dif-
ference) of the corresponding elements of A and B, that is,

C=AtB = [a;1b;] (4.3)
1 —

Example 4.1
Compute A +B and A — B given that

Solution:
A+B 1+2 2+3 3+0 _ 35 3
0-1 1+2 4+5 -1 3 9
and
A_po |1-2 2-3 3-0 _[-1-13
0+1 1-2 4-5 1 -1 -1
Check with MATLAB:

A=[1 2 3; 014]; B=[230;,-125]; % Define matrices AandB
A+B % Add A and B

*  Henceforth, all paragraphs and topics preceded by a dagger ( T ) may be skipped. These are discussed in matrix theory text-
books.
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ans =
3 5 3
-1 3 9
A-B % Subtract B from A
ans =
-1 -1 3
1 -1 -1

If k is any scalar (a positive or negative number), and not [k | which is a 1 x 1 matrix, then mul-
tiplication of a matrix A by the scalar k, is the multiplication of every element of A by k.

Example 4.2
Multiply the matrix

=7

by (a) k; = 5 and (b) k, = -3 +j2

Solution:
a.
koA = sx |12 = [5XT 5x(2) _ |5 10
2 3 S5x2 5x3 10 15
b.
oA = (C34j2)x |72 2 [(3+IDXT (-3+i2)x(2) _ |-3+j2 6-j4
2 3 (=3+j2)x2  (=3+j2)x3 —6+j4 —-9+ij6
Check with MATLARB:
k1=5; k2=(-3 + 2%)); % Define scalars ky and ko
A=[1-2;2 3]; % Define matrix A
k1*A % Multiply matrix A by constant k
ans =
5 -10
10 15
k2*A %Multiply matrix A by constant ko
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ans =
-3.0000+ 2.00001 6.0000- 4.00001
-6.0000+ 4.00001i -9.0000+ 6.00001

Two matrices A and B are said to be conformable for multiplication A - B in that order, only when
the number of columns of matrix A is equal to the number of rows of matrix B. That is, the prod-
uct A -B (but not B - A) is conformable for multiplication only if A is an m x p and matrix B is
an p x n matrix. The product A - B will then be an m x n matrix. A convenient way to determine

if two matrices are conformable for multiplication is to write the dimensions of the two matrices
side—by—side as shown below.

Shows that A and B are conformable for multiplication

/
Al 1B

mxXp pXn
! f
/

Indicates the dimension of the product A - B
For the product B - A we have:

Here, B and A are not conformable for multiplication
™~
B! la
pXn mxp
For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B, we

multiply each element of a row of A by the corresponding element of a column of B ; then, we
add these products.

1 ——
Example 4.3
Given that

C=[234] andD = |_

compute the products C-D and D - C
Solution:

The dimensions of matrices C and D are respectively 1 x3 3 x 1; therefore the product C- D is

4-4 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Special Forms of Matrices

feasible, and will result in a 1 x 1, that is,

1

C-D = [234] 1| = [(2)-(1)+(3)-(—1)+(4)'(2)] - [7]
2

The dimensions for D and C are respectively 3 x 1 1x 3 and therefore, the product D - C is also
feasible. Multiplication of these will produce a 3 x 3 matrix as follows.

! Mm@ M6 @l |23 4
D-C=l234 = |y (1)-G) (1@ =|2 -3
2 @@ @6 @@l L4063
Check with MATLAB:
C=[2 3 4]; D=[1; -1; 2]; % Define matrices C and D
CD % Multiply C by D
ans =
7
D*C % Multiply D by C
ans =
2 3 4
-2 -3 -4
4 6 8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix.

4.3 Special Forms of Matrices

T A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix A below is an upper triangular matrix.

A = 0 O \.\ (4'4)
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In an upper triangular matrix, not all elements above the diagonal need to be non—zero. For
applications, refer to Chapter 14.

T A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix B below is a lower triangular matrix. For applications, refer to Chapter 14.

ay 00 0
ay 4y, 0 ... 0
B=| ."s.0 0 (4.5)
oo 0
Am1 Am2 Am3 hn

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

T A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix C below is a diagonal matrix.

E
0y 0 ... 0
C=10 020 0 (4.6)
0 0 0 \.\\0
0 0 0 .a,
T A diagonal matrix is called a scalar matrix, if a;, = a,, = a;; = ... = a,, = k where k is a sca-

lar. The matrix D below is a scalar matrix with k = 4.

4000
0400 4.7)
0040
0004

A scalar matrix with k = 1, is called an identity matrix 1. Shown below are 2x2, 3x3, and

4 x 4 identity matrices.

1 0 0O
1 00
{1 0} 010 0100 (4.8)
01 0010
001
0 0 0 1
The MATLAB eye(n) function displays an n x n identity matrix. For example,
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eye(4)% Display a 4 by 4 identity matrix

ans =

o O O
O OB O
O P O O
P O O O

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as
matrix A . For example, let A be defined as

A=[1 3 1;-2 1-5;4-7 6] % Define matrix A

A =

1 3 1
-2 1 -5

4 -7 6

then,

eye(size(A))

displays

ans =
1 0 0
0 1 0
0 0 1

. T . . : .
T The transpose of a matrix A, denoted as A", is the matrix that is obtained when the rows and
columns of matrix A are interchanged. For example, if

1 4

A= {1 2 3} then A"=|r s 4.9)

45 6
36

In MATLAB we use the apostrophe (") symbol to denote and obtain the transpose of a matrix.
Thus, for the above example,

A=[1 2 3; 4 5 6]% Define matrix A

A =
1 2 3
4 5 6
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A'% Display the transpose of A

ans =
1 4
2 5
3 6

. . . T . . .
T A symmetric matrix A, is one such that A° = A, that is, the transpose of a matrix A is the
same as A . An example of a symmetric matrix is shown below.

T

3 1 2 3
_5 A =12 4 _5 =A (4.10)
6 3-5 6

L S

1
A=
3 _

(V)]

T If a matrix A has complex numbers as elements, the matrix obtained from A by replacing each

element by its conjugate, is called the conjugate of A, and it is denoted as A*.

An example is shown below.

A= |12 ] Ax = |1-J2 0 -
3 2.3 3 2453
T MATLAB has two built—in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,

conj(A), computes the conjugate of a matrix A . Using MATLAB with the matrix A defined as
above, we obtain

A=[1+2] j; 3 2-3j] % Define and display matrix A

A =
1.0000 + 2.00001 0 + 1.00001
3.0000 2.0000 - 3.00001
conj_A=conj(A) % Compute and display the conjugate of A
conj_A =
1.0000 - 2.00001 0 - 1.00001
3.0000 2.0000 + 3.00001
T A square matrix A such that A" = —A, is called skew—symmetric. For example,
02 -3 ; 0 -2 3
A=120-4 A=|2 0 4=-A
340 -3 -4 0
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Therefore, matrix A above is skew symmetric.

T A square matrix A such that AT = A, is called Hermitian. For example,

1 1-j 2 1 L+j 2, 1 1+ 2
A=11+j 3 il A =1-7 3 S| A =[1-j 3 —j| =A
2 - 0 2 i 0 2 j 0

Therefore, matrix A above is Hermitian.

T A square matrix A such that AT = _A | is called skew—Hermitian. For example,
T T - B e A T = B S
A=l-1-j 35 Gl A== 3 A T+ 3 S =A
) i0 2 j 0 2 S0

Therefore, matrix A above is skew—Hermitian.

4.4 Determinants

Let matrix A be defined as the square matrix

Ay App Ap3 ... Apy
4.11

Ay Ay Apz .- A

then, the determinant of A, denoted as detA, is defined as

detA = ajjaynas;...a, +a,8y85...8,, +a;38855...8, F ... (4.12)

_anl ...322313...—anz...323al4 - an3...az4a15 T e

The determinant of a square matrix of order n is referred to as determinant of order n.

Let A be a determinant of order 2, that is,

A = {a“ a”} (4.13)
a1 42
Numerical Analysis Using MATLAB® and Excel®, Third Edition 4-9
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Then,

Example 4.4
Given that

A:{l 2} anolB:[2 ‘}
3 4 20

compute detA and detB.

Solution:
detA =1-4-3-2=4-6=-2
detA =2-0-2-(-1) = 0-(=2) = 2
Check with MATLAB:
A=[1 2;3 4];B=[2 -1;2 0]; % Define matrices A and B
det(A) % Compute the determinant of A
ans =
-2
det(B) % Compute the determinant of B
ans =
2

While MATLAB has the built—in function det(A) for computing the determinant of a matrix A,
this function is not included in the MATLAB Run-Time Function Library List that is used with

the Simulink Embedded MATLAB Function block.” The MATLAB user—defined function file

below can be used to compute the determinant of a 2 X 2 matrix.

% This file computes the determinant of a 2x2 matrix

% It must be saved as function (user defined) file

% det2x2.m in the current Work Directory. Make sure

% that his directory is added to MATLAB's search

% path accessed from the Editor Window as File>Set Path>
% Add Folder. It is highly recommended that this

% function file is created in MATLAB's Editor Window.

%

function y=det2x2(A);

* For an example using this block, please refer to Introduction to Stimulink with Engineering Applications, ISBN

0-9744239-7-1, Page 16-3.

4-10 Numerical Analysis Using MATLAB® and Excel®, Third Edition
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y=A(1,1)"A(2,2)-A(1,2)*"A(2,1);

%

% To run this program, define the 2x2 matrix in

% MATLAB's Command Window as A=[....] and then
% type det2x2(A) at the command prompt.

Let A be a matrix of order 3, that is,

app ayp g3
A= ay ay ay (4.15)
a3 a3y d33
then, detA is found from
detA = ajjay as;+ay,8,; 85 +2ay; 2y as; (4.16)

—aypayazz—ajpayazy—ap ay as;

A convenient method to evaluate the determinant of order 3, is to write the first two columns to
the right of the 3 x 3 matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (4.16) above.

a7] d3p a33 a3 A3z +

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example 4.5

Compute detA and detB given that

2 3 5 2 -3 4
A=1]1 o 1| andB=1|1 0o 2
2 1 0 0 -5 -6
Solution:
Numerical Analysis Using MATLAB® and Excel®, Third Edition 4-11

Copyright © Orchard Publications



Chapter 4 Matrices and Determinants

2 3 2 3
\
detA = O><15><1/0

AN

o detA= (2x0x0)+(3x1x1)+(5x1x1)
—(2x0x5)—(I1x1x2)=(0x1x3)=11-2=9
Likewise, Y a4 a s
detB = 1\0_2><1/:2
0’5762 N6
or

detB= [2X0 X (=6)] +[(=3) X (=2) X 0] + [(=4) X 1 X (=5)]
10X 0% (=4)] = [(=5) X (=2) X 2] = [(=6) X 1 X (=3)] = 20— 38 = 18

Check with MATLARB:
A=[2 3 51 0 1; 2 1 0]; det(A) % Define matrix A and compute detA

ans =
9

B=[2 -3 -4;1 0 -2; 0 -5 -6];det(B) % Define matrix B and compute detB

ans =
-18

The MATLAB user—defined function file below can be used to compute the determinant of a
3 X 3 matrix.

% This file computes the determinant of a 3x3 matrix

% It must be saved as function (user defined) file

% det3x3.m in the current Work Directory. Make sure

% that his directory is added to MATLAB's search

% path accessed from the Editor Window as File>Set Path>

% Add Folder. It is highly recommended that this

% function file is created in MATLAB's Editor Window.

%

function y=det3x3(A);

y=A(1,1)*A(2,2)*A(3,3)+A(1,2)*A(2,3)*A(3,1)+A(1,3)*A(2,1)*A(3,2)...
-A(3,1)*A(2,2)*A(1,3)-A(3,2)*A(2,3)*A(1,1)-A(3,3)*A(2,1)*A(1,2);

% To run this program, define the 3x3 matrix in

% MATLAB's Command Window as A=[....] and then

% type det3x3(A) at the command prompt.
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4.5 Minors and Cofactors

Let matrix A be defined as the square matrix of order n as shown below.

app ap g3 - Ay
Ay App Ap3 ... Apy
4.17

ay; Ay Apz .- A

If we remove the elements of its ith row, and jth column, the determinant of the remaining n — 1

square matrix is called the minor of determinant A, and it is denoted as [MIJ .

The signed minor (~1)' "’ [Mu] is called the cofactor of a;; and it is denoted as o; .

Example 4.6
Given that

ayp app apg

A = (4.18)

ap) App dp3

a3) a3y as3
compute the minors [Mn] , [Mlz] , [M13:| and the cofactors a,,, o, and o;.

Solution:

a3y a33 ayp a3z a3 a3

and
S R TSt TR TH A YR IR

The remaining minors

Mo Mo [M)s [M5] [M] [y

and cofactors
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Oy, Oy, O3, Oigps Ogp, and Oy
are defined similarly.

Example 4.7
Given that

compute its cofactors.

Solution:

oy = (—I)H{_; ﬂ =20 Oy = (_1)1+2{i ﬂ =10

ay= D' 2H 20 oy =123 =6
-1 2 2 -6

a22=<—1>2*2{_1 :j = -9 a23=<—1>“3{_1 2} = 4

a31=(_1)3+1 2 -3 = -8, O(32=(—1)3+2 1 -3 -_3
-4 2 2 2

O3 = (—1)3+3B _2} = -8

It is useful to remember that the signs of the cofactors follow the pattern

-+ -+
-+ -+ —
-+ -+
-+ -+ —
-+ -+

that is, the cofactors on the diagonals have the same sign as their minors.

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

Let A be a square matrix of any size; the value of the determinant of A is the sum of the products

obtained by multiplying each element of any row or any column by its cofactor.
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Example 4.8

Compute the determinant of A using the elements of the first row.

1 2 -3
1 2 -6
Solution:
detA:I{_4 2}—2{2 2}—3{2 ‘4} = 1x20-2x(=10)=3x0 = 40
2 -6 |-1-6 |-1 2
Check with MATLAB:

A=[1 2 -3;2 -4 2;-1 2 —-6]; det(A) % Define matrix A and compute detA

ans =
40

The MATLAB user—defined function file below can be used to compute the determinant of a
4 x 4 matrix.

We must use the above procedure to find the determinant of a matrix A of order 4 or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

ajp app g3 Ay

A A A @ dy)y dp3 Apy app dy3 Ay
_ |821 @ Ap3 Apg| _
A= = 811 |a3 a3 a3y 71 (a3, a33 Ay (4.26)
d3p d3p A33 A3y
Ay Ay3 Ayy gy 43 Ayy
aqp Ayp Ay3 Ayy
app a3 Ay app a3 Ay

tazy|ay) ayy ayy| ~ 41 (ay, 8y Ay

Ay 43 Ayy a3y d33 A3y

Determinants of order five or higher can be evaluated similarly.

|
Example 4.9

Compute the value of the determinant
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2 -1 0 -3

A=|Tb DO (4.27)
40 3 -2
30 0 1

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.

Then,

0 -1 -1 0-3 -1 0-3 -1 0-3
A4=21g 32| -(-Dfo 3 -2 41 o0-1] 31 0 -1
0 1 0 0 1 0 0 1 0 3 -2

[a] [b] [c] [d]

Next, using the procedure of Example 4.5 or Example 4.8, we find

[a] =6, [b] =-3, [c] =0, [d] =-36
and thus
detA = [a]+[b]+[c]+[d] = 6-3+0-36 = =33

We can verify our answer with MATLAB as follows:
A=[2 -1 0 -3;~1 1 0 —1;4 0 3 =2; -3 0 0 1]; delta = det(A)

delta =
-33

The MATLAB user—defined function file below can be used to compute the determinant of a
n X1n matrix.

% This file computes the determinant of a nxn matrix

% It must be saved as function (user defined) file

% detnxn.m in the current Work Directory. Make sure

% that his directory is added to MATLAB's search

% path accessed from the Editor Window as File>Set Path>

% Add Folder. It is highly recommended that this

% function file is created in MATLAB's Editor Window.

%

function y=detnxn(A);

% The following statement initializes y

y=0;

% The following statement defines the size of the matrix A
[n,n]=size(A);

% MATLAB allows us to use the user-defined functions to be recursively
% called on themselves so we can call det2x2(A) for a 2x2 matrix,
% and det3x3(A) for a 3x3 matrix.
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if n==2

y=det2x2(A);

return
end
%
if n==

y=det3x3(A);

return
end
% For 4x4 or higher order matrices we use the following:
% (We can define n and matrix A in Command Window
fori=1:n

y=y+(=1)A(i+1)*A(1,i)*detnxn(A(2:n, [1:(i—-1) (i+1):n]));
end
%
% To run this program, define the nxn matrix in
% MATLAB's Command Window as A=[....] and then
% type detnxn(A) at the command prompt.

Some useful properties of determinants are given below.
Property 1:

If all elements of one row or one column are zero, the determinant is zero. An example of this is the
determinant of the cofactor [c¢] above.

Property 2:

If all the elements of one row or column are m times the corresponding elements of another row or col-
umn, the determinant is zero. For example, if

4
6 1 (4.28)
2

then,
2 4 2 4
detA =13 ¢ 113 6 =12+4+6-6-4-12=0 (4.29)
1 2 1 2

Here, detA is zero because the second column in A is 2 times the first column.
Check with MATLAB:
A=[2 4 1;3 6 1;1 2 1]; det(A)

ans =
0
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Property 3:

If two rows or two columns of a matrix are identical, the determinant is zero. This follows from Prop-
erty 2withm = 1.

4.6 Cramer’s Rule
Let us consider the systems of the three equations below

ayX+ayny+ayz =B (4.30)
ayX+apy+apz =C
and let
app a1 43 Aayag aj Aag aj ap A
A= ay) app An3 D=1 B a, ay D; =1 a, B ay D;=1a, ay, B
a3) 433 433 C ay ag az; C ag; a3 az C

Cramer’s rule states that the unknowns x, y, and z can be found from the relations

Dl D2 D3
= 1 = —= = 2 431
YA 7TA T 31

provided that the determinant A (delta) is not zero.

We observe that the numerators of (4.31) are determinants that are formed from A by the substi-
tution of the known values A, B, and C, for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (4.30) is a homogeneous set of equations, thatis,if A = B = C = 0, then, D,, D,, and D; are

all zero as we found in Property 1 above. Then, x = y = z = 0 also.

|
Example 4.10

Use Cramer’s rule to find v,, v,, and v, if
V2 3

2vi=5-v,+3v; =0
-2vy-3v,—4v, = 8 (4.32)
Vo+3v—4-vy; =0
and verify your answers with MATLAB.
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Solution:

Rearranging the unknowns v, and transferring known values to the right side, we obtain

—4v,=3v,-2v; = (4.33)
Now, by Cramer’s rule,
2 -1 3 2 -1
A=|_4 3 2| _4 3 =6+6-12+27+4+4 =35
3 1 -1 3 1
5 -1 3|5 -1
D,=|8 3 2|8 3 =15+8+24+36+10-8 = 85
4 1 -114 1
2 5 3 2 5
D,=|_4 8§ 2|4 8§ =-16-30-48-72+16-20 = 170
3 4 -1| 3 4
2 -1 5 2 -1
D;y=|_4 3 8| -4 -3 =-24-24-20+45-16-16 = =55
31 4| 3 1
Therefore, using (4.31) we obtain
D D D
Xl = __1 = §§ = lz X2 = __2 = —1_79 = _iﬁ X3 _3 _ﬁ — _E (4_34)
A 35 7 A 35 7 A 35 7
We will verify with MATLAB as follows.
% The following script will compute and display the values of v4, v, and vs.
format rat % Express answers in ratio form
B=[2 -1 3;, 4 -3 -2; 31-1]; % The elements of the determinant D
delta=det(B); % Compute the determinant D of B
di=[5 -1 3; 8 -3 -2; 4 1 -1]; % The elements of D4
detd1=det(d1); % Compute the determinant of D4
d2=[2 5 3; -4 8 -2; 3 4 -1]; % The elements of D,
detd2=det(d2); % Compute the determinant of D,
d3=[2 -1 5;-4 -3 8; 3 1 4]; % The elements of D5
detd3=det(d3); % Compute he determinant of D3
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vi=detd1/delta; % Compute the value of v,
v2=detd2/delta; % Compute the value of v,
v3=detd3/delta; % Compute the value of vj
%
disp('v1=");disp(v1); % Display the value of v4
disp('v2=");disp(v2); % Display the value of v,
disp('v3=");disp(v3); % Display the value of v
vl=
17/7

V2=

-34/7
v3=

-11/7

These are the same values as in (4.34)

4.7 Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done
by multiplying the terms of any of the equations of the system by a number such that we can add
(or subtract) this equation to another equation in the system so that one of the unknowns will be
eliminated. Then, by substitution to another equation with two unknowns, we can find the sec-
ond unknown. Subsequently, substitution of the two values found can be made into an equation
with three unknowns from which we can find the value of the third unknown. This procedure is
repeated until all unknowns are found. This method is best illustrated with the following example
which consists of the same equations as the previous example.

|
Example 4.11

Use the Gaussian elimination method to find v, v,, and v; of

(4.35)

—4v, —=3v,-2v,

|
N

Solution:

As a first step, we add the first equation of (4.35) with the third to eliminate the unknown v, and
we obtain the following equation.
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5vi+2vy =9 (4.36)

Next, we multiply the third equation of (4.35) by 3, and we add it with the second to eliminate
v, . Then, we obtain the following equation.

5vi-5vy =20 (4.37)
Subtraction of (4.37) from (4.36) yields

vy = —11 or v =_17—1 (4.38)
Now, we can find the unknown v, from either (4.36) or (4.37). By substitution of (4.38) into
(4.36) we obtain

5v1+2-(—%) =9 or v, = 17—7 (4.39)

Finally, we can find the last unknown v, from any of the three equations of (4.35). By substitu-

tion into the first equation we obtain

34 33 35 34
V2=2V1+3V3—5=7—7—7:—7 (4.40)

These are the same values as those we found in Example 4.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example 4.11. However, it becomes impractical if the coefficients are large or fractional
numbers.

The Gaussian elimination is further discussed in Chapter 14 in conjunction with the LU factor-
ization method.

4.8 The Adjoint of a Matrix

Let us assume that A is an n square matrix and o; is the cofactor of a;;. Then the adjoint of A,

denoted as adjA, is defined as the n square matrix shown on the next page.
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all uzl (X31 .o (X
Uy Oy Ozp ... Olyp

adjA = o Oy Oy ... O g (4.41)

_OLIn

We observe that the cofactors of the elements of the ith row (column) of A, are the elements of
the ith column (row) of adjA.

Example 4.12

Compute adjA given that

1 2 3
A=|{ 3 4 (4.42)
1 4 3
Solution:
34} 23 {2 3}
43 4 3 4
- o 7 6 -1
ade:_lﬂ L3 {23 =11 0 -1
13 o3 34 R
1 3} o2 {12
1 4] |1 4] 13

4.9 Singular and Non-Singular Matrices

An n square matrix A is called singular if detA = 0; if detA #0, A is called non—singular. If an n

square matrix A is nearly singular, that is, if the determinant of that matrix is very small, the
matrix is said to be ill-conditioned. This topic is discussed in Appendix C.

Example 4.13
Given that
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>

1]
W N =
W W

3
4 (4.43)
7

determine whether this matrix is singular or non-singular.
Solution:

1 23|12
detA = |9 3 4|23 =21+424+30-27-20-28 =0
305 7

35

Therefore, matrix A is singular.

4.10 The Inverse of a Matrix

If A and B are n square matrices such that AB = BA = I, where I is the identity matrix, B is
called the inverse of A, denoted as B = A", and likewise, A is called the inverse of B, that is,
A =B'

If a matrix A is non—singular, we can compute its inverse from the relation

Al = delt —adjA (4.44)

Example 4.14

Given that
1 2 3
A=11 3 4 (4.45)
1 4 3
compute its inverse, that is, find A’
Solution:
Here, detA = 9+8+12-9-16-6 = -2, and since this is a non—zero value, it is possible to
compute the inverse of A using (4.44).
From Example 4.12,
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-7 6 -1
adJA = 1 0 -1
1 -2 1
Then,
) 1 -7 6 -1 35-3 0.5
A= detAadJA: |1 0 -1 =]-05 0 05 (4.46)
1 -2 1 -0.5 1-05
Check with MATLAB:

A=[1 2 3; 1 3 4; 1 4 3], invA=inv(A) % Define matrix A and compute its inverse
A =

1 2 3
1 3 4
1 4 3
invA =
3.5000 -3.0000 0.5000
-0.5000 0 0.5000
-0.5000 1.0000 -0.5000

Multiplication of a matrix A by its inverse A" produces the identity matrix I, that is,

AA' =1 or A'A=1 (4.47)

Example 4.15
Prove the validity of (4.47) for

A4 3

2 2

Proof:
detA = 8-6 = 2 and adjA = { 2 —3}
2 4
Then,
D _ 12 3 1 -3/2
dMA?mA__2L2 J _[;1 2}
and
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AN = |4 3|1 -3/2| _ |4-3 -6+6] _ |1 0 -1
2 -1 2 2-2 -3+4 0 1

4.11 Solution of Simultaneous Equations with Matrices
Consider the relation

AX = B (4.48)

where A and B are matrices whose elements are known, and X is a matrix (a column vector)
whose elements are the unknowns. We assume that A and X are conformable for multiplication.

Multiplication of both sides of (4.48) by A~ yields:

A'AX=A'B=1X=A"B (4.49)
or

X=A"'B (4.50)

Therefore, we can use (4.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

|
Example 4.16

Given the system of equations

2x,+3x,+x3 = 9

compute the unknowns x,, x,, and x5 using the inverse matrix method.
Solution:
In matrix form, the given set of equations is AX = B where

2 3 1 S| 9

A=1|1 2 3|, X=|x,|s B=|g (4.52)

301 2 X4 8
Then,
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X = A'B (4.53)
or
o3 1o
X, =11 2 3| |6 (4.54)
X3 31 2| |8

Next, we find the determinant detA , and the adjoint adjA .

1 -5 7
detA =18 and adjA=|7 1 _5
-5 71
Therefore,
1 1 -5 7
A S Ta A= g7 1S
-5 7 1

and by (4.53) we obtain the solution as follows.

Xl v s oTfle) (38 [3s/18)  [1.94
X =% =1g|7 1-5/|6] =15[29 = [29/18] = |1.61 (4.55)
X -5 7 1/(8 5 5/18)  [0.28

To verify our results, we could use the MATLAB inv(A) function, and multiply A by B. How-
ever, it is easier to use the matrix left division operation X = A \ B; this is MATLAB’s solution of

A'B for the matrix equation A - X = B, where matrix X is the same size as matrix B. For this
example,

A=[2 3 1;1 2 3;3 1 2];B=[9 6 8]; X=A\B % Observe that B is a column vector

X =
1.9444
1.6111
0.2778

As stated earlier, while MATLAB has the built—in function det(A) for computing the determi-

nant of a matrix A, this function is not included in the MATLAB Run-Time Function Library
List that is used with the Simulink Embedded MATLAB Function block. The MATLAB user—

defined function file below can be used to compute the determinant of a 2 x 2 matrix. A user-
defined function to compute the inverse of an n x n is presented in Chapter 14.
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Example 4.17

For the electric circuit of Figure 4.1, the mesh equations are

1Q 20 2
NN AN
(j) §9Q §9Q §4Q
v=100v] L I,

Figure 4.1. Circuit for Example 4.17

101, - 91, = 100
91, +201,-9I, = 0 (4.56)
91, +15I; = 0

Use the inverse matrix method to compute the values of the currents 1, I,, and I5.

Solution:

For this example, the matrix equation is RI = Vor I = RV, where

10 -9 0 100 L
R=1|_9909 9, V= o| and I= I,
0 -9 15 0 I

The next step is to find R'. This is found from the relation

—1

= JoR adjR (4.57)

Therefore, we find the determinant and the adjoint of R . For this example, we find that

219 135 81
detR =975, adjR = |135 150 90 (4.58)

&1 90 119

Then,
219 135 81
= Lad'R = -
TRAAIR = 572135 150 90
81 90 119

—1

and
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L | 219 135 811|100 100 219 22.46
[=11, = 975|135 150 90 0| = g75(135] = |13.85

I, 81 90 119 0 81 8.31
Check with MATLAB:
R=[10 -9 0; -9 20 -9; 0 -9 15]; V=[100 0 O0]; I=R\V
T =
22.4615
13.8462
8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
above script could also have been written as:

R(1,1)=10; R(1,2)=-9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0]; I=R\V
T =

22.4615

13.8462
8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT

(Matrix Multiplication) functions, to obtain the values of the three currents in Example 4.17.
The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure 4.2. Then, we enter the elements of matrix V in G3:G5.

Al B | c|] bl E |F] G [H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 10 -9 0 100

4 R= -9 20 -9 V= 0

5 0 -9 15 0

6

7 0.225, 0.138| 0.083 22.462

8 R'=| 0.138| 0.154| 0.092 =] 13.846

9 0.083| 0.092| 0.122 8.3077
10

Figure 4.2. Solution of Example 4.17 with a spreadsheet
4-28 Numerical Analysis Using MATLAB® and Excel®, Third Edition

Copyright © Orchard Publications



Solution of Simultaneous Equations with Matrices

2. Next, we compute and display the inverse of R, that is, K. We choose B7:D9 for the elements
of this inverted matrix. We format this block for number display with three decimal places.
With this range highlighted and making sure that the cell marker is in B7, we type the formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that R™' appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current I. As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)
and we press the Crtl-Shift—Enter keys simultaneously. The values of I then appear in G7:G9.

|
Example 4.18

For the phasor circuit of Figure 4.3, the current Iy can be found from the relation

R2
85 Q§R L 00
VS + ! IX T _J
D) VWt v,
170.£0° ]~ Ry= 1000
j200Q § 50Q

Figure 4.3. Circuit for Example 4.18

V,-V
Lo Yi-V, 4.59
= (4.59)
and the voltages V, and V, can be computed from the nodal equations

V,-170£0° V,-V, V,-0
! 241 =0 (4.60)

85 100 J200

V,-170£0° V,-V, V,-0
2 21,2 ~ - (4.61)

- +
—1100 100 50

Compute, and express the current 1, in both rectangular and polar forms by first simplifying like
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terms, collecting, and then writing the above relations in matrix form as YV = I, where
Y = admittance, V = voltage, and I = current.

Solution:

The elements of the Y matrix are the coefficients of V, and V,. Simplifying and rearranging the

nodal equations of (4.60) and (4.61), we obtain
(0.0218 — j0.005)V, — 0.01V, =
001V, +(0.03 +j0.01)V, = j1.7

Next, we write (4.62) in matrix form as

0.0218 —j0.005  —0.01 Vi 2
-0.01  0.03+j0.01] |V, = [j1.7 (4.62)
NS— ——
Y AV 1

where the matrices Y, V, and I are as indicatedin (4.63).

We will use MATLAB to compute the voltages V, and V,, and to do all other computations.

The script is shown below.

Y=[0.0218-0.005] -0.01; -0.01 0.03+0.01j]; I=[2; 1.7]]; V=Y\I; % Define Y, I, and find V

fprintf(\n'); % Insert a line
disp(" V1 V2'); disp(* -----=-=-mmnmnmm- ); % Display V1 and V2 with dash line underneath
fprintf('%9.3f %9.3A\n"',V(1),V(2)) % Display values of V1 and V2 in tabular form
fprintf(\n')% Insert another line
V1 V2
104.905 53.416

Next, we find Iy from
R3=100; IX=(V(1)-V(2))/R3 % Compute the value of Iy

IX =
0.5149 - 0.05901

and this is the rectangular form of Iy . For the polar form we use

maglX=abs(IX) % Compute the magnitude of Iy
maglXxX =
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0.5183
thetalX=angle(IX)*180/pi % Compute angle theta in degrees

thetaIX =
-6.5326

Therefore, in polar form Iy = 0.518.£-6.53°

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements.
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4.12 Summary

® A matrix is a rectangular array of numbers whose general form is

ajp app Az .. Ay

dyp Ay A3 ... Ay
A =

d3; dazp a3z ... A3,

A1 ) 83 o Ayl

The numbers a;; are the elements of the matrix where the index i indicates the row, and j
indicates the column in which each element is positioned. A matrix of m rows and n columns
is said to be of m x n order matrix. If m = n, the matrix is said to be a square matrix of order

m.
¢ Two matrices A = [aiJ and B = [bi;| are equal, thatis, A = B, if and only if

a;; = by; i=1,23,..,m j=123,..,n

e Two matrices are said to be conformable for addition (subtraction), if they are of the same order
mxn.If A = [aiJ and B = [bi,] are conformable for addition (subtraction), their sum (dif-

ference) will be another matrix C with the same order as A and B, where each element of C
is the sum (difference) of the corresponding elements of A and B, i.e.,

e If k is any scalar (a positive or negative number), and not [k ] which is a 1 x 1 matrix, then
multiplication of a matrix A by the scalar k, is the multiplication of every element of A by k.

e Two matrices A and B are said to be conformable for multiplication A - B in that order, only
when the number of columns of matrix A is equal to the number of rows of matrix B . That is,
the product A - B (but not B - A) is conformable for multiplication only if A is an m x p and
matrix B is an p x n matrix. The product A - B will then be an m X n matrix.

¢ For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B,

we multiply each element of a row of A by the corresponding element of a column of B ; then,
we add these products.

e Division of one matrix by another, is not defined.
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¢ A scalar matrix is a square matrix where a;; = a,, = aj;; = ... = a,, = k and k is a scalar.

A scalar matrix with k = 1, is called an identity matrix I.

e The MATLAB eye(n) function displays an nxn identity matrix and the eye(size(A)) func-
tion displays an identity matrix whose size is the same as matrix A .

¢ The transpose of a matrix A, denoted as AT is the matrix that is obtained when the rows and

columns of matrix A are interchanged.

¢ The determinant of a square matrix A where

dyp Ay dp3 ... Apy

d3; d3p d33 ... A3y

is denoted as detA and it is defined as

detA = 311322333...311[1 + 312323334---an1 + 313324a35"'an2 to.

_anl ...a22a13..._an2...a23a14 - an3...3.242115 T e

e If from a matrix A be defined as

a“ 312 .':113 al
dyp Ay Ap3 ... Apy

a3y d3p d33 ... A3

we remove the elements of its ith row, and jth column, the determinant of the remaining

n—1 square matrix is called the minor of determinant A, and it is denoted as [Mu] .

e The signed minor (~1)'* [MU] is called the cofactor of a;; and it is denoted as a; .

® et A be a square matrix of any size; the value of the determinant of A is the sum of the prod-
ucts obtained by multiplying each element of any row or any column by its cofactor. We must
use this procedure to find the determinant of a matrix A of order 4 or higher.
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e Some useful properties of determinants are:
a. If all elements of one row or one column are zero, the determinant is zero.

b. If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero.

c. If two rows or two columns of a matrix are identical, the determinant is zero.

e Cramer’s rule states that if a system of equations is defined as

ap Xx+apy+apz = A
ayX+a,y+anz =B
ayX+apy+apz =C
and we let
app a1 43 Aayag aj Aag aj ap A
A= a1 app An3 D=1 B a, ay D; =1 a, B ay D;=1a, ay, B
a3) 433 433 C ay ag az; C ag; a3 az C

the unknowns x, y, and z can be found from the relations

D D D

A T TA A
provided that the determinant A (delta) is not zero.

e We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can
be done by multiplying the terms of any of the equations of the system by a number such that
we can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns,
we can find the second unknown. Subsequently, substitution of the two values found can be
made into an equation with three unknowns from which we can find the value of the third
unknown. This procedure is repeated until all unknowns are found.

® If A isan n square matrix and o; is the cofactor of a;;, the adjoint of A, denoted as adjA, is

ij?

defined as the n square matrix below.
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Ol Oy O3y -.. Olyy

Oy Oy O3y .. Olyy

adjA =
] O3 Olyy Ol3z ... O3

_Ocln Oyp U3y --e Oy

® An n square matrix A is called singular if detA = 0;if detA # 0, A is called non-singular.

e If A and B are n square matrices such that AB = BA = I, where I is the identity matrix, B is
called the inverse of A, denoted as B = A™', and likewise, A is called the inverse of B, that is,
A =B"

e ]f a matrix A is non-singular, we can compute its inverse from the relation

-1

- detA

adjA

* Multiplication of a matrix A by its inverse A~ produces the identity matrix I, that is,
AAT =1 or ATA=1

e [f A and B are matrices whose elements are known, X is a matrix (a column vector) whose
elements are the unknowns and A and X are conformable for multiplication, we can use the
relation X=A"'B to solve any set of simultaneous equations that have solutions. We refer to
this method as the inverse matrix method of solution of simultaneous equations.

® The matrix left division operation is defined as X = A \B; this is MATLAB’s solution of
A™'B for the matrix equation A - X = B, where matrix X is the same size as matrix B.

e We can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT (Matrix Multipli-

cation) functions, to solve any set of simultaneous equations that have solutions. However, we
cannot use them to compute matrices that include complex numbers in their elements.
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4.13 Exercises

For Exercises 1 through 3 below, the matrices A, B, C and D are defined as:

1-1-4 5 9-3 4 6
A=ls 72 B=]2 8 2/ C=|3 8 D= L;‘g_ﬂ
3-56 7-4 6 5 -2
1. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. A+B b.A+C ¢. B+D d.C+D e. A-B f. A-C g. B-D h. C-D
2. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. A-B b.A-C ¢. B-D d. C-D e. B-A f.C-A g D-A h.D-C
3. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
a. detA b. detB c. detC d. detD e. det(A-B) f. det(A-C)

4. Solve the following system of equations using Cramer’s rule. Verify your answers with Excel or

MATLAB.
X;—2X,+X3 = —4
9

3, +4x,-5x3; = 0

=2X | +3X, + X3

5. Repeat Exercise 4 using the Gaussian elimination method.
6. Use the MATLAB det(A) function to find the unknowns of the system of equations below.
—X; +2x,-3x3+5x, = 14
X;+3X,+2x3-%X4 = 9
3X;-3X, +2x53 +4x, = 19
4 +2X, +5x3+ x4 = 27

7. Solve the following system of equations using the inverse matrix method. Verify your answers

with Excel or MATLAB.

3 41 % -3
-2 X5 T -2
23 5] |y LO
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8. Use Excel to find the unknowns for the system

2 4 32| |% 1
2-4 1 3| |X2f _ | 10
-1 3 -4 2| [x4 -14
2-2 2 1 [x, 7

Verify your answers with the MATLAB left division operation.
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4.14 Solutions to End-of-Chapter Exercises
1.

