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Preface

Numerical analysis is the branch of mathematics that is used to find approximations to difficult
problems such as finding the roots of non−linear equations, integration involving complex
expressions and solving differential equations for which analytical solutions do not exist. It is
applied to a wide variety of disciplines such as business, all fields of engineering, computer science,
education, geology, meteorology, and others. 

Years ago, high−speed computers did not exist, and if they did, the largest corporations could only
afford them; consequently, the manual computation required lots of time and hard work. But now
that computers have become indispensable for research work in science, engineering and other
fields, numerical analysis has become a much easier and more pleasant task. 

This book is written primarily for students/readers who have a good background of high−school
algebra, geometry, trigonometry, and the fundamentals of differential and integral calculus.* A
prior knowledge of differential equations is desirable but not necessary; this topic is reviewed in
Chapter 5.

One can use Fortran, Pascal, C, or Visual Basic or even a spreadsheet to solve a difficult problem.
It is the opinion of this author that the best applications programs for solving engineering
problems are 1) MATLAB which is capable of performing advanced mathematical and
engineering computations, and 2) the Microsoft Excel spreadsheet since the versatility offered by
spreadsheets have revolutionized the personal computer industry. We will assume that the reader
has no prior knowledge of MATLAB and limited familiarity with Excel.

We intend to teach the student/reader how to use MATLAB via practical examples and for
detailed explanations he/she will be referred to an Excel reference book or the MATLAB User’s
Guide. The MATLAB commands, functions, and statements used in this text can be executed
with either MATLAB Student Version 12 or later. Our discussions are based on a PC with
Windows XP platforms but if you have another platform such as Macintosh, please refer to the
appropriate sections of the MATLAB’s User Guide that also contains instructions for installation.

MATLAB is an acronym for MATrix LABoratory and it is a very large computer application
which is divided to several special application fields referred to as toolboxes. In this book we will
be using the toolboxes furnished with the Student Edition of MATLAB. As of this writing, the
latest release is MATLAB Student Version Release 14 and includes SIMULINK which is a

* These topics are discussed in Mathematics for Business, Science, and Technology, Third Edition, ISBN 0−9709511−
0−8. This text includes probability and other advanced topics which are supplemented by many practical applications using
Microsoft Excel and MATLAB.



software package used for modeling, simulating, and analyzing dynamic systems. SIMULINK is
not discussed in this text; the interested reader may refer to Introduction to Simulink with
Engineering Applications, ISBN 0−9744239−7−1. Additional information including purchasing
the software may be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760−2098. Phone: 508 647−7000, Fax: 508 647−7001, e−mail: info@mathwork.com and web
site http://www.mathworks.com.

The author makes no claim to originality of content or of treatment, but has taken care to present
definitions, statements of physical laws, theorems, and problems.

Chapter 1 is an introduction to MATLAB. The discussion is based on MATLAB Student Version
5 and it is also applicable to Version 6. Chapter 2 discusses root approximations by numerical
methods. Chapter 3 is a review of sinusoids and complex numbers. Chapter 4 is an introduction to
matrices and methods of solving simultaneous algebraic equations using Excel and MATLAB.
Chapter 5 is an abbreviated, yet practical introduction to differential equations, state variables,
state equations, eigenvalues and eigenvectors. Chapter 6 discusses the Taylor and Maclaurin
series. Chapter 7 begins with finite differences and interpolation methods. It concludes with
applications using MATLAB. Chapter 8 is an introduction to linear and parabolic regression.
Chapters 9 and 10 discuss numerical methods for differentiation and integration respectively.
Chapter 11 is a brief introduction to difference equations with a few practical applications.
Chapters 12 is devoted to partial fraction expansion. Chapters 13, 14, and 15 discuss certain
interesting functions that find wide application in science, engineering, and probability. This text
concludes with Chapter 16 which discusses three popular optimization methods.

New to the Third Edition

This is an extensive revision of the first edition. The most notable changes are the inclusion of
Fourier series, orthogonal functions and factorization methods, and the solutions to all end−of−
chapter exercises. It is in response to many readers who expressed a desire to obtain the solutions
in order to check their solutions to those of the author and thereby enhancing their knowledge.
Another reason is that this text is written also for self−study by practicing engineers who need a
review before taking more advanced courses such as digital image processing. The author has
prepared more exercises and they are available with their solutions to those instructors who adopt
this text for their class.

Another change is the addition of a rather comprehensive summary at the end of each chapter.
Hopefully, this will be a valuable aid to instructors for preparation of view foils for presenting the
material to their class.

The last major change is the improvement of the plots generated by the latest revisions of the
MATLAB® Student Version, Release 14. 

Orchard Publications
Fremont, California
www.orchardpublications.com
info@orchardpublications.com
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Chapter 1 

Introduction to MATLAB

his chapter is an introduction of the basic MATLAB commands and functions, procedures
for naming and saving the user generated files, comment lines, access to MATLAB’s Editor/
Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-

vided with detailed explanations. Throughout this text, a left justified horizontal bar will denote
the beginning of an example, and a right justified horizontal bar will denote the end of the exam-
ple. These bars will not be shown whenever an example begins at the top of a page or at the bot-
tom of a page. Also, when one example follows immediately after a previous example, the right
justified bar will be omitted.