1+5 -14+9 -4-3 6 8 -7
a.A+B=|5_2 748 —2+2/=13 15 0 b. A+ C not conformable for addition
3+7 -5-4 6+6 10 -9 12

c. B +D not conformable for addition d. C+ D not conformable for addition

1-5 —1-9 —4+3| [-4-10-1
e.A-B=|5,20 7.8 _2.2/=|7 -1 4 f. A-C not conformable for subtraction
3-7 —5+44 6-6| |-4 -1 0

g. B-D not conformable for subtraction h. C-D not conformable for subtraction

2.
_1><5+(—1)><(—2)+(—4)><7 IX9+(-1)x8+(-4)x(-4) Ix(3)+(-1)x2+(-4)x6
A-B = SX5+T7TX(-2)+(-2)x7 5X9+Tx8+(-2)x(-4) S5X(-3)+Tx2+(-2)x6
3XS5+(-5)X(-2)+6x7 3X9+ (-5)x8+6x%x(-4) 3X(-3)+(-5)x2+6x%x6
a. ~
=21 17 -29
= -3 109 -13
| 67 =37 17
Check with MATLAB:
A=[1 -1 4,57 -2;3 -5 6];B=[59 -3;,-2 8 2,7 -4 6]; A'B
ans =
-21 17 -29
-3 109 -13
67 -37 17
IX4+(=1)X(=3)+(-4) x5 1x6+(-1)x8+(-4)x(-2) -13 6_
b. \-C= 5x4+7x(=3)+(-2)x5 5X6+7x8+(=2)x(=2) | = |-11 90
3x4+(-5)x(-3)+6x5 3X6+(-5)x8+6x(-2) 57 34

c. B-D not conformable for multiplication

4x1+6%(-3) 4 (=2)+6%6 4x3+6x(-4) 14 28 -1
do D= [(C3)x1+8x(=3) (=3)x(<2)+8x6 (=3)x3+8x(-4) | = [-27 54 4
Sx14(<2)x(=3) 5x(=2)+(=2)x6 5x3+(<2)x(-4) 11 -22 23
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SXT+9X5+4+(-3)%x3 (-2)x1+8x5+2x%3 Tx1+(-4)x5+6x%x3
B-A = SX(=1)+9%xT7+(-3)%x(-5) (-2)x(-1)+8xT7+2x(-5) Tx(-1)+(-4)x7+6x(-5)
S5X(4)+9X(-2)+(-3)x6 (2)X(-4)+8X(-2)+2x6 Tx(-4)+(-4)x(-2)+6%x6

41 73 -56
= |44 48 4
|5 —65 16

f. C-A not conformable for multiplication

D-A = Ix1+(=2)x5+3x%x3 IX(=1)+(=2)x7+3x%x(-5) IX(=4)+(-2)x(-2)+3x6
(-3)X1+6X5+(-4)%x3 (3)X(-1)+6xXT+(-4)x(-5) (3)x(-4)+6%x(-2)+(-4)x6

_ |0 =30 18
15 65 -24

LD.C < [ %4+ (=2)x(=3)+3x5 1><6+(—2)><8+3><(—2)} _ [25 —16}
( )

X4 +6X(=3)+(-4)x5 (-3)x6+6x8+(-4)x (-2 -50 38
3.
1-1-4 1 -1
detA = 5 7.2 5 7
a. 3-56 3 -5
= IXTX64+(-1)X(-2)X3+(-4)X5X(-5)—[3XTX(-4)+(-5)X(-2)x1+6x5x(-1)]
=42+6+100-(-84)-10-(-30) =252
5 9-3 59
detB= _5 g 2 -2 8
b. 7-4 6 7 -4

SXEXO+IX2XT+(-3)X(-2)X(-4)—[TxX8X(-3)+(—4)x2%x5+6x(-2)x9]
240 + 126 — 24 — (-168) + 40 — (-108) = 658

c. detC does not exist; matrix must be square
d. detD does not exist; matrix must be square
e. et(A-B) = detA - detl and from parts (a) and (b), det(A-B) = 252x 658 = 165816

f. det(A - C) does not exist because detC does not exist
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4.
1-2 1 1-=2
A= 23 123
34 -5 34
= IX3X(=5)+(=2)X I X3+ 1X(=2)x4-[3x3x1+4x1x1+(=5)x(=2)x(=2)]
= -15-6-8-9-4+20=-22
42 1 422
D= 93 1 93
0 4 -5 0 4
= AX3IX(S5)+(2)XIX0+1X9IXx4-[0x3X%x1+4xX1Ix4+(-5)x9Ix(-2)]
=60+0+36-0+16-90=22
14 1 1-4
Dy= 29 129
30-530
= IXIX(-5)+(4)X1x3+1Xx(-2)X0-[3x9x1+0x1xX1+(=5)%x(-2)x(-4)]
= —45-12-0-27-0+40 = 44
1-2-41-=2
Dy= 23 923
340 3 4
= IX3X0+(-2)XIX3+(-4)X(-2)x4-[3x3%x(-4)+4Xx9IX1+0x(-2)x(-2)]
=0-54+32+36-36-0=-22
Dy Dy 44 Dy »
X = — == = -1 Xg = === — =2 Xy = — == =1
A =22 A =22 A =22
5.
“2X,;+3%,+%x3 = 9 (2)
3%, +4x,-5%; = 0 (3)
Multiplication of (1) by 2 yields
2x, — 4%, +2x5 = -8 4)
Addition of (2) and (4) yields
—X,+3x3 =1 (5)
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Multiplication of (1) by -3 yields
—3X,+6X,—-3x; = 12 (6)
Addition of (3) and (6) yields
10x, - 8x; = 12 (7)
Multiplication of (5) by 10 yields
~10x, +30x; = 10 (8)

Addition of (7) and (8) yields
2%, = 22 (9)
or
x; =1 (10)
Substitution of (10) into (7) yields
10x,-8 = 12 (11)

or

x, =2 (12)
and substitution of (10) and (12) into (1) yields
x,~4+1=-4 (13)

or

x, = -1 (14)

Delta=[-1 2 -3 5;1 32 -1;3 -3 2 4;4 2 5 1];
D1=[14 2 -3 5;9 3 2 —-1;19 -3 2 4;27 2 5 1];
D2=[-1 14 -3 5;1 9 2 -1;3 19 2 4;4 27 5 1];
D3=[-1 2 14 5;1 3 9 -1;3 -3 19 4;4 2 27 1];
D4=[-12 -3 14,132 9;3 -3 219425 27];
x1=det(D1)/det(Delta), x2=det(D2)/det(Delta),...
x3=det(D3)/det(Delta), x4=det(D4)/det(Delta)

x1=1 x2=2 x3=3 x4=4
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7.
1 3 41 3
detA = 3 1-2 31
23 5 23
= IXIX54+43X(-2)x2+4x3%x3-[2X1Xx4+3x(-2)x1+5%x3x3]
=5-12+36-8+6-45=-18
11 -3 -10
adjA = |19 -3 14
7 3 -8
- 1 . 11 -3 -10 -11/18 3/18 10/18
= Jora A = 2o lo19 30 14| = | 19/18 3/18 -14/18
7 3 -8 -7/18 -3/18 8/18
*1 -11/18 3/18 10/18||-3 33/18—-6/18+0 27/18 1.50
X = Xy = 19/18 3/18 -14/18||-2| = |-57/18-6/18+0| = |-63/18| = [-3.50
X3 -7/18 -3/18 8/18 0 21/18+6/18 +0 27/18 1.50
1 |Spreadsheet for Matrix Inversion and
2 |Matrix Multiplication - Exercise 7
3
4 1.00 300 4.00 -3.00
5 A= 3.00 1.00) -2.00 B=| -2.00
E 200 300 500 Q.00
7
a -0.61 017 0.5k 1.50
oA 1.06 017 -0.78 #=| -3.50
10 033 017 0.44 1.50
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8.

Al B | ¢ | D] E|F| G| H |
1 |Spreadsheet for Matrix Inversion and
2 |Matrix Multiplication - Exercise 8
3
4 200 400 300 -200 1.00
5 | A= 200 -400 1.00 300 B=| 10.00
b -1.00 300 -400 200 -14.00
7 200 200 200 1.00 7.00
)
9 188 408 117 BYS -11.50
10 | A 0ss 108 017 -1.75 *=| 150
11 150 350 -1.00 -5A50 12.00
12 133 333 067 -5.00 8.00

A=[2 4 3 2,2 -4 13,-13-42,2-221]
B=[1 10 —14 7]; AB
ans =
~11.5000
1.5000
12.0000
9.0000
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Differential Equations, State Variables, and State Equations

his chapter is a review of ordinary differential equations and an introduction to state vari-
ables and state equations. Solutions of differential equations with numerical methods is dis-
cussed in Chapter 9.

5.1 Simple Differential Equations

In this section we present two simple examples to show the importance of differential equations in
engineering applications.

Example 5.1

The current and voltage in a capacitor are related by

] dve
ic(t) = C—= (5.1

where i.(t) is the current through the capacitor, v(t) is the voltage across the capacitor, and the

constant C is the capacitance in farads (F). For this example C = 1 F and the capacitor is being
charged by a constant current I. Find the voltage v across this capacitor as a function of time

given that the voltage at some reference time t = 0 is V.
Solution:
It is given that the current, as a function of time, is constant, that is,
ic(t) = I = constant (5.2)

By substitution of (5.2) into (5.1) we obtain

and by separation of the variables,
dve = Idt (5.3)
Integrating both sides of (5.3) we obtain
ve(t) = Tt+k (5.4)

where k represents the constants of integration of both sides.
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We can find the value of the constant k by making use of the initial condition, i.e., at t = 0,
ve = Vg and (5.4) then becomes

or k = V, and by substitution into (5.4),

ve(t) = It+V, (5.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-
duced across the terminals of the capacitor.

|

Example 5.2

Find the current i; (t) through an inductor whose slope at the coordinate (t, i;) is cost and the
current i, passes through the point (1/2.1).

Solution:

We are given that

i cost (5.7)

By separating the variables we obtain
di; = costdt (5.8)

and integrating both sides we obtain
i (t) = sint+k (5.9)

where k represents the constants of integration of both sides.

We find the value of the constant k by making use of the initial condition. For this example,
o = 1 and thusat ot = t = n/2, i; = 1. With these values (5.9) becomes

1 = sin§+k (5.10)
or k = 0, and by substitution into (5.9),

i (t) = sint (5.11)
5.2 Classification
Differential equations are classified by:
1. Type - Ordinary or Partial
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2. Order - The highest order derivative which is included in the differential equation

3. Degree - The exponent of the highest power of the highest order derivative after the differential
equation has been cleared of any fractions or radicals in the dependent variable and its deriva-
tives

For example, the differential equation

4 \2 3 \4 2.\ 8 2
(S ) o) @ e
dx dx

dx dx X+ 1
is an ordinary differential equation of order 4 and degree 2.

If the dependent variable y is a function of only a single variable x, thatis, if y = f(x) , the differ-

ential equation which relates y and x is said to be an ordinary differential equation and it is abbrevi-
ated as ODE.

The differential equation

d’y | .d
€Y 435Y 42 = 5c0s4t
ERRET

is an ODE with constant coefficients.

The differential equation

2
XZd—X+X(iY+(X2—Il2) =0

is an ODE with variable coefficients.

If the dependent variable y is a function of two or more variables such as y = f(x,t), where x
and t are independent variables, the differential equation that relates y, x, and t is said to be a
partial differential equation and it is abbreviated as PDE.

An example of a partial differential equation is the well-known one-dimensional wave equation
shown below.
2 2
Iy _ 29y
- 2
ot ox
Most engineering problems are solved with ordinary differential equations with constant coeffi-
cients; however, partial differential equations provide often quick solutions to some practical
applications as illustrated with the following three examples.
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Example 5.3

The equivalent resistance Ry of three resistors R, R,, and R; in parallel is obtained from

1l _ 1,1, 1
RT Rl RZ R3

Given that initially R, = 5 Q, R, = 20 Q, and Ry = 4 Q, compute the change in Ry if R, is
increased by 10% and R; is decreased by 5% while R, does not change.

Solution:

The initial value of the equivalent resistance is Ry = 51120114 = 2 Q.

Now, we treat R, and R; as constants and differentiating R with respect to R, we obtain

1 IRy 1 aRT (RT)
RZOR; g2 R, \R

Similarly,
R,
and the total differential dRy is

IR

L T KT

Ry =
By substitution of the given numerical values we obtain
2 2
dR; = ( ) (0)+( ) (2)+( ) (=0.2) = 0.02—-0.05 = —0.03

Therefore, the eequivalent resistance decreases by 3% .

Example 5.4
In a series RC electric circuit that is excited by a sinusoidal voltage, the magnitude of the imped-

ance Z is computed from Z = /R >+ X/ . Initially, R = 4 Q and X, = 3 Q. Find the change

in the impedance Z if the resistance R is increased by 0.25 Q (6.25%) and the capacitive reac-
tance X is decreased by 0.125 Q (-4.167%).
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Classification

Solution:

9Z .nd 2Z

R 3X, ; then we compute the change in impedance

We will first find the partial derivatives
from the total differential dZ . Thus,

0Z R

R R exl

07 _ Xc

0X¢ /R2+XC2

R dR + X dX
:S—IZ{dR+aaYZdXC= * 2 e
c JRZ+X.

and by substitution of the given values

and

and

dz

_ 4(0.25)+3 (=0.125) _ 1 —0.375
J4? 43

Therefore, if R increases by 6.25% and X decreases by 4.167%, the impedance Z increases by

4.167% .

dz = 0.125

Example 5.5

A light bulb is rated at 120 volts and 75 watts. If the voltage decreases by 5 volts and the resis-
tance of the bulb is increased by 8 Q, by how much will the power change?

Solution:
At V = 120 volts and P = 75 watts, the bulb resistance is

2 2

R=Y 1200 _ 499
P 75
and since
2 oP _ 2V PV’
P=— then —==— and —=-——
R R~ g2
and the total differential is
_op P L 2V .o VP o 2(120) 120° o\ _
dP = 55 dV+ 52 dR == dV—EdR =2 (—5)—1922(8) - 9375

That is, the power will decrease by 9.375 watts.
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5.3 Solutions of Ordinary Differential Equations (ODE)

A function y = f(x) is a solution of a differential equation if the latter is satisfied when y and its
derivatives are replaced throughout by f(x) and its corresponding derivatives. Also, the initial
conditions must be satisfied.
For example a solution of the differential equation
2

d—}zl +y =0

dx
is

y = k;sinx + k,cosx

since y and its second derivative satisfy the given differential equation.

Any linear, time-invariant system can be described by an ODE which has the form

n n-1

and y+an_1g———"¥+...+alg~}—,+a0y
dt" dt"” dt
m m-—1
bm(—l———x+bmfld X+...+blg—)—(+b0x (5.12)
= 4" de" ! dt

Excitation (Forcing) Function x(t)
NON -HOMOGENEOUS DIFFERENTIAL EQUATION

If the excitation in (B12) is not zero, that is, if x(t) # 0, the ODE is called a non-homogeneous
ODE. If x(t) = 0, it reduces to:

dy,, 4y dy
andtn +an71dtn_1 +...+a it +a,y =0 (5.13)

HOMOGENEOUS DIFFERENTIAL EQUATION

The differential equation of (5.13) above is called a homogeneous ODE and has n different linearly
independent solutions denoted as y,(t), y,(t), y3(t), ..., y,(t).

We will now prove that the most general solution of (5.13) is:

yu(t) = kyy (t) +ky y,(t) + k3 y3(t) + ... + k y, (1) (5.14)

where the subscript H on the left side is used to emphasize that this is the form of the solution of
the homogeneous ODE and k,, k,, kj, ..., k, are arbitrary constants.
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Proof:

Let us assume that y,(t) is a solution of (5.13); then by substitution,

n n-1
d d d

}Illl+an_l n7}11+...+a1%+a0y1 = 0 (5.15)
dt dt

a,

A solution of the form k,y,(t) will also satisfy (5.13) since

n n-1

and—tﬂ(kl yi)+ anild——tn_ 1(k1 yi)+ .+ ald—t(kl y1) +agk;yy)
(5.16)

dnY1 dn_lY1 dy,
k —_— ... —_ =0
l[an o +a,_ e +...+a m +a,y,

Ify = yi(t) and y

y,(t) are any two solutions, then y = y,(t) + y,(t) will also be a solution

since
n n-1
dy, d” 'y dy, -0
n_dtn +a, dtn_l +...+a; i +a,y, =
and
dﬂYz dﬂ_l}’z dy,
an§+anle+...+a1E—+aoy2 =0
Therefore,
4" qa"! d
dt dt t
n n-1 d
= an(glh*'an—ldtn_lﬁ"‘---+a1aY1+ao}’1
n n-1
d
+and?l}’z+an_1d—tn_l Yot ... +ala yo+a,y, =0

In general, if
y= kyy (D), Ky (), kyys(t), ..., k,y, (1)

are the n solutions of the homogeneous ODE of (5.13), the linear combination

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary
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solution, will be referred to as the natural response, and will be denoted as yy (t) or simply yy . The

particular solution of a non-homogeneous ODE will be referred to as the forced response, and will
be denoted as yg(t) or simply yg . Accordingly, we express the total solution of the non-homoge-
neous ODE of (5.12) as:

Y(t) = Y Natural +y Forced = yN+yF (518)

Response Response

The natural response yy contains arbitrary constants and these can be evaluated from the given
initial conditions. The forced response y; , however, contains no arbitrary constants. It is impera-

tive to remember that the arbitrary constants of the natural response must be evaluated from the
total response.

5.4 Solution of the Homogeneous ODE
Let the solutions of the homogeneous ODE

n-1
d vy
dt" !

dny
" dt"

+...+al%+a0y =0 (5.19)

n-1
be of the form

y = ke (5.20)
Then, by substitution of (5.20) into (5.19) we obtain

t -1 st t t
a ks'e” +a,_ ks" e +..+a kse” +a ke’ = 0

or

(ansn+an_lsn71+...+als+a0)keSt: 0 (5.21)
We observe that (5.21) can be satisfied when
(ansn+an_1sn_1+...+a1s+ao) =0 or k=0 or s =—o (5.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield
trivial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the
only meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

n n-1 —0
a,s +an_1s +...+a1s+a0—

(5.23)

Characteristic Equation

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions
are s, s,, 83, ..., 8, , and thus the solutions of the homogeneous ODE are:
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t t s t

. ys=kge, .,y =ke” (5.24)

st

)
yi=kie , y,=kye
Case I — Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the n solutions
of (5.23) are independent and the most general solution is:

t

Slt Szt Sy
yn=ke +ke” +...+ke (5.25)
FOR DISTINCT ROOTS

Case II - Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the
terms of (5.24) are not independent and therefore (5.25) does not represent the most general solu-
tion. If, for example, s, = s,, then,

st t

| $,t st st st 8
kie +kye” =ke +ke = (k +ky)e = kse
and we see that one term of (5.25) is lost. In this case, we express one of the terms of (5.25), say

st st . .
k,e ' as kyte ' . These two represent two independent solutions and therefore the most general

solution has the form:
t

yn = (ky + kzt)eSlt + l<3eS3t + ..+ knesrl (5.26)

If there are m equal roots the most general solution has the form:

t ot s, t

m-1, %
yn=(k +kt+ . +k t7 e +k,_ e’ +..+ke (5.27)
FOR M EQUAL ROOTS

Case III - Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is s; = —a +jB where a and B are real numbers, then another root is

s; = —a—jp. Then,

St Syt —ot+jpt —out—jpt —ot iBt —jBt
ke +k,e’ = ke i +k,e Bt~ e (kleJB +k,e B

e *'(k, cosPt + jk, sinBt + k, cos t—jk, sint)

e_m[(k1 +k,)cosPt +j(k, —k,)sinPt]

efm(k3 cosfBt + k,sinPt)= efonk5 cos(Bt + @)
FOR TWO COMPLEX CONJUGATE ROOTS

(5.28)
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If (5.28) is to be a real function of time, the constants k; and k, must be complex conjugates.
The other constants kj, k,, ks, and the phase angle ¢ are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or

b. The Method of Variation of Parameters

We will study the Method of Undetermined Coefficients first.

5.5 Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of order 2. Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the non-homogeneous ODE

dy+biy+cy = f(x) (5.29)

a—=—
dt2 dt

where a, b, and ¢ are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if y, and y, are any two solutions of (5.29), the linear combination
y; = k;y; +k,y,, where k; and k, are arbitrary constants, is also a solution, that is, if we know

the two solutions, we can obtain the most general solution by forming the linear combination of
y, and y,. To be certain that there exist no other solutions, we examine the Wronskian Determi-

nant defined below.

M Y2 d d
Wy, y,) = d d = N2y n #0 (5.30)
dx ! dx 2
WRONSKIAN DETERMINANT

If (5.30) is true, we can be assured that all solutions of (5.29) are indeed the linear combination of
y; and y,.

The forced response is obtained by observation of the right side of the given ODE as it is illus-
trated by the examples that follow.
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Example 5.6
Find the total solution of the ODE

2
dy, 44y -
?+4dt+3y =0 (5.31)

subject to the initial conditions y(0) = 3 and y'(0) = 4 where y' = dy/dt
Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the char-

acteristic equation s” +4s +3 = 0 whose roots are s, = —1 and s, = —3. The total response is:
—t -3t
y(t) = yn(t) = ke +kjye (5.32)
The constants k, and k, are evaluated from the given initial conditions. For this example,

y(0) = 3 = ke’ +kye’

or
k,+k, =3 (5.33)
Also,
, . d_y _ -t -3t
y'(0) = 4 = at, ke -3kye .
or
-k, -3k, = 4 (5.34)

Simultaneous solution of (5.33) and (5.34) yields k; = 6.5 and k, = -3.5. By substitution into
(5.32), we obtain

y(t) = yn(t) = 65¢ " —3.5¢" (5.35)
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4")
y =
(-7/2*%exp(-3*t) *exp(t)+13/2) /exp(t)

pretty(y)
- 7/2 exp(-3 t) exp(t) + 13/2

The function y = f(t), of relation (5.35), shown in Figure 5.1, was plotted with the use of the
MATLAB script
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y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3, 'Dy(0)=4"); ezplot(y,[0 5])

13/2 exp(-t)-7/2 exp(-3 t)

3.5

3

2.5

Figure 5.1. Plot for the function y = f(t) of Example 5.6.
|

Example 5.7
Find the total solution of the ODE

d- d 2

4Y 44 43y = 3¢ (5.36)
dt dt

subject to the initial conditions y(0) = 1 and y'(0) = -1

Solution:

The left side of (5.36) is the same as that of Example 5.6.Therefore,
ya(h) = ke '+ ke (5.37)
(We must remember that the constants k, and k, must be evaluated from the total response).
To find the forced response, we assume a solution of the form
yp = Ae! (5.38)

We can find out whether our assumption is correct by substituting (5.38) into the given ODE of
(5.36). Then,

4Ae P —8Ae H +3Ae = 3¢ (5.39)
from which A = -3 and the total solution is
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y(t) = yn+yp = ke ke -3 (5.40)

The constants k, and k, are evaluated from the given initial conditions. For this example,

y(0) = 1 = ke"+k,e’ -3¢’

or
Also,
' _ 1 _ dy ot -3t -2t
y'(0) = -1 = m = —-k,e -3k,e " +6e —o
t=0
or

Simultaneous solution of (5.41) and (5.42) yields k; = 2.5 and k, = 1.5. By substitution into
(5.40), we obtain

y(t) = yN+VF = 2.5¢ " +1.5¢ " =3¢ (5.43)
Check with MATLAB:
y=dsolve(D2y+4*Dy+3*y=3*exp(-2*t)', 'y(0)=1', 'Dy(0)=-1)
v =
(-3*exp (-2*t) *exp (t)+3/2*exp (-3*t) *exp(t)+5/2) /exp(t)
pretty(y)

The plot is shown in Figure 5.2 was produced with the MATLAB script
y=dsolve('D2y+4*Dy+3*y=3*exp(-2*t)', 'y(0)=1"', 'Dy(0)=-1"); ezplot(y,[0 8])

Example 5.8
Find the total solution of the ODE

2
dy ¢y _
P+6dt +9y = 0 (5.44)

subject to the initial conditions y(0) = -1 and y'(0) = 1
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5/2 exp(-1)+3/2 exp(-3 t)-3 exp(-2 t)

|

0.9\ ------f-------q-------- R el S
|

08F - N~ -l ]

|

|
0.7F-—--N\c- e
06 -~ A ——

-

N E,,k,e-

03F-------

02F -

R N T —,—

o
PN S
[
wF--
NG
o

Figure 5.2. Plot for the function y = f(t) of Example 5.7.
Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found

. .2
from the characteristic equation s” + 6s+9 = 0 whose roots are s, = s, = -3 (repeated roots).

Thus, the total response is
y(t) = yy = ke +kyte " (5.45)

Next, we evaluate the constants k; and k, from the given initial conditions. For this example,

y(0) = -1 = ke’ +k,(0)e’

or
k, = -1 (5.46)
Also,
y(0) = 1= ‘(11—{ = 3kje ke < Bkgte |
t=0
or

From (5.46) and (5.47) we obtain k; = -1 and k, = -2. By substitution into (5.45),

y(t) = e o 2te (5.48)
Check with MATLARB:

y=dsolve(D2y+6*Dy+9*y=0', 'y(0)=-1', 'Dy(0)=1")
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%
—exp(-3*t)-2*exp(-3*t) *t

The plot shown in Figure 5.3 was produced with the MATLAB script
y=dsolve('D2y+6*Dy+9*y=0', 'y(0)=-1', 'Dy(0)=1"); ezplot(y,[0 3])

-exp(-31)-2 exp(-3 1) t

-0.1
-0.2
-0.3

-0.4
-0.5

-0.6
-0.7

-0.8

-0.9

Figure 5.3. Plot for the function y = f(t) of Example 5.8.

Example 5.9
Find the total solution of the ODE

2
ﬂ+5d—y

-2t
+ 6y = 3e
dt dt

(5.49)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants k;
and k, . By inspection, the roots of the characteristic equation of (5.49) are s, = -2 and s, = -3

and thus the natural response has the form

3t

yy = ke 24k, e (5.50)
Next, we find the forced response by assuming a solution of the form
yp = Ae ! (5.51)

We can find out whether our assumption is correct by substitution of (5.51) into the given ODE of

(5.49). Then,
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4Ae ' Z10Ae " + 6Ae ! = 3¢ (5.52)

but the sum of the three terms on the left side of (5.52) is zero whereas the right side can never be
zero unless we let t — o and this produces a meaningless result.

The problem here is that the right side of the given ODE of (5.49) has the same form as one of the

terms of the natural response of (5.50), namely the term k, et

To work around this problem, we assume that the forced response has the form
yp = Ate”! (5.53)

that is, we multiply (5.51) by t in order to eliminate the duplication of terms in the total response.
Then, by substitution of (5.53) into (5.49) and equating like terms, we find that A = 3. There-
fore, the total response is

Check with MATLARB:

y=dsolve('D2y+5*Dy+6*y=3*exp(-2*1)')

y:
-3*exp(-2*t)+3*t*exp (-2*t)+Cl*exp (-3*t) +C2*exp (-2*t)

We observe that the first and last terms of the displayed expression above have the same form and
thus they can be combined to form a single term C3*exp (-2*t) .

Example 5.10

Find the total solution of the ODE
ﬁ+5c—1z+6y = 4cos5t (5.55)
at> dt

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants k;
and k,. We observe that the left side of (5.55) is the same of that of Example 5.9. Therefore, the

natural response is the same, that is, it has the form
-2 3
vy = ke ke (5.56)

Next, to find the forced response and we assume a solution of the form
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yr = Acos5t 5.57
F

We can find out whether our assumption is correct by substitution of the assumed solution of

(5.57) into the given ODE of (5.56). Then,
—25Acos5t—25Asin5t+ 6AcosS5t = —19Acos5t—25Asin5t = 4cosSt

but this relation is invalid since by equating cosine and sine terms, we find that A = —-4/19 and
also A = 0. This inconsistency is a result of our failure to recognize that the derivatives of A cos5t

produce new terms of the form Bsin5t and these terms must be included in the forced response.
Accordingly, we let
yp = kjsin5t+k,cos5t (5.58)

and by substitution into (5.55) we obtain
—25k;sin5t — 25k, cos 5t + 25kycos 5t — 25k, sin5t + 6k;sinSt + 6k, cos S5t = 4cos5t

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

19k, +25k, = 0

(5.59)
We use MATLAB to solve (5.59)
format rat; [k3 k4]=solve(19*x+25*y, 25*x—19*y—4)
k3 =
50/493
kd =
-38/493
Therefore, the total solution is
-2t -3t 50 . -38
y(t) = yn+yp(t) = ke " +ke T+ R81n5t+ 4—9§cos5t (5.60)

Check with MATLAB:
y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)"); y=simple(y)

y’:
-38/493*cos (5*t)+50/493*sin(5*t)+Cl*exp (-3*t)+C2*exp (-2*t)

In most engineering problems the right side of the non-homogeneous ODE consists of elementary

functions such as k (constant), x" where n is a positive integer, ¢, coskx, sinkx, and linear
combinations of these. Table 5.1 summarizes the forms of the forced response for a second order
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ODE with constant coefficients.

TABLE 5.1 Form of the forced response for 2nd order differential equations

2
Forced Response of the ODE a(—i——X + b(—h’ +cy = f(t)

a? dt
f(t) Form of Forced Response yy (t)
k (constant) K (constant)
kt" (n = positive integer) Kot"+K, " '+ L+ K, t+K,

ke (r =real or complex) Ke'

kcosat or ksinat (o =constant) | K cosat + K, sinot

. -1
kt"e"cosat or kt"e"'sinat (Ko t" + K, "+ K,_t+ Kn)ertcos(xt

+ (Ko t"+K " 4K, t+ K )e sinat

We must remember that if f(t) is the sum of several terms, the most general form of the forced
response yg(t) is the linear combination of these terms. Also, if a term in yg (t) is a duplicate of a
term in the natural response yy (t), we must multiply yg(t) by the lowest power of t that will
eliminate the duplication.

Example 5.11
Find the total solution of the ODE

2

Ty q gy = e (5.61)
at dt

Solution:

No initial conditions are given; therefore we will express solution in terms of the constants k; and

k, . The roots of the characteristic equation are equal, thatis, s, = s, = -2, and thus the natural

response has the form
yy = ket kyte (5.62)

To find the forced response (particular solution), we refer to the table of the previous page and

from the last row we choose the term kt"¢"'cosat. This term withn = 1, r = =2, and o = 0,
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reduces to kte >*. Therefore the forced response will have the form

yp = (kyt+ky)e ™ (5.63)
But the terms ¢ *' and te ' are also present in (5.61); therefore, we multiply (5.62) by t* to
obtain a suitable form for the forced response which now is

v = (ks t +k,t)e " (5.64)

Now, we need to evaluate the constants k; and k,. This is done by substituting (5.64) into the

given ODE of (5.61) and equating with the right side. We use MATLAB do the computations as
shown below.

syms t k3 k4 % Define symbolic variables
fO=(k3*t"3+k4*t"2)*exp(-2™1); % Forced response (5.64)

f1=diff(f0); f1=simple(f1) % Compute and simplify first derivative

f1 =

—t*exp (-2*t) * (-3*k3*t-2*kd+2*k3*t"2+2*kd*t)

f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative

f2 =

2%exp (-2*t) *(3*k3*t+kd-6*k3*t"2-4*kd*t+2*k3*t"3+2*kd*t"2)
f=f2+4*f1+4*f0; f=simple(f) % Form and simplify the left side of the given ODE

f = 2*(3*k3*t+kd) *exp(-2*t)
Finally, we equate £ above with the right side of the given ODE, that is

2(3kst+k,)e = te X — e (5.65)

and we find k; = 1/6 and k, = —1/2. By substitution of these values into (5.64) and combining
the forced response with the natural response, we obtain the total solution

13 -2t 1o -2t
—=te

y(t) = k et kote +ote 5.66
1 2 6 2

We verify this solution with MATLAB as follows:
z=dsolve('D2y+4*Dy+4*y=t*exp(-2*t)—exp(-2*t)')

Z =
1/6*exp (-2*t) *t"3-1/2%exp (-2*t) *t"2
+Cl*exp (-2*t) +C2*t*exp (-2*t)
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5.6 Using the Method of Variation of Parameters for the Forced Response

In certain non—-homogeneous ODEs, the right side f(t) cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters.
This method will work with all linear equations including those with variable coefficients such as

2
Y a4 ey = £(1) (5.67)
dt? dt

provided that the general form of the natural response is known.

Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants k; and k, by two variables u; and

u, that satisty the following three relations:

Y=y +thy, (5.68)
dy du, _ o 5.60
'(R}’l +E?Y2 = (5.69)

dy; dy, du, dy,

T I TR T (5.70)

Simultaneous solution of (5.68) and (5.69) will yield the values of du,/dt and du,/dt; then, inte-
gration of these will produce u; and u,, which when substituted into (5.67) will yield the total

solution.

Example 5.12
Find the total solution of

2
&y 43y 212 (5.71)
a2 dt

in terms of the constants k; and k, by the
a. method of undetermined coefficients
b. method of variation of parameters

Solution:

With either method, we must first find the natural response. The characteristic equation yields

5-20 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Using the Method of Variation of Parameters for the Forced Response

the roots s; = -1 and s, = -3. Therefore, the natural response is

3t

yy = ke +ky e (5.72)

a. Using the method of undetermined coefficients we let y; = k; (a constant). Then, by substitu-

tion into (5.71) we obtain k; = 4 and thus the total solution is

y(t) = yy+Yp = kle_t+kze_3t+4 (5.73)

b. With the method of variation of parameters we begin with the natural response found above as

(5.72) and we let the solutions y, and y, be represented as

3t

y,=¢ ' and y,=¢ (5.74)
Then by (5.68), the total solution is
y = wy+tuy,
or
y=ue '+ uze_3t (5.75)
Also, from (5.69),
du, du, 0
dt yl + dt y2 -
or
du;  du, 5
Ee + E =0 (576)
and from (5.70),
du; dy, du, dy,
TR TIMF I T
or
du; o du -3t
e )23 = 12 (5.77)
Next, we find du,;/dt and du,/dt by Cramer’s rule as follows:
0 et
d 3t 3t 3t
du; 12 3 2 | 12e o (5.78)
dt ot Ot et
e 3¢
and
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d _ —t —t
u, _ I=e 12 _ 12e _ _6e3t (5.79)
dt M DY

Now, integration of (5.78) and (5.79) and substitution into (5.75) yields

u, = 6Ietdt = 6et+k1 u, = —6Ie3tdt = —2€3t+k2 (5.80)

y ule_t+u26_3t = (6et+k1)e_t+(—263t+k2)e_3t

—t -3t —t -3t (5.81)
=6+ke —-2+k,e =ke +ke +4
We observe that the last expression in (5.81) is the same as (5.73) of part (a).

Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=12")

y:
(d*exp (L) +Cl*exp (-3*t) *exp (t)+C2) /exp(t)

|
Example 5.13

Find the total solution of

2
(-1—1 +4y = tan2t (5.82)
at*

in terms of the constants k, and k, by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use
the method of variation of parameters.

The characteristic equation is s“ +4 = 0 from which s = 4j2 and thus the natural response is

yy = k@ + ke (5.83)
We let
y, = cos2t and y, = sin2t (5.84)
Then, by (5.68) the solution is
y = uy, +u,y, = u,cos2t+u,sin2t (5.85)
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Also, from (5.69),
dy, du,
dt -nt dt =y, =0
or
dy, du,
Ecos2t + ESIHZt 0

and from (5.70),

duy; dy, du, dy,
_—— 4 —

— () = T Casin20) + £2(2c0520) = tan2t
dt dt = dt dt_()_a(_ Sin )"‘dt(COS ) = tan

Next, we find du,/dt and du,/dt by Cramer’s rule as follows:

0 sin2t Sin22t
fi_u_] _ _|tan2t 2cos2t] _ cos2t _ —sin"2t
dt cos2t sin2t 2cos 2t + 2sin22t  2C0s2t

‘—25in2t 2cos2t
and
cos2t 0
& _ ‘—2sin2t tan2t| _ sin2t
dt 2 2

Now, integration of (5.88) and (5.89) and substitution into (5.85) yields

_ J‘sm 2t _ s1n2t
2

1
cos2t -1 In(sec2t + tan2t) + k,

u, = %J.sintht = - COjzt+k2

cos2tIn(sec2t + tan2t) + k; cos2t —

= + =
Yy =Wy tuy, 4 4 4

- icosZtln(seth + tan2t) + k, cos2t + k, sin2t
Check with MATLAB:
y=dsolve('D2y+4*y=tan(2*t)")

y:

sin2tcos2t 1 sin2tcos2t

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

-1/4*cos(2*t)*log((1l+sin(2*t))/cos(2*t))+Cl*cos(2*t)+C2*sin(2*t)
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5.7 Expressing Differential Equations in State Equation Form

A first order differential equation with constant coefficients has the form
alda% +a, y(t) = x(t) (5.93)

In a second order differential equation the highest order is a second derivative.

An nth—order differential equation can be resolved to n first—order simultaneous differential equa-
tions with a set of auxiliary variables called state variables. The resulting first—order differential
equations are called state space equations, or simply state equations. The state variable method offers
the advantage that it can also be used with non-linear and time—varying systems. However, our
discussion will be limited to linear, time—invariant systems.

State equations can also be solved with numerical methods such as Taylor series and Runge-
Kutta methods; these will be discussed in Chapter 9. The state variable method is best illustrated
through several examples presented in this chapter.

Example 5.14

A system is described by the integro—differential equation
R R Y AT
R1+Ldt+cj_m1dt =e (5.94)

Differentiating both sides and dividing by L we obtain

d't Bd_l 1 . _ l jot

_dt2+L t+L—C1 = L_](JJC (5.95)
or

2 .

dt__l}é_l. 1. jot

E =T 5 Lol tiwe (5.96)

Next, we define two state variables x, and x, such that

X, = i (5.97)
and
o = di oAk (5.98)
2T dt o dt 1
Then,
%, = d’i/dt’ (5.99)
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where %, denotes the derivative of the state variable x, .

From (5.96) through (5.99), we obtain the state equations

X1 = Xy

R.1. 1. o (5.100)

[t is convenient and customary to express the state equations in matrix form. Thus, we write the
state equations of (5.100) as

. 0 1 0
H =| 1 R H 1. U (5.101)
Y |TTc gl [piee

We usually write (5.101) in a compact form as

X = Ax+bu (5.102)
where
% 0 1 X 0
x= ", A = 1 R x= H, b= 1o ol and u = any input (5.103)
X2 C L X2 L1®

The output y(t) is expressed by the state equation
y = Cx+du (5.104)

where C is another matrix, and d is a column vector. Therefore, the state representation of a sys-
tem can be described by the pair of the of the state space equations

X = Ax+bu
y = Cx+du (5.105)
The state space equations of (5.105) can be realized with the block diagram of Figure 5.1.
el )
u I dt @ p) y
l T
L d]
Figure 5.4. Block diagram for the realization of the state equations of (5.105)
Numerical Analysis Using MATLAB® and Excel®, Third Edition 5-25

Copyright © Orchard Publications



Chapter 5 Differential Equations, State Variables, and State Equations

We will learn how to solve the matrix equations of (5.105) in the subsequent sections.

Example 5.15
A fourth—order system is described by the differential equation

dly d’y . dy . d
——-—%+a3—-—-3¥+a2——-—¥+a1——}—,+a0 y(t) = u(t) (5.1006)
dt dt dt dt

where y(t) is the output and u(t) is any input. Express (5.100) as a set of state equations.
Solution:

The differential equation of (5.106) is of fourth—order; therefore, we must define four state vari-
ables that will be used with the resulting four first—order state equations.

We denote the state variables as x,, x,, X5, and x,, and we relate them to the terms of the given
differential equation as

X, = y(t) X, = ((11—)t/ Xy = dgg Xy = gd—g—/ (5.107)
t t
We observe that

Xl = X2
Xz = X3
‘= x, (5.108)

d4

d_tzl = X4 = —aOX1—31X2—32X3—a3X4+u(t)

and in matrix form

X, 0 1 0 0fx] |o

X 200 10 IXa) 10} gy (5.109)

|0 0 0 1|k |0

Xy —dp —a; —a; —a3] X, 1
In compact form, (5.109) is written as

X = Ax+bu (5.110)

where
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X 0 1 0 O Xy 0

x=1%, A= 0 0 1 0, x =%, b=0, and u = u(t)
X 0 0 0 1 X3 0
Xy —4) —a; —a, —a, X4 1

5.8 Solution of Single State Equations

Let us consider the state equations

ox + fu (5.111)
y = k;x+k,u '

where o, B, k;, and k, are scalar constants, and the initial condition, if non—zero, is denoted as
We will now prove that the solution of the first state equation in (5.111) is

_ t
x(t) = ¢ t°)xo+e‘“j ¢ **Bu(t)dr (5.113)

)
Proof:

First, we must show that (5.113) satisfies the initial condition of (5.112). This is done by substitu-
tion of t = t, in (5.113). Then,

t
x(t,) = ea(to_%)xo + eatj Oefmﬁu(r)dr (5.114)
to
The first term in the right side of (5.114) reduces to x, since

oty —ty)
(S

Xo = €%y = X, (5.115)

The second term of (5.114) is zero since the upper and lower limits of integration are the same.
Therefore, (5.114) reduces to x(t,) = x, and thus the initial condition is satisfied.

Next, we must prove that (5.113) satisfies also the first equation in (5.111). To prove this, we dif-
ferentiate (5.113) with respect to t and we obtain

B t
X(t) = Z% & t°)x0)+dit{e°“j e_MBu(r)dr}
to
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B t
%(t) = e’ t°)x0+cxe°“j e Bu(t)dt + e[ “Bu(n)ll, _,
to
_ t
_ a[e““ t°)x0+e‘“j e_MBu(’c)d’c}+eme_m[3u(t)
to
B t
%(t)= a[e““ Wy + [ ea(t_T)Bu(’c)dr}+Bu(t) (5.116)
to

We observe that the bracketed terms of (5.116) are the same as the right side of the assumed solu-
tion of (5.113). Therefore,

X = oax + Pu

and this is the same as the first equation of (5.111). The second equation of (5.111) is an algebraic
equation whose coefficients are scalar constants.

In summary, if o and B are scalar constants, the solution of

X = ax + Bu (5.117)
with initial condition
is obtained from the relation
_ t
x(t) = eoc(t tO)XO + ewI e “Bu(t)dr (5.119)
t

0

5.9 The State Transition Matrix
Let us again consider the state equations pair

¢ = AX+Db
* T AR ol (5.120)
y = Cx+du

where for two or more simultaneous differential equations A and C are 2x2 or higher order

matrices, and b and d are column vectors with two or more rows. In this section we will intro-

. . A . . . .
duce the state transition matrix ¢”', and we will prove that the solution of the matrix differential
equation

X = Ax+bu (5.121)
with initial conditions
X(ty) = Xq (5.122)
is obtained from the relation
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A(t—ty)

t
x(t) = e x0+eAtJ- e_ATbu(’c)dr (5.123)

to

Proof:

Let A be any n x n matrix whose elements are constants. Then, another n x n matrix denoted as
¢(t), is said to be the state transition matrix of (5.34), if it is related to the matrix A as the matrix
power series

o(t)=e =T+ At+ %Aztz + %AW T I%A“t“ (5.124)
where I is the n x n identity matrix.
From (5.124), we find that
0(0) = ™ = 1+A0+... = 1 (5.125)
Differentiation of (5.124) with respect to t yields
o'(t) = d%eAt: 0+A-1+A%t+... = A+A%+... (5.126)
and by comparison with (5.124) we obtain
At Aot (5.127)

dt

To prove that (5.123) is the solution of the first equation of (5.120), we must prove that it satisfies
both the initial condition and the matrix differential equation. The initial condition is satisfied
from the relation

t
Alty—t,) Aty _
x(t) =¢e ° Uxo+e OJ- e *bu(t)dr =

to

%% +0 = Ix, = x, (5.128)

where we have used (5.125) for the initial condition. The integral is zero since the upper and lower
limits of integration are the same.

To prove that the first equation of (5.120) is also satisfied, we differentiate the assumed solution

Alt—t t
x(t) = ¢ 0)x0+eAtI ¢ bu(t)dr

to

with respect to t and we use (5.127), that is,

d At At
a = Ae
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Then,

t—t t_ _
)+ A e bu(n)dr + ¢e M bu(t)

to

A
x(t) = Ae
or

_ t
x(t) = A[eA(t tO)XO + eAtI e_ATbu(’c)d‘c} + eAte_Atbu(t) (5.129)
t
We recognize the bracketed terms in (5.129) as x(t), and the last term as bu(t). Thus, the expres-
sion (5.129) reduces to
() = Ax +bu

In summary, if A is an n X n matrix whose elements are constants, n>2, and b is a column vec-
tor with n elements, the solution of

x(t) = Ax +bu (5.130)
with initial condition
Xy = X(tg) (5.131)
is
_ t
x(t) = " t°)x0+e‘“j ¢ bu(t)dr (5.132)
t

Therefore, the solution of second or higher order systems using the state variable method, entails

. . A . .
the computation of the state transition matrix e”', and integration of (5.132).

5.10 Computation of the State Transition Matrix e

Let A be an nxn matrix, and I be the nxn identity matrix. By definition, the eigenvalues A,

i=1,2,...,n of A are the roots of the nth order polynomial

det[A=Al] = 0 (5.133)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(5.133) can be real (unequal or equal), or complex numbers.

. . At . .
Evaluation of the state transition matrix e is based on the Cayley—Hamilton theorem. This theo-
rem states that a matrix can be expressed as an (n— 1)th degree polynomial in terms of the matrix
A as

M= alraAra,A’+... +a, A" (5.134)
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where the coefficients a, are functions of the eigenvalues A. We accept (5.134) without proving

it. The proof can be found in Linear Algebra and Matrix Theory textbooks.
Since the coefficients a, are functions of the eigenvalues A, we must consider the following cases:
Case I: Distinct Eigenvalues (Real or Complex)

It A #X,#A;#... #A,, that is, if all eigenvalues of a given matrix A are distinct, the

coefficients a, are found from the simultaneous solution of the following system of equa-

tions:
2 -1 At
a0+a1)\41+az)\41 +...+an_1)\4111 = ¢ :
2 n-1 At
ag+a A +aA +...+a, A,  =c¢ (5.135)
2 n-1 Ant
ag+a A, +aA +...+a, A, =¢

Example 5.16

Compute the state transition matrix e"" given that A = {_2 1}
0 -1

Solution:

We must first find the eigenvalues A of the given matrix A . These are found from the expansion

of
detfA-AI] =0
For this example,

det[A—Al] —detﬂ—2 1}_{1 OH:de{—z—K 1 }o
0 -1 0 1 0 —1-A

(-2-M)(=1-2)=0

or
A+ 1)(A+2) = 0
Therefore,
Ay =-1 and A, =-2 (5.136)

Next, we must find the coefficients a;, of (5.134). Since A is a 2 X 2 matrix, we only need to con-

sider the first two terms of that relation, that is,
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At

e =al+aA (5.137)

The coefficients a, and a, are found from (5.135). For this example,

or

ao+al)\«1 = ¢

ag+a,(-1) = ¢

, (5.138)
a,+a,;(-2) = e ‘
Simultaneous solution of (5.138) yields
a, = 2 e
L (5.139)
a, = ¢ —e
and by substitution into (5.137),
eAt _ (Ze_t—e_zt){ 1 0 } + (e—t_e—Zt) {_2 1}
0 1 0 -
or
At e—Zt e—t _ e—Zt
M = (5.140)
0 e

. A . , : ,
In summary, we compute the state transition matrix e for a given matrix A using the following
procedure:

1.

We find the eigenvalues A from det[A —AI] = 0. We can write [A — AI] at once by subtract-
ing A from each of the main diagonal elements of A . If the dimension of A isa 2 x 2 matrix,

it will yield two eigenvalues; if it is a 3 X 3 matrix, it will yield three eigenvalues, and so on. If

the eigenvalues are distinct, we perform steps 2 through 4 below; otherwise we refer to Case
II.

2. If the dimension of A is a 2 x 2 matrix, we use only the first 2 terms of the right side of the
state transition matrix
At 2 n-1
e =aJJ+aA+a,A"+...+a, A (5.141)
If A matrix is a 3 X 3 matrix, we use the first 3 terms, and so on.
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3. We obtain the a, coefficients from

2 n-1
a0+al}\41+az)\41+...+an_l}\41 = ¢

2 n-1 Ayt
ao+al}\-2+az)\«2+...+an_l)\«2 = ¢ ?
2 -1 Ayt
ag+ah +aA +...+a, A =e

We use as many equations as the number of the eigenvalues, and we solve for the coefficients

ai.

4. We substitute the a, coefficients into the state transition matrix of (5.141), and we simplify.

Example 5.17

o . A .
ompute ¢ state transition maftrix € ven a
Compute the state transit t " given that

5 7 -5
A = 0 4 —1 (5142)
2 8 -3

Solution:

1. We first compute the eigenvalues from det[A —AI] = 0. We obtain [A — AI] at once, by sub-
tracting A from each of the main diagonal elements of A . Then,

5-A 7 -5
det[A - AI] = det| o 4-% -1 | =0 (5.143)

2 8 -3-A

and expansion of this determinant yields the polynomial

A6+ 1IA-6 =0 (5.144)
We will use MATLAB roots(p) function to obtain the roots of (5.144).

p=[1 -6 11 —6]; r=roots(p); fprintf(' \n); fprintf(lambdal = %5.2f \t, r(1));...
fprintf(lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f", r(3))

lambdal = 3.00 lambda2 = 2.00 lambda3 = 1.00

and thus the eigenvalues are
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=1 A=2 A=3 (5.145)

2. Since A isa 3 x 3 matrix, we need to use the first 3 terms of (5.134), that is,

M = a,l +a,A+ aLZA2 (5.146)

3. We obtain the coefficients a,, a;, and a, from

2 At
2 Ayt
aO + al}\-z + az}\«z = ¢ ?
2 Ast
ao + al)\;:; + 327\43 = ¢ ’
or )
d + a + a = ¢€
2t
a,+2a,+4a, = ¢ (5.147)
3t
ag+3a,+9a, = ¢

We will use the following MATLAB script for the solution of (5.147).

B=sym([1 1 1;1 2 4;1 3 9]); b=sym('[exp(t); exp(2*1); exp(3*1)]'); a=B\b; fprintf(' \n');...
disp(‘a0 ='); disp(a(1)); disp(‘al ='); disp(a(2)); disp(‘a2 ='); disp(a(3))

a0 =

3*exp(t)-3*exp (2*t) +exp(3*t)

al =

-5/2%exp (t)+4*exp (2*t) -3 /2*exp(3*t)

az =

1/2%exp(t)-exp(2*t)+1/2%exp (3*t)

Thus,
a, = 3¢ —3e’ v e

5t 462t 3 3t

al--—ze +tac "Ee (5.148)
. = let_e2t+le3t
272 2

4. We also use MATLAB to perform the substitution into the state transition matrix, and to per-
form the matrix multiplications. The script is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)-3*exp(2*t); a1 = —-5/2*exp(t)-3/2*exp(3*t)+4*exp(2*1);...
a2 = 1/2*exp(t)+1/2*exp(3*t)—exp(2*t);...
A=[57 -5; 0 4 -1; 2 8 -3]; eAt=a0*eye(3)+al1*A+a2*A"2

5-34 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Computation of the State Transition Matrix

eAt =
[-2*exp (t)+2*exp (2*t)+exp (3*t) , -6*exp (L) +5*exp (2*t) +exp (3*tL),
d*exp(t) -3*exp(2*t)-exp(3*t) ]
[-exp(t)+2*exp(2*t) —exp (3*t) , -3*exp (t) +5*exp (2*t) -exp (3*t),
2*exp(t) -3*exp (2*t) +exp (3*t) ]
[-3*exp(t)+4*exp(2*t) -exp(3*t),-9*%exp(t)+10*exp (2*t) -exp(3*t),
6*exp(t)-6*exp(2*t)+exp (3*t) ]

Thus,

3t 3t 3t

t 2t
4e —3e" —¢

t 2t
2¢e -3¢ +e

t 2t 3t
6e —6e” +e¢

t 2t
—6e +5¢e" +e
3t

t 2t
—2e +2e +e

At 3t

€ = 3t

t 2t t 2t
—e +2e —¢ —-3e +5e¢" —¢

“3e'+4e’ — et —9et+ 106X — e

Case II: Multiple Eigenvalues

In this case, we will assume that the polynomial of
det[A—AI] = 0 (5.149)

has n roots, and m of these roots are equal. In other words, the roots are

AM=A= Ay = Ay Apigs Ay (5.150)
The coefficients a; of the state transition matrix
M= a01+a1A+azA2+...+an_1An_1 (5.151)

are found from the simultaneous solution of the system of equations of (5.152) below.

Example 5.18

. At .
Compute the state transition matrix e " given that

i

1. We first find the eigenvalues A of the matrix A and these are found from the polynomial of
det[A —AI] = 0. For this example,

Solution:
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A
ao+al?»1+a2)»f+...+an71}\‘1‘"1 =e it
d n-— d At
d_)\’l(ao‘i'al}\,l'i'az}\.?‘i'...+an_1}\,1 1) = d—)\’le 1
d2 2 n-1 d2 }"1t
&?(ao+a17~1+a2}»1+...+an71}hl ) = (_1_)36
v (5.152)
—dm_l 2 n-1 dm_1 }‘lt
Owln_l(ao+al)»1+a2)»1+...+an_1k1 ) = o
A
ao+al}\4m+l+az}\43n+l+...+an_l}\,?n_+ll = ¢C m+1t
A
ao+al7»n+az7»§+...+an_l}\':1_l = e nt
det[A—AI] = det|~ =2 0]
2 —1-A
=(-1-A)(-1-2)=0
= (k+1)2:0
and thus,
}\41 = }\,2 = —1

2. Since A isa 2 x2 matrix, we only need the first two terms of the state transition matrix, that

is,

e = al+a,A (5.153)

3. Wefind a, and a, from (5.152). For this example,

A
d -4 M
d)»l(ao +aA) = d?»le
or
gt
a; = te
and by substitution with A, = A, = -1 , we obtain
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—t

al = te_
Simultaneous solution of the last two equations yields

-t —t
a, = ¢ +te

a, =te

4. By substitution of (5.154) into (5.153), we obtain

e = (eft+te7t) 1o +te ! -1 0 _ M=
0 1 2 -1 Ste

(5.154)

(5.155)

We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix. To find out

how it is used, we invoke the help eig command.

We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.16 through

5.18, and we will briefly discuss eigenvectors on the next section.
For Example 5.16:
A= [-2 1; 0 —-1]; lambda=eig(A)

lambda =
-2
-1

For Example 5.17:
B=[57 -5 0 4 —-1; 2 8 -3]; lambda=eig(B)

lambda =
1.0000
3.0000
2.0000

For Example 5.18:
C =[-1 0;2 —-1]; lambda=eig(C)

lambda =
-1
-1
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5.11 Eigenvectors

Consider the relation
AX = AX (5.156)

where A is an nxn matrix, X is a column vector, and A is a scalar number. We can express this
relation in matrix form as

app app SRS X1
1 8y -e- || X2 _ 51 %2 (5.157)
an1 p2 -+ App| [ Xy Xn
We write (5.157) as
(A-ADX =0 (5.158)
or
(a;,-M)X;  apX, ... apXx,
ayx;  (ap—A)Xy ... ayX, =0 (5.159)
a,1X) 4%y e (B = A)Xy

The equations of (5.159) will have non~—trivial solutions if and only if its determinant is zero , that
is, if

(a;-A) a;, ... a,
det| 221 @A) .. Ay | (5.160)
a, a, ... (ay—»A)

Expansion of the determinant of (5.160) results in a polynomial equation of degree n in A, and it
is called the characteristic equation.

We can express (5.160) in a compact form as
det(A-AI) = 0 (5.161)

As we know, the roots A of the characteristic equation are the eigenvalues of the matrix A, and
corresponding to each eigenvalue A, there is a non—trivial solution of the column vector X, i.e.,

*, This is because we want the vector X in (5.158) to be a non—zero vector and the product (A-A1)X to be zero.
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X #0. This vector X is called eigenvector. Obviously, there is a different eigenvector for each
eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to
unit length. This is done by dividing each component of the eigenvector by the square root of the
sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

. : o o T
In many engineering applications the unit eigenvectors are chosen such that X - X" = I where

T . . . . . .
X is the transpose of the eigenvector X, and I is the identity matrix.

Two vectors X and Y are said to be orthogonal if their inner (dot) product is zero. A set of eigen-
vectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors)

and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram—
Schmidt Orthogonalization Procedure; it is discussed in Chapter 14.

The example which follows, illustrates the relationships between a matrix A, its eigenvalues, and
eigenvectors.

Example 5.19

Given the matrix

5 7 -5
A=10 4 -1
2 8 -3

a. Find the eigenvalues of A

b. Find eigenvectors corresponding to each eigenvalue of A

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.17, where we found the eigenvalues to be

b. We begin with

AX = AX
and we let
Xy
X = |x,
X3
Then,
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5 7 =501%1 S|
0 4 —1|[xy| = Alx, (5.162)
28 3|xy X5

or

5%, Tx, 5%, AX,

2x, 8%, -3x4 AX;

Equating corresponding rows and rearranging, we obtain

(5-M)x, 7X, —5X; 0
0 (4-Mx,  -x4 = |0 (5.164)
2x, 8x, —(3-M)x; 0

For A = 1, (5.164) reduces to
3%, —%3 = 0 (5.165)
By Crame’s rule, or MATLAB, we obtain the indeterminate values
X, =0/0  X,=0/0  X3=0/0 (5.166)
Since the unknowns x,, x,, and x; are scalars, we can assume that one of these, say x,, is

known, and solve x, and x; in terms of x,. Then, we obtain x, = 2x,, and x; = 3x,.

Therefore, an eigenvector for A = 1 is

X1 2x, 2 2
Xpo1= x| = | x| = %21 = |1 (5.167)
X5 3x, 3 3

since any eigenvector is a scalar multiple of the last vector in (5.167).

Similarly, for A = 2, we obtain x; = x,, and x; = 2x,. Then, an eigenvector for A = 2 is
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S| X 1 1
Xpoo= x| = | x| = X2|1] = |1 (5.168)
X, 2X, 2 2
Finally, for A = 3, we obtain x;, = —x,, and x; = x,. Then, an eigenvector for A = 3 is
Xy X2 -1 -1
Xpzs= |x| = [ x| =X 1| = |1 (5.169)
X3 X, 1 1

c. We find the unit eigenvectors by dividing the components of each vector by the square root of
the sum of the squares of the components. These are:

22+ 17 +3% = 14
JP+ 17427 = /6
JEDP+ 1P +17 = 3

The unit eigenvectors are

2 1 _1|
J14 J6 3
. 1 , 1 - 1
Unit X, _ = |— Unit X, _,= |— Unit X, _,= |— (5.170)
3 2 L
/14] 6] 3]
We observe that for the first unit eigenvector the sum of the squares is unity, that is,
2 )2 1 )2 3 \2 4 1 9
- — B R T I A | A71
(m) +(m) +(m) VRREVERYI (5.171)
and the same is true for the other two unit eigenvectors in (5.170).
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5.12 Summary

Differential equations are classified by:
Type — Ordinary or Partial
Order — The highest order derivative which is included in the differential equation

Degree — The exponent of the highest power of the highest order derivative after the differen-
tial equation has been cleared of any fractions or radicals in the dependent variable and its
derivatives

If the dependent variable y is a function of only a single variable x, that is, if y = f(x) , the

differential equation which relates y and x is said to be an ordinary differential equation and
it is abbreviated as ODE.

If the dependent variable y is a function of two or more variables such as y = f(x, t), where x
and t are independent variables, the differential equation that relates y, x, and t is said to be
a partial differential equation and it is abbreviated as PDE.

A function y = f(x) is a solution of a differential equation if the latter is satisfied when y and
its derivatives are replaced throughout by f(x) and its corresponding derivatives. Also, the
initial conditions must be satisfied.

The ODE
n n-1 m m-—1
and y+an71d ... +a1d—y+a0y = brnM+bn14d L +b1d—X+b0x
dt" de" ! dt at™ ae" ! dt

is a non—homogeneous differential equation if the right side, known as forcing function, is not
zero. If the forcing function is zero, the differential equation is referred to as homogeneous dif-
ferential equation.

The most general solution of an homogeneous ODE is the linear combination

where the subscript H is used to denote homogeneous and ki, k,, k, ..., k, are arbitrary con-

stants.

Generally, in engineering the solution of the homogeneous ODE, also known as the comple-
mentary solution, is referred to as the natural response, and is denoted as yy (t) or simply yy .

The particular solution of a non—-homogeneous ODE is be referred to as the forced response,
and is denoted as yg(t) or simply yg . The total solution of the non-homogeneous ODE is the

summation of the natural and forces responses, that is,
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Y(t) = ¥ Natural TY Forced = YN1YF
Response Response
The natural response yy contains arbitrary constants and these can be evaluated from the
given initial conditions. The forced response yy , however, contains no arbitrary constants. It is
imperative to remember that the arbitrary constants of the natural response must be evaluated
from the total response.

For an nth order homogeneous differential equation the solutions are

Syt St s t

yl:kle . Y2:kze ’ Y3:k3e 5 seey yn:knen

where s, s,, ..., s, are the solutions of the characteristic equation

n n-1 -0
a,s +a, S +..+ta;s+a, =
and a,a, ,,...,a,a, are the constant coefficients of the ODE

If the roots of the characteristic equation are distinct, the n solutions of the natural response
are independent and the most general solution is:

it t Syt

S S
yn = ke +ke’ 4. +ke

If the solution of the characteristic equation contains m equal roots, the most general solution
has the form:

m-—1. S1 syt syt

t
yn =k +kt+ o +kt e +k, e +...+kee

If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is s; = —o.+jB where o and B are real numbers, then another root is
s, = —0—jB. Then, for two complex conjugate roots we evaluate the constants from the
expressions

kleSlt + kzeSzt = efm(l<3 cosPt + k,sinPt)= efmk5 cos(Pt+ @)

The forced response of a non—homogeneous ODE can be found by the method of undeter-
mined coefficients or the method of variation of parameters.

With the method of undetermined coefficients, the forced response is a function similar to the
right side of the non-homogeneous ODE. The form of the forced response for second order
non-homogeneous ODEs is given in Table 5.1.

In certain non—-homogeneous ODE;s, the right side f(t) cannot be determined by the method
of undetermined coefficients. For these ODEs we must use the method of variation of parame-
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ters. This method will work with all linear equations including those with variable coefficients
provided that the general form of the natural response is known.

e For second order ODEs with constant coefficients, the method of variation of parameters
replaces the constants k; and k, by two variables u; and u, that satisfy the following three
relations:

yEuntwy

dy du, 0
dt N+ dt 2 =

dy; dy, du, dy,
—_——t — . —

FTRFTIRA T TR O

Simultaneous solution of last two expressions above will yield the values of du,/dt and
du,/dt; then, integration of these will produce u, and u,, which when substituted into the
first will yield the total solution.

¢ An nth-order differential equation can be resolved to n first—order simultaneous differential

equations with a set of auxiliary variables called state variables. The resulting first—order differ-
ential equations are called state space equations, or simply state equations.

e The state representation of a system can be described by the pair of the of the state space
equations

AX + bu
Cx + du

X

y

¢ In a system of state equations of the form
X = ax + pu

y = k;x+k,u

where o, B, k;, and k, are scalar constants, and the initial condition, if non-zero is denoted

as X, = x(ty), the solution of the first state equation above is

t—t t
x(t) = °)x0+e°“j ¢ *"Bu(t)dr

to

¢ [n a system of state equations of the form

= Ax +bu
y = Cx+du
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where for two or more simultaneous differential equations A and C are 2 x2 or higher order
matrices, and b and d are column vectors with two or more rows, the solution of the matrix
differential equation % = Ax+bu with initial conditions x(t,) = x, is obtained from the
relation
A(t-ty) TR
x() = e Uxg+e tj e “bu(t)dr

to

. At , ‘
where the state transition matrix e is defined as the matrix power series

_ At _ 1,22 1,33 1 ,nn
e(t)=e = I+At+2!A t +3!A T+ ... +n!A t
and 1 is the n x n identity matrix.
e If A isan nxn matrix, and I be the nx n identity matrix, the eigenvalues A,, i = 1,2, ...,n of
A are the roots of the nth order polynomial
det[A-AI] =0

. o At . .
e Evaluation of the state transition matrix ¢”' is based on the Cayley—Hamilton theorem. This
theorem states that a matrix can be expressed as an (n - 1)th degree polynomial in terms of the

matrix A as

At 2 -1
e’ = ad+aA+a,A"+...+a, A"

where the coefficients a; are functions of the eigenvalues A.
o If A #h,#hy#... #A,, that is, if all eigenvalues of a given matrix A are distinct, the coeffi-

cients a; are found from the simultaneous solution of the following system of equations:

2 n-1 At
ao+al}\-1+az}h1+...+an71k1 = ¢
2 n-1 Ayt
ao+al}\42+az)\42+...+an_1}\42 = ¢
At

|
o

2 n-1
ag+ A, +a A + ... +a, A, =

e [f the polynomial of det[A —AI] = 0 has n roots, and m of these roots are equal, that is, if
}\'l :}\42= }\-3... = )\«m, }\-

A, the coefficients a, of the state transition matrix

m+1>°
e = agl+a, A+ azA2 + ...+ anflAn_1
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are found from the simultaneous solution of the system of equations below.

Mt
2 -1
ao+al}\41+a2}\41+...+an_l}\frll = Cl
d 2 n-1 d Mt
—(ag+a A +aA]+...+a, A = —e¢
d}\-l( 0 17¥1 27M1 n—17%1 ) d}\:l
2 2
d 2 -1 d” At
—(ag+a M+ A +...+a,_ A ) = —e
7 + a1 A + aA, n-171 >
"’ 2 o d™ o
n- 1
m(ao+al}\41+a2}\41+...+an_1}\41 ) = m_le
A t
2 n-1 m+ 1
ao+al)\«m+1+az)\«m+l+...+an71}\-m+1 = ¢
At
2 -1
ag+a A, +a A +...+a,_ A =e

e We can use the MATLAB eig(x) function to find the eigenvalues of an n x n matrix.

e If A is an nXxn matrix, X is a non—zero column vector, and A is a scalar number, the vector
X is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue. Eigen-
vectors are generally expressed as unit eigenvectors, that is, they are normalized to unit length.
This is done by dividing each component of the eigenvector by the square root of the sum of
the squares of their components, so that the sum of the squares of their components is equal to
unity.
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5.13 Exercises

Solve the following ODEs by any method and verify your answers with MATLAB.

2
1. d—Y+4(&’+3y
2

=t-1

a2 dt

d? d t
2. —52V+4d—-‘ty+3y = 4¢”

dt

d? dy 2, 17 2 1
3. ——z’+2a+y = cos't Hint: Use cos’t = §(c0s2t+ 1)

dt

2
4. é—z]+y = sect

dt

5 Express the integro—differential equation below as a matrix of state equations where
k,, k,, and k; are constants.
2 t
dve g, dY +k2v+k1j vdt = sin3t+ cos3t
dt’ dt 0
6. Express the matrix of the state equations below as a single differential equation, and let
x(y) = y(1).

X 0 1 0 0] |X 0
Xz — 0 0 1 0 |1 X2 + 0 u(t)
X3 0 0 0 1| |x; 0
X, -1 -2 -3 -4] |x, 1

7. Compute the eigenvalues of the matrices A, B, and C below.

0 1 0
A=1 2 B = a 0 c=1|g¢ 0 1
3 -1 -a b

-6 -11 -6

Hint: One of the eigenvalues of matrix Cis —1.
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At .
8. Compute ¢”' given that

0 1 0
A=10 0 1
-6 -11 -6
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5.14 Solutions to End-of-Chapter Exercises

1. The characteristic equation of the homogeneous part is s° +4s +3 = 0 from which s; = -1

and s, = -3. Thus yy = ke + kze_3t. For the forced response, we refer to Table 5.1 and we

assume a solution of the form y. = k;t+k, and the total solution is
y = ke +kye kgt 4k,
The first and second derivatives of y are
—t =3t
d’y/dt® = ke +9k,e "

and by substitution into the given ODE

ke ' +9k,e +4(—k e = 3k,e  + ky) +3(kje +kye kgt k,) = t—1
Equating like terms we obtain

and simultaneous solution of the last two yields k; = 1/3 and k, = -7/9. Therefore,

-t 3t 1, 7
y = kje +kye +§t—§

Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=t—1’); y=simple(y)

y‘:
-7/9+1/3*t+Cl/exp(t)+C2/exp(t) "3

2. The characteristic equation of the homogeneous part is the same as for Exercise 1 and thus

_ _3 .
yn = ke +kye " For the forced response, we refer to Table 5.1 and we assume a solution of

the form yp = kjte™ where we multiplied ¢ by t to avoid the duplication with k,e™" . By sub-

stitution of this assumed solution into the given ODE and using MATLAB to find the first and
second derivatives we obtain:

y = kle_t+kze_3t+k3te_t
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We will use MATLAB to find the first and second derivatives of this expression.

syms t k3 % Define symbolic variables
y0=k3*t*exp(-t); % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative
f1 =

-k3*exp(-t)*(-1+t)
Thus, the first derivative of yy is
dye /dt = kye ' —kyte
y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
k3*exp (-t) * (-2+t)

and the second derivative of y is
d’y /dt’ = —2kze ' +kyte™
f=y2+4*y1+3*y0; f=simple(f) % Form and simplify the left side of the given ODE
f =
2*k3/exp (t)
and by substitution into the given ODE
21<3e*t = 4e

—t

or k; = 2. Therefore,

3 ote™

y = ke +kye
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=4*exp(-t)'); y=simple(y)
2*t/exp(t)-1/exp(t)+Cl/exp(t)+C2/exp(t) "3

We observe that the second and third terms of the displayed expression above have the same
form and thus they can be combined to form a single term C3/exp (t) .

3. The characteristic equation yields two equal roots s; = s, = —1 and thus the natural response
has the form

yy = ke +kte
For the forced response we assume a solution of the form

yp = kjcos2t+k,sin2t + ks
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We will use MATLAB to find the first and second derivatives of this expression.

syms t k1 k2 k3 k4 k5 % Define symbolic variables
y0=k3*cos(2*t)+k4*sin(2*1)+k5; % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative
f1 =

-2*k3*sin(2*t)+2*kd*cos (2*t)
Thus, the first derivative of yy is
dys /dt = —2k,sin2t + 2k, cos2t

y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
-4*k3*cos (2*t)-4*kd*sin(2*t)

and the second derivative of y is
d’y /dt® = —4k;cos2t-4k,sin2t

f=y2+2*y1+y0; f=simple(f) % Form and simplify the left side of the given ODE

£ =
-3*k3*cos (2*t)-3*kd*sin(2*t)-4*k3*sin(2*t)+4*kd*cos (2*t) +kb

Simplifying this expression and equating with the right side of the given ODE we obtain:

(= 3k, + 4k, ) cos2t — (4K, + 3k,)sin2t + kg = C°;2t+%

Equating like terms and solving for the k terms we obtain

—3ky+4k, = 1/2

4k, -3k, = 0
ks = 1/2
Simultaneous solution of the first two equations above yields ky; = -3/50 and k, = 4/50.

Therefore, the forced response is

Y = (=3/50)cos2t + (4/50)sin2t + 1/2

and the total response is

y = kle—t+k2te—t+l_3cos2t—4s1n2t
2 50

Check with MATLAR:
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y=dsolve('D2y+2*Dy+y=cos(2*t)/2+1/2"); f=simple(y)
f =
-3/50*cos (2*t)+2/25*sin(2*t)+1/2+Cl*exp(-t)+C2*exp(-t)*t

4. It is very difficult, if not impossible, to assume a solution for the forced response of this ODE.
Therefore, we will use the method of variation of parameters.

The characteristic equation is s”+ 1 = 0 from which s = +j and thus the natural response is

vy = ke + ke
We let
y; = cost and y, = sint
Then, by (5.68) the solution is
y = uy;+uyy, = uycost+u,sint (1)

Also, from (5.69),

dy, du,
E}ﬁ + E}b =0
or
dy, du, |
acost + Esmt =0
and from (5.70),
% . % + % . % = f(t) = %(—sint) + %(cost) = sect

Next, we find du,/dt and du,/dt by Cramer’s rule as follows:

0 sint sint
9_11_1 _ Isect C9St - _cost = @t _ oant (2)
dt cost sint cos’t + sin’t 1
—sint cost
and
cost 0
du, _ |-sint seet] _1_ ) (3
dt 1 1

Integration of (2) and (3) above and substitution into (1) yields
u, = J.(—tant)dt = —(~Incost) +k, = Incost +k,

uy = fdt = t+k,
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y = wy;+uwy, = (Incost+k;)cost+ (t+k,)sint
= k,cost +k,sint + tsint + cost(Incost)
Check with MATLAB:
y=dsolve('D2y+y=sec(t)'); f=simple(y)

f =
sin(t) *t+log(cos(t)) *cos(t)+Cl*sin(t)+C2*cos (t)

5. Differentiating the given integro—differential equation with respect to t we obtain

v’ dve o dv
—V—+k3—+kza+k1v = 3cos3t—3sin3t = 3(cos3t— sin3t)

a  dt
or
dv’ v’ | dv
= =k, —-k, =k, v+ 3(cos3t—sin3t) (1)
e’ dt t
We let
V:X1 C_lyzz_x‘l (_ilzz:X3:X2
Then,
dv’ I
T3 T3
e
and by substitution into (1)
Xy = —k;X; —kyX, — kyx; + 3(cos3t— sin3t)

Thus, the state equations are

){3 = —k;x; —k,x, —k3x3 + 3(cos3t - sin3t)
and in matrix form
X 0 1 0 X 0
X, =0 0 1]-[x,+]0] 3(cos3t—sin3t)
X -k =k —ks| |x, 1
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6. Expansion of the given matrix yields

Letting x = y we obtain

4 3 2
d d d d
—y—4+4—-%+3—-%+2—(-1%+y = u(t)

a4 dt
7.
a.
A=l 2 det(A—M):det[l e OJ:det -2 2 1_y
3 -1 3 -1 01 3 —1-A
(1-A)(=1-2)-6 =0,-1-A+A+1"-6 = 0, A" = 7,and thus A, = /7 Ay = —u7
b.
B=|20 det(B—M):det[ a 0f_ ;1 Oj —det|@™* 0 | -
-a b -a b 01 -a b-A
(a—A)(b-X) = 0,and thus A, = a Ay =D
C.
0 1 0 0 1 0 100
C=1p 0 1 det(C—Al) = det| | 0 1/=-2lo 10
6 -11 -6 6 -11 -6 00 1
210
=det| 0 _) 1 =0
6 11 —6-\
A2(=6-1) =6 — (=11)(=A) = A’ + 61>+ 114+ 6 = 0 and it is given that A, = —1. Then,
3 2
A +OM+1IA+T6 _ 52, 55 Lo A+ 1)(A+2)(A+3) = 0
(A+1)
and thus A, = -1 Ay = -2 A =3
8.

a. Matrix A is the same as Matrix C in Exercise 7. Then,
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and since A is a 3 x 3 matrix the state transition matrix is

e = al+aA+a,A’ (1)

Then,

At

2 —t

2 Mt -2t
agt+a M +aA, = =a;-2a,+4a,=c¢

Ay 3t

2 t _

symst; A=[1 -1 1;1 -2 4;1 -3 9];...
a=sym('[exp(-1); exp(—2*1); exp(—3*1)]); x=A\a; fprintf(' \n");...
disp('a0 =); disp(x(1)); disp('a1 = '); disp(x(2)); disp(‘a2 ='); disp(x(3))

a0 =

3*exp(-t)-3*exp(-2*t)+exp(-3*t)

al =
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)
az2 =
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)
Thus,

a, = 3¢ -3¢ 43
a, = 2.5¢ " —4e 4 1.5

a, = 05¢ " —e 2 +0.5¢"

Now, we compute ™ of (1) with the following MATLAB code:

syms t; a0=3*exp(-t)-3*exp(-2*t) +exp(-3*t); a1 =5/2*exp(-t)—4*exp(—-2*t) +3/2*exp(-3*t);...
a2=1/2*exp(-t)—exp(-2*t)+1/2*exp(-3*t); A=[0 1 0; 0 0 1; -6 —11 —6]; fprintf(' \n";...
eAt=a0*eye(3)+al*A+a2*AN2

eAt =

[3*exp(-t)-3*exp(-2*t)+exp(-3*t), 5/2*exp(-t)-4*exp(-2*t)+3/
2*exp(-3*t), 1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t) ]

[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t), -5/2%exp(-t)+8*exp (-
2*t)-9/2*exp (-3*t), -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp (-3*t), 5/2*%exp(-t)-16*exp(-
2*t)+27/2*exp (-3*t), 1/2*%exp(-t)-4d*exp(-2*t)+9/2%*exp (-
3*%t) ]
Then,
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3¢ =3¢ ret 25e ' —de P +15e" 05e ' —et405e
At
€ =3¢ r6e o3¢ 25¢ 48 —45e —05e 42— 1.5¢"
3e ' —12¢ 2 +9e”" 2.5e — 16 +13.5¢"  0.5¢ ' —de '+ 4.5¢"
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Chapter 6

Fourier, Taylor, and Maclaurin Series

his chapter is an introduction to Fourier and power series. We begin with the definition of
T sinusoids that are harmonically related and the procedure for determining the coefficients of

the trigonometric form of the series. Then, we discuss the different types of symmetry and
how they can be used to predict the terms that may be present. Several examples are presented to
illustrate the approach. The alternate trigonometric and the exponential forms are also presented.
We conclude with a discussion on power series expansion with the Taylor and Maclaurin series.

6.1 Wave Analysis

The French mathematician Fourier found that any periodic waveform, that is, a waveform that
repeats itself after some time, can be expressed as a series of harmonically related sinusoids, i.e.,
sinusoids whose frequencies are multiples of a fundamental frequency (or first harmonic). For
example, a series of sinusoids with frequencies 1 MHz, 2 MHz, 3 MHz, and so on, contains the
fundamental frequency of 1 MHz, a second harmonic of 2 MHz, a third harmonic of 3 MHz,

and so on. In general, any periodic waveform f(t) can be expressed as

1
f(t) = an+alcosmt+a20052wt+a3cos3(x)t+a4cos4(ut+

(6.1)
+ b, sinwt + b,sin2mt + bysin3wt + b,sindwt + ...
or

1 = .
f(t) = 730+ Z (a,cosnmt + b, sinnwt) (6.2)
n=1
where the first term a,/2 is a constant, and represents the DC (average) component of f(t).

Thus, if f(t) represents some voltage v(t), or current i(t), the term a,/2 is the average value of

v(t) or i(t).

The terms with the coefficients a, and b, together, represent the fundamental frequency compo-

* . . . 03 .
nent o . Likewise, the terms with the coefficients a, and b, together, represent the second har-

monic component 2®, and so on.

* We recall that k, cosmt + k,sinwt = kcos(ot+0) where 6 is a constant.
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Since any periodic waveform f(t) can be expressed as a Fourier series, it follows that the sum of
the DC, the fundamental, the second harmonic, and so on, must produce the waveform f(t).

Generally, the sum of two or more sinusoids of different frequencies produce a waveform that is
not a sinusoid as shown in Figure 6.1.

2nd Harmonic

// 3rd Harmonic
Ll A A A J
YAV BVE,

Figure 6.1. Summation of a fundamental, second and third harmonic

6.2 Evaluation of the Coefficients

Evaluations of a; and b, coefficients of (6.1) is not a difficult task because the sine and cosine are

orthogonal functions, that is, the product of the sine and cosine functions under the integral evalu-
ated from 0 to 27 is zero. This will be shown shortly.

Let us consider the functions sinmt and cosmt where m and n are any integers, and for conve-
nience, we have assumed that @ = 1. Then,

2n

sinmtdt = 0 (6.3)
0
2n
J. cosmtdt = 0 (6.4)
0
2n
J. (sinmt)(cosnt)dt = 0 (6.5)

0
The integrals of (6.3) and (6.4) are zero since the net area over the 0 to 27 area is zero. The inte-

gral of (6.5) is also is zero since
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sinxcosy = %[sin(x+y)+ sin(x—y)]

This is also obvious from the plot of Figure 6.2, where we observe that the net shaded area above
and below the time axis is zero.

sinx CcOSX

sinx - cosx

27
Figure 6.2. Graphical proof of'[ (sinmt)(cosnt)dt = 0
0

Moreover, if m and n are different integers, then,

2n

j (sinmt)(sinnt)dt = 0 (6.6)

0
since
(sinx)(siny) = %[cos(x—y)—cos(x—y)]

The integral of (6.6) can also be confirmed graphically as shown in Figure 6.3, where m = 2 and
n = 3. We observe that the net shaded area above and below the time axis is zero.

sin2x - sin3x
LERRN
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2n
Figure 6.3. Graphical proofofj (sinmt)(sinnt)dt = 0 form = 2 and n = 3
0

Also, if m and n are different integers, then,

2n
J- (cosmt)(cosnt)dt = 0 (6.7)
0

since

(cosx)(cosy) = %[cos(x+y)+ cos(x—y)]

The integral of (6.7) can also be confirmed graphically as shown in Figure 6.4, where m = 2 and
n = 3. We observe that the net shaded area above and below the time axis is zero.

cos3x cos2x / COS2X - oS 3xX
S Fo
. . T

2n
Figure 6.4. Graphical proofof.[ (cosmt)(cosnt)dt = 0 form = 2 andn = 3
0

However, if in (6.6) and (6.7), m = n, then,

27 )
I (sinmt)~dt
0

Il
a

(6.8)

and

27 )
J- (cosmt) dt
0

1]
a

(6.9)

The integrals of (6.8) and (6.9) can also be seen to be true graphically with the plots of Figures 6.5
and 6.6.

. . . . * . .
It was stated earlier that the sine and cosine functions are orthogonal to each other. The simpli-

* We will discuss orthogonal functions in Chapter 14

6-4 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Evaluation of the Coefficients

fication obtained by application of the orthogonality properties of the sine and cosine functions,
becomes apparent in the discussion that follows.

.2
S X

,,,,,,,,

2n
Figure 6.5. Graphical proof of J. ( sinmt)zdt =T
0

2
COS X

........

21
Figure 6.6. Graphical proof of J‘ ( cosmt)zdt =7
0

In (6.1), for simplicity, we let ® = 1. Then,

f(t) = %a0+alcost+a20052t+a3cos3t+a4cos4t+

(6.10)
+ b;sint + b,sin2t + b;sin3t + b,sin4t + ...
To evaluate any coefficient, say b, , we multiply both sides of (6.10) by sin2t. Then,
f(t)sin2t = %ao sin2t + a,costsin2t + a,cos2tsin2t + a;cos3tsin2t + a,cos4tsin2t + ...
b, sintsin2t + bz(sin2t)2 + b;sin3tsin2t + b,sin4tsin2t + ...
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Next, we multiply both sides of the above expression by dt, and we integrate over the period 0 to

2n. Then,
2n 1 27 27 27
I f(t)sin2tdt = —aoj sin2tdt + alj costsin2tdt + azj cos2tsin2tdt
0 27 0 0
27 27
+ a3j cos3tsin2tdt + a4I cos4tsin2tdt + ...
0 0

2n 2n ) 21
+ blj sintsin2tdt + b, j (sin2t)’dt + b, j sin3tsin2tdt
0 0 0

2n
+ b4j sin4tsin2tdt + ...
0

We observe that every term on the right side of (6.11) except the term
2n )
sz (sin2t)*dt
0

is zero as we found in (6.6) and (6.7). Therefore, (6.11) reduces to
2n 2n
j f(t)sin2tdt = b, j (sin2t)’dt = b,
0 0
or
e ™
b, = ~ jo f(t)sin2tdt

(6.11)

and thus we can evaluate this integral for any given function f(t) . The remaining coefficients can

be evaluated similarly.

The coefficients a,, a,, and b, are found from the following relations.

LUND B e (6.12)
27 7 2md, '
L™ 6.13
a, = T—JO f(t) cosntdt (6.13)
e
b, = ;Jo f(t) sinntdt (6.14)
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The integral of (6.12) yields the average (DC) value of f(t).

6.3 Symmetry

With a few exceptions such as the waveform of Example 6.6, the most common waveforms used
in science and engineering, do not have the average, cosine, and sine terms all present. Some
waveforms have cosine terms only, while others have sine terms only. Still other waveforms have
or have not DC components. Fortunately, it is possible to predict which terms will be present in
the trigonometric Fourier series, by observing whether or not the given waveform possesses some
kind of symmetry.

We will discuss three types of symmetry that can be used to facilitate the computation of the trig-
onometric Fourier series form. These are:

1. Odd symmetry — If a waveform has odd symmetry, that is, if it is an odd function, the series will
consist of sine terms only. In other words, if f(t) is an odd function, all the a, coefficients
including a,, will be zero.

2. Even symmetry — If a waveform has even symmetry, that is, if it is an even function, the series
will consist of cosine terms only, and a, may or may not be zero. In other words, if f(t) is an
even function, all the b; coefficients will be zero.

3. Half-wave symmetry — If a waveform has half-wave symmetry (to be defined shortly), only odd

(odd cosine and odd sine) harmonics will be present. In other words, all even (even cosine and
even sine) harmonics will be zero.

We will now define even and odd functions and we should remember that even functions have
nothing to do with even harmonics, and odd functions have nothing to do with odd harmonics.

A function f(t) is an even function of time if the following relation holds.

f(-t) = f(t) (6.15)

that is, if in an even function we replace t with —t, the function f(t) does not change. Thus,
polynomials with even exponents only, and with or without constants, are even functions. For

. . . . . . . . *
instance, the cosine function is an even function because it can be written as the power series

2 4 6
cost = 1-L 4L _L 4
214! 6!

Other examples of even functions are shown in Figure 6.7.

* We will discuss power series later in this chapter.
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f(t) f(t) f(t)
2 +k
2 k
0 t 0 t 0 t

Figure 6.7. Examples of even functions

A function f(t) is an odd function of time if the following relation holds.

_f(=t) = (1) (6.16)

that is, if in an odd function we replace t with —t, we obtain the negative of the function f(t).
Thus, polynomials with odd exponents only, and no constants are odd functions. For instance,
the sine function is an odd function because it can be written as the power series

35 7
sint = t— =+ L _L
315t 7

Other examples of odd functions are shown in Figure 6.8.

f(t) f(t) f(t)

mt t3 ]\
0 t 0 t | 0 t

Figure 6.8. Examples of odd functions

We observe that for odd functions, f(0) = 0. However, the reverse is not always true; that is, if
f(0) = 0, we should not conclude that f(t) is an odd function. An example of this is the function

f(t) = t* in Figure 6.7.

The product of two even or two odd functions is an even function, and the product of an even
function times an odd function, is an odd function.

Henceforth, we will denote an even function with the subscript e, and an odd function with the
subscript o. Thus, f (t) and f (t) will be used to represent even and odd functions of time

respectively.
Also,
T T
j £ (t)dt = 2j £ (t)dt (6.17)
T 0
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and
T

j f (t)dt = 0 (6.18)

-T

A function f(t) that is neither even nor odd can be expressed as

() = 31f(0 + f(-0)] (6.19)

or as

£,(0) = 3IFO-F(-)] (6.20)

By addition of (6.16) with (6.17), we get

f(t) = f,(t) + £ (1) (6.21)

that is, any function of time can be expressed as the sum of an even and an odd function.

To understand half-wave symmetry, we recall that any periodic function with period T, is
expressed as
f(t) = f(t+T) (6.22)

that is, the function with value f(t) at any time t, will have the same value again at a later time
t+T.

A periodic waveform with period T, has half-wave symmetry if
_f (t+T/2) = (1) (6.23)

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive
half-cycle, but inverted.

We will test the waveforms of Figures 6.9 through 6.13 for any of the three types of symmetry.
1. Square waveform

For the waveform of Figure 6.9, the average value over one period T is zero, and therefore,
a, = 0. It is also an odd function and has half-wave symmetry since —f(-t) = f(t) and

f(t+T/2) = f(1).
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b 2n

ot

f(a) ! |

Figure 6.9. Square waveform test for symmetry

An easy method to test for half~wave symmetry is to choose any half-period T/2 length on the
time axis as shown in Figure 6.9, and observe the values of f(t) at the left and right points on the
time axis, such as f(a) and f(b). If there is half~wave symmetry, these will always be equal but
will have opposite signs as we slide the half-period T/2 length to the left or to the right on the
time axis at non—zero values of f(t).

2. Square waveform with ordinate axis shifted

If we shift the ordinate axis m/2 radians to the right, as shown in Figure 6.10, we see that the
square waveform now becomes an even function and has half-wave symmetry since f(-t) = f(t)
and —f (t+T/2) = f(t). Also, a, = 0.

I T I
I I
A
| /2 | m/2 ) 27]1
- : . : ot
21 -7 0 T
i ; ! i
I<—T/2—> 1<—T/24>
—_ —-A : |

Figure 6.10. Square waveform with ordinate shifted by /2
Obviously, if the ordinate axis is shifted by any other value other than an odd multiple of ©/2,
the waveform will have neither odd nor even symmetry.

3. Sawtooth waveform

For the sawtooth waveform of Figure 6.11, the average value over one period T is zero and there-
fore, a, = 0. It is also an odd function because —f(-t) = f(t), but has no half-wave symmetry
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since —f (t+ T/2) # f(t)

| = T N |
|
/ A
—2n - T o
\ . 0 . ot
| | | |
<T/2> I<T/2>
| | | | /
I I_A | I

Figure 6.11. Sawtooth waveform test for symmetry

4. Triangular waveform

For this triangular waveform of Figure 6.12, the average value over one period T is zero and
therefore, a, = 0. It is also an odd function since —f(~t) = f(t). Moreover, it has half~wave sym-
metry because —f (t+ T/2) = f(t)

< T—

AT
|
l%T/2% I AL |< T/2 s |

Figure 6.12. Triangular waveform test for symmetry

5. Fundamental, Second and Third Harmonics of a Sinusoid

Figure 6.13 shows a fundamental, second, and third harmonic of a typical sinewave where the
half period T/2, is chosen as the half period of the period of the fundamental frequency. This is
necessary in order to test the fundamental, second, and third harmonics for half~wave symmetry.
The fundamental has half~wave symmetry since the a and —a values, when separated by T/2,
are equal and opposite. The second harmonic has no half~wave symmetry because the ordinates
b on the left and b on the right, although are equal, there are not opposite in sign. The third
harmonic has half-wave symmetry since the ¢ and —c values, when separated by T/2 are equal
and opposite. These waveforms can be either odd or even depending on the position of the ordi-

nate. Also, all three waveforms have zero average value unless the abscissa axis is shifted up or
down.
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3rd harmonic

2nd harmonic
Fundamental
C
b
~C

T/2 f D T2 — ~T/2—
(for fundamental) (for 2nd harmonic) (for 3rd harmonic)

Figure 6.13. Fundamental, second, and third harmonic test for symmetry

In the expressions of the integrals in (6.12) through (6.14), Page 66, the limits of integration for
the coefficients a, and b, are given as 0 to 2m, that is, one period T. Of course, we can choose
the limits of integration as —n to +m. Also, if the given waveform is an odd function, or an even
function, or has half-wave symmetry, we can compute the non—zero coefficients a, and b, by
integrating from 0 to 7 only, and multiply the integral by 2. Moreover, if the waveform has half-
wave symmetry and is also an odd or an even function, we can choose the limits of integration
from 0 to m/2 and multiply the integral by 4. The proof is based on the fact that, the product of

two even functions is another even function, and also that the product of two odd functions
results also in an even function. However, it is important to remember that when using these

shortcuts, we must evaluate the coefficients a, and b, for the integer values of n that will result

in non—zero coefficients. This point will be illustrated in Example 6.2.

6.4 Waveforms in Trigonometric Form of Fourier Series

We will now derive the trigonometric Fourier series of the most common periodic waveforms.

Example 6.1

Compute the trigonometric Fourier series of the square waveform of Figure 6.14.
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ot

—-A

Figure 6.14. Square waveform for Example 6.1

Solution:

The trigonometric series will consist of sine terms only because, as we already know, this wave-
form is an odd function. Moreover, only odd harmonics will be present since this waveform has
half-wave symmetry. However, we will compute all coefficients to verify this. Also, for brevity,
we will assume that m = 1.

The a, coefficients are found from

2n

o
Il

2n T
1 f(t) cosntdt = 1 Acosntdt + (=A)cosntdt |= A (sinnt|n - sinnt|2n)
n 0 I
b AR n nm (6.24)

A . . . A . .
— (sinnmt — 0 — sinn27 + sinn®) = — (2NN — sinn2m)
nm nm

0

and since n is an integer (positive or negative) or zero, the terms inside the parentheses on the
second line of (6.24) are zero and therefore, all a; coefficients are zero, as expected, since the

square waveform has odd symmetry. Also, by inspection, the average (DC) value is zero, but if
we attempt to verify this using (6.24), we will get the indeterminate form 0/0. To work around
this problem, we will evaluate a, directly from (6.12). Then,

=g [ Adef

The b, coefficients are found from (6.14), that is,

zn(—A)dt} - %\(n—o—zmn) ) (6.25)

T

1 21 ) 1 b ] 27
T—EI f(t)sinntdt = - Uo Asinntdt +j

0

o
Il

(—=A)sinntdt }: r—ﬁ—t (—cosnt|10r + cosnt|zn)
T (6.26)

A (= cosnm+ 1 + cos2nT — cosnT) = A (1-2cosnT + cos2nT)
nmn nmn

For n = even, (6.26) yields
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b, = A (12+1) =0
nm

as expected, since the square waveform has half-~wave symmetry.

For n = odd, (6.21) reduces to

A 4A
b = —(1+2+1) = —
n nn( +2+1) nm
and thus
b, = 24
n
b, = 34
3n
b5:4'_A
5T
and so on.

Therefore, the trigonometric Fourier series for the square waveform with odd symmetry is

Aot Linsors L I
f(t) = p smwt+3s1n3wt+5s1n5(nt+... = Z —sinnot (6.27)

n = odd

It was stated above that, if the given waveform has half~wave symmetry, and it is also an odd or
an even function, we can integrate from 0 to n/2, and multiply the integral by 4. We will apply
this property to the following example.

|
Example 6.2

Compute the trigonometric Fourier series of the square waveform of Example 1 by integrating
from 0 to n/2, and multiplying the result by 4.

Solution:

Since the waveform is an odd function and has half-wave symmetry, we are only concerned with
the odd b, coefficients. Then,

S N E P _4A /2, _ 4A T
b, = 475'[0 f(t)sinntdt = rm(—cosnt\o ) = n(_ cosnz + 1) (6.28)
For n = odd, (6.28) becomes
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=34 _ A
= nn( 0+1) = — (6.29)

n

as before, and thus the series is the same as in Example 1.

|
Example 6.3

Compute the trigonometric Fourier series of the square waveform of Figure 6.15.
Solution:

This is the same waveform as in Example 6.1, except that the ordinate has been shifted to the
right by ©/2 radians, and has become an even function. However, it still has half~wave symme-
try. Therefore, the trigonometric Fourier series will consist of odd cosine terms only.

A ! '
n/2 | 3n/2
0 7]T 2n ot
-A

Figure 6.15. Waveform for Example 6.3

Since the waveform has half-wave symmetry and is an even function, it will suffice to integrate
from 0 to m/2, and multiply the integral by 4. The a, coefficients are found from

n/2 n/2
a, = 4lj f(t)cosntdt = 4 U AcosntdtJ _3A (sinnt|g/2) _4A (sinnE) (6.30)
ndy nlJ, nw nw 2

We observe that for n = even, all a_ coefficients are zero, and thus all even harmonics are zero

as expected. Also, by inspection, the average (DC) value is zero.
For n = odd, we observe from (6.30) that sinng, will alternate between +1 and -1 depending
on the odd integer assigned to n. Thus,

4A

a, =+ 32 (6.31)
Forn = 1,5,9, 13, and so on, (6.30) becomes
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. = A
" nm
and for n = 3,7, 11, 15, and so on, it becomes
a = A
n nm

Then, the trigonometric Fourier series for the square waveform with even symmetry is

(n—-1)
_ 4;‘\( 1 1 _ ) _4A 21
f(t) = p cosmt 3cos3o)t+ cosSwt—...| = - Z (-1) ncosnoot (6.32)

5
n =odd

Alternate Solution:

Since the waveform of Example 6.3 is the same as of Example 6.1, but shifted to the right by /2
radians, we can use the result of Example 6.1, i.e.,

f(t) = % (sinwt + %sin3mt + %sinScot + ) (6.33)

and substitute ot with ot + n/2, that is, we let ot = ot + n/2. With this substitution, relation
(6.33) becomes

f(t) = ﬁ[sin(wr + 73) + lsin.’a(mr + 73) + lsins(mr + E) + J
i 23 2/ 5 2
(6.34)
= 4—’A—‘[sin(mr + 73) + lsin(3(m: + 3—75) + lsin(S(m: + 5—“) + J
s 23 2 5 2
and using the identities sin(x +m/2) = cosx, sin(x +3m/2) = —cosx, and so on, we rewrite
(6.34) as
f(t) = 4?A[coso)r—%cos3wr+ écosSmr— J (6.35)

and this is the same as (6.27).

Therefore, if we compute the trigonometric Fourier series with reference to one ordinate, and
afterwards we want to recompute the series with reference to a different ordinate, we can use the
above procedure to save time.
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Example 6.4

Compute the trigonometric Fourier series of the sawtooth waveform of Figure 6.16.

wt

ATt

Figure 6.16. Sawtooth waveform

Solution:

This waveform is an odd function but has no half-wave symmetry; therefore, it contains sine
terms only with both odd and even harmonics. Accordingly, we only need to evaluate the b,

coefficients. By inspection, the DC component is zero. As before, we will assume that w = 1.
If we choose the limits of integration from 0 to 2 we will need to perform two integrations since

ét O0<t<m
f(t) =

—t—2A T<t<2T
T

However, we can choose the limits from - to +n, and thus we will only need one integration
since

f(t) = =t —T<t<T

Elb=

Better yet, since the waveform is an odd function, we can integrate from 0 to 1, and multiply the
integral by 2 ; this is what we will do.

From tables of integrals,

jx sinaxdx = lzsinax—)—( cosax (6.36)
a a
Then,
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T T

2
b, = 7

= &( sinnt — ntcosnt) |TE = &( sinnf — NTCOSNT)
T n2m2 0 p22

T
étsinntdt = 2—éJ. tsinntdt = 2—é(i sinnt—icosnt)
T nzJ, 12 \n2 n

0 0 (6.37)

We observe that:
1.If n = even, sinnmt = 0 and cosnm = 1. Then, (6.37) reduces to

_ 2A _ _2A
by = n2m?2 nm) = nm

that is, the even harmonics have negative coefficients.

2.Ifn = odd, sinnm = 0, cosnmt = —1. Then,

2A _2A

= — ) = =—

n n2p2 nm

that is, the odd harmonics have positive coefficients.

Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is

_%(. 1 oo, 1 )_% E
f(t) = - sinmt 2sm2(1)t+3sm3(x)t 4sm4(x)t+... = nZ( 1) n51nnmt (6.38)

|
Example 6.5

Find the trigonometric Fourier series of the triangular waveform of Figure 6.17. Assume o = 1.

/ —n 0 w2 n\/ . ot
AL

Figure 6.17. Triangular waveform for Example 6.5

Solution:

This waveform is an odd function and has half~wave symmetry; then, the trigonometric Fourier
series will contain sine terms only with odd harmonics. Accordingly, we only need to evaluate the
b, coefficients. We will choose the limits of integration from 0 to n/2, and will multiply the
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integral by 4.

By inspection, the DC component is zero. From tables of integrals,

J‘xsinaxdx = -l—zsinax—)—(cosax (6.39)
a a
Then,
n/2 n/2 n/2
b, = ‘—t_[ 2—étsinntdt = 8—%'[ tsinntdt = 5—? (izsinnt—icosnt)
nd, T e > ‘n n
0 (6.40)
8A | . 2 _ 8 T T T
= —— (sinnt—ntcosnt)| "~ = —— | sinn; —nzcosnz
n’n n’n 2 2 2

We are only interested in the odd integers of n, and we observe that:

T
cosn2 =0

For odd integers of n, the sine term yields

1 for n =1,5,9, ... then, bn=&

2 2

. T n’m
smnz = oA
-1 for n = 3,7,11, ... then, b, =—-——
2 2

n’m

Thus, the trigonometric Fourier series for the triangular waveform with odd symmetry is

(n-1)

f(t) = %(sinwt—ésin3wt+%sinSwt—%sin7mt+...) = i—? z -1) ? isinnmt (6.41)
n = odd

Example 6.6

A half-wave rectification waveform is defined as

£(t) = {smmt O<ot<m (6.42)
0 T<Ot<2T
Express f(t) as a trigonometric Fourier series. Assume o = 1.
Solution:
The waveform for this example is shown in Figure 6.18.
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27 -7 0 b 27 3m

Figure 6.18. f(t) for Example 6.6

By inspection, the average is a non—zero value, and the waveform has neither odd nor even sym-
metry. Therefore, we expect all terms to be present. The a, coefficients are found from
1 2n
a, = = I f(t) cosntdt
L)
For this example,
N A"
a, = —j sintcosntdt + — I Ocosntdt
T 0 T b4

and from tables of integrals

. dx = _cos(m-n)x cos(m +n)x 2,02
I(smmx)(cosnx) X 2(m_n) 2(m+n) (m~#n")
Then,
Iy
_A l[cos(l—n)t cos(l+n)t}
a, = = 4-2 +
| 2 l-n 1+n o
(6.43)
__A [cos(n—nn) + cos(n+nn)}_[ 1 + 1 J
2n l-n l1+n Il-n n+1
Using the trigonometric identities
cos(X —y) = COSXCOSy + sinxsiny
and
cos(X +y) = cosXcosy — sinxsiny
we obtain o
cos(7T—NTM) = COSTCOSNT + SINTTSINNT = —COSNT
and L
cos(T+nm) = COSTCOSNT — SINTTSINNTT = —COSNTT
Then, by substitution into (6.43),
a = A [—cosnn + —cosnn} 2 _A [cosnn + cosnn} +_2
2n l-n l+n 1 —n? 2 |L1-n  l+nd _g?
(6.44)
_ A (cosnm+ncosnm + COSNT — NCOSNT 2 _Afcosnm+1
= — 5 + s)==\—/—=—) n=l
2n 1-n 1-nY T\ (1-n’)
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Next, we can evaluate all the a_ coefficients, except a,, from (6.44).

First, we will evaluate a, to obtain the DC value. By substitution of n = 0, we get a, = 2A/=n
Therefore, the DC value is

l,=2 (6.45)
2 T
We cannot use (6.44) to obtain the value of a, ; therefore, we will evaluate the integral
T
a; = éJ. sintcostdt
LR
From tables of integrals, .
I(sinax)(cosax)dx = 2—al(sinax)2
and thus, .
A2
a, = 27t(smt) ) =0 (6.46)
From (6.44) with n = 2,3,4,5, ..., we get
A 2m+ 1 2A
L= _(COS n ) _ (6.47)
T (1 ] ) 37
a, = A(cos37c;|— ) _ 0 (6.48)
n(1-3%
We see that for odd integers of n, a, = 0. However, for n = even, we get
a, = 2lcosdnrl) 125A (6.49)
n(1—4% m
ag = 2lcosOnEl) 325A (6.50)
n(1-6) m
2 = 2(eosPTEL) 623A (6.51)
n(1 -8 m
and so on.
Now, we need to evaluate the b, coefficients. For this example,
1 27m A Y A 27m
b, = A—J- f(t)sinntdt = —J- sintsinntdt+—J~ Osinntdt
T L) Ton
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and from tables of integrals,

J.(sinmx)(sinnx)dx = 51;1((;1:__;1)))( - m;((g:lrll))x (m2 # n2)

n}

0

_ A[sin(l—n)n_sin(l +n)ﬂ_0+oJ =0 (n#1)
27 l1-n l+n

Therefore,

b = Al [sin(l—n)t_sin(l+n)t}
w2 I-n I+n

that is, all the b coefficients, except b, , are zero.

We will find b, by direct substitution into (6.14) for n = 1. Thus,

T

T .
by = 2] (sint’dt = é[i— szt}
o

_ é[ﬂ_ sinZnJ _A (6.52)
nl2 4 2 '

TL2 4

Combining (6.45) and (6.47) through (6.52), we find that the trigonometric Fourier series for the
half-wave rectification waveform with no symmetry is

A A A[cos2t 4 Cos4t  cos6t  cos8t J (6.53)

f(t) = =+ —sint— —
() = T+asint-21=3 5 " 35 ' 63

|
Example 6.7

A full-wave rectification waveform is defined as
f(t) = |Asinot]| (6.54)

Express f(t) as a trigonometric Fourier series. Assume w = 1.

Solution:

The waveform is shown in Figure 6.19 where the ordinate was arbitrarily chosen as shown.

A

27 -T 0 n 2n

Figure 6.19. Full-wave rectified waveform with even symmetry
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By inspection, the average is a non—zero value. We choose the period of the input sinusoid so that
the output will be expressed in terms of the fundamental frequency. We also choose the limits of
integration as - and +m, we observe that the waveform has even symmetry.

Therefore, we expect only cosine terms to be present. The a, coefficients are found from
1 2n

a = T—c.[o f(t)cosntdt

where for this example,
T T
a, = 1 I Asintcosntdt = 24 I sintcosntdt (6.55)
L LR

and from tables of integrals,

cos(m—n)x cos(m+n)x 2., .2
2(n-m) 2(m +n) (m”#n°)

I( sinmx)(cosnx)dx =

Since
cos(x—y) = cos(y—X) = COSXCOSY + sinxsiny
we express (6.55) as

2A l{[cos(n— 1)t cos(n+ l)tJ

W T2 n—-1 n+1 0}
_A [cos(n—l)n_cos(n+1)n}_[ 11 } (6.56)
i n-1 n+1 n-1 n+1

_ A[l — cos(nm + T) + cos(nmw—T) — 1}

E n+ 1 n—1

To simplify the last expression in (6.56), we make use of the trigonometric identities

cos(NT + ) = COSNTMCOST — SINNTTSINT = —COSNT
and
cos(Nm—7) = COSNMCOST + SINNTSINT = —COSNT

Then, (6.56) simplifies to

a = é[l +cosnmt 1+ cosnn} _ é[—2 + (n—1)cosnm—(n+ 1)cosnn
nl n+1 n-1 T nZ_1

(6.57)

—2A(cosnm+ 1)

n(n’ - 1)

n#l

Now, we can evaluate all the a  coefficients, except a,, from (6.57). First, we will evaluate a, to
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obtain the DC value. By substitution of n = 0, we get

4A
a():——
T

Therefore, the DC value is

1, =24 (6.58)

From (6.57) we observe that for all n = odd, other thann = 1,a, = 0.

To obtain the value of a,, we must evaluate the integral

1 T
a, = —j sintcostdt
o

From tables of integrals,
I(sinax)(cosax)dx = %‘(sinaxf
and thus,

1. o
a, = 2—n(s1nt) ) =0 (6.59)

For n = even, from (6.57) we get

4 = —2A(cos2m+1) _ 4A (6.60)

2 2 - 3m '
m(2°-1)

4 = —2A(cos4m+1) _ 4A (6.61)

e 2 - 15m '
m(4 -1)

4 = —2A(cos6m+1) _ 4A (6.62)

° 2 351 '
(6" -1)

a. = —2A(cos8m+1) _  4A (6.63)

. 2 - 63m '
(8 1)

and so on. Then, combining the terms of (6.58) and (6.60) through (6.63) we get

f(t) =

%_ﬂ{cosﬂnt cos4mt . cosbwt  cos8wt } (6.64)

+
i 3 15 35 63

Therefore, the trigonometric form of the Fourier series for the full-wave rectification waveform with
even symmetry is
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_2A 4A 1
f(t) = T Z = 1)cosno)t (6.65)
n=246, ..

This series of (6.65) shows that there is no component of the fundamental frequency. This is
because we chose the period to be from -1 and +n. Generally, the period is defined as the short-
est period of repetition. In any waveform where the period is chosen appropriately, it is very
unlikely that a Fourier series will consist of even harmonic terms only.

6.5 Alternate Forms of the Trigonometric Fourier Series

We recall that the trigonometric Fourier series is expressed as

1
f(t) = =a, +a,coswt+a,cos2mt + a,cos3mt + a,cosdmt + ...
() 2 0 1 2 3 4 (666)

+ b, sinwt + b,sin2mt + bysin3wt + b,sindwt + ...

If a given waveform does not have any kind of symmetry, it may be advantageous of using the
alternate form of the trigonometric Fourier series where the cosine and sine terms of the same fre-
quency are grouped together, and the sum is combined to a single term, either cosine or sine.
However, we still need to compute the a, and b, coefficients separately.

We use the triangle shown in Figure 6.20 for the derivation of the alternate forms.

c.= Ja_+b
n_ An' “n

¢ a a
n bn coan — _n = R Sinen = b—n = b_n
0, ja +b, ja +b,
an b a
cosen = sin(pn Gn = atana—n 9, = atanb—n
n n

Figure 6.20. Derivation of the alternate form of the trigonometric Fourier series

We assume o = 1,and forn = 1,2, 3, ..., we rewrite (6.60) as
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a
f(t) = %ao+c1 (C—lcost+
1

b, . a b, .
—lsmt) +c, (—2c0s2t + —2s1n2t) + ...
C ¢y %)

an bIl :
+ ¢, | —cosnt + —sinnt
c c

n

cos0,cost + sinB,sint

n

cos0,cos2t + sinB,sin2t

cosO cosnt + sin0 sinnt

i ( cos(nt—9,) )

and, in general, for m # 1, we get

1
Zay+c +c
270 1( cos(t—0,) ) 2( cos(2t—0,)

n=1

1 = 1 = b
f(t) = 530+ z c,cos(nwt—0,) = 30+ z cncos(n(nt—atan—")

n=1

ay

Similarly,

f(t) = %ao +c (

sin@, cost + cos@, sint )

sin(t+ @,)

sin@,cos2t + cos@,sin2t
¢ (

sin@,cosnt + cos@, sinnt

: ) +...+ cn( :
sin(2t + @,) sin(nt+@,)

and, in general, where w # 1, we get

n=1

1 > . 1 > .
f(t) = 530+ Z c,sin(not+@,) = 30+ z cnsm(nwt + atanb )

n=1

&y

n

(6.67)

(6.68)

The series of (6.67) and (6.68) can be expressed as phasors. Since it is customary to use the cosine
function in the time domain to phasor transformation, we choose to use the transformation of

(6.63) below.

1
2

n=1

o b d b
—a, + Z cncos(nwt— atan—-ll) & %ao + Z ¢, Z—atan—

a

a'Il n

n=1

Example 6.8

(6.69)

Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of

Figure 6.21.
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f(t)

f i | i t

m2 m w2 om
Figure 6.21. Waveform for Example 6.8

Solution:
The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd

and even terms present. Also, by inspection the DC value is not zero.

We will compute the a, and b, coefficients, the DC value, and we will combine them to get an

expression in the form of (6.63). Then,

1 7'5/2 1 21 3 n/2 1 21
a, = —I (3)cosntdt+—j (1)cosntdt = —sinnt + —sinnt
nd, nd ., nm o T n/z (6.70)
3 ..o 1 . 1 . @ LT
= ——sinnz + —sinn2M——sinnz = —sinn <
2 nmn nw 2 nm 2
We observe that for n = even, a, = 0.
Forn = odd,
a, = 2 (6.71)
T
and
a, = —= (6.72)
3n

The DC value is

[ I 12" 1, m2 . o
S8 = ﬁjo (3)dt+2—TEjn/2(1)dt = 56ty + 1)
(6.73)
- L(B3n o my L _3
= 211(2 +21 2) = 2n(7r+21t) =3
The b, coefficients are
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1 n/2 1 2n 3 n/2 -1 27
b, = —I (3)sinntdt+—j (1)sinntdt = —cosnt + —cosnt
nJ, nd s nm 0 nm 2 (6.74)
= ﬁcosnlr + 3 + _—1cosn2n + icosnE = L(3 —cosn2m) = 2
nm 2 nm nm nw 2 nm nm
Then,
b, = 1/m (6.76)
b, = 1/2m (6.78)
From (6.69),
la + N c cos(nwt—atanti‘) (:)la + 3 c L—atantil
20 Z n a 270 Z n a
n=1 n n=1 n
where
b b
c,Z—atan— = ai+bi4—atan—n = ai+bi4—6n =a —jb, (6.79)
an an
Thus, for n = 1,2, 3, and 4, we get:
2 2
a-jby = 222 = (274 (2) 2ase
T T
(6.80)
- F4_45° 2242 450 o 292 oc (ot - 459)
2 1 T
s
Similarly,
. 11 1
b, =0—i==~/-90° < =cos(2mt — 90° .81
a,—jb, =0 iz=z 90 (:)ncos( ot —90°) (6.81)
W 2 2 2, e 2 .
a;—jbs =373 5, /£-135° & o cos(3mt—135°) (6.82)
and
a,—jb, = O—ji = i4—90° = Lcos(4(x)t—90°) (6.83)
A 2n 2w 2n

Combining the terms of (6.73) and (6.80) through (6.83), we find that the alternate form of the

trigonometric Fourier series representing the waveform of this example is
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f(t) = +TlE [2[2cos(mt—45°)+cos(2mt-90°)

2.2

+ == cos(3ot - 1359) + %cos(4wt— 90°) + ... |

3
2
(6.84)

6.6 The Exponential Form of the Fourier Series

The Fourier series are often expressed in exponential form. The advantage of the exponential
form is that we only need to perform one integration rather than two, one for the a_, and

another for the b, coefficients in the trigonometric form of the series. Moreover, in most cases

the integration is simpler.
The exponential form is derived from the trigonometric form by substitution of

jot —jot

cosmt = ‘% (6.85)
and
jot —jot
sinot = & =% (6.86)
]2
into f(t). Thus,
1 e jot n e—jmt e j2mt 4 e—jzoot
f(t) = an + 31(7 ) + az(T) + (687)
jot —jot j2mt —j2mt,
e’ —e e —e
...+b1( 7 )+b2( 2 )+

and grouping terms with same exponents, we get

f(t) = ...+(2—],2)e7j2m+(i—],ﬂ)e7jm+la0+(i+]?—1)ejmt+(a—2+]?—2)ej2mt (6.88)
2 32 2 52 2 2 52 2 )2

The terms of (6.88) in parentheses are usually denoted as

1 by 1 .
C, = E(an— J—) = 2(an+an) (6.89)
C,=3(a +lil) - La ) (6.90)
n 2 n J 2 n n .
1
Co = 52 (6.91)
Numerical Analysis Using MATLAB® and Excel®, Third Edition 6-29

Copyright © Orchard Publications



Chapter 6 Fourier, Taylor, and Maclaurin Series

Then, (6.88) is written as

f(t) = ..+ Cre 24 C e 4 Cy + Ce’ + Che ™ . (6.92)

We must remember that the C; coefficients, except C,, are complex and occur in complex conju-
gate pairs, that is,
C_=Cr* (6.93)

—-n n
We can derive a general expression for the complex coefficients C, , by multiplying both sides of

(6.92) by e ™" and integrating over one period, as we did in the derivation of the a, and b,

coefficients of the trigonometric form. Then, with ® = 1,

J

am —jnt 2n —j2t _—jnt 2m —jt _—jnt
f(t)e "dt = +I C,e’ e dt+.[ C_ele™dt (6.94)
0 0 0

m —jnt 2m jt —jnt
+J. Cye’ dt+J. C,e’e?dt
0 0

m j2t —jnt m jnt _—jnt
+J. C,e’“'e” dt+...+.|. C,e'Me™dt
0 0

We observe that all the integrals on the right side of (6.97) are zero except the last. Therefore,

2m —jnt 2 jnt _—jnt 2m
[ fwe™dar =] ce™e?Ma= | cuat=2nC,
0 0 0
or
2m .
C, = Zln [ e ™a
0
and, in general, for o # 1,
1 2m —jnot
C, = ﬁj f(t)e " d(wt) (6.95)
0
or
1 T —jnot
C, = TI f(t)e " 'd(wt) (6.96)
0

We can derive the trigonometric Fourier series from the exponential series by addition and sub-
traction of the exponential form coefficients C, and C_, . Thus, from (6.89) and (6.90),

C,+C_, = %(an—jbn+an+jbn)

n —n
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or
a, = C,+C_,
Similarly,
Co=Coy = 3(a,-ibya,-ib,)
or

bn = j(Cn_ C—n)

Symmetry in Exponential Series

1. For even functions, all coefficients C, are real

We recall from (6.89) and (6.90) that

_l( _bn) _1 -
C,= 3 a,——| = 2(an+an)

and

_l( bn)_l _
C, = 5 a,+—| = 2(aIl jb,,)

(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

Since even functions have no sine terms, the b, coefficients in (6.100) and (6.101) are zero.

Therefore, both C_, and C, are real.

2. For odd functions, dll coefficients C; are imaginary

Since odd functions have no cosine terms, the a, coefficients in (6.100) and (6.101) are zero.

Therefore, both C_, and C, are imaginary.

3. If there is half~wave symmetry, C, = 0 for n = even

We recall from the trigonometric Fourier series that if there is half~wave symmetry, all even
harmonics are zero. Therefore, in (6.100) and (6.101) the coefficients a, and b, are both zero

for n = even, and thus, both C_, and C, are also zero for n = even.

4. If there is no symmetry, f(t) is complex.
5. C_, = C.* dalways
This can be seen in (6.100) and (6.101)
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Example 6.9
Compute the exponential Fourier series for the square waveform of Figure 6.22 below. Assume
that w = 1.
|
T |
A
L 2n ot
0
—-A
Figure 6.22. Waveform for Example 6.9

Solution:

This is the same waveform as in Example 6.1, and as we know, it is an odd function, has half-
wave symmetry, and its DC component is zero. Therefore, the C, coefficients will be imaginary,

C, = 0 for n = even, and C, = 0. Using (6.95) with = 1, we get

1 m —jnt 1 T —jnt 1 m —jnt
= — f = — A + — —A
C 5 J.O (t)e dt 5 J.O € dt 5 J.n (& dt

and forn = 0,

R 2n 0,7 _ A B
C, = MUO Ae dt+.[n (—A)e dt} = S(m-2mem) = 0
as expected.
Forn#0,
b . 21 . . .2
C, = L U Ae_Jntdt+j —Ae‘Jntdt} = LA g A
2n Y, . 21 | —jn o —in .
_ L A —jnm é —jn2m _ _—jnmy | _ A _ inm —jn2m _ _—jnm (6102)
e [_jn(e D+ ¢ )J_ Tan(1-¢ e 1"y
A —jn2n 5 —jnmy A jnm 2
= 2_j7m(1 +e 2e = 2_j1'cn(e 1)
For n = even, e = ; then,
C. _ A a2 A L2
n=oven 2j1'l:n(e b = 2jnn(1 b7 =0 (6.103)
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as expected.

For n = odd, e = 1. Therefore,

C, =i_—jnn_ 2=i___ 2 _ A _2=2§_
n = odd zjnn(e ) 2j7tn( 1-1) 2j7tn( 2) jmn (6.104)
Using (6.92), that is,
f(t) = ...+ Ce " +C_ e +Cy+Ce ™+ Cre P+ .

we obtain the exponential Fourier series for the square waveform with odd symmetry as

2A( 1 Sj3ot  —jot _jot 1 j3mt) 2A 1 jnot

ft)y = —|...— = - = = — - A

(t) i 3¢ e’ el 4ze i E -e (6.105)
n = odd

The minus (=) sign of the first two terms within the parentheses results from the fact that
C_, = C.*. For instance, since Cy = 2A/j3m, it follows that C_; = Cy* = -2A/j3n. We
observe that f(t) is purely imaginary, as expected, since the waveform is an odd function.

To prove that (6.105) and (6.22) are the same, we group the two terms inside the parentheses of

(6.105) for which n = 1; this will produce the fundamental frequency sinwt. Then, we group
the two terms for which n = 3, and this will produce the third harmonic sin3wt, and so on.

6.7 Line Spectra

When the Fourier series are known, it is useful to plot the amplitudes of the harmonics on a fre-
quency scale that shows the first (fundamental frequency) harmonic, and the higher harmonics
times the amplitude of the fundamental. Such a plot is known as line spectrum and shows the

spectral lines that would be displayed by a spectrum analyzer*.

Figure 6.23 shows the line spectrum of the square waveform of Example 6.1.

bn 4/n
] | I I 1 nmt
ol 1 3 5 7 9
Figure 6.23. Line spectrum for square waveform of Example 6.1
* An instrument that displays the spectral lines of a waveform.
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Figure 6.24 shows the line spectrum for the half-~wave rectification waveform of Example 6.6.

A2

A/mt DC
4

2 4 6 8
0 1| I

nmt

Figure 6.24. Line spectrum for half-~wave rectifier of Example 6.6

The line spectra of other waveforms can be easily constructed from the Fourier series.
|
Example 6.10

Compute the exponential Fourier series for the waveform of Figure 6.25, and plot its line spectra.
Assume o = 1.

—>| T/ |<—

| i 0 i | ot
on -m -n/x | m/k T m

Figure 6.25. Waveform for Example 6.11

Solution:

This recurrent rectangular pulse is used extensively in digital communications systems. To deter-
mine how faithfully such pulses will be transmitted, it is necessary to know the frequency compo-
nents.

As shown in Figure 6.25, the pulse duration is T/k. Thus, the recurrence interval (period) T, is
k times the pulse duration. In other words, k is the ratio of the pulse repetition time to the dura-
tion of each pulse.

For this example, the components of the exponential Fourier series are found from
n

b4 . n/k .
c =L [ Aei™a = A [ e™a (6.106)
2n - 2n -n/k

The value of the average (DC component) is found by letting n = 0. Then, from (6.106) we get
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n/k
_A _A(m,m) _A
Co=g3 = Azez) -4 (6.107)

-/

For the values for n # 0, integration of (6.106) yields

.- A 7jm| N e jom/k_ ~inm/k A Sin(rﬂ)
T _in2m -n/k T nm j2 T onm k (6.108)
_ Asin(nn/k) _A. sin(nm/k)
nm k nn/k
and thus,
_ w A sin(nn/k)
f(t) = Z ok (6.109)

n=—oo

The relation of (6.109) has the sinx/x form, and the line spectrum is shown in Figures 6.26
through 6.28, for k = 2, k = 5 and k = 10 respectively by using the MATLAB scripts below.

fplot('sin(2.*x)./(2.*x)",[-4 4 -0.4 1.2])
fplot('sin(5.*x)./(5.*x)",[-4 4 -0.4 1.2])
fplot('sin(10.*x)./(10.*x)",[-4 4 -0.4 1.2])

0.8 i
0.6 .
0.4 .

0.2r b

.0_4 1 1 1 1 1 1
4 - - -

Figure 6.26. Line spectrum of (6.109) for k = 2
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Figure 6.28. Line spectrum of (6.112) for k = 10
The spectral lines are separated by the distance 1/k and thus, as k gets larger, the lines get closer
together while the lines are further apart as k gets smaller.

6.8 Numerical Evaluation of Fourier Coefficients

Quite often, it is necessary to construct the Fourier expansion of a function based on observed
values instead of an analytic expression. Examples are meteorological or economic quantities
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whose period may be a day, a week, a month or even a year. In these situations, we need to eval-
uate the integral(s) using numerical integration.

The procedure presented here, will work for both the waveforms that have an analytical solution
and those that do not. Even though we may already know the Fourier series from analytical
methods, we can use this procedure to check our results.

Consider the waveform of f(x) shown in Figure 6.29, were we have divided it into small pulses of
width Ax. Obviously, the more pulses we use, the better the approximation.

If the time axis is in degrees, we can choose Ax to be 2.5° and it is convenient to start at the zero
point of the waveform. Then, using a spreadsheet, such as Microsoft Excel, we can divide the
period 0° to 360° in 2.5° intervals, and enter these values in Column A of the spreadsheet.

f(x)

/> x

L

Figure 6.29. Waveform whose analytical expression is unknown

Since the arguments of the sine and the cosine are in radians, we multiply degrees by n
(3.1459...) and divide by 180 to perform the conversion. We enter these in Column B and we
denote them as x. In Column C we enter the corresponding values of y = f(x) as measured
from the waveform. In Columns D and E we enter the values of cosx and the product ycosx
respectively. Similarly, we enter the values of sinx and ysinx in Columns F and G respectively.

Next, we form the sums of ycosx and ysinx, we multiply these by Ax, and we divide by © to
obtain the coefficients a; and b, . To compute the coefficients of the higher order harmonics, we

form the products ycos2x, ysin2x, ycos3x, ysin3x, and so on, and we enter these in subse-
quent columns of the spreadsheet.

Figure 6.30 is a partial table showing the computation of the coefficients of the square waveform,
and Figure 6.31 is a partial table showing the computation of the coefficients of a clipped sine
waveform. The complete tables extend to the seventh harmonic to the right and to 360° down.
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Figure 6.30. Numerical computation of the coefficients of the square waveform (partial listing)
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Figure 6.31. Numerical computation of the coefficients of a clipped sine waveform (partial listing)
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6.9 Power Series Expansion of Functions

A power series has the form

3 = ag+ax+a 4o (6.110)
k=0

Some familiar power series expansions for real values of x are

et = l+x++X 4 X 4 (6.111)
20 31 4!
3.5 7

sinx = x— =+ X 4 (6.112)
3t 517!
2 4 6

cosx = -~ 4% X (6.113)
21 4! 6!

The following example illustrates the fact that a power series expansion can lead us to a Fourier
Series.

Example 6.11

If the applied voltage v is small (no greater than 5 volts), the current i in a semiconductor diode
can be approximated by the relation

. k
i=ae

_1) (6.114)
where a and k are arbitrary constants, and the input voltage is a sinusoid, that is,
v =V ,.cosot (6.115)

Express the current i in (6.114) as a power series.

Solution:

The term ¢ inside the parentheses of (6.114) suggests the power series expansion of (6.111).
Accordingly, we rewrite (6.114) as

2 3 4 2 3 4
i= a(1+kv+(kv) L&) (k) +...—1) = a(kv+(kv) L&) (k) +) (6.116)
2! 3! 4! 2! 3! 4!

Substitution of (6.115) into (6.116) yields,
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2 3 4
kV t kV t kV t
i = a(kaaXcoswt+( peosot) | (kV,cosat)  (kVycosot) +) (6.117)
21 31 41
This expression can be simplified with the use of the following trigonometric identities:
cos’x = 1 + lcos2x
2 2
cos’x = écosx+lcos3x (6.118)
4 4
cos’x = 3 + lcos2x + lcos4x
8 2 8

Then, substitution of (6.118) into (6.117) and after simplification, we obtain a series of the fol-
lowing form:

i = Ay+A coswt+A,cos2mt+ A;cos3mt + A, cosdmt + ... (6.119)

We recall that the series of (6.119) is the trigonometric series form of the Fourier series. We
observe that it consists of a constant term, a term of the fundamental frequency, and terms of all
harmonic frequencies, that is, higher frequencies which are multiples of the fundamental fre-
quency.

6.10 Taylor and Maclaurin Series

A function f(x) which possesses all derivatives up to order n at a point x = x,, can be expanded

in a Taylor series as

' (n)
f(x) = f(xq) + (X)) (X —Xq) + %(X - X0)2 +..+ ! n(!xo)(x —x,)" (6.120)
It x, = 0, (6.120) reduces to
, (n)
f(x) = f(0)+f(0)x+%x2+ +¥x" (6.121)

Relation (6.121) is known as Maclaurin series, and has the form of power series of (6.110) with
a = f£™0)/n!.
To appreciate the usefulness and application of the Taylor series, we will consider the plot of Fig-

ure 6.32, where i(v) represents some experimental data for the current—voltage (i-v) characteris-
tics of a semiconductor diode operating at the 0 <v <5 volts region.
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i(v)

0 v

Figure 6.32. Current-voltage (i-v) characteristics for a typical semiconductor diode
Now, suppose that we want to approximate the function i(v) by a power series, in the neighbor-
hood of some arbitrary point P(v,, i,) shown in Figure 6.33. We assume that the first n deriva-
tives of the function i(v) exist at this point.
We begin by referring to the power series of (6.110), where we observe that the first term on the

right side is a constant. Therefore, we are seeking a constant that it will be the best approximation
to the given curve in the vicinity of point P. Obviously, the horizontal line i, passes through

point P, and we denote this first approximation as a, shown in Figure 6.34.

i i(v)

~

\%

Figure 6.33. Approximation of the function i(v) by a power series
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Figure 6.34. First approximation of i(v)

The next term in the power series is the linear term a,x. Thus, we seek a linear term of the form
a, +a,x . But since we want the power series to be a good approximation to the given function for
some distance on either side of point P, we are interested in the difference v - v,. Accordingly,

we express the desired power series as
F(v) = ag+a;(v—vg) +ay,(v—vy) +a5(v—v,) +a,(v=vg) +... (6.122)

Now, we want the linear term a, +a,(v-v,) to be the best approximation to the function i(v)

in the vicinity of point P. This will be accomplished if the linear term has the same slope as the
given function as shown in Figure 6.35.

i

Figure 6.35. Second approximation of i(v)

It is evident that the slope of i(v) at v, is i'(vy) = a; and therefore, the linear term

ag+a,(v—v,) can be expressed as i(vy) +1'(vy)(V—v,).
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The third term in (6.122), that is, a,(v — VO)2 is a quadratic and therefore, we choose a, such that
it matches the second derivative of the function i(v) in the vicinity of point P as shown in Figure
6.36.

. , 2
! i(v) ag+a;(v—vy) +a,(v—-vy)

\ .
&

Ipr-----=-=-=-----+- | a
| A a(V=v))
| / 2
(i //<— ay(v—vy)
0 Vo v

Figure 6.36. Third approximation of i(v)

Then, 2a, = i"(v,) or a, = i"(v,)/2. The remaining coefficients a,, a,, a5, and so on of (6.122)

are found by matching the third, fourth, fifth, and higher order derivatives of the given function
with these coefficients. When this is done, we obtain the following Taylor series.

i"(VO) ) im(VO)

i(v) = i(VO)+i'(VO)(V—V0)+T(V—VO) 3 (V—VO)3+ (6.123)

We can also describe any function that has an analytical expression, by a Taylor series as illus-
trated by the following example.

I
Example 6.12
Compute the first three terms of the Taylor series expansion for the function

y = f(x) = tanx (6.124)
ata = n/4.
Solution:

The Taylor series expansion about point a is given by

f (x) = f(a)+f(a)(x—a)+ %@(x_ a)’ + ﬂsi,@(x_ a)’ + ... (6.125)

and since we are asked to compute the first three terms, we must find the first and second deriva-

tives of f(x) = tanx.
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From math tables, ditanx = sec’x, so f'(x) = sec’x. To find f'(x) we need to find the first
X

o 2 2 . d
derivative of sec’x, so we let z = sec"x. Then, using 3 S6CX = secx - tanx,, we get
X

dz

= 2secx—d—secx = 2secx(secx - tanx) = 2sec’x - tanx (6.126)
dx dx

Next, using the trigonometric identity

sec’x = tan’x + 1 (6.127)
and by substitution of (6.127) into (6.126), we get,

zll_z = f'(x) = 2(tan2X+ 1)tanx (6.128)
X

Now, at point a = n/4 we have:

f@ﬂ:f(g) :tm{%) =1 f@u:f(g):1.+1:2 ' (a)= F(E):202+1)1:4 (6.129)

and by substitution into (6.125),
2
_ n n
£ (x) = 1+2(X—Z)+2(X—Z) .. (6.130)

We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where f
is a symbolic expression, n produces the first n terms in the series, and a defines the Taylor
approximation about point a. A detailed description can be displayed with the help taylor com-
mand. For example, the following MATLAB script computes the first 8 terms of the Taylor series
expansion of y = f(x) = tanx about a = n/4.

x=sym('x'); y=tan(x); z=taylor(y,8,pi/4); pretty(z)

2 3 4
1 +2x - 1/2 pi + 2(x - 1/4 pi) + 8/3(x - 1/4 pi) + 10/3(x - 1/4 pi)

64 5 244 6 2176 7
b - (x - 1/4 pi) 4 -—= (x - 1/4 pi) + --—= (x - 1/4 pi)
15 45 315
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Example 6.13
Express the function

y = f(t) = ¢ (6.131)

in a Maclaurin’s series.
Solution:

A Maclaurin’s series has the form of (6.132), that is,

' (n)
f(x) = f(0)+f(0)x+£2(—?—)x2+ +f—;'(—0—)x“ (6.132)

For this function, we have f(t) = ¢' and thus f(0) = 1. Since all derivatives are ¢', then,
£(0) = £'(0) = £"(0) = ... = 1 and therefore,

2 3

_ t t
f.(t) = 1+t+§—!+§—!+... (6.133)
MATLARB displays the same result.
t=sym('t"); fn=taylor(exp(1)); pretty(fn)
2 3 4 5

1+t +1/2t +1/6 £t + 1/24 £t + 1/120 t
1 ——

Example 6.14

In a semiconductor diode D, the instantaneous current i, and voltage v, are related as

vD/nVT

ip(vp) = Ipe (6.134)

where I, is the DC (average) component of the current, the constant n has a value between 1
and 2 depending on the material and physical structure of the diode, and V is the thermal volt-

age which depends on the temperature, and its value at room temperature is approximately
25 mV.

Expand this relation into a power series that can be used to compute the current when the volt-
age is small and varies about v, = 0.

Solution:

Since the voltage is small and varies about v, = 0, we can use the following Maclaurin’s series.
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: , . i"p(0) » 1i"p(0)
ip(vp) = ip(0) +1i'p(0)vp + —92—!—V12) + -—D3—!—V]3) + ... (6.135)

The first term i, (0) on the right side of (6.135) is found by letting v, = 0 in (6.134). Then,

i(0) = I, (6.136)

To compute the second and third terms of (6.135), we must find the first and second derivatives
of (6.134). These are:

. d . 1 vp/nV . 1
ID(VD) = EID = IVT : IDC and ID(O) = IVT . ID (6137)
2
41 d 3 1 VD/nVT m 1
1 D(VD) = 5 Ip = 5 IDe and i D(O) = . 5 ID (6138)
d vp nVr n"Vy

Then, by substitution of (6.136), (6.137), and (6.138) into (6.135) we get

. _ 1 1 2
ip(vp) = Iy [1 + nVTVD + n_ZV%VD + j (6.139)
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6.11 Summary

e Any periodic waveform f(t) can be expressed as

1 = .
f(t) = 530+ z (a,cosnwt + b, sinnwt)

n=1

where the first term a,/2 is a constant, and represents the DC (average) component of f(t).
The terms with the coefficients a, and b, together, represent the fundamental frequency com-
ponent . Likewise, the terms with the coefficients a, and b, together, represent the second
harmonic component 2w, and so on. The coefficients a,, a,, and b, are found from the fol-
lowing relations:

21
%ao = 2%[]0 f(t)dt

1 2m
a, = 7_1'[0 f(t) cosntdt

1 2n

b, = 7_Ij0 f(t) sinntdt

e If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine
terms only. Odd functions are those for which —f(-t) = f(t).

e If a waveform has even symmetry, that is, if it is an even function, the series will consist of
cosine terms only, and a, may or may not be zero. Even functions are those for which
f(—t) = f(t)

e A periodic waveform with period T, has half~wave symmetry if
“f(t+T/2) = £(1)

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive
half-cycle, but inverted. If a waveform has half-wave symmetry only odd (odd cosine and odd

sine) harmonics will be present. In other words, all even (even cosine and even sine) harmon-
ics will be zero.

e The trigonometric Fourier series for the square waveform with odd symmetry is

- A (not+ Leinor+ L ) =4 s L
f(t) = n smwt+3sm3mt+ssm5wt+... = z nsmn(ut
n = odd
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e The trigonometric Fourier series for the square waveform with even symmetry is

(n-1)
A( 1 1 )_ 4A !
f(t) = cos(nt—3cos3(x)t+50035(ut— = z (-1) ncosn(;)t
n = odd

e The trigonometric Fourier series for the sawtooth waveform with odd symmetry is

A( 1 1 _1 ) _2A 1
f(t) = 51n0)t—2s1n2(x)t+3s1n30)t 4sm4(ut+ = Z( DN s1nn(1)t

e The trigonometric Fourier series for the triangular waveform with odd symmetry is

(n-1)

f(t) = nA(smwt—és1n3c0t+51§sm5mt 4—9s1n7(x)t+ ) Z (-1) 2 r%sinnmt
n—odd

e The trigonometric Fourier series for the half-wave rectification waveform with no symmetry is

A A é[cos2t+ cos4t  cos6t  cos8t J

f(t) = =+ —sint -
(t) = 7 +75sin 3 5 " 35 ' 63

e The trigonometric Fourier series for the full-wave rectification waveform with even symmetry
is

f(t) = %é—% Z 21 cosnmt
T n=za6.. 0 1)

o The Fourier series are often expressed in exponential form as

j2ot

j2mt —jot jot
! L Co+Ce?™ +Ce " L

f(t) = ...+ C_ze_ + C_le

where the C; coefficients are related to the trigonometric form coefficients as

1 b 1 .
C, z(an—Tn) = E(an+an)

C

n

1l
=
7N\

o
=

+

r_..lsc‘
N———"
1l

2 (a,-ib,)

o The C; coefficients, except C,, are complex, and appear as complex conjugate pairs, that is,

C_, =C*

—n n
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e In general, for =1,
1 T —jnwt 1 2n —jnmt
Co= 7 jo f()e " d(ot) = 5= jo f(t)e "' d(wt)

e We can derive the trigonometric Fourier series from the exponential series from the relations
=C,+C_,

and )
bn = J(Cn - C—n)

e For even functions, all coefficients C; are real

e For odd functions, all coefficients C; are imaginary

o If there is half-wave symmetry, C, = 0 for n = even

e C_, = C.* always
¢ A line spectrum is a plot that shows the amplitudes of the harmonics on a frequency scale.
e The frequency components of a recurrent rectangular pulse follow a sinx/x form.

e We can evaluate the Fourier coefficients of a function based on observed values instead of an
analytic expression using numerical evaluations with the aid of a spreadsheet.

e A power series has the form

- k 2
Zakx = ap+a;X+a,X +...
K=0

e A function f(x) that possesses all derivatives up to order n at a point x = x,, can be expanded

in a Taylor series as

f(x) = f(xo) + (X)) (x—Xg) + —— (X —X() + ... +

f'(x) £ ™ (x) .
2 ~ X0 (x—x,)

If x, = 0, the series above reduces to

o (n)
(0) b+ f_(O)Xn

f(x) = £(0)+f(0)x + —= —

and this relation is known as Maclaurin series

e We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where
f is a symbolic expression, n produces the first n terms in the series, and a defines the Taylor
approximation about point a.
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6.12 Exercises

1. Compute the first 5 components of the trigonometric Fourier series for the waveform below.
Assume © = 1.

f(t)
+ A

N o

N | 0 |

2. Compute the first 5 components of the trigonometric Fourier series for the waveform below.
Assume ® = 1.

f(t)

I | | | | | wt

3. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume = 1.

f(t)

ot

0

4. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume = 1.

f(t)
A/2 —
0 wt
— -A/2
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5. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume © = 1.

£(t)
A

t
0 w

6. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume o = 1.

AN AN
N N\

Figure 6.37. Waveform for Exercise 6

7. Compute the first 4 terms of the Maclaurin series for each of the following functions.

a. f(x) =e b, f(x) =sinx c¢. f(x) = sinhx
Confirm your answers with MATLAB.

8. Compute the first 4 terms of the Taylor series for each of the following functions.

a. f(x) =

Rol—

about a = -1 b. f(x) = sinx about a = —E

Confirm your answers with MATLAB.

9. In a non-linear device, the voltage and current are related as
1.5
i(v) = k(l + X)
(v) v

where k is a constant and V is the DC component of the instantaneous voltage v. Expand
this function into a power series that can be used to compute the current i, when the voltage
v is small, and varies about v = 0.
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6.13 Solutions to End-of-Chapter Exercises
1.

() o | 4
P

Y I

27 -7 0 T on

ot

This is an even function; therefore, the series consists of cosine terms only. There is no half-
wave symmetry and the average (DC component) is not zero. We will integrate from 0 to ©
and multiply by 2. Then,

T T
a, = gJ. étcosntdt = %J‘ tcosntdt (1)
"omlym Y0

0
From tables of integrals,

1 X .
xcosaxdx = —cosax + =sinax
a
a

and thus (1) becomes

2A0 1 t .
a, = —| —cosnt+ —sinnt
2 2 n
T n

2

T
= Z—A( lcosnn + 1sinntn 1 0)
2 n 2
0 m°  n n

and since sinntt = 0 for all integer n,

C2A( 1 1) _ 2A
a, = —2(—2cosnn——2> = 2—2(cosnn—1) (2)
n o n n

We cannot evaluate the average(1/2)/a, from (2); we must use (1). Then, for n = 0,

T

1 _2A(" Al _ A
sa, = = tdt==-2| == %
2 2n2‘f0 n’ 2 0 n’ 2
or
(1/2)/a, = A/2
We observe from (2) that for n = even, a, _ ., = 0. Then,

forn = 1, alz—ﬁ, forn = 3, a3:ﬁ, forn=235, asz—ﬂ, forn=7, :113:ﬁ
2 2 2 2 2 2 2
T 3’ 5" 7n
and so on.
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Therefore,

f(t) = %ao—i‘—?(cost+écos3t+51§cos5t+zl§cos7t+...) = %—4A Z —cosnt
i/

|
|

| |
"o n'/2 b 311;'/2 E1

This is an even function; therefore, the series consists of cosine terms only. There is no half-
wave symmetry and the average (DC component) is not zero.

Average = Lo, = Area _ 2x[(A/2) (m/2)|+An _ 3A-(n/2) _ 3A

2°% " Period 2m 2m 4
n/2 T
a, = gJ. —étcosntdt+g.|. Acosntdt (1)
Ty T /2

and with

2

1 X . 1 .
xcosaxdx = —cosax + -sinax = —2(cosax+axsmax)
a
a a

(1) simplifies to

n/2
a, = A—‘%[ lz(cosnt + ntsinnt)} + %ésmnqn/z
2Ll nm n
0
_ AA (COSH LIS VS 0) + 2—A(sinnn— sing)
n2n2 2 2 2 o ’

and since sinntt = 0 for all integer n,

_4A nt  2A . nm 4A 2A . nn _ 4A nm
an = ?COST-FESHI?_?_ESIHT = ? cos— — 1
n 1 n’ T n 1
forn = 1, a1=‘i‘%(o_1)=_4—‘z-‘, forn = 2, a2=i%(_1_1)=_%%
T b 47 i
forn = 3, a3:4¥“i2(0_1):_4—A2, forn =4, a,==2(1-1) =0
om om 72n

We observe that the fourth harmonic and all its multiples are zero. Therefore,
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f(t) = 3A 4?(cost+1cos2t+1cos3t+ )
- 2 9
3.
f(t)
A —
0 = pL ot

This is neither an even nor an odd function and has no half~wave symmetry; therefore, the
series consists of both cosine and sine terms. The average (DC component) is not zero. Then,

c = L j znf(t)e_jnwtd((nt)
too2n ),

and with ® = 1

C

n

1 m —jnt ;. 1 T —jnt 2 —jnt _ A T —jnt
= IO f(t)e dt—zn[ jo Ae™dt + jn 0c dt}—zn IO Mgt

The DC value is

T

A "o A A
= — t = —t = —
Co 2njoed 2|, 2
Forn#0
A T —jnt A —jnt " —Jnn
C, =52 dt = —— = = (1-
2. '[0 © —j2nTce 0 ]2nn( )
Recalling that
—jnm ..
e’"" = cosnm—jsinnm
forn = even, "™ = 1 and for n = odd, ¢*™™ = —1. Then,
Cn:even = J2 n(l_l) =0
and
Chzodd = _]—2117[[ -(-DI =
By substitution into the expression
f(t) = ..+ Cre 2 4 C e 4 Cp + Ce’ + Che ™ ..
we find that
Numerical Analysis Using MATLAB® and Excel®, Third Edition 6-55

Copyright © Orchard Publications



Chapter 6 Fourier, Taylor, and Maclaurin Series

f(t) = %+J%( - %eﬂgm— eIy Oy %eﬂm + )
The minus (-) sign of the first two terms within the parentheses results from the fact that
C_, = C*. For instance, since C, = 2A/jn, it follows that C_, = C,;* = -2A/jn. We

observe that f(t) is complex, as expected, since there is no symmetry.

f(t)
A/2 —

—_— -A/2

This is the same waveform as in Exercise 3 where the DC component has been removed.
Then,

f(t) = J%( - %e_ﬁwt— eIy e %eﬁwt + )

It is also the same waveform as in Example 6.9, Page 6-32, except that the amplitude is halved.
This waveform is an odd function and thus the expression for f(t) is imaginary.

f(t)
A

T 0 ¥ ot
| |
-1/2 n/2

This is the same waveform as in Exercise 3 where the vertical axis has been shifted to make the
waveform an even function. Therefore, for this waveform C, is real. Then,

b4 . n/2 .
C, = 2in J' f(t)e "dt = 2% J' e ™at
- -n/2

The DC value is

n/2
C0=_“‘t :A(E+E):é
T, 2m\2 2 2
Forn=0
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C - A j”/z it = A it /2 __A (efjnn/2 B ejnn/2)
to2nd o, —j2nm .o Ti2nm
A o2 emae A (PR A np
= 2 (e —_e ) = —| ———] = —sin—
j2nm nm ]2 nwt 2

and we observe that for n = even, C, = 0

For n = odd, C, alternates in plus (+) and minus (-) signs, that is,

C. =2 ifn=1509,..
nm

C,=-2 ifn=3711..
nTm

Thus,

_A (+—A— jnmt)
f(t) = 5+ Z e
n = odd

where the plus (+) sign is used with n = 1,5,9, ... and the minus (-) sign is used with
n = 3,7,11,.... We can express f(t) in a more compact form as

_A i \m-1D/2 A jnot
f(t) = 2+ z (-1) e

nm
n = odd
6.
f(t 2A,
()A —t 1

N TV NS

We will find the exponential form coefficients C,, from

c =L [ roeima
noam )

From tables of integrals

eax
jxeaxdx = —z(ax— 1)
a

Then,
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0 . b .
C, = i[ J. (—%t— l)e_mtdt+ I (zi‘t— l)e‘“‘tdt}
2n T T

Integrating and rearranging terms we get

) 1|: AA 4A( ejnﬁ_e—jnﬁ ejnn+e—jnn) A ejnn_e_jnn—
= —_— — ——nn. + 2 i - ——

nooqm nzn n2n j2 n j2 ]
4A ( . nmw . )
= — 1 + nmsinnm + cosnmT — — sInNT
2 2 2
2n'm

and since sinnmt = 0 for all integer n,

C, = %(cosnn— 1)
n
—4A

2 2
nm

For n = even, C, = 0 and for n = odd, cosnm = -1, and C, =

Also, by inspection, the DC component C, = 0. Then,

f(t) = —4A(... + le:j.3wt+e7jmt jot 1 jdot )

R +e +=e¢
2
i 9 9

—j3mt

The coefficients of the terms e and ¢ are positive because all coefficients of C, are

real. This is to be expected since f(t) is an even function. It also has half-wave symmetry and
thus C, = 0 for n = even as we've found.

' (n)
f0) = 10)+ 1(0)x+ TP 4T Dy

a. f(x)=¢ ", f(0)=1, f(x) =—-—", f(0) =-1, f'(x) =¢ ", f'(0) =1, f"x) = -,
f"(0) = —1, and so on. Therefore,

f(x)=l-x+>=-% 4

MATLARB displays the same result.
x=sym('x'); fn=taylor(exp(—x)); pretty(fn)

2 3 4 5
1 -x+1/2 x - 1/6 x + 1/24 x - 1/120 x
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b. f(x) = sinx, f(0) =0, f(x)=cosx, f(0)=1,

f"(x) = —cosx , f"(0) = —1, and so on. Therefore,

3.5 7
f(x) = x-S~ 4 X Xy
315t 7!
MATLARB displays the same result.
x=sym('x'); fn=taylor(sin(x)); pretty(fn)
3 5

x - 1/6 x + 1/120 x
c. f(x) = sinhx, f(0) =0, f(x)=coshx, f(0)=1,
f"(x) = coshx, f"(0) = 1, and so on. Therefore,

3 7
- X X X
f,(x) = x+3!+5!+7!+...

MATLARB displays the same result.
x=sym('x'); fn=taylor(sinh(x)); pretty(fn)

3 5
x + 1/6 x + 1/120 x

fl
2!

f (x) = f(a)+(a)(x —a) + 2, X

3!

a. f(x)

f'(x) = —sinx, £'(0) = 0,

f'(x) = sinhx, f'(0) = 0,

('a)(x—a) + —'2'—)(x—a)3 +...

1/x, f(a) = f(-1) = -1, f(x) = -1/x°, f(a) = f(=1) = -1, f'(x) = 2/x°,

f'(a) = f'(=1) = -2, f"(x) = -6/x", f"(a) = f"(~1) = -6, and so on. Therefore,

f(x)=—-I-(x+ D)= (x+1)° = (x+1)° + ...

or
f(x)=-2-x—(x+1)° = (x+1)° + ...

MATLARB displays the same result.

x=sym('x'); y=1/x; z=taylor(y,4,-1); pretty(z)
2 3

2 - x - (x +1) - (x + 1)

b. f(x) = sinx, f(a) = f(-n/4) = -J/2/2, f(x) = cosx,

f(a) = f'(-n/4) = J2/2,
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f'(x) = —sinx , f'i(a) = f'(—n/4) = J2/2, f"(x) = —cosx ,
f"(a) = f"(-n/4) = —2/2 , and so on. Therefore,

£ (X) = = 2/2+ (J2/2)(x +T/4) + (J2/4)(x + /4)" = (J2/12)(x + n/4) + ..

MATLARB displays the same result.
x=sym('x'); y=sin(x); z=taylor(y,4,—pi/4); pretty(z)
1/2 1/2 1/2 2
- 1/2 2 + 1/2 2 (x + 1/4 pi) + 1/4 2 (x + 1/4 pi)
3

1/2
(x + 1/4 pi)

- 1/12 2

i(v) = k(l +%)1'5

The Taylor series for this relation is
1"(v) 2 1"(vy) 3
0 (V=vg) + ——3!—0—(V—V0) +...

1(v) = i(vy) +1'(vg)(v—vg) + T
Since the voltage v is small, and varies about v = 0, we expand this relation about v = 0 and

the series reduces to the Maclaurin series below.

i(v) = i(0)+i'(0)v+i—"——§?)v2+ .. (D)

By substitution of v = 0 into the given relation we get
i(0) = k

The first and second derivatives of i are

v 1/2

i'(v) = 23{3/(1 +\—]) (0) = 5’—5

172
i) = 25(1+2) i"(0) = 2K
4V V. 4V
and by substitution into (1)
. 3k 3k 2 3 3 2
i(v) = k+—=v+—Vv +... = k(1+—v+—v +)
2V 8V2 2V 8V2

6-60 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Solutions to End—of—Chapter Exercises

MATLARB displays the same result.

x=sym('x'); i=sym(‘’); v=sym(‘v’); k=sym(‘k’); V=sym(‘V’);...
i=k*(1+v/V)M.5; z=taylor(i,4,0); pretty(z)

2 3
kv kv kv
k+3/2 --—- +3/8 ———= - 1/16 ----
A 2 3
% \%
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Chapter 7

Finite Differences and Interpolation

his chapter begins with finite differences and interpolation which is one of its most impor-

tant applications. Finite Differences form the basis of numerical analysis as applied to other

numerical methods such as curve fitting, data smoothing, numerical differentiation, and
numerical integration. These applications are discussed in this and the next three chapters.

7.1 Divided Differences

Consider the continuous function y = f(x) and let x,, x;, X5, ..., X x,, be some values of

n-1°
x in the interval x,<x <x, . It is customary to show the independent variable x, and its corre-

sponding values of y = f(x) in tabular form as in Table 7.1.

TABLE 7.1 The variable x and y = f(x) in tabular form

x f(x)
X f(xo)
X f(x;)
X, f(x,)
Xn_ 1 f(xy-1)
Xn f(xy)

Let x, and X be any two, not necessarily consecutive values of x, within this interval. Then, the
first divided difference is defined as:
_ f(Xi) - f(xj)

f(x;, x;) = (7.1)
J X =X
Likewise, the second divided difference is defined as:
f(x.. x.) — f(x.
Flx xxy) = )T ) (1.2)
! X=Xk
Numerical Analysis Using MATLAB® and Excel®, Third Edition 7-1

Copyright © Orchard Publications



Chapter 7 Finite Differences and Interpolation

The third, fourth, and so on divided differences, are defined similarly.

The divided differences are indicated in a difference table where each difference is placed
between the values of the column immediately to the left of it as shown in Table 7.2.

TABLE 7.2 Conventional presentation of divided differences

x f(x)
X0 f(x)
f(xg, X;)
X f(x;) f(xg, X5 X5)
f(x,x,) f(xg, X5 X5, X3)
X, f(x,) f(xy, X5, X3)
f(x,, X3)
X3 f(x3)

1 ——
Example 7.1
Form a difference table showing the values of x given as 0, 1, 2, 3, 4, 7, and 9, the values of

f(x) corresponding to y = f(x) = x°, and the first through the fourth divided differences.
Solution:

We construct Table 7.3 with six columns. The first column contains the given values of x, the
second the values of f(x), and the third through the sixth contain the values of the first through
the fourth divided differences. These differences are computed from (7.1), (7.2), and other rela-
tions for higher order divided differences. For instance, the second value on the first divided dif-
ference is found from (7.1) as

and third value on the second divided difference is found from (7.2) as

37-93 _ 4,
3-7
Likewise, for the third divided difference we have
7-2 Numerical Analysis Using MATLAB® and Excel®, Third Edition
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TABLE 7.3 Divided differences for Example 7.1

Function Divided Differences
X f(x) = X3 First Second Third Fourth
0 0
1
1 1 4
13 1
3 27 8 0
37 1
4 64 14 0
93 1
7 343 20
193
9 729
48,
0-4
and for the fourth
-1 _,
0-4

We observe that, if the values of the nth divided difference are the same, as in the fifth column

(third divided differences for this example), all subsequent differences will be equal to zero.

In most cases, the values of x in a table are equally spaced. In this case, the differences are sets of
consecutive values. Moreover, the denominators are all the same; therefore, they can be omitted.
These values are referred to as just the differences of the function.

If the constant difference between successive values of x is h, the typical value of x, is

X, = Xg+kh for k=..-2,-1,0,1,2, ... (7.3)
We can now express the first differences in terms of the difference operator A as
Af, = £, -1, (7.4)
Likewise, the second differences are
A’f, = A(Af) = Af, - Af, (7.5)
Numerical Analysis Using MATLAB® and Excel®, Third Edition 7-3
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and, in general, for positive integer values of n
A" = AA"TR) = AN L —AM T (7.6)
The difference operator A obeys the law of exponents, that is,
A"(A™) = AT, (7.7)
We construct the difference table in terms of the difference operator A as shown in Table 7.4.

TABLE 7.4 Divided differences table in terms of the difference operator A

Function Differences
X f First Second Third Fourth

X9 fo
Af,

X1 fy A? £,
Af; A’ f,

X2 f, A’f, A'f,
Af, A’f |

X3 f3 A2f2
Af

Xy f,

Xn fa

Example 7.2
Construct a difference table showing the values of x given as 1, 2, 3, 4, 5, 6, 7 and 8, the values of

f(x) corresponding to y = f(x) = x*, and the first through the fourth differences.

7-4 Numerical Analysis Using MATLAB® and Excel®, Third Edition
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Solution:

Following the same procedure as in the previous example, we construct Table 7.5.

TABLE 7.5 Difference table for Example 7.2

Function Differences
2 3 4
1 1 1
7
2 2 8 12
19 6
3 3 27 18 0
37 6
4 4 64 24 0
61 6
5 5 125 30 0
91 6
6 6 216 36 0
127 6
7 7 343 42
169
8 8 512
We observe that the fourth differences A*f; are zero, as expected.
Using the binomial expansion
Pl (7.8)
(J Ji(n-j)!
we can show that
n n(n-1) n-1 n
At =1, —-nf |+ Tfk+n—2+ o+ (=) nf  + (1) f (7.9)
Fork = 0, n = 1,2,3 and 4, relation (7.9) reduces to
A’fy = £, 2f, +1,
. (7.10)
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It is interesting to observe that the first difference in (7.10), is the difference quotient whose limit
defines the derivative of a continuous function that is defined as

lim &Y = jy (AN ZT00) (7.11)
Ax—0 AX  Ax—0 Ax
As with derivatives, the nth differences of a polynomial of degree n are constant.
7.2 Factorial Polynomials
The factorial polynomials are defined as
O™ = x(x=1)(x=2)...(x=n+1) (7.12)
and
—(n) _ 1
X = ey (7.13)
These expressions resemble the power functions x" and x " in elementary algebra.
Using the difference operator A with (7.12) and (7.13) we obtain
A)™ = ne)™ P (7.14)
and
Ax) ™ = a0 (7.15)

We observe that (7.14) and (7.15) are very similar to differentiation of x" and x .

Occasionally, it is desirable to express a polynomial p, (x) as a factorial polynomial. Then, in anal-

ogy with Maclaurin power series, we can express that polynomial as

P, (X) = a5+ al(x)(l) + az(x)(2> + ...+ an(x)(n) (7.16)

and now our task is to compute the coefficientsa, .

For x = 0, relation (7.16) reduces to
a, = p,(0) (7.17)

To compute the coefficient a,, we take the first difference of p,(x)in (7.16). Using (7.14) we
obtain

Ap,(x) = 1x"a; +2a,(0)" + 32,0 + .. +na ()" (7.18)

and letting x = 0, we find that

7-6 Numerical Analysis Using MATLAB® and Excel®, Third Edition
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a; = Ap,(0) (7.19)

Differencing again we obtain

(n-2)

A’p(x) = 2-1a,+3-2a;(x)" + ... +n(n—1)a(x) (7.20)
and for x = 0,
2 2
A’p (0)  A’p (0
) = pL(0) _ Pa(0) (721)
21 2!
In general,
Np (0
a = pj';( ) for j=0.12,..n (7.22)

Factorial polynomials provide an easier method of constructing a difference table. With this
method we perform the following steps:

1. We divide p_(x)in (7.16) by x to obtain a quotient q,(x) and a remainder r, which turns out

to be the constant term a,, . Then, we express (7.16) as

p,(X) = 1y +Xxqy(x) (7.23)

2. We divide qy(x) in (7.23) by (x-1) to obtain a quotient q,(x)and a remainder r; which

turns out to be the constant term a, . Then,
qo(x) = 1 +(x=1)q;(x) (7.24)
By substitution of (7.24) into (7.23), and using the form of relation (7.16), we obtain
p (%) = 1o+ x[r; + (x=1)q;(x)] = 1o+ 1,()" +x(x = 1)q, (%) (7.25)

3. We divide q,(x) in (7.25) by (x-2) to obtain a quotient q,(x)and a remainder r, which

turns out to be the constant term a,, and thus

q;(x) = 13+ (X —2)qy(x) (7.26)

By substitution of (7.26) into (7.25), we obtain

Pa(x) = 1o+ 1, (0" +x(x = 1ty + (x=2)q5(x)] 227
= 1o+ 100" + 100 +x(x= D(x = 2)g5(x)
Numerical Analysis Using MATLAB® and Excel®, Third Edition -7
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Chapter 7 Finite Differences and Interpolation

Continuing with the above procedure, we obtain a new quotient whose degree is one less than
preceding quotient and therefore, the process of finding new quotients and remainders terminates

after (n+ 1) steps.

The general form of a factorial polynomial is

p,(x) = 1o+ 1,0 0P+ L (0" r (0™ (7.28)

and from (7.16) and (7.22),

or

Example 7.3

Express the algebraic polynomial

j
rj = aj = A—pJI:(O) (7.29)
Ap,(0) = jlr; (7.30)
p(x) = x - 5x° +3x+4 (7.31)

as a factorial polynomial. Then, construct the difference table with h = 1.

Solution:

Since the highest power of the given polynomial p(x) is 4, we must evaluate the remainders

Iy, I1» Iy, I3 and r; then, we will use (7.28) to determine p,(x). We can compute the remainders

by long division, but for convenience, we will use the MATLAB deconv(p,q) function which

divides the polynomial p by q.

The MATLAB script is as follows:

px=[1 -5 0 3 4];
do=[1 0J;
[qO,r0]=deconv(px,d0)
di=[1 -1];
[q1,r1]=deconv(q0,d1)
d2=[1 -2];
[92,r2]=deconv(q1,d2)
d3=[1 -3];
[3,r3]=deconv(g2,d3)
d4=[1 -4];
[g4,r4]=deconv(q3,d4)

g0 =

% Coefficients of given polynomial

% Coefficients of first divisor, i.e, x

% Computation of first quotient and remainder

% Coefficients of second divisor, i.e, x—1

% Computation of second quotient and remainder
% Coefficients of third divisor, i.e, x—2

% Computation of third quotient and remainder

% Coefficients of fourth divisor, i.e, x-3

% Computation of fourth quotient and remainder
% Coefficients of fifth (last) divisor, i.e, x4

% Computation of fifth (last) quotient and remainder

7-8
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1 -5 0 3
ro =

0 0 0 0 4
ql =

1 -4 -4
rl =

0 0 0 -1
az2 =

1 -2
r2 =

0 0 -8
a3 =

1
r3 =

0 1
ad =

0
rd =

1

Therefore, with reference to (7.28), the factorial polynomial is
p,(x) = 4- ()" =8 + ()P + () (7.32)

We can verify that (7.32) is the same polynomial as (7.31), by expansion of the factorials using
(7.12). This can be easily done with the MATLAB collect(‘s_expr’) function, where ‘s_expr’ is
a symbolic expression. For this example, the MATLAB script is

syms x; px=collect((x*(x—1)*(x—2)*(x—3))+(x*(x—1)*(x—2))—(8*x*(x—1))—x+4)

px =
XM -5*x"3+3*x+4

We observe that this is the same algebraic polynomial as in (7.31).

We will now compute the leading entries for the difference table using (7.30) and (7.32). Then,

Numerical Analysis Using MATLAB® and Excel®, Third Edition 7-9
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A’p(0) = 0!-4 = 4
A'p(0) = 11-(=1) = -1
A’p(0) = 2!-(-8) = —16

5 (7.33)
A’p(0) = 31-1 = 6
A*p(0) = 41-1 = 24
A’p(0) = 51-0 = 0
1. We enter the values of (7.33) in the appropriate spaces as shown in Table 7.6.
2. We obtain the next set of values by crisscross addition as shown in Table 7.7.
3. The second crisscross addition extends the difference table as shown in Table 7.8.
TABLE 7.6 Leading entries of (7.33) in table form
X p(x) A A A} NN
4
-1
-16
6
24
- 0
/]
TABLE 7.7 Crisscross addition to find second set of values
X p(x) A A A’ At A
4
-1
3 -16
-17 6
-10 24
30 0
24
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TABLE 7.8 Second crisscross addition to find third set of values

x px) | A A A’ At A
4
-1
4
3 -16
rd
-17 6
—14 —10 24
27 30 0
rd
20 24
P
54

4. Continuation of this procedure produces the complete difference table. This is shown in Table

7.9.

TABLE 7.9 Complete difference table for Example 7.3

X px) | A A A’ At A
4
-1
3 -16
-17 6
-14 -10 24
—27 30 0
a1 20 24
-7 54
48 74
67
19
1
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7.3 Antidifferences

We recall from elementary calculus that when we know the first derivative of a function, we can
integrate or antidifferentiate to find the function. By a similar method, we can find the antidifference

of a factorial polynomial. We denote the antidifference as A_lpn(x) . It is computed from

-1 (n) _ (x)(n+1)
A" = s (7.34)

Example 7.4

Compute the antidifference of the algebraic polynomial

p(x) = X' =5% +3x+4 (7.35)
Solution:

This is the same algebraic polynomial as that of the previous example, where we found that the
corresponding factorial polynomial is

p,(x) = 4- ()" =8 + () + ()@ (7.36)

Then, by (7.34), its antidifference is

(3)

Ay ) = 7, 000 g

@)
. y : _(X; +4x)V4c (7.37)

where C is an arbitrary constant.

Antidifferences are very useful in finding sums of series. Before we present an example, we need
to review the definite sum and the fundamental theorem of sum calculus. These are discussed
below.

In analogy with definite integrals for continuous functions, in finite differences we have the defi-
nite sum of p,(x) which for the interval a<x<a+ (n-1)h is denoted as

a+(n-1)h
Z pPa(x) = p(a) +p (a+h)+p (o+2h)+...+p [0+ (n—1)h] (7.38)

X=0

Also, in analogy with the fundamental theorem of integral calculus which states that
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b
j f(x)dx = f(b) - f(a) (7.39)

we have the fundamental theorem of sum calculus which states that

a+(n-1)h

> P = ATp (00 (7.40)

Example 7.5

Derive a simple expression, in closed form, that computes the sum of the cubes of the first n odd
integers.

Solution:

An odd number can be expressed as 2m — 1, and thus its cube is (2m - 1)’. To use (7.40), we
must express this term as a factorial polynomial. Recalling from (7.12) that

O™ = x(x=1)(x=2)...(x=n+1) (7.41)
and using the MATLAB expand(f) function where f is a symbolic expression, we execute
syms m; f = (2*m-1)"3; expand(f)

and we obtain
ans =
8*m*"3-12*m"2+6*m-1

Thus
p(m)= 2m—1)’ =8m’ - 12m" + 6m — 1 (7.42)

Following the procedure of Example 7.3, we find p,(m)with MATLAB as

pm=[8 -12 6 —1];
do=[1 0};
[90,r0]=deconv(pm,d0)
di=[1 -1];
[q1,r1]=deconv(q0,d1)
d2=[1 -2];
[g2,r2]=deconv(q1,d2)
d3=[1 -3];
[93,r3]=deconv(g2,d3)

g0 =
8 -12 6

Numerical Analysis Using MATLAB® and Excel®, Third Edition 7-13
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ro =
0 0 0 -1
ql =
8 -4
rl =
0 0 2
az =
8
r2 =
0 12
a3 =
0
r3 =
8
Therefore,
p(m) = 8(m)P + 12(m)* +2(m)" -1 (7.43)

Taking the antidifference of (7.43) we obtain

s 12m)®  2(m)? ()"
4 3 2 (7.44)

= 2(m)® +4(m)® + (m)® - (m)""

A"'p, (m)

and with (7.40)

| n+1
Zcubes = 2(m)(4)+4(m)(3)+(m)(2)—(m)( ) -1
=2(n+1)n(n-1)(n-2)+4(n+1)n(n-1)+(n+Dn—(n+1) (7.45)
Since
(WP = 1(1-1)(1=2)(1=3) = 0
3) _ 1111 -
M = 11-1)1-2) = 0 (7.46)
(H*P = 1(1-1) =0
M =1
relation (7.45) reduces to
ZCubes =2(n+1)n(n-1)(n-2)+4(n+ Dn(n-1)+(n+)n—-(n+1)+1 (7.47)
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and this can be simplified with the MATLAB collect(f) function as follows.

syms n; sum=collect(2*(n+1)*n*(n—-1)*(n-2)+4*(n+1)*n*(n—1)+(n+1)*"n—(n+1)+1)
sum =
2*n™4-n"2

that is,

3 cubes = 2n*—n® = n’(2n - 1) (7.48)

We can verify that this is the correct expression by considering the first 4 odd integers
1,3,5, and 7. The sum of their cubes is

1+27+ 125+ 343 = 496
This is verified with (7.48) since

n’(2n°—1) = 4°(2-4°~1) = 16-31 = 496

One important application of finite differences is interpolation. Newton’s divided—difference inter-
polation method, Lagrange’s interpolation method, Gregory—Newton forward, and Gregory—
Newton backward interpolation methods are discussed in Sections 7.4 through 7.7 below. We
will use spreadsheets to facilitate the computations. Interpolation using MATLAB is discussed in
Section 7.8 below.

7.4 Newton’s Divided Difference Interpolation Method

This method, has the advantage that the values x, x, x,, ..., x, need not be equally spaced, or

taken in consecutive order. It uses the formula

f(x) = f(xg) + (x —x) f(Xg, X|) + (X —X) (X = X) (X, X}, X5) (7.49)
+ (X = Xp) (X=X ) (X = X,) (X, X, X5, X3) '
where f(x, x1), f(Xq X}» X,), and f(x, X, X,, X3) are the first, second, and third divided differ-
ences respectively.
|

Example 7.6

Use Newton’s divided—difference method to compute f(2) from the experimental data shown in

Table 7.10.
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TABLE 7.10 Data for Example 7.6

X -1.0 0.0 0.5 1.0 2.5 3.0
y=1f(x) 30 20 | 0375 | 30 | 16125 | 19.0

Solution:
We must compute the first, second, and third divided differences as required by (7.49).
The first divided differences are:

—2.000 —3.000

= -5.000
0—(=1.0)
0375 (-2.000) _ 5 55,
05-0.0
3.000 - (-0.375) _ ¢ s
1.0-0.5 ’ (7.50)
16.125 -3.000 — 8750
25-1.0
19.000 - 16.125 — 5750
3.0-25
The second divided differences are:
3250 - (=5.000) _ < 500
05— (-1.0)
6.7158 - 3.(2)50 — 3500
T (7.51)
8.750 - 6.750 — 1.000
2.5-0.5
5.750 - 8.750 — ~1.500
30-1.0
and the third divided differences are:
3.500-5.500 _ 1 000
1.0 - (-1.0)
1.000 - 3.500
— = -1.000 .
25-00 (7.52)
—1.500 - 1.000 — ~1.000
3.0-0.5
With these values, we construct the difference Table 7.11.
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TABLE 7.11 Difference table for Example 7.6

1st Divided Difference = 2nd Divided Difference  3rd Divided Difference
X f(x) f(xg, x) f(x0, X1, X3) f(xg, Xy, X5, X3)
-1.0 3.000
-5.000
0.0 -2.000 5.500
3.250 —1.000
0.5 -0.375 3.500
6.750 —1.000
1.0 3.000 1.000
8.750 —1.000
2.5 16.125 —-1.500
5.750
3.0 19.000

Now, we have all the data that we need to find f(2). We start with x, = 0.00 " and for x in
(7.49), we use x = 2. Then,

£(2) = —2.0 + (2 0)(3.250) + (2 - 0)(2 — 0.5)(3.500) + (2 — 0)(2 — 0.5)(2 — 1)(~1.000)
~2.0+65+10.5-3

=12

This, and other interpolation problems, can also be solved with a spreadsheet. The Excel spread-
sheet for this example is shown in Figure 7.1.

7.5 Lagrange’s Interpolation Method

Lagrange’s interpolation method uses the formula

(X=x)(X=X5)...(x=X) (X=Xp)(X=X5)...(x=X,)
f(x) = f f
(x) (Xg=X1)(Xg—X5) ... (Xg—X}) (X0)+(xl—XO)(xl—xz)...(xl—xn) (x1) (7.53)
(x=xg)(X=X;).. (X=X, _1) " ’
(Xp)

(Xn_XO)(Xn_XZ)"'(Xn_Xn—l)

and, like Newton’s divided difference method, has the advantage that the values x,, x, x,, ..., x,

need not be equally spaced or taken in consecutive order.

* We chose this as our starting value so that £(2) will be between f(1) and £(2.5)
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Interpolation with Newton's Divided Difference Formula
F(x) = F(xg)+(x-Xo) F(Xg, X, ) (X=X ) (X=X, ) (XX, X,) FH(X=X ) (X=X, ) (X=X, ) F(X,X,X,,X;)
In this example, w e w ant to evaluate f(x) at x= 2

1st divided | 2nd divided |3rd divided

difference @ difference | difference

X f(x) f(xy, X,) f(Xg, Xq5 X,) | F(X5X,,X5,X5)
-1.00 3.000

-5.000
0.00 -2.000 5.500

3.250 -1.000
0.50 -0.375 3.500

6.750 -1.000
1.00 3.000 1.000

8.750 -1.000
2.50 16.125 -1.500

5.750
3.00 19.000

We use the above formula w ith starting value » 0.00

f(2)=B12+(E3-E18)*C13+(E3-E18)*(E3-A14)*D14+(E3-E18)*(E3-A14)*(E3-A16)*E15

or f(2)= 12.00

The plot below verifies that our answ er is correct

-1.000 3.000, ™
0.000 -2.000 i
0.500 -0.375 —~ 10
1.000| 3.000 =8 —
2.500 16.125 5
3000 19000 -1.0 0.0 1.0 2.0 3.0

\_ J
Figure 7.1. Spreadsheet for Example 7.6

Example 7.7

Repeat Example 7.6 using Lagrange’s interpolation formula.
Solution:

All computations appear in the spreadsheet of Figure 7.2 where we have used relation (7.53).
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Al B[] c | D E F G H | J K L

T |Lagrange's Interpolation Method

Z Numer. |[Denom. |Division

O |Interpol. at x= 2 Partial Partial of Partial

4 Prods Prods |Prods

9] X f(x) X=X1 X=X2 X-X3 X=X4 X-X5 f(xo)

© | xo| -1.00] 3.000] 2.000] 1500] 1.000] -0.500] -1.000] 3.000]  4.500

[4 x1| 0.00] -2.000] xg-x1 Xo-X2 Xo-X3 Xo-X4 Xo-X5 -0.107
¢} X2 0.50 -0.375 -1.000] -1.500 -2.000] -3.500 -4.000 -42.000

Y x3| 1.00 3.000| x-Xq X=X X-X3 X-X4 X-X5 f(x4)
10 X4| 2.50| 16.125 3.000 1.500 1.000| -0.500| -1.000{ -2.000 -4.500
11 xs| 3.00] 19.000| x4-Xo X1-X2 X1-X3 X1-X4 X1-Xs5 -1.200
P4 1.000] -0.500 -1.000] -2.500] -3.000 3.750
13 X-Xo X=X1 X-X3 X-Xg4 X-X5 f(x2)
14 3.000 2.000 1.000| -0.500| -1.000{ -0.375 -1.125
(e) X9-Xo Xg-X1 X9-X3 Xo-X4 X2-X5 0.600
10 1.500 0.500 -0.500] -2.000] -2.500 -1.875
4 X-Xo X-X1 X=Xz X-X4 X-X5 f(x3)
TS 3.000] 2.000] 1.500] -0.500| -1.000] 3.000] 13.500
19 X3-Xo X3-X4 X3-X2 X3-X4 X3-Xs5 4.500
ZU 2.000 1.000 0.500] -1.500 -2.000 3.000
21 X=X X=X4 X=X X-X3 X-X5 f(x4)
22 3.000 2.000 1.500 1.000| -1.000| 16.125| -145.125
23 X4-Xo X4-X1 X4-X2 X4-X3 X4-Xs5 11.057
Ly 3.500] 2.500 2.000 1.500 -0.500 -13.125
29 X-Xo X-X1 X=Xz X-X3 X-X4 f(xs)
76 3.000] 2.000] 1.500] 1.000] -0.500] 19.000] -85.500
21 X5-Xo X5-X1 X5-X2 X5-X3 X5-X4 -2.850
p4s} 4.000 3.000 2.500 2.000 0.500 30.000
P43
30 f2)=| Sum= 2

Figure 7.2. Spreadsheet for Example 7.7

7.6 Gregory-Newton Forward Interpolation Method
This method uses the formula

f(x) = f, +rAf, + r(rz;!l)Azfo n m_g#ﬁfo o (7.54)

where f,, is the first value of the data set, Af,, Azfo, and A3f0 are the first, second, and third for-
* . .

ward  differences respectively.

The variable r is the difference between an unknown point x and a known point x, divided by

the interval h, that is,

r = % (7.55)

* This is an expression to indicate that we use the differences in a forward sequence, that is, the first entries on the columns
where the differences appear.
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The formula of (7.54) is valid only when the values x, X, x,, ..., x,, are equally spaced with inter-

val h. It is used to interpolate values near the smaller values of x, that is, the values near the
beginning of the given data set. The formula that we will study on the next section, is used to
interpolate values near the larger values of x, that is, the values near the end of the given data
set.

|
Example 7.8
Use the Gregory—Newton forward interpolation formula to compute £(1.03) from the following

data.

TABLE 7.12 Table for Example 7.8

X 1.00 1.05 1.10 1.15 1.20 1.25
y = f(x) | 1.000000 | 1.257625 | 1.531000 | 1.820875 | 2.128000 | 2.453125

Solution:

We enter the given x and f(x) values in a difference table; then, we compute the first, second,
and third differences. These are not divided differences and therefore, we simply subtract the second
value of f(x) from the first, the third from the second, and so on, as shown in Table 7.13.

For this example,

f, = £(1.00) = 1.000000

h = x,-x, = 1.05-1.00 = 0.05 756
= X—% _ 103-1.00 _ 0.60
h 0.05
and with the values shown in Table 7.13 and using (7.54), we obtain
£(1.03) = 1.000000 + (0.60) - (0.257625) + (2:60) - (0.60 — 1)
2!
(7.57)
+ (0.60) - (0'603_‘ 1)(0.60-2). (0.000750) = 1.152727

The spreadsheet of Figure 7.3 shows the layout and computations for this example.
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TABLE 7.13 Difference table for Example 7.8

1st Difference 2nd Difference 3rd Difference

X f(x) f(xp, X1) f(xg, X1, X5) f(xg, Xp5 Xy, X3)

1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125 0.000750
1.20 2.128000 0.018000

0.325125

1.25 2453125

7.7 Gregory-Newton Backward Interpolation Method

This method uses the formula
r(r+1),2 r(r+1)(r+2),3
where f, is the first value of the data set, Af |, Azf_z, and A f 5 are the first, second and third
backward differences, and
_ (x—x;)
f = — 8 —
h

Expression (7.58) is valid only when the values x,, X, X5, ..., X, are equally spaced with interval

h. It is used to interpolate values near the end of the data set, that is, the larger values of x.
Backward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.

|
Example 7.9

Use the Gregory—Newton backward interpolation formula to compute f(1.18) from the data set

of Table 7.14.
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Gregory-Newton Forward Interpolation Method

See expressions (7.54) and (7.55)

Interpolate f(x) at x= 1.03

X f(x) Af A2f A3f
1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125 0.000750
1.20| 2.128000 0.018000

0.325125
1.25/ 2.453125
h= A10-A8= |0.05 r= (D5-A8)/C20: 0.6

f(1.12)= B8+F20*C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3)
=1.152727

1.00 1.000000 ~
1.05 1.257625 | 3.00
110 1531000 | 550 |
1.15 1.820875
1.20 2.128000
1.25 2453125 | 1.501

1.00 -
0.50
0.00 :
100 105 110 115 120 125
k J

Figure 7.3. Spreadsheet for Example 7.8

TABLE 7.14 Data for Example 7.9

X 1.00 1.05 1.10 1.15 1.20 1.25
y = f(x)  1.000000 | 1.257625 | 1.531000 | 1.820875 | 2.128000 | 2.453125
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Solution:

We arbitrarily choose f;, = 2.128000 as our starting point since f(1.18) lies between f(1.15) and

£(1.20). Then,
h=120-1.15 = 0.05
and
r=(x—x)/h = (1.18 = 1.20)/0.05 = 0.4
Now, by (7.58) we have:
2

L (S04)(=04 ;1)(— 04+ 2)0.00075)= 2.003032

f(1.18) = 2.128+(—0,4)(0.307125)_’_(—0.4)(

'0'4 * D 0.01725)

The computations were made with the spreadsheet of Figure 7.4.

If the increments in x values are small, we can use the Excel VLOOKUP function to perform
interpolation. The syntax of this function is as follows.

VLOOKUP(lookup_value, table_array, col_index_num, range lookup)

where:

lookup_value is the value being searched in the first column of the lookup table
table_array are the columns forming a rectangular range or array
col_index_num is the column where the answer will be found

range lookup is a logical value (TRUE or FALSE) that specifies whether we require VLOOKUP to
find an exact or an approximate match. If TRUE is omitted, an approximate match is returned.
In other words, if an exact match is not found, the next largest value that is less than the
lookup value is returned. If FALSE is specified, VLOOKUP will attempt to find an exact match,
and if one is not found, the error value #N/A will be returned.

A sample spreadsheet is shown in Figure 7.5 where the values of x extend from -5 to +5 volts.
Only a partial table is shown.
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Gregory-Newton Backward Interpolation Method

See formula 7.58

Interpolate f(x) at x= |1.18

x () Af A2f A3f
1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125
1.20 2.128000
h= A16-A14=  0.05 r= (C5-A16)/C18= -0.4

£(1.18)= B16+F18*C15+(F18*(F18+1)*D14)/FACT(2)+(F18*(F18+1)*(F18+2)*E13)/FACT(3)
2.003032

~
2.500
1.00 1.000000
2.000 1
1.05 1257625 | 4500 |
1.10 1.531000 | 1.000 ~
0.500 1
1.15 1.820875
0.000 : : :
120 2 128000 1.00 1.05 1.10 1.15 1.20
\ J

Figure 7.4. Spreadsheet for Example 7.9

7.8 Interpolation with MATLAB

MATLAB has several functions that perform interpolation of data. We will study the following:

1. interp1(x,y,x;) performs one dimensional interpolation where x and y are related as y = f(x)
and x; is some value for which we want to find y(x;) by linear interpolation, i.e., “table lookup”.
This command will search the x vector to find two consecutive entries between which the
desired value falls. It then performs linear interpolation to find the corresponding value of y. To
obtain a correct result, the components of the x vector must be monotonic, that is, either in
ascending or descending order.

7-24 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications



Interpolation with MATLAB

\ |
-2.000 -0.0330
-1.975 -0.0326
-1.950 -0.0323
-1.925 -0.0320
-1.900 -0.0316
-1.875 -0.0313
-1.850 -0.0309
-1.825 -0.0306
-1.800 -0.0302
-1.775 -0.0299
-1.750 -0.0295
-1.725 -0.0292
-1.700 -0.0288
-1.675 -0.0285
-1.650| -0.0281
-1.625 -0.0277
-1.600 -0.0274
-1.575 -0.0270
-1.550 -0.0267
-1.525 -0.0263

8 -1.8500| -0.0309266
9 -1.8250| -0.0305803

=VLOOKUP(-1.8375,A2:B282,2) = -0.030927
=VLOOKUR(-1.8375,A2:B282,2, TRUE) = -0.030927
=VLOOKUP(-1.8375,A2:B282,2,FALSE) = #N/A

A B

264 4.5500 0.1484323
265 4.5750 0.1496775

=VLOOKUP(4.5535,A2:B282,2) = 0.1484323

Figure 7.5. Using the Excel VLOOKUP function for interpolation

2. interp1(x,y,x;,’method’) performs the same operation as interp1(x,y,x;) where the string
method allows us to specify one of the methods listed below.

nearest — nearest neighbor interpolation

linear — linear interpolation; this is the default interpolation

spline — cubic spline interpolation; this does also extrapolation

cubic - cubic interpolation; this requires equidistant values of x

3. interp2(x,y,z,x,,y;) is similar to interp1(x,y,x;) but performs two dimensional interpolation;

4. interp2(x,y,z,x,,y;,’method’) is similar to interp1(x,y,x;,’method’) but performs two dimen-
sional interpolation. The default is linear. The spline method does not apply to two dimen-

sional interpolation.

We will illustrate the applications of these functions with the examples below.
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Example 7.10
The i—v (current-voltage) relation of a non-linear electrical device is given by

02V

i(t) = 0.1( ~1) (7.59)

where v is in volts and i in milliamperes. Compute i for 30 data points of v within the interval
—(2<v<5), plot i versus v in this range, and using linear interpolation compute i when
v = 1.265 volts.

Solution:

We are required to use 30 data points within the given range; accordingly, we will use the MAT-
LAB linspace(first_value, last_value, number_of_values) command. The script below pro-
duces 30 values in volts, the corresponding values in milliamperes, and plots the data for this
range. Then, we use the interp1(x,y,X;) command to interpolate at the desired value.

% This script is for Example_7_10.m

% It computes the values of current (in milliamps) vs. voltage (volts)

% for a diode whose v—i characteristics are i=0.1(exp(0.2v)-1).

% We can use the MATLAB function 'interp1' to linearly interpolate

% the value of milliamps for any value of v within the specified interval.

%

v=linspace(-2, 5, 30); % Specify 30 intervals in the —2<=v<=5 interval

a=0.1." (exp(0.2 .* v)-1); % We use "a" for current instead of "i" to avoid conflict
% with imaginary numbers

v_a=[v;a]; % Define "v_a" as a two—column matrix to display volts

% and amperes side—by-side.
plot(v,a); grid;
title('volt-ampere characteristics for a junction diode');
xlabel('voltage (volts)');
ylabel('current (milliamps)');
fprintf("  volts milliamps \n'); % Heading of the two—column matrix
fprintf(' \n');
disp(v_a); % Display values of volts and amps below the heading
ma=interp1(v,a,1.265); % Linear (default) interpolation
fprintf(‘current (in milliamps) @ v=1.265 is %2.4f \n', ma)

The data and the value obtained by interpolation are shown below.

volts milliamps

-2.0000 -0.0330
-1.7586 -0.0297
-1.5172 -0.0262
-1.2759 -0.0225
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-1.0345 -0.0187
-0.7931 -0.0147
-0.5517 -0.0104
-0.3103 -0.0060
-0.0690 -0.0014
0.1724 0.0035
0.4138 0.0086
0.6552 0.0140
0.8966 0.0196
1.1379 0.0256
1.3793 0.0318
1.6207 0.0383
1.8621 0.0451
2.1034 0.0523
2.3448 0.0598
2.5862 0.0677
2.8276 0.0760
3.0690 0.0847
3.3103 0.0939
3.5517 0.1035
3.7931 0.1135
4.0345 0.1241
4.2759 0.1352
4.5172 0.1468
4.7586 0.1590
5.0000 0.1718

current (in milliamps) @ v=1.265 is 0.0288

The plot for this example is shown in Figure 7.6.
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volt-ampere characteristics for a junction diode

0.15

0.1

0.05

current (milliamps)

-0.05
2

voltage (volts)

Figure 7.6. Plot for Example 7.10

Example 7.11
Plot the function
5

y = f(x) = cos’x (7.60)

in the interval 0<x<2mnwith 120 intermediate values. Then, use the MATLAB
interp1(x,y,x;,’method’) function to interpolate at n/8, n/4, 3n/5, and 3n/7. Compare the
values obtained with the linear, cubic, and spline methods, with the analytical values.

Solution:

The script below plots (7.60) and produces the values of analytical values, for comparison with
the linear, cubic, and spline interpolation methods.

% This is the script for Example_7_11

%

x=linspace(0,2*pi,120); % We need these two
y=(cos(x)) .A 5; % statements for the plot
%

analytic=(cos([pi/8 pi/4 3*pi/5 3*pi/7]').~ B);

%

plot(x,y); grid; title('y=cos”5(x)"); xlabel('x'); ylabel('y");

%

linear_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'linear');

% The label 'linear' on the right side of the above statement
% could be have been omitted since the default is linear

%

cubic_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', ‘cubic');
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%

spline_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]','spline");

%

y=zeros(4,4);% Construct a 4 x 4 matrix of zeros
y(:,1)=analytic; % 1st column of matrix
y(:,2)=linear_int; % 2nd column of matrix
y(:,3)=cubic_int; % 3rd column of matrix
y(:,4)=spline_int; % 4th column of matrix
fprintf(' \n'); % Insert line

fprintf('Analytic \t Linear Int \t Cubic Int \t Spline Int\n')

fprintf(' \n');

fprintf('%8.5f\t %8.5\t %8.5f\t %8.5f\n",y")

fprintf(' \n');

%

% The statements below compute the percent error for the three
% interpolation methods as compared with the exact (analytic) values
%

error1=(linear_int-analytic).*100 ./ analytic;
error2=(cubic_int—analytic).*100 ./ analytic;
error3=(spline_int—analytic).*100 ./ analytic;

%

z=zeros(4,3); % Construct a 4 x 3 matrix of zeros
z(:,1)=errort; % 1st column of matrix
z(:,2)=errorz; % 2nd column of matrix
z(:,3)=error3; % 3rd column of matrix

% fprintf(' \n'); % Insert line

disp(‘'The percent errors for each interpolation method are:')
fprintf(' \n');

fprintf(‘'Linear Int \t Cubic Int \t Spline Int \n")

fprintf(' \n');

fprintf('%8.5f\t %8.5f\t %8.5f\n',z')

fprintf(' \n');

The plot for the function of this example is shown in Figure 7.7.
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Figure 7.7. Plot the function of Example 7.11

The analytical and interpolated values are shown below for comparison.

Analytic Linear Int Cubic Int Spline Int

0.67310 0.67274 0.67311 0.67310
0.17678 0.17718 0.17678 0.17678
-0.00282 -0.00296 -0.00281 -0.00282
0.00055 0.00062 0.00054 0.00055

The percent errors for each interpolation method are:

Linear Int Cubic Int Spline Int

-0.05211 0.00184 0.00002
0.22707 -0.00012 0.00011
5.09681 -0.40465 -0.01027

13.27678 -0.64706 -0.07445

Example 7.12

For the impedance example of Section 1.7 in Chapter 1 whose script and plot are shown below,
use the spline method of interpolation to find the magnitude of the impedance at ® = 792 rad/s.

Solution:

% The file is Example_7_12.m
% It calculates and plots the impedance Z(w) versus radian frequency w.
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%

% Use the following five statements to obtain |Z| versus radian frequency w

w=300:100:3000;

z=zeros(28,2);

z(:,1)=w';

z(:,2)=(10+(10.A4-}.*10.26./w)./(10+}.*(0.1.*w—10./5./w)))";

fprintf('%2.0f\t %10.3f\n',abs(z)")

%

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500....
1600 1700 1800 1900 2000 2100 2200 2300....
2400 2500 2600 2700 2800 2900 3000];

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056 1014.938...
469.830 266.032 187.052 145.751 120.353...
103.111 90.603 81.088 73.588 67.513 62.481...
58.240 54.611 51.468 48.717 46.286 44.122...
42.182 40.432 38.845];

semilogx(w,z); grid;

title('Magnitude of Impedance vs. Radian Frequency');

xlabel('w in rads/sec'); ylabel('|Z] in Ohms');

%

zi=interp1(w,z,792,'spline);

fprintf(' \n')

fprintf('Magnitude of Z at w=792 rad/s is %6.3f Ohms \n', zi)

fprintf(' \n')

The plot for the function of this example is shown in Figure 7.8.

Magnitude of Impedance vs. Radian Frequency

1200

1000

800

600

|Z| in Ohms

400

200

w in rads/sec

Figure 7.8. Plot for the function of Example 7.12
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MATLAB interpolates the impedance at ® = 792 rad/s and displays the following message:

Magnitude of Z at w=792 rad/s is 217.034 Ohms

Two—dimensional plots were briefly discussed in Chapter 1. For convenience, we will review the
following commands which can be used for two—dimensional interpolation.

1. mesh(Z) — Plots the values in the matrix Z as height values above a rectangular grid, and con-
nects adjacent points to form a mesh surface.

2. [X,Y]=meshgrid(x,y) — Generates interpolation arrays which contain all combinations of the
x and y points which we specify. X and Y comprise a pair of matrices representing a rectangular
grid of points in the x —y plane. Using these points, we can form a function z = f(x, y) where
z is a matrix.

Example 7.13

Generate the plot of the function

7 = n (7.61)

in three dimensions x, y, and z. This function is the equivalent of the function y = sinx/x in
two dimensions. Here, R is a matrix that contains the distances from the origin to each point in
the pair of [X, Y] matrices that form a rectangular grid of points in the x —y plane.

Solution:

The matrix R that contains the distances from the origin to each point in the pair of [X, Y]

matrices, is
R =4JX’+Y’ (7.62)

We let the origin be at (x4, y,) = (0,0), and the plot in the intervals -2n<x<2n and
-2n<y<2mn. Then, we write and execute the following MATLAB script.

% This is the script for Example_7_13

X=—-2"pi: pi/24: 2*pi; % Define interval in increments of pi/24

y=X; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices

R=sqrt(X.A2 + YA 2); % Compute distances from origin (0,0) to x—y points
Z=sin(R)./ (R+eps); % eps prevents division by zero

mesh(X,Y,Z); % Generate mesh plot for Z=sin(R)/R

xlabel('x"); ylabel('y"); zlabel('z');
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title('Plot for the Three—dimensional sin(R) / R Function’)

The plot for the function of this example is shown in Figure 7.9.

Plot for the Three-dimensional sinR) £ R Function

Figure 7.9. Plot for Example 7.13
|

Example 7.14

Generate the plot of the function

Z=x+ y3 - 3xy (7.63)
in three dimensions x, y, and z. Use the cubic method to interpolate the value of z at x = -1
andy = 2.
Solution:

We let the origin be at (x4, y,) = (0,0), and the plot in the intervals -10<x<10 and

-10<y <10 . Then, we write and execute the following script.

% This is the script for Example_7_14

x=—10: 0.25: 10; % Define interval in increments of 0.25
y=X; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices

Z=XN3+Y N3-3."X.*Y;

mesh(X,Y,2); % Generate mesh plot

xlabel('x'); ylabel('y"); zlabel('z');

title('Plot for the Function of Example 7.14");
z_int=interp2(X,Y,Z, —1,2,'cubic’);

fprintf(' \n')
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fprintf('Interpolated Value of zat x = -1 and y = 2 is z = %4.2f \n',z_int)
fprintf(' \n')

The plot for the function of this example is shown in Figure 7.10.

Flat for the Function of Example 7.14

Figure 7.10. Plot for Example 7.14

Interpolated Value of z at x = -1 and v = 2

|
Example 7.15

A land surveyor measured and recorded the data below for a rectangular undeveloped land which
lies approximately 500 meters above sea level.

500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15
500.12 500.01 500.11 500.18 500.15 500.12 500.05 500.15
500.13 500.12 500.09 500.11 500.11 500.05 500.15 500.02
500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11

500.08 500.09 500.13
500.15 500.10 500.11
500.17 500.12 500.13
500.13 500.14 500.13
500.15 500.09 500.14
500.12 500.15 500.14
500.02 500.19 500.01
500.19 500.21 500.17

500.18
500.11
500.18
500.09
500.18
500.01
500.08
500.03

500.14 500.14
500.12 500.13
500.13 500.15
500.14 500.16
500.17 500.08
500.16 500.12
500.12 500.02
500.17 500.09

500.14 500.15
500.14 500.12
500.17 500.11
500.17 500.14
500.13 500.09
500.11 500.10
500.16 500.12
500.14 500.17

This rectangular land parcel is 175 meters wide and 275 meters deep. The measurements shown
above were made at points 25 meters apart.
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a. Denoting the width as the x —axis, the depth as the y — axis and the height as the z - axis,
plot the given data to form a rectangular grid.

b. Interpolate the value of z at x = 108 m, and y = 177 m.
c. Compute the maximum height and its location on the x —y plane.

Solution:

The MATLAB script and plot are shown below and explanations are provided with comment
statements.

% This script is for Example_7_15
%
x=0: 25: 175; % x—axis varies across the rows of z
y=0: 25: 275; % y—axis varies down the columns of z
z=[500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15;
500.12 500.01 500.11 500.18 500.15 500.12 500.05 500.15;
500.13 500.12 500.09 500.11 500.11 500.05 500.15 500.02;
500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11;
500.08 500.09 500.13 500.18 500.14 500.14 500.14 500.15;
500.15 500.10 500.11 500.11 500.12 500.13 500.14 500.12;
500.17 500.12 500.13 500.18 500.13 500.15 500.17 500.11;
500.13 500.14 500.13 500.09 500.14 500.16 500.17 500.14;
500.15 500.09 500.14 500.18 500.17 500.08 500.13 500.09;
500.12 500.15 500.14 500.01 500.16 500.12 500.11 500.10;
500.02 500.19 500.01 500.08 500.12 500.02 500.16 500.12;
500.19 500.21 500.17 500.03 500.17 500.09 500.14 500.17];
%
mesh(x,y,z); axis([0 175 0275 500 502]); grid off; box off
xlabel('x—axis, m'); ylabel('y—axis, m'); zlabel('Height, meters above sea level'); title(‘Parcel
map’)
% The pause command below stops execution of the program for 10 seconds
% so that we can see the mesh plot
pause(10);
z_int=interp2(x,y,z,108,177,'cubic’);
disp(‘Interpolated z is:'"); z_int
[xx,yyl=meshgrid(x,y);
xi=0: 2.5: 175; % Make x—axis finer
% size(xi); % Returns a row vector containing the size of xi where the
% first element denotes the number of rows and the second is the number
% of columns. Here, size(xi) =1 71
disp('size(xi)'); size(xi)
yi=0: 2.5: 275; % Make y—axis finer
disp('size(yi)'); size(yi)
[xxi,yyil=meshgrid(xi,yi); % Forms grid of all combinations of xi and yi
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% size(xxi) = size(yyi) = size(zzi) =111 71

disp('size(xxi)'); size(xxi); disp(‘size(yyi)'); size(yyi); disp('size(zzi)'); size(zzi)
size(xxi), size(yyi), size(zzi)

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation — interpolates

% all combinations of xxi and yyi and constructs the matrix zzi

mesh(xxi,yyi,zzi); % Plot smoothed data
hold on;
[xx,yyl=meshgrid(x,y); % Grid with original data

plot3(xx,yy,z,"*k"); axis([0 175 0275 500 503]); grid off; box off

xlabel('x—axis, m'); ylabel('y—axis, m'); zlabel('Height, meters above sea level');
title('Map of Rectangular Land Parcel')

hold off;

% max(x) returns the largest element of vector x

% max(A) returns a row vector which contains the maxima of the columns

% in matrix A. Likewise max(zzi) returns a row vector which contains the

% maxima of the columns in zzi. Observe that size(max(zzi)) =1 71

% and size(max(max(zzi))) =1 1

zmax=max(max(zzi)) % Estimates the peak of the terrain

% The 'find' function returns the subscripts where a relational expression

% is true. For Example,

% A=[a11 a12 a13; a21 a22 a23; a31 a32 a33] or

% A=[-103;23-4; -256];

% [i,j]=find(A>2)

% returns

% i=

%
%
%
%
%
%
%
% j=
%
%
%
%
%
% That is, the elements a22=3, a32=5, a13=3 and a33=6

% satisfy the condition A>2

% The == operator compares two variables and returns ones when they
% are equal, and zeros when they are not equal

%

[m,n]=find(zmax==zzi)

% m =

W=whnN

wWwwhN
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%

% 65

%

% n =

%

% 36

%

% that is, zmax is located at zzi = Z(65)(36)
%

% the x—cordinate is found from
xmax=xi(n)

% xmax =

%

% 1.7500 % Column 36; size(xi) =1 71
% and the y—coordinate is found from
ymax=yi(m)

% ymax =

%

% 3.2000 % Row 65; size(yi) =1 111

% Remember that i is the row index, j is the column index, and x—axis
% varies across the rows of z and y—axis varies down the columns of z

Interpolated z is:
z_int =
500.1492

size(xi)

ans =
1 71

size(yi)

ans =
1 111

size(xxi)

ans =
111 71

size(yyi)

ans =
111 71

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation — interpolates
% all combinations of xxi and yyi and constructs the matrix zzi
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size(zzi)

ans =
111 71

zmax=max(max(zzi)) % Estimates the peak of the terrain

zmax =
500.2108

ymax =
275
These values indicate that z,,, = 500.21 where the x and y coordinates are x = 20 and

y = 275. The interpolated value of z at x = 108 mand y = 177 mis z = 500.192. The plot is
shown in Figure 7.11.

Map of Rectangular Land Parnzel

503
8025

802

Height, metars above sea level

yadis, m x-Exis, m
Figure 7.11. Plot for Example 7.15
]
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7.9 Summary
® The first divided difference is defined as:
f(x;) - f(x.)
f(Xi’ XJ) = v

where x; and x; are any two, not necessarily consecutive values of x, within an interval.

e Likewise, the second divided difference is defined as:

X~ Xk
and the third, fourth, and so on divided differences are defined similarly.

e If the values of x are equally spaced and the denominators are all the same, these values are
referred to as the differences of the function.

e If the constant difference between successive values of x is h, the typical value of x, is
X, = Xo+kh for k=..-2,-1,0,1,2, ...

e We can now express the first differences are usually expressed in terms of the difference oper-
ator A as
Afy = fi -1

e Likewise, the second differences are expressed as
A’f, = A(Af) = Af,, - Af,
and, in general, for positive integer values of n
A= A" R) = AN, AN
e The difference operator A obeys the law of exponents which states that

Am(Anfk) _ Am+nfk

The nth differences Anfk are found from the relation

n(n-1)

-1
T T IEE R G VR LR G A

n
At =fi n—nfi o+

Fork = 0, n = 1,2, 3 and 4, the above relation reduces to
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Aty = £, 3f,+3f, - 1,

A*fy = £, —4f, + 65,~4f, + f,

e As with derivatives, the nth differences of a polynomial of degree n are constant.

e The factorial polynomials are defined as

O™ = x(x=1)(x=2)...(x=n+1)
and
1

ORI
(x=1)(x=2)...(x+n)

Using the difference operator A with the above relations we obtain
A(X)(n) - Il(X)(n7 1)
and

A(X)_(n) — _n(x)_(n_l)

These are very similar to differentiation of x" and x .
® We can express any algebraic polynomial f,(x) as a factorial polynomial p (x). Then, in anal-
ogy with Maclaurin power series, we can express that polynomial as
1 2
p(x) = ag+a,;(x) " +a,(x) P+ ... +a, ()™

where

_ Np,(0)
aj = i

for j=0,1,2,...,n

® Factorial polynomials provide an easier method of constructing a difference table. The proce-
dure is as follows:

1. We divide p (x) by x to obtain a quotient q,(x)and a remainder r, which turns out to be

the constant term a, . Then, the factorial polynomial reduces to

p,(X) = 15+ xq0(x)
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2. We divide q,(x) by (x—1), to obtain a quotient q,(x)and a remainder r, which turns out

to be the constant term a, . Then,
qo(x) = r; +(x-1)q;(x)
and by substitution we obtain
|
py(x) = to+x[r + (x=1)q, ()] = 1o+ ;)" + x(x = 1)q, (%)

3. We divide q,(x) by (x-2), to obtain a quotient q,(x) and a remainder r, which turns out

to be the constant term a,, and thus
qi(x) = 15+ (x=2)q,(x)

and by substitution we obtain

ro+ 1, ()" + x(x = Dry + (x = 2)q,(x)]

p,(X)

rg+ 1,0 + 1,0 + x(x = 1)(x = 2)q,(x)
and in general,
p,(x) = 1o +1, (0 4,0 P+ 0"V r (0™

where

_ Np,(0)
-

I'J=aJ

The antidifference of a factorial polynomial is analogous to integration in elementary calculus.

[t is denoted as A_lpn(x) , and it is computed from

A =

(n+1)

Antidifferences are very useful in finding sums of series.

The definite sum of p,(x) for the interval a<x<a+(n-1)h is

a+(n-1)h

z pn(x) = p,(a) +p,(o+h)+p (ct+2h)+...+p [o+(n—1)h]

X=0

In analogy with the fundamental theorem of integral calculus which states that

b
j f(x)dx = f(b) - f(a)
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we have the fundamental theorem of sum calculus which states that

o+ (n-1)h |
D> pa(x) = A p(x)

X =0

o +nh
o
¢ One important application of finite differences is interpolation.
¢ Newton’s Divided Difference Interpolation Method uses the formula
f(x) = f(xg) + (x —x) (X, X;) + (X = X) (X = x;) (X, X, X5)

+ (X —Xo) (X=X ) (X —X,) (X5 X, X5, X3)

where f(x, X1), f(Xg, X1, X5), and f(x, X;, X5, X5) are the first, second, and third divided differ-
ences respectively. This method has the advantage that the values x, x;, x,, ..., x, need not

be equally spaced, or taken in consecutive order.
e Lagrange’s Interpolation Method uses the formula
(x=x))(X=%5)...(x=x) f(x) + (X =Xg)(X=X,)...(x=X)
(X=X (Xg—X5)...(Xg— X,) 0 (X =Xp)(X] = X5) ... (X; = Xp)
(X=Xp)(X=X;)...(x =X, _1)

(X, = X) (X, —X5) o (X, =X, _ 1)

f(x) = f(x,)

f(x,)

and, like Newton’s divided difference method, has the advantage that the values
Xg» X5 Xos --.» X, Need not be equally spaced or taken in consecutive order.

® The Gregory—Newton Forward Interpolation method uses the formula

f@)=Q+mg+ﬂiﬁﬁg+@i%¥L2M%+m
where f, is the first value of the data set, Af, Azfo, and A3fo are the first, second, and third

forward differences respectively. The variable r is the difference between an unknown point x
and a known point x, divided by the interval h, that is,

_(x=xp)
r = ———~
h
This formula is valid only when the values x, x;, X,, ..., x,, are equally spaced with interval h.

It is used to interpolate values near the smaller values of x, that is, the values near the begin-
ning of the given data set, hence the name forward interpolation.
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® The Gregory—-Newton Backward Interpolation method uses the formula

r(r+1),2 r(r+1)(r+2),3
£x) = fy+eaf, + RN DU 00p

where f, is the first value of the data set, Af |, A’f,, and A’f ; are the first, second and third
backward differences, and

_(x=xy)
rf = — —
h

This formula is valid only when the values x, x;, x,, ..., x,, are equally spaced with interval h.

It is used to interpolate values near the end of the data set, that is, the larger values of x . Back-
ward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.

e [f the increments in x values are small, we can use the Excel VLOOKUP function to perform
interpolation.

® We can perform interpolation to verify our results with the MATLAB functions
interp1(x,y,X,), interp1(x,y,x;,’method’) where method allows us to specify nearest (nearest
neighbor interpolation), linear (linear interpolation, the default interpolation), spline (cubic
spline interpolation which does also extrapolation), cubic (cubic interpolation which requires
equidistant values of x), and interp2(x,y,z,X;,y;) which is similar to interp1(x,y,x;) but per-
forms two dimensional interpolation;
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7.10 Exercises

1. Express the given polynomial f(x) below as a factorial polynomial p(x), calculate the leading
differences, and then construct the difference table with h = 1.

2. Use the data of the table below and the appropriate (forward or backward) Gregory—Newton

formula, to compute:

f(x) = X —2x +4x —x+6

a. ./50.2

b. /559
X 50 51 52 53 54 55 56
J;( 7.071 7.141 7.211 7.280 7.348 7.416 7.483

3. Use the data of the table below and Newton’s divided difference formula to compute:

a. f(1.3)
b. £(1.95)
X 1.1 1.2 1.5 1.7 1.8 2.0
y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011
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7.11 Solutions to End-of-Chapter Exercises
1.

f(x) = X —2x +4x —x+6

The highest power of the given polynomial f(x) is 5, we must evaluate the remainders

Iy, T1» Ty I3, T, and rs; then, we will use (7.28), repeated below, to determine p, (x).

py(X) = 1o+ rl(x)(l) + rz(x)(z) +otr 1(X)(n_ Dy rn(x)(n)

We can compute the remainders by long division but, for convenience, we will use the MAT-
LAB deconv(p,q) function which divides the polynomial p by q.

The MATLAB script is as follows:

px=[1 -2 4 0 -1 6];
do=[1 0J;
[90,r0]=deconv(px,d0)
di=[1 —1];
[q1,r1]=deconv(q0,d1)
d2=[1 -2];
[q2,r2]=deconv(q1,d2)
d3=[1 -3];
[03,r3]=deconv(q2,d3)
d4=[1 -4];
[04,r4]=deconv(q3,d4)
d5=[1 -5];
[g5,r5]=deconv(g4,d5)

% Coefficients of given polynomial

% Coefficients of first divisor, i.e, x

% Computation of first quotient and remainder

% Coefficients of second divisor, i.e, x—1

% Computation of second quotient and remainder
% Coefficients of third divisor, i.e, x-2

% Computation of third quotient and remainder

% Coefficients of fourth divisor, i.e, x-3

% Computation of fourth quotient and remainder
% Coefficients of fifth divisor, i.e, x—4

% Computation of fifth quotient and remainder

% Coefficients of sixth (last) divisor, i.e, x-5

% Computation of sixth (last) quotient and remainder

Copyright © Orchard Publications

a0 =
1 -2 0 -1
r0 =
0 0 0 0 6
al =
1 -1 3
rl =
0 0 0 2
Q2 =
1 1
r2 =
0 0 13
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g3 =

1 4
r3 =

0 0 17
gd =

1
rd =

8

a5 =
rb =

Therefore, with reference to (7.28), the factorial polynomial is
p,(x) = 6+2()" + 13(x)P + 170 +8(x)™ + ()

We will verify that p_(x) above is the same polynomial as the given f_(x) by expansion of the
factorials using (7.12), i.e.,

O™ = x(x=1)(x=2)...(x=n+1)
with the MATLAB collect(‘s_expr’) function.
syms Xx; px=collect((x*(x—1)*(x=2)*(x=3)*(x-4)+(8*x*(x—1)*(x—2)*(x-3))+(1 7*x*(x=1)*(x-2) ) +...
(13*x*(x—1))+2*x+6))

DX =
XN5-2*X NA+4*X N 3-X+6

We observe that this is the same algebraic polynomial as f(x).

We will now compute the leading entries for the difference table using (7.30), i.e,

A'p,(0) = jlr; and p,(x) above

A’p(0) = 01-6 =6 Alp(0)y = 112 =2 A’p(0) = 2!1-13 = 26
Ap(0) =31-17 = 102 A'p(0) = 41-8 =192  A’p(0) = 5!-1 = 120
Ap(0) = 6!-0 = 0

We enter these values in the appropriate spaces as shown on the table below.
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X p(x) A A A A* N A

26

102

192

120

0

We obtain the remaining set of values by crisscross addition as shown on the table below.

X p(x) A A A At N N
6
2
8 26
28 102
36 128 192
156 294 120
192 422 312 0
578 606 120
770 1028 432
1606 1038
2376 2066
3672
6048
2.
x 50 51 52 53 54 55 56
ﬁ 7.071 7.141 7.211 7.280 7.348 7.416 7.483
a. We will use the differences in a forward sequence, that is, the first entries on the columns
where the differences appear. This is because the value of /50.2 should be in the interval
50 <x<51. We enter the given x and f(x) values in a difference table; then, we compute
the first, second, and third differences. These are not divided differences and therefore, we
simply subtract the second value of f(x) from the first, the third from the second, and so
on, as shown below.
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1st Difference 2nd Difference 3rd Difference

X f(x) f(xg X)) f(xg, X5 X5) f(Xg, X5 X5, X3)
50 7.071

0.070
51 7.141 0.000

0.070 -0.001
52 7.211 -0.001

0.069 0.000
53 7.280 -0.001

0.068 0.001
54 7.348 0.000

0.068 -0.001
55 7.416 -0.001

0.067
56 7.483

f, = f(50) = 7.071

h=x-x,=51-50 =1

_ X=X _ 50.2-50.0
h 1

= 0.20

and with these values, using (7.54), we obtain

0.20— 1)
!

£(50.2) = 7.071 +(0.20) - (7.071) + (029 ;

4 (020)-(020-1)(020-2) 01 -

3 7.085

The spreadsheet below shows the layout and computations for Part (a).
Check with MATLAB:

x =[50 51 52 53 54 55 56];

fx=[7.071 7.141 7.211 7.280 7.348 7.416 7.483];
spline_interp=interp1(x,fx,[50.2]','spline"); fprintf(\n);...
fprintf(‘spline interpolation yields f(50.2) = \n'); disp(spline_interp)

spline interpolation yields f£(50.2) =
7.0849
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Gregory-Newton Forward Interpolation Method for Exercise 7.2(a)

See expressions (7.54) and (7.55)

Interpolate f(x) at x=

X f(x)

50.0 7.071
51.0 7.141
52.0 7.211
53.0 7.280
54.0 7.348
55.0 7.416
56.0 7.483

h= A10-A8=

Af

0.070

0.070

0.069

0.068

0.068

0.067

1.00

50.2
A2f A3f A4f AS5f AGf
0.000
-0.001
-0.001 0.001
0.000 0.000
-0.001 0.001 -0.003
0.001 -0.003
0.000 -0.002
-0.001
-0.001

r=|(D5-A8)/C22= 0.2

£(50.2)= round(B8+F22+C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3),3)
= 7.085

50
51
52
53
54
55
56

7.071
7.141
7.211
7.280
7.348
7.416
7.483

/

\

7.50

~

7.40

]

7.30 -

7.20 |

7.10

7.00

50

51

52 53 54 55 56

/

b. Since the value of ./55.9 is very close to the last value in the given range, we will use the
backward interpolation formula

£(x) = fo+raf, + DA T DU 2 00p
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where f is the first value of the data set, Af ,, Aszz, and A3f73 are the first, second and
third backward differences, and

_(x=xp)
r= ——
h

We arbitrarily choose f, = 7.483 as our starting point since f(55.9) lies between f(55) and
f(56). Then,
h=5-5=1
and
r=(x-x,)/h = (55.9-56.0)/1 = -0.1
Now, by (7.58) we have:

£(55.9) = 7.483 +(—o.1)(o.070)+(‘0'1)(2'0'1 *1) 0.000)

P CONCOLEDNCOLED) g g01)= 747

Check with MATLAB:

x =[50 51 52 53 54 55 56];

fx=[7.071 7.141 7.211 7.280 7.348 7.416 7.483];
spline_interp=interp1(x,fx,[55.9]','spline"); fprintf(\n");...
fprintf(‘spline interpolation yields f(55.9) = \n'); disp(spline_interp)

spline interpolation yields f£(55.9) =

7.4764
3.
X 1.1 1.2 1.5 1.7 1.8 2.0
y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011
a. The first divided differences are:
1.219-1.112 — 1.070 1.636 -1.219 — 1.390 2.054 - 1.636 — 2.090
1.2-1.1 1.5-1.2 1.7-1.5
2.323 -2.054 — 2690 3.011-2.323 — 3.440
1.8-1.7 20-1.8
The second divided differences are:
1.390 -1.070 — 0.800 2.090 - 1.390 — 1.400
1.5-1.1 1.7-1.2
2.690 —2.090 = 2.000 3.440 - 2.690 — 2500
1.8-1.5 20-1.7
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and the third divided differences are:

1.400 - 0.800 _

1.7-1.1

1000  2000-1400 _ |00 2:300-2.000 _ 4 000

1.8-1.2 20-1.5

With these values, we construct the difference table below.

1st Divided 2nd Divided 3rd Divided
Difference Difference Difference
x f(x) f(xg, X1) f(xg, X1, X5) f(xg, Xp5 X5, X3)
1.1 1.112
1.070
1.2 1.219 0.800
1.390 1.000
1.5 1.636 1.400
2.090 1.000
1.7 2.054 2.000
2.690 1.000
1.8 2.323 2.500
3.440
2.0 3.011

To find f(1.3). We start with x, = 1.1 and for x in (7.49), we use x = 1.3. Then,

£(1.3)

f(x) = f(xg) + (x —xo) f(xg, X;) + (X = X) (X —X)) (X, X}, X5)

+ (X = X) (X=X ) (X = X,) f(X, X[, X5, X3)

L1124 (1.3 = 1.1)(1.07) + (1.3 = 1.1)(1.3 = 1.2)(1.4) + (1.3 - 1.1)(1.3 = 1.2)(1.3 = 1.5)(1)
1.112 + 0.214 + 0.028 — 0.004
1.350

b.To find f(1.95) we start with x, = 2.0 and for x in (7.49), we use x = 1.95. Then,

£(1.95)

f(x) = f(xq) + (x =x) (X, X;) + (X = X) (X =X ) T (X, X}, X5)

+ (X = Xp) (X=X ) (X —Xy) f(Xgs X5 X9, X3)

3.011 + (1.95 - 2)(3.44) + (1.95 - 2)(1.95 — 1.8)(2.5) + (1.95 — 2)(1.95 — 1.8)(1.95 — 1.7)(1)
3.011-0.172 - 0.019 — 0.002

2.818

The spreadsheet below verifies our calculated values.
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1st divided | 2nd divided 3rd divided
difference difference difference

X f(x) f(x0, x1) f(x0, x1, x2) f(x0,x1,x2,x3)
1.1 1.112
1.070
1.2 1.219 0.800
1.390 1.000
1.5 1.636 1.400
2.090 1.000
1.7 2.054 2.000
2.690 1.000
1.8 2.323 2.500
3.440
2.0 3.011
1.1 1.112 ~ ™~
1.2 1.219 3.50
1.5 1.636
1.7 2.054 3.00
1.8 2.323/| _ 2.50 -
3
2 3.011 = 500 -
1.00 ‘ ‘
1.0 1.3 1.5 1.8 2.0
X
\_ /

Check with MATLAB:

x=[ 1.1 1.2 1.5 1.7 1.8 2.0];
fx=[ 1.112 1.219 1.636 2.054 2.323 3.011];
spline_interp=interp1(x,fx,[1.3]','spline"); fprintf(\n’);...
fprintf(‘spline interpolation value of f(1.3): \n\n'); disp(spline_interp)
spline interpolation value of f£(1.3):

1.3380
spline_interp=interp1(x,fx,[1.95]','spline’); fprintf(\n');...
fprintf('spline interpolation value of f(1.95): \n\n'); disp(spline_interp)
spline interpolation value of £(1.95):

2.8184
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Chapter 8

Linear and Parabolic Regression

his chapter is an introduction to regression and procedures for finding the best curve to fit
a set of data. We will discuss linear and parabolic regression, and regression with power
series approximations. We will illustrate their application with several examples.

8.1 Curve Fitting

Curve fitting is the process of finding equations to approximate straight lines and curves that best
fit given sets of data. For example, for the data of Figure 8.1, we can use the equation of a straight
line, that is,

y = mx+b (8.1)

Figure 8.1. Straight line approximation.

For Figure 8.2, we can use the equation for the quadratic or parabolic curve of the form

y = ax’ +bx+c (8.2)

Figure 8.2. Parabolic line approximation

In finding the best line, we normally assume that the data, shown by the small circles in Figures
8.1 and 8.2, represent the independent variable x, and our task is to find the dependent variable
y . This process is called regression.
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Chapter 8 Linear and Parabolic Regression

Regression can be linear (straight line) or curved (quadratic, cubic, etc.) and it is not restricted to
engineering applications. Investment corporations use regression analysis to compare a portfolio’s
past performance versus index figures. Financial analysts in large corporations use regression to
forecast future costs, and the Census Bureau use it for population forecasting.

Obviously, we can find more than one straight line or curve to fit a set of given data, but we inter-
ested in finding the most suitable.

Let the distance of data point x; from the line be denoted as d,, the distance of data point x,

from the same line as d,, and so on. The best fitting straight line or curve has the property that

d7+d; +...+d; = minimum (8.3)

and it is referred to as the least-squares curve. Thus, a straight line that satisfies (8.3) is called a least
squares line. If it is a parabola, we call it a least-squares parabola.

8.2 Linear Regression

We perform linear regression with the method of least squares. With this method, we compute the
coefficients m (slope) and b (y-intercept) of the straight line equation

y = mx+b (8.4)

such that the sum of the squares of the errors will be minimum. We derive the values of m and b,
that will make the equation of the straight line to best fit the observed data, as follows:

Let x and y be two related variables, and assume that corresponding to the values
X{, X5, X3, ..., X, , Wwe have observed the values y,, y,, y3, ..., y, - Now, let us suppose that we have

plotted the values of y versus the corresponding values of x, and we have observed that the
points (x;,¥,)s (X, ¥5)s (X3, ¥3)» ---» (X, ¥,) approximate a straight line. We denote the straight
line equations passing through these points as

y, = mX,+b
y, = mx, +b

In (8.5), the slope m and y-intercept b are the same in all equations since we have assumed that
all points lie close to one straight line. However, we need to determine the values of the unknowns
m and b from all n equations; we will not obtain valid values for all points if we solve just two
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. . %
equations with two unknowns.

The error (difference) between the observed value y,, and the value that lies on the straight line,
is y, — (mx, +b). This difference could be positive or negative, depending on the position of the

observed value, and the value at the point on the straight line. Likewise, the error between the
observed value y, and the value that lies on the straight line is y, — (mx, + b) and so on. The

straight line that we choose must be a straight line such that the distances between the observed
values, and the corresponding values on the straight line, will be minimum. This will be achieved
if we use the magnitudes (absolute values) of the distances; if we were to combine positive and
negative values, some may cancel each other and give us an erroneous sum of the distances.
Accordingly, we find the sum of the squared distances between observed points and the points on
the straight line. For this reason, this method is referred to as the method of least squares.

Let the sum of the squares of the errors be

3 squares = [y, - (mx, +)1° + [y, - (mx, + b)° + ... (8.6)

+[y, - (mx, +b)]°

Since quuares is a function of two variables m and b, to minimize (8.6) we must equate to

zero its two partial derivatives with respect to m and b. Then,

%quuares = -2xyly,; - (mx; +b)] - 2x,[y, - (mx, +b)] - ... 87)

-2x,ly,—(mx,+b)] =0
and

g_szquares = -2y, - (mx,; +b)] -2[y, - (mx, +b)] — ... 8.8)

-2[y,-(mx,+b)] =0
The second derivatives of (8.7) and (8.8) are positive and thus ZSquares will have its minimum
value.

Collecting like terms, and simplifying (8.7) and (8.8) we obtain

* A linear system of independent equations that has more equations than unknowns is said to be overdetermined and no
exact solution exists. On the contrary, a system that has more unknowns than equations is said to be underdetermined and
these systems have infinite solutions.
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(=x”)m + (Zx)b
(£x)m + nb

ZXy (8.9)
2y

where

>x = sum of the numbers x

2y = sum of the numbers y

2xy = sum of the numbers of the product xy

Zx~ = sum of the numbers x squared

n = number of data x

We can solve the equations of (8.9) simultaneously by Cramer’s rule, or with Excel, or with MAT-
LAB using matrices.

With Cramer’s rule, m and b are computed from

D D
m= — b= 2 (8.10)
A A
where
A = *x* Ix D, = Xy ZX D, = =x’ XXy (8.11)
2X n Zy n Zx Xy

|
Example 8.1

In a typical resistor, the resistance R in Q (denoted as y in the equations above) increases with
an increase in temperature T in °C (denoted as x). The temperature increments and the
observed resistance values are shown in Table 8-1. Compute the straight line equation that best
fits the observed data.

TABLE 8.1 Data for Example 8.1 - Resistance versus Temperature

° 0 10 20 30 40 50 60 70 80 0 100
r(c) || X ?

R (Q) y 27.6 | 31.0 | 340 | 37 40 | 42.6 | 455 | 483 | 51.1 54 | 56.7

Solution:

There are 11 sets of data and thus n = 11. For convenience, we use the spreadsheet of Figure 8.3
where we enter the given values and we perform the computations using spreadsheet formulas.
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Spreadsheet for Example 8.1

0 2
x(€) v(e) X Xy 4 Resistance versus Temperature R
0 276 0 0 60.0
10/ 31.0 100 310 ' .t
8 500 - ¢
20 34.0 400 680 e .
30 370 900 1110 2 40.0 1 R
0
40 40.0/ 1600 1600 £ 300 1 ¢
50 426 2500 2130 20.0

60 455 3600 2730
70 48.3| 4900 3381
80 51.1| 6400 4088
90 54.0/ 8100 4860 - /
100/ 56.7 10000 5670
550| 467.8 38500 26559

0 20 40 60 80 100

Temperature

x| Tx 38500 550
= = 121000
X n 550 11
m=D,/A=  0.288
Txy @ IX 26559 550
= = 34859
sy n 467.8 11
b=D,/A= 28.123
=x? | Txy 38500 26559
= = 3402850
X | Zy 550  467.8

Figure 8.3. Spreadsheet for Example 8.1

Accordingly, we enter the x (temperature) values in Column A, and y (the measured resistance
corresponding to each temperature value) in Column B. Columns C and D show the x? and xy
products. Then, we compute the sums so they can be used with (8.10) and (8.11). All work is
shown on the spreadsheet of Figure 8.3. The values of m and b are shown in cells 120 and 124
respectively. Thus, the straight line equation that best fits the given data is

y = mx+b = 0.288x +28.123 (8.12)

We can use Excel’s Add Trendline feature to produce quick answers to regression problems. We
will illustrate the procedure with the following example.
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Example 8.2

Repeat Example 8.1 using Excel’s Add Trendline feature.

Solution:

We first enter the given data in columns A and B as shown on the spreadsheet of Figure 8.4.

x(0) viQ) Straight line for Example 8.2
0 276 &0
10 31.0 2
20 340 o 50 -
30 370 8 40
40 40.0 8
50 426 -% 30 |
12
60 455 2 | | | |
70 483 0 2 40 80 80 100
80 511 ‘
90 54.0 Temperature (degrees Celsius)
100 56.7

Figure 8.4. Plot of the straight line for Example 8.2

To produce the plot of Figure 8.4, we perform the following steps:

1.

We click on the Chart Wizard icon. The displayed chart types appear on the Standard Types
tab. We click on XY (Scatter) Type. On the Chart sub-types options, we click on the top (scat-
ter) sub-type. Then, we click on Next>Next> Next>Finish, and we observe that the plot
appears next to the data. We click on the Series I block inside the Chart box, and we press the
Delete key to delete it.

To change the plot area from gray to white, we choose Plot Area from the taskbar below the
main taskbar, we click on the small (with the hand) box, on the Patterns tab we click on the
white box (below the selected gray box), and we click on OK. We observe now that the plot
area is white. Next, we click anywhere on the perimeter of the Chart area, and observe six
square handles (small black squares) around it. We click on Chart on the main taskbar, and on
the Gridlines tab. Under the Value (Y) axis, we click on the Major gridlines box to deselect it.

We click on the Titles tab, and on the Chanrt title box, we type Straight line for Example 8.2, on
the Value X-axis, we type Temperature (degrees Celsius), and on the Value Y-axis, we type Resis-
tance (Ohms). We click anywhere on the x-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the maximum value from 150 to 100, and we
click OK. We click anywhere on the y-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the minimum value from O to 20, we change
the Major Unit to 10, and we click on OK.
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4. To make the plot more presentable, we click anywhere on the perimeter of the Chart area, and
we observe the six handles around it. We place the cursor near the center handle of the upper
side of the graph, and when the two-directional arrow appears, we move it upwards by moving
the mouse in that direction. We can also stretch (or shrink) the height of the Chart area by
placing the cursor near the center handle of the lower side of the graph, and move it down-
wards with the mouse. Similarly, we can stretch or shrink the width of the plot to the left or to
the right, by placing the cursor near the center handle of the left or right side of the Chart
area.

5. We click anywhere on the perimeter of the Chart area to select it, and we click on Chart above
the main taskbar. On the pull-down menu, we click on Add Trendline. On the Type tab, we
click on the first (Linear), and we click on OK. We now observe that the points on the plot
have been connected by a straight line.

We can also use Excel to compute and display the equation of the straight line. This feature will
be illustrated in Example 8.4. The Data Analysis Toolpack in Excel includes the Regression Analysis
tool which performs linear regression using the least squares method. It provides a wealth of infor-
mation for statisticians, and contains several terms used in probability and statistics.

8.3 Parabolic Regression

We find the least-squares parabola that fits a set of sample points with
y =ax’+b+c (8.13)
where the coefficients a, b, and ¢ are found from
(Zx*)a + (Zx)b + ne= Xy
(Zx)a+ (2x°)b + (Zx)c= Ixy (8.14)
(=xMa+ (Ex)b + (Tx )e= Ix'y
where n = number of data points.

|
Example 8.3
Find the least—squares parabola for the data shown in Table 8.2.
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TABLE 8.2 Data for Example 8.3

X 1.2 1.5 1.8 2.6 3.1 43 4.9 53
4.5 5.1 5.8 6.7 7.0 7.3 7.6 7.4

X 5.7 6.4 7.1 7.6 8.6 9.2 9.8

y 7.2 6.9 6.6 5.1 4.5 34 2.7

Solution:

We construct the spreadsheet of Figure 8.5, and from the data of Columns A and B, we compute
the values shown in Columns C through G. The sum values are shown in Row 18, and from these
we form the coefficients of the unknown a, b, and c.

A B C D E F G
1 X y X2 x> x* Xy X2y
2 1.2 4.5 1.44 1.73 2.07 5.40 6.48
3 1.5 5.1 2.25 3.38 5.06 7.65 11.48
4 1.8 5.8 3.24 5.83 10.50, 10.44 18.79
5 2.6 6.7 6.76 17.58 45.70) 17.42 45.29
6 3.1 7.0 9.61 29.79 92.35| 21.70 67.27
7 4.3 7.3 18.49 79.51 341.88| 31.39] 134.98
8 4.9 76| 24.01| 117.65 576.48| 37.24) 182.48
9 5.3 74| 28.09| 148.88 789.05| 39.22| 207.87
10| 5.7 7.2] 3249 185.19| 1055.60) 41.04| 233.93
11 6.4 6.9 40.96| 262.14| 1677.72| 44.16| 282.62
12 71 6.6 50.41| 357.91| 2541.17| 46.86) 332.71
13 7.6 51 57.76| 438.98| 3336.22| 38.76) 294.58
14| 86| 4.5| 73.96|] 636.06|] 5470.08) 38.70| 332.82
15 9.2 3.4| 84.64| 778.69| 7163.93| 31.28| 287.78
16 9.8 2.7/ 96.04| 941.19| 9223.68| 26.46| 259.31
17 |2x=  |Xy= =xP= == x*= Ixy= Zx2y=
18| 79.1| 87.8| 530.15| 4004.50| 32331.49| 437.72| 2698.37

Figure 8.5. Spreadsheet for Example 8.3
By substitution into (8.14),

530.15a+ 79.1b + 15¢c= 87.8
4004.50a + 530.15b + 79.1c= 437.72 (8.15)
32331.49a + 4004.50b + 530.15¢c= 2698.37

We solve the equations of (8.15) with matrix inversion and multiplication, as shown in Figure 8.6.
The procedure was presented in Chapter 4.
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Al B | ¢ | Db l[E] F| G
1 |Matrix Inversion and Matrix Multiplication for Example 8.3
2
3 530.15| 79.10| 15.00 Zy= 87.80
4 A=| 4004.50| 530.15| 79.10 Ixy=| 437.72
5 32331.49| 4004.50| 530.15 Zx2y= 2698.37
6
7 0.032| -0.016| 0.002 a= -0.20
8 A= -0.385| 0.181| -0.016 b= 1.94
9 0.979| -0.385| 0.032 c= 2.78

Figure 8.6. Spreadsheet for the solution of the equations of (8.15)

Therefore, the least—squares parabola is

y = —0.20x" + 1.94x +2.78

The plot for this parabola is shown in Figure 8.7.

X y
00 2780 y =—0.20x°+1.94x+2.78

01 2972

02 3.160 8

03 3344 7]

04 352 6 //_

05 3.700 5 |

06 3872 | 5 4.

0.7 4040 3

08 4204 2 N
09 4364 1]

10 4520 0+— — —_—
11] 4672 01 2 3 45 6 7 8 910
12 4820

1.3 4.964 X

14 5104

15 5240

Figure 8.7. Parabola for Example 8.3

Example 8.4

The voltages (volts) shown on Table 8.3 were applied across the terminal of a non-linear device
and the current ma (milliamps) values were observed and recorded. Use Excel’s Add Trendline
feature to derive a polynomial that best approximates the given data.

Solution:

We enter the given data on the spreadsheet of Figure 8.8 where, for brevity, only a partial list of
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Chapter 8 Linear and Parabolic Regression

the given data is shown. However, to obtain the plot, we need to enter all data in Columns A and
B.

TABLE 8.3 Data for Example 8.4

Experimental Data
Volts || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
ma 0.00 | 0.01 | 0.03 | 0.05 | 0.08 | 0.11 | 0.14 | 0.18 | 0.23 | 0.28 | 0.34
Volts || 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 425 | 4.50 | 4.75 | 5.00
ma 0.42 | 0.50 | 0.60 | 0.72 | 0.85 | 1.00 | 1.18 | 1.39 | 1.63 | 1.91

Volts Amps |~ ™
2.00 =0.0182x3 - 0.0403x2 +|0.1275x - 0.0177
0.00 0.00 | 1.75{ Y7 o71eaxT - Roabext® A Aefox =L /
R2 =0.9997
0.25 0.01 | 150 v

0.50 0.03 | 1.25
0.75  0.05 | 1.00 /
1.00 0.08/| 075 /
125 011 | 050

150 0.14| 0.25 | M/
175 0.18/| 000 4 ‘ ‘

2.00 0.23 0 1 2 3 4 5

2.25 0.28 \_ /
250 0.34
2.75 0.42

Figure 8.8. Plot for the data of Example 8.4

Following the steps of Example 8.2, we create the plot shown next to the data. Here, the smooth
curve was chosen from the Add trendline feature, but we clicked on the polynomial order 3 on the
Add trendline Type tab. On the Options tab, we clicked on Display equation on chart, we clicked on
Display R squared value on chart, and on OK. The quantity R” is a measure of the goodness of fit
for a straight line or, as in this example, for parabolic regression. This is the Pearson correlation coef-

. . . . . . B Kl . . *
ficient R ; it is discussed in probability and statistics textbooks.

* Itis also discussed in Mathematics for Business, Science, and Technology, ISBN 0-9709511-0-8.
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The correlation coefficient can vary from 0 to 1. When R*> =0, there is no relationship between

the dependent y and independent x variables. When R” = 1, there is a nearly perfect relation-
ship between these variables. Thus, the result of Example 8.4 indicates that there is a strong rela-
tionship between the variables x and y, that is, there is a nearly perfect fit between the cubic
polynomial and the experimental data.

With MATLAB, regression is performed with the polyfit(x,y,n) command, where x and y are the
coordinates of the data points, and n is the degree of the polynomial. Thus, if n = 1, MATLAB
computes the best straight line approximation, that is, linear regression, and returns the coeffi-
cients m and b. If n = 2, it computes the best quadratic polynomial approximation and returns
the coefficients of this polynomial. Likewise, if n = 3, it computes the best cubic polynomial
approximation, and so on.

Let p denote the polynomial (linear, quadratic, cubic, or higher order) approximation that is
computed with the MATLAB polyfit(x,y,n) function. Suppose we want to evaluate the polyno-
mial p at one or more points. We can use the polyval(p,x) function to evaluate the polynomial. If
X is a scalar, MATLAB returns the value of the polynomial at point X. If X is a row vector, the
polynomial is evaluated for all values of the vector x.

Example 8.5

Repeat Example 8.1 using the MATLAB’s polyfit(x,y,n) function. Use n = 1 to compute the
best straight line approximation. Plot resistance R versus temperature T in the range
~10<T<110 °C. Use also the polyval(p,x) command to evaluate the best line approximation p
in the 0 <T<100 range in ten degrees increments, and compute the percent error (difference
between the given values and the polynomial values).

Solution:
The following MATLAB script will do the computations and plot the data.
% This is the script for Example 8.5

%

T=[ 0 10 20 30 40 50 60 70 80 90 100]; % x—axis data
R=[27.6 31 34 37 40 42.6 455 483 51.1 54 56.7]; % y-axis data
axis([-10 110 20 60]); % Establishes desired x and y axes limits
plot(T,R,"”b"); % Display experimental (given) points with asterisk

% and smoothed data with blue line
grid; title('R (Ohms) vs T (deg Celsius, n=1"); xlabel('T"); ylabel('R');
hold % Hold current plot so we can add other data
p=polyfit(T,R,1); % Fits a first degree polynomial (straight line since n =1) and returns
% the coefficients m and b of the straight line equation y = mx + b
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a=0: 10: 100; % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display the coefficients m and b
fprintf(\n') % Insert line
disp('Coefficients m and b are:"); fprintf(\n'); disp(p);
format bank % Two decimal place display will be sufficient

disp('Smoothed R values evaluated from straight line are:');
R_smoothed=polyval(p,T) % Compute and display the values of the fitted
% polynomial at same points as given
% (experimental) values of R
R_exper =R % Display the experimental values of R for comparison
% The statement below computes the percent error between
% the fitted polynomial and the experimental data
disp('% Error at points of given values is:')
% The percent error is computed with the following statement
error=(R_smoothed-R_exper).*100./R_exper
format short % Return to default format

The plot for the data of this example is shown in Figure 8.9.

R (Ohms) vs T (deg Celsius, n=1

60 T T

55( — — —

501 - - -

450 — — —
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Figure 8.9. Plot for Example 8.5
MATLARB also displays the following data:

Coefficients m and b are:
0.2881 28.1227

Smoothed R values evaluated from straight line are:

R_smoothed =
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Columns 1 through 5
28.12 31.00 33.88 36.77 39.65

Columns 6 through 10
42..53 45.41 48.29 51.17 54.05

Column 11
56.93

R_exper =
Columns 1 through 5
27.60 31.00 34.00 37.00 40.00

Columns 6 through 10
42.60 45.50 48.30 51.10 54.00

Column 11
56.70

Q

% Error at points of given values is:
error =

Columns 1 through 5
1.89 0.01 -0.34 -0.63 -0.88

Columns 6 through 10
-0.17 -0.20 -0.02 0.14 0.09

Column 11
0.41

We can make the displayed data more presentable by displaying the values in four columns. The
following MATLAB script will do that and will display the error in absolute values.

T=[0 10 20 30 40 50 60 70 80 90 100}, % x—axis data
R=[27.6 31.0 34.0 37.0 40.0 42.6 45.5 48.3 51.1 54.0 56.7]; % y—axis data
p=polyfit(T,R,1); R_smoothed=polyval(p,T); R_exper = R;
error=(R_smoothed—-R_exper).*100./R_exper;

y=zeros(11,4); % Construct an 11 x 4 matrix of zeros

y(:,1)=T", % 1st column of matrix

y(:,2)=R_exper’; % 2nd column of matrix

y(:,3)=R_smoothed’; % 3rd column of matrix

y(:,4)=abs(error)’; % 4th column of matrix

fprintf(* \n'); % Insert line

fprintf('Temp \t Exper R\t Smoothed R\t |[Error| \n)

fprintf(' \n'); % Insert line

fprintf('%3.0f\t %5.41\t %5.41\t %5.4f\n",y")

Numerical Analysis Using MATLAB® and Excel®, Third Edition 8-13

Copyright © Orchard Publications



Chapter 8 Linear and Parabolic Regression

fprintf(' \n'); % Insert line
When this script is executed, MATLAB displays the following where the error is in percent.

Temp Exper R Smoothed R |Error|

0 27.6000 28.1227 1.8939
10 31.0000 31.0036 0.0117
20 34.0000 33.8845 0.3396
30 37.0000 36.7655 0.6339
40 40.0000 39.6464 0.8841
50 42.6000 42.5273 0.1707
60 45.5000 45.4082 0.2018
70 48.3000 48.2891 0.0226
80 51.1000 51.1700 0.1370
90 54.0000 54.0509 0.0943

100 56.7000 56.9318 0.4089

8.4 Regression with Power Series Approximations

In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the deriva-

tives di/dv with finite differences Ai/Av. The following example illustrates the procedure.

Example 8.6

The voltages (volts) shown in Table 8.4, were applied across the terminal of a non-linear device,
and the current ma (milliamps) values were observed and recorded. Use the power series method
to derive a polynomial that best approximates the given data.

TABLE 8.4 Data for Example 8.6

Experimental Data
Volts || 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
ma 0.00 | 0.01 | 0.03 | 0.05 | 0.08 | 0.11 | 0.14 | 0.18 | 0.23 | 0.28 | 0.34
Volts || 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 425 | 4.50 | 4.75 | 5.00
ma 0.42 | 0.50 | 0.60 | 0.72 | 0.85 | 1.00 | 1.18 | 1.39 | 1.63 | 1.91

Solution:

We begin by plotting the given data and we draw a smooth curve as shown in spreadsheet of Fig-
ure 8.10.
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Experimental

volts ma
Smoothed Experimental Data
0.00 0.00
0.25 0.01 2.00
0.50 0.03 1-28 /
0.75 0.05 140 /
1.00 008 120 /
1.25 0.11 o 1.00 -
150  0.14 E 8-28 /
1.75 0.18 040 |
2.00 0.23 0.20 -
2.25 0.28 0.00
2.50 0.34 -0.20
2.75 0.42 0 t2 3 4 5 6
3.00 0.50 v
3.25 0.60
3.50 0.72
3.75 0.85  From this plot, i | ,=o = i(0) = -0.02
4.00 1.00
425 1.18
4.50 1.39
475 1.63
5.00 1.91

Figure 8.10. Spreadsheet for Example 8.6

Using the plot of Figure 8.10 we read the voltmeter reading and the corresponding smoothed ma
readings and enter the values in Table 8.5.

TABLE 8.5 Data for the first derivative

Smoothed Data for Computation of Ai / Av

Volts [[ 000 [ 025 [ 050 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 225 | 2.50
ma || —002 | 001 | 0.04 | 006 | 009 | 0.11 | 0.14 | 0.18 | 022 [ 027 | 0.33
Volts 2.75 3.00 | 3.25 350 | 375 | 400 | 425 | 450 | 475 | 5.00
ma 0.41 049 | 0.60 | 0.72 | 0.85 1.01 1.20 1.40 1.63 1.89

Next, we compute A, /A, fori = 1,2,...20

To facilitate the computations, we enter these values in the spreadsheet of Figure 8.11. In cell E4
we enter the formula =(B5-B4)/(A5-A4) and we copy it down to E5:E23.

Numerical Analysis Using MATLAB® and Excel®, Third Edition 8-15
Copyright © Orchard Publications



Chapter 8 Linear and Parabolic Regression

A B C D E
1 Smoothed Computed
2 | Volts ma Ail Av
3
4 0.00 20.02] Aiy/Av,=|(0.01-(-0.02))/(0.25-0.00)=|  0.12
5| o025 0.01| Aiy/Av,=| (0.04-(0.01))/(0.25-0.00)=|  0.12
6 0.50 0.04 0.08
7 0.75 0.06 0.12
8 1.00 0.09 0.08
9 1.25 0.1 0.12
10 1.50 0.14 0.16
11 1.75 0.18 0.16
12 2.00 0.22 0.20
13 2.25 0.27 0.24
14 2.50 0.33 0.32
15 2.75 0.41 0.32
16 3.00 0.49 0.44
17 3.25 0.60 0.48
18 3.50 0.72 0.52
19 3.75 0.85 0.64
20 4.00 1.01 0.76
21 4.25 1.20 0.80
22 4.50 1.40 0.92
23| 475 1.63| Ay / Avoo=| (1.89-(1.63))/(0.25-0.00)=|  1.04
24 5.00 1.89

Figure 8.11. Spreadsheet for computation of Ai/Av in Example 8.6

Next, we plot the computed values of Ai/Av versus v and again we smooth the data as shown in
the spreadsheet of Figure 8.12. The smoothed values of the plot of Figure 8.12 are shown in Figure

8.13, and from these we compute A%i/A%v. Finally, we plot A%i/A*v versus volts and again we
smooth the data as shown in Figure 8.14.

Following the same procedure we can find higher order derivatives. However, for this example we
will consider only the first three terms of the polynomial whose coefficients i, Ai/Av and

Ai*/Av?, all three evaluated at v = 0 and are read from the plots. Therefore, the polynomial that

best fits the given data is

i(v)

144

—0.04v> +0.12v - 0.02

i(0)+i'(0)+%i (0)+... = —0.02 +0.12v + 0.5(=0.08)v"

(8.16)

8-16
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Computed
Volts = Ai/Av
Smoothed Ai/ AV
0.00 012
025 012
050  0.08 1.2
075 0.12
1.00, 0.08
125 0.12
150 0.16
175 0.16
2.00/ 0.20
225/ 0.24
250/ 0.32
275 032
3.00 044
325 048
350 052
375 064
400/ 076 0.0 | | |
425/ 0.80
450/ 0.92 0 1 2 3 4 S
475 1.04 volts
5.00

Figure 8.12. Plot to obtain smoothed data for Ai/Av in Example 8.6

Example 8.7

Repeat Example 8.4 using the MATLAB polyfit(x,y,n) function. Use n = 3 to compute the best
cubic polynomial approximation.

Solution:

With MATLAB, higher degree polynomial regression is also performed with the polyfit(x,y,n)
function, where n>2. In this example we will use n = 3 as we did with Excel. The MATLAB
script below computes the smoothed line and produces the plot shown on Figure 8.15.
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A B C D E
1 Smoothed Computed
2 | Volts AilAv AP 1 AV?
3
4 0.00 0.12| A% /AV?=| (0.11-0.12)/(0.25-0.00)=|  -0.04
5 0.25 0.11| A% /AV%=| (0.10-011)/(0.25-0.00)=|  -0.04
6 0.50 0.10 0.00
7 0.75 0.10 0.04
8 1.00 0.11 0.04
9 1.25 0.12 0.08
10 1.50 0.14 0.12
11 1.75 0.17 0.12
12 2.00 0.20 0.16
13 2.25 0.24 0.20
14 2.50 0.29 0.24
15 2.75 0.35 0.24
16 3.00 0.41 0.28
17 3.25 0.48 0.32
18 3.50 0.56 0.32
19 3.75 0.64 0.36
20 4.00 0.73 0.36
21 425 0.82 0.40
22 450 0.92 0.44
23 4.75 1.03] Ay / AV%55=| (1.03-0.92)/(0.25-0.00)= 0.44
24 5.00

Figure 8.13. Spreadsheet for computation of Ai*/AV? in Example 8.6

v=[00.250.50.7511.251.51.7522252.52.75 3....

3.253.53.7544.25 4.5 4.75 5]; % x—axis data
ma=[0 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28....

0.34 0.42 0.50 0.60 0.72 0.85 1.00 1.18 1.39 1.63 1.91]; % y—axis data
axis([-16 -1 2]); % Establishes desired x and y axes limits
plot(v,ma,'+r'); grid % Indicate data points with + and straight line in red
%
hold % hold current plot so we can add other data
disp('Polynomial coefficients in descending order are: ')

%
p=polyfit(v,ma,3) % Fits a third degree polynomial to

% the data and returns the coefficients
% of the polynomial (cubic equation for
% this example since n=3)

a=0:0.25:5; % Define range to plot the polynomial

g=polyval(p,a);% Calculate p at each value of a

% continued on the next page
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Computed
Volts = A2/ AV?
Smoothed Ai2 / sz
0.00 -0.04
0.25 -0.04
050 0.00 0.5
0.75  0.04
1.00 0.04
125 0.08
150 0.12
175 0.12
2.00 0.16
225 0.20
250 0.24
275 0.24
3.00 0.28
325/ 0.32
350 0.32
375  0.36 -0.1
400 036 0 1 2 3 4 5
425 040 v
450 044

Figure 8.14. Plot to obtain smoothed data of A2/ AV in Example 8.6

%

plot(a,q); title('milliamps vs volts, n=3";...

xlabel('v'); ylabel('ma’) % Plot the polynomial

% Display actual, smoothed and % error values

ma_smooth=polyval(p,v); % Calculate the values of the fitted polynomial
ma_exper = ma;

% The following statement computes the percent error between the

% smoothed polynomial and the experimental (given) data
error=(ma_smooth—ma_exper).*100./(ma_exper+eps);

%

y=zeros(21,4); % Construct a 21 x 4 matrix of zeros
y(:,1)=v"; % 1st column of matrix
y(:,2)=ma_exper'; % 2nd column of matrix
y(:,3)=ma_smooth’; % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix

fprintf(' \n'); % Insert line

% continued on the next page
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milliamps vs volts, n=3

ma

Figure 8.15. Plot for Example 8.7

fprintf(‘volts \t Exper ma\t Smoothed ma \t |%%Error| \n');
fprintf(' \n');

fprintf('%3.2f\t %7.5M\t %7.5f\t %7.5M\n"y")

fprintf(' \n');

MATLAB computes and displays the following data.

Polynomial coefficients in descending order are:
p:
0.0182 -0.0403 0.1275 -0.0177

volts Exper ma Smoothed ma |%Error|

0.00 0.00000 -0.01766 7955257388080461.00000
0.25 0.01000 0.01197 19.74402

0.50 0.03000 0.03828 27.61614

0.75 0.05000 0.06298 25.95052

1.00 0.08000 0.08775 9.69226

1.25 0.11000 0.11433 3.93513

1.50 0.14000 0.14441 3.14852

1.75 0.18000 0.17970 0.16677

2.00 0.23000 0.22191 3.51632

2.25 0.28000 0.27275 2.58785

2.50 0.34000 0.33393 1.78451

2.75 0.42000 0.40716 3.05797

3.00 0.50000 0.49413 1.17324

3.25 0.60000 0.59657 0.57123
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3.50 0.72000 0.71618 0.53040
3.75 0.85000 0.85467 0.54911
4.00 1.00000 1.01374 1.37399
4.25 1.18000 1.19511 1.28020
4.50 1.39000 1.40048 0.75362
4.75 1.63000 1.63155 0.09538
5.00 1.91000 1.89005 1.04436

We will conclude this chapter with one more example to illustrate the uses of the MATLAB
polyfit(x,y,n) and polyval(p,x) functions.

Example 8.8
Use MATLAB to

a. plot the function
y = sinx/x (8.17)
in the interval 0 <x <16 radians.

b. compute y(0), y(2), y(4), y(6), y(8), y(10), y(12), y(14), y(16)

c. plot y versus x for these values and use the MATLAB polyfit(x,y,n) and polyval(p,x) func-
tions to find a suitable polynomial that best fits the x and y data.

Solution:

a. The fplot function below plots y = sinx/x. We added eps to avoid division by zero.

fplot(‘sin(x)./(x+eps),[0 16 -0.5 1]); grid;...
title('(sinx)/x curve for x > Q')

The plot for the function of (8.17) is shown in Figure 8.16.
b. We use the script below to evaluate y at the specified points.

x=0:2:16; y=sin(x)./(x+eps)

p7=polyfit(x,y,7); % of x and y with fifth, seventh,
p9=polyfit(x,y,9); % and ninth degree polynomials

% continued on the next page
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(sinx)/x curve for x > 0

o5 ----N-----

-0.5
0

Figure 8.16. Plot for Example 8.8

c. The script for finding a suitable polynomial is listed below.

x=[0 2 4 6 8 10 12 14 16];

y=[1 0.4546 —-0.1892 —0.0466 0.1237 -0.0544 -0.0447 0.0708 -0.0180];
p5=polyfit(x,y,5); % Fits the polynomial to the data

x_span=0: 0.1: 16; % Specifies values for x—axis
p5_pol=polyval(p5, x_span); % Compute the polynomials for this range of x values.
p7_pol=polyval(p7, x_span); p9_pol=polyval(p9, x_span);
plot(x_span,p5_pol,'—', x_span,p7_pol,'-.", x_span,p9_pol,'-',x,y,"™");

% The following two statements establish coordinates for three legends

% in x and y directions to indicate degree of polynomials

x_ref=[2 5.3]; y_ref=[1.3,1.3];

hold on;

% The following are line legends for each curve
plot(x_refy_ref,'—'x_ref,y_ref-0.2,'-." x_ref,y_ref-0.4,'-");

% The following are text legends for each curve

text(5.5,1.3, '5th degree polynomial');

text(5.5,1.1, '7th degree polynomial');

text(5.5,0.9, '9th degree polynomial’); grid;

hold off

format short e % Exponential short format

disp('The coefficients of 5th order polynomial in descending order are:')
p5_coef=polyfit(x,y,5)

disp(‘The coefficients of 7th order polynomial in descending order are:')
p7_coef=polyfit(x,y,7)

disp(‘'The coefficients of 9th order polynomial in descending order are:')
p9_coef=polyfit(x,y,9)

format short % We could just type format only since it is the default
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The 5th, 7th, and 9th order polynomials are shown in Figure 8.17.

Figure 8.17. Polynomials for Example 8.8

The coefficients of the 5th, 7th, and 9th order polynomials are shown below.

The coefficients of 5th order polynomial in descending order are:

p5_coef =
6.5865e-006 -1.4318e-004 -1.5825e-003
6.0067e-002 -4.6529e-001 1.0293e+000

The coefficients of 7th order polynomial in descending order are:

p7_coef =
Columns 1 through 6
2.6483e-006 -1.6672e-004 4.1644e-003
-5.2092e-002 3.3560e-001 -9.9165e-001
Columns 7 through 8
7.2508e-001 9.9965e-001
The coefficients of 9th order polynomial in descending order are:
p9_coef =
Columns 1 through 6
-1.0444e-008 1.1923e-006 -4.8340e-005
9.5032e-004 -9.7650e-003 4.9437e-002
Columns 7 through 10
-8.4572e-002 -1.0057e-001 0 1.0000e+000
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8.5 Summary

e Curve fitting is the process of finding equations to approximate straight lines and curves that
best fit given sets of data.

® Regression is the process of finding the dependent variable y from some data of the independent
variable x . Regression can be linear (straight line) or curved (quadratic, cubic, etc.)

® The best fitting straight line or curve has the property that d12 + d22 + d32 = minimum and it

is referred to as the least—squares curve. A straight line that satisfies this property is called a least
squares line. If it is a parabola, we call it a least—squares parabola.

e We perform linear regression with the method of least squares. With this method, we compute
the coefficients m (slope) and b (y-intercept) of the straight line equation y = mx + b such

that the sum of the squares of the errors will be minimum. The values of m and b can be found
from the relations

(=x”)m + (Zx)b
(Zx)m + nb

Xy
Zy

where

2x = sum of the numbers x, £y = sum of the numbers y

2xy = sum of the numbers of the product xy, ¥x* = sum of the numbers x squared
n = number of data x

The values of m and b are computed from

D D
m = —1 b = _2
A A
where
A = x* Ix D, = Zxy Zx D, = rx* Xy
2X n 2y n 2x Xy

e We find the least—squares parabola that fits a set of sample points with y = ax’ +b + ¢ where
the coefficients a, b, and ¢ are found from

(Zx*)a + (Zx)b + ne= Sy
(2x’)a + (Zx°)b + (Zx)c= =xy
(ZxMa+ (Ex)b + (x )e= Ix'y

where n = number of data points.
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e With MATLAB, regression is performed with the polyfit(x,y,n) command, where x and y are
the coordinates of the data points, and n is the degree of the polynomial. Thus, if n = 1,
MATLAB computes the best straight line approximation, that is, linear regression, and returns
the coefficients m and b. If n = 2, it computes the best quadratic polynomial approximation

and returns the coefficients of this polynomial. Likewise, if n = 3, it computes the best cubic
polynomial approximation, and so on.

In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the
derivatives dy/dx with finite differences Ay/Ax.
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8.6 Exercises

1. Consider the system of equations below derived from some experimental data.

2x+y = -1
x-3y = -4
x+4y =3
3x -2y = -6
-x+2y =3
x+3y =2

Using the relations (8.10) and (8.11), find the values of x and y that best fit this system of
equations.

2. In a non-linear device, measurements yielded the following sets of values:

millivolts 100 120 140 160 180 200

milliamps 0.45 0.55 0.60 0.70 0.80 0.85

Use the procedure of Example 8.1 to compute the straight line equation that best fits the given
data.

3. Repeat Exercise 2 above using Excel’s Trendline feature.
4. Repeat Exercise 2 above using the MATLAB’s polyfit(x,y,n) and polyval(p,x) functions.

5. A sales manager wishes to forecast sales for the next three years for a company that has been in
business for the past 15 years. The sales during these years are shown on the next page.
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Year

Sales

$9,149,548

13,048,745

19,147,687

28,873,127

39,163,784

54,545,369

72,456,782

89,547,216

O |0 | Q||| bW

112,642,574

—_
o

130,456,321

—
—

148,678,983

—
\]

176,453,837

—
W

207,547,632

H
~n

206,147,352

—
9}

204,456,987

Using Excel’s Trendline feature, choose an appropriate polynomial to smooth the given data
and using the polynomial found, compute the sales for the next three years. You may round

the sales to the nearest thousand.

6. Repeat Exercise 5 above using the MATLAB polyfit(x,y,n) and polyval(p,x) functions.
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8.7 Solutions to End-of-Chapter Exercises

1. We construct the spreadsheet below by entering the given values and computing the values
from the formulas given.

Al B|CIDIE]JF]G] H [ J
1 |Spreadsheet for Exercise 8.1
2
3 a | b |c|a’|ab|b? ac bc
4
5 20 111 4] 2| 1] -2 -1
6 11 -3/-4] 1| -3] 9| -4 12
7 1 4| 3] 1| 4|16] 3 12
8 3| -2|-6| 9 -6/ 4 -18 12
9 A 2| 3 1 2| 4 -3 6
10 11 32 1 3] 9 2 6
11
12| = 7| 5|-3| 17| -2|43| -22 47
13
14 za’ | zab 17 -2
15| A = =| 727
16 Sab | =b? 2| 43
17 x=D,/A=| -1.172
18 Yac | Xab 22| -2
19| D4 = =| -852
20 Sbc| =b? 47| 43
21 y=D,/A=| 1.039
22 va’ | zac 17| -22
23| D, = =| 755
24 >ab | =hc 2| 47

Thus, x = -1.172 and y = 1.039
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2. We construct the spreadsheet below by entering the given values and computing the values
from the given formulas.

Spreadsheet for Exercise 8.2

x (mV) y(mA)

100
120
140
160
180
200
900

xX

XX

2 Xy

zy

XX

XX

0.45
0.55
0.60
0.70
0.80
0.85

x2

10000
14400
19600
25600
32400
40000

3.95 142000

Xy

2y

Xy
45
66
84

112
144

170
621

142000

900

621

4.0

142000

900

4 Milliamps versus Millivolts h
1.00
& 0.80 - —
5 —
S 0.60
0.40 :
100 120 140 160 180 200
Millivolts
- /
900
= 42000
6
m=D,;/A= 0.004
900
= 171
6
b=D,/A= 0.0476
621
= 2000
4.0

Thus, y = mx+b = 0.004x + 0.0476
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3. Following the procedure of Example 8.2, we obtain the trendline shown below.

Trendline for Exercise 8.3

x (mV) y(mA) x?

100
120
140
160
180
200
900

X

Xy

Iy

XX

0.45 10000
0.55 14400
0.60 19600
0.70 25600
0.80 32400
0.85 40000
3.95 142000

Z Xy

zy

Xy
45
66
84

112
144

170
621

142000

900

621

4.0

142000

900

4 Milliam ps versus Millivolts R
1.00
€ 0.80 = ¢
IS
3
§ 060 | /
0.40 "/ S
100 120 140 160 180 200
Millivolts
o %
900
= 42000
6
m=D,/A= 0.004
900
= 171
6
b=D,/A= 0.0476
621
= 2000
4.0

4.
mv=[100 120 140 160 180 200]; % x-axis data
ma=[0.45 0.55 0.60 0.70 0.80 0.85]; % y-axis data
axis([100 200 0 1]); % Establishes desired x and y axes limits
plot(mv,ma,"”b'); % Display experimental (given) points with
% asterisk and smoothed data with blue line
grid; title('ma (milliamps) vs mv (millivolts, n=1'); xlabel('mv'); ylabel('ma’);
hold % Hold current plot so we can add other data
p=polyfit(mv,ma,1); % Fits a first degree polynomial (straight line since n =1) and returns
% the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 200; % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display the coefficients m and b
fprintf(\n") % Insert line
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disp('Coefficients m and b are:'); fprintf(\n'); disp(p);

format bank % Two decimal place display will be sufficient
ma_smoothed=polyval(p,mv); % Compute the values of the fitted polynomial at

% same points as given (experimental) values of ma
ma_exper = ma; % Display the experimental values of ma for comparison

% The statement below computes the percent error between

% the fitted polynomial and the experimental data

% disp('% Error at points of given values is:");

% The percent error is computed with the following statement
error=(ma_smoothed-ma_exper).*100./ma_exper;

format short % Return to default format
y=zeros(6,4); % Construct an 6 x 4 matrix of zeros
y(:,1)=mv'; % 1st column of matrix
y(:,2)=ma_exper % 2nd column of matrix
y(:,3)=ma_smoothed'; % 3rd column of matrix
y(:,4)=abs(error); % 4th column of matrix

fprintf(' \n'); % Insert line

fprintf('mv \t Exper ma\t Smoothed ma \t |Error| percent \n')
fprintf(' \n'); % Insert line

fprintf('%3.0f\t %5.4f\t %5.4f\t %5.4f\n',y")

fprintf(' \n'); % Insert line

Coefficients m and b are:
0.0041 0.0476

mv Exper ma Smoothed ma |Error| percent

100 0.4500 0.4548 1.0582
120 0.5500 0.5362 2.5108
140 0.6000 0.6176 2.9365
160 0.7000 0.6990 0.1361
180 0.8000 0.7805 2.4405
200 0.8500 0.8619 1.4006

ma (milliamps) vs mv (millivolts, n=1

ma

]
|
|
|
4
|
|
|
|
ToT T T 177

o
n
=]
FN
o
@
=]
®
o
Q
=]
o -
o
g
)
> —
S
o —
=]
n
o
=]
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5. Following the procedure of Example 8.4, we choose Polynomial 4 and we obtain the trendline
shown below.

9149548

y =-17797x* + 436354x3 - 2E+06x? +
13048745 258000000

TE+07x - 2E+06

19147687 R? =0.9966
28873127 208000000 -

1
2
3
4
5 39163784 158000000
6
7
8

54545369
S vase7gp | 108000000 -
89547216 58000000
9 112642574 _’,,/f’/
8000000 ‘

10 130456321 ‘

11 148678983 0 ° 10 15 20
12 176453837
13 207547632
14 206147352

The sales for the next 3 years are from the equation above produced by Excel.

Vig = - 17797x" +436354x 2 x 10°x” +10'x -2 x 10°|__ = 266961792
yi7 = - 17797x" + 436354x" -2 x 10°x” +10'x -2 x 10°| _ . = 247383965
Yig = - 17797x" +436354x" -2 x 10°x” +10'x -2 x 10°| _ . = 206558656

These results indicate that non-linear interpolation is, in most cases, unreliable. We will
compare these values with the results of Exercise 6.

6.
year=[1 23456789 10 11 12 13 14 15]; % x-axis data
sales=[9149548 13048745 19147687 28873127 39163784 ...
54545369 72456782 89547216 112642574 130456321 ...
148678983 176453837 207547632 206147352 204456987]; % y-axis data
plot(year,sales,™b"); % Display experimental (given) points with
% asterisk and smoothed data with blue line
hold % Hold current plot so we can add other data
grid; title('Yearly Sales vs Years, n=4'); xlabel('Years'); ylabel('Yearly Sales');
p=polyfit(year,sales,4); % Fits a first degree polynomial (n=4) and returns
% the coefficients of the polynomial
a=linspace(0, 15, 15); % Define range to plot the polynomial
g=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display coefficients ofpolynomial
fprintf(\n') % Insert line
disp('Coefficients are:"); fprintf(\n'); disp(p);
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sales_smoothed=polyval(p,year); % Compute the values of the fitted polynomial at

% same points as given (experimental) values of ma
sales_exper = sales; % Display the experimental values of ma for comparison
% The statement below computes the percent error between
% the fitted polynomial and the experimental data
% The percent error is computed with the following statement
error=(sales_smoothed-sales_exper).*100./sales_exper;

y=zeros(15,4); % Construct an 15 x 4 matrix of zeros
y(:,1)=year % 1st column of matrix
y(:,2)=sales_exper"; % 2nd column of matrix
y(:,3)=sales_smoothed’; % 3rd column of matrix
y(:,4)=abs(error)’; % 4th column of matrix

fprintf(' \n');

fprintf('year\t Exper sales\t Smoothed sales \t |Error| percent \n')
fprintf(* \n');

fprintf('%2.0f\t 9%9.0f\t %9.0f\t  %5.2f\n"y")

fprintf(' \n');

Coefficients are:

1.0e+007 *
-0.0018 0.0436 -0.2386 1.1641 -0.2415
x 10° Yearly Sales vs Years, n=4
3
year Exper sales Smoothed sales |Error| percent
1 9149548 7258461 20.67
2 13048745 14529217 11.35
3 19147687 21374599 11.63
4 28873127 29344934 1.63
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5 39163784 39563426 1.02
6 54545369 52726163 3.34
7 72456782 69102111 4.63
8 89547216 88533118 1.13
9 112642574 110433913 1.96
10 130456321 133792104 2.56
11 148678983 157168183 5.71
12 176453837 178695519 1.27
13 207547632 196080363 5.53
14 206147352 206601848 0.22
15 204456987 207111986 1.30

From the coefficients produced by MATLAB, shown on the previous page, we form the poly-
nomial

y = —1.8x 10%°x* +4.36 x 10°x” = 2.386 x 10°x” + 1.1641 x 10"x — 2.415 x 10°
and from it we find the values of y (the yearly sales) as follows:

x=16; y16=-1.8"10"4*x"4+4.36*10"5*x"3-2.386"10/6*x"2+1.1641*10"7*x-2.415"106;
x=17; y17=-1.8"10"4*x"4+4.36*10"5*x"\3-2.386*10"6*x"2+1.1641*10"7*x-2.415*10"6;
x=18; y18=-1.8"10"4"x"4+4.36*10"5*x"3-2.386"10"6"x"2+1.1641*10"7*x-2.415"106;

y16,y17,y18

vle =
1.7923e+008

v17 =
1.4462e+008

v1l8 =
8.7243e+007

These values vary significantly from those of Exercise 5. As stated above, non-linear interpola-
tion especially for polynomials of fourth degree and higher give inaccurate results. We should
remember that the equations produced by both Excel and MATLAB represent the equations
that best fit the experimental values. For extrapolation, linear regression gives the best approx-
imations.
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Chapter 9

Solution of Differential Equations by Numerical Methods

his chapter is an introduction to several methods that can be used to obtain approximate
solutions of differential equations. Such approximations are necessary when no exact solu-
tion can be found. The Taylor, Runge-Kutta, Adams’, and Milne’s methods are discussed.

9.1 Taylor Series Method

We recall from Chapter 6 that the Taylor series expansion about point a is

f(n)

y= f(x) = f(a) + f(a)(x—a) + ( )(x a)’ +. L@ _a) 9.1)

Now, if x; > a is a value close to a, we can find the approximate value y, of f(x,;) by using the
first k+ 1 terms in the Taylor expansion of f(x,) about x = a. Letting h; = x—a in (9.1), we

obtain:

, I v, 2. 1 ,.3 1 4
Y1 = Yo+ Yoh + 7Y ohy + 31 ohi + Z‘,Y()M)hl * ... 9.2)
Obviously, to minimize the error f(x,) -y, we need to keep h, sufficiently small.

For another value x, >x, close to x,, we repeat the procedure with h, = x, —x, ; then,

1 "m 4
Y2 =y +yihy + 2,Y1h2 3,}’ 1h2 4,}’1 )hz 9.3)
In general,
" 1w y®
Yier = YitVibi+ 1h1+1 317 1h1+1 4 h1+1 ©.4)

Example 9.1

Use the Taylor series method to obtain a solution of
y' = —XYy (95)

correct to four decimal places for values x, = 0.0, x, = 