1.1 Command Window
To distinguish the screen displays from the user commands, important terms and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt EDU>>* 

Helvetica Bold: MATLAB functions

Bold Italic: Important terms and facts, notes, and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a
new command from the user. We can use the Editor/Debugger to write our program, save it, and
return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M−File. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. Impor-
tant! MATLAB is case sensitive, that is, it distinguishes between upper− and lower−case let-
ters. Thus, t and T are two different characters in MATLAB language. The files that we create
are saved with the file name we use and the extension .m; for example, myfile01.m. It is a good

* EDU>> is the MATLAB prompt in the Student Version.

T
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practice to save the script in a file name that is descriptive of our script content. For instance, if
the script performs some matrix operations, we ought to name and save that file as
matrices01.m or any other similar name. We should also use a separate disk to backup our files.

2. Once the script is written and saved as an m−file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu, and MATLAB returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the EDU>> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the EDU>> prompt
and followed by the <enter> key.

The command help matlab iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab graphics. We can also get help from the Help pull−
down menu. The MATLAB User’s Guide contains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu. We
can do this periodically to become familiar with them. Whenever we want to return to the com-
mand window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the clear command. This
command erases everything; it is like exiting MATLAB and starting it again. The clc command
clears the screen but MATLAB still remembers all values, variables and equations which we have
already used. In other words, if we want MATLAB to retain all previously entered commands, but
leave only the EDU>> prompt on the upper left of the screen, we can use the clc command.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance, the statements

conv(p,q)    % performs multiplication of polynomials p and q

%  The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.

One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either , or  to denote the imaginary part of a complex number, such as

 or . For example, the statement

z=3−4j

i j
3 4i– 3 4j–
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Roots of Polynomials

displays

z =
   3.0000 - 4.0000i

In the example above, a multiplication (*) sign between  and  was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function or
variable such as , we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x). 

1.2 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . The

elements  of this vector are the coefficients of the polynomial in descending order. We must
include terms whose coefficients are zero.

We can find the roots of any polynomial with the roots(p) function where p is a row vector con-
taining the polynomial coefficients in descending order.

Example 1.1  
Find the roots of the polynomial

(1.1)
Solution:

The roots are found with the following two statements. We have denoted the polynomial as p1,
and the roots as roots_ p1.

p1=[1  −10  35  −50  24]  %  Specify the coefficients of p1(x)

p1 =
     1   -10    35   -50    24

roots_ p1=roots(p1)  %  Find the roots of p1(x) 

roots_p1 =
   4.0000
   3.0000
   2.0000
   1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

4 j

x( )cos

an  an 1–   a2  a1  a0[ ]
ai

p1 x( ) x4 10x3– 35x2 50x– 24+ +=
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Example 1.2  
Find the roots of the polynomial

(1.2)
Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the
statements below where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2. 

p2=[1  −7   0  16  25  52]

p2 =
     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_ p2 =
   6.5014         
   2.7428         
  -1.5711         
  -0.3366 + 1.3202i
  -0.3366 - 1.3202i

The result indicates that this polynomial has three real roots, and two complex roots. Of course,
complex roots always occur in complex conjugate*  pairs. 

1.3 Polynomial Construction from Known Roots
We can compute the coefficients of a polynomial from a given set of roots with the poly(r) func-
tion where r is a row vector containing the roots. 

Example 1.3  

It is known that the roots of a polynomial are . Compute the coefficients of this
polynomial.

Solution:

We first define a row vector, say , with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

*  By definition, the conjugate of a complex number  is 

p2 x( ) x5 7x4– 16x2 25x+ + 52+=

A a jb+= A∗ a jb–=

1 2 3  and 4, , ,

r3
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r3=[1  2  3  4]  %  Specify the roots of the polynomial

r3 =
     1     2     3     4

poly_r3=poly(r3)  %  Find the polynomial coefficients

poly_r3 =
     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example 1.1.

Example 1.4  

It is known that the roots of a polynomial are . Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

r4=[ −1   −2   −3   4+5j   4−5j ]

r4 =
  Columns 1 through 4 
  -1.0000   -2.0000   -3.0000   -4.0000 + 5.0000i
  Column 5 
  -4.0000 - 5.0000i

poly_r4=poly(r4)

poly_r4 =
     1    14   100   340   499   246

Therefore, the polynomial is

(1.3)

1.4 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the indepen-
dent variable .

p1 x( )

1  2  3  4 j5 and 4, j5–+,–,–,–

r4

p4 x( ) x5 14x4 100x3 340x2 499x 246+ + + + +=

p x( )
x
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Example 1.5  
Evaluate the polynomial

(1.4)
at .

Solution:

p5=[1  −3   0   5  −4   3   2]; % These are the coefficients
% The semicolon (;) after the right bracket suppresses the display of the row vector
% that contains the coefficients of p5.
%
val_minus3=polyval(p5, −3)% Evaluate p5 at x=−3. No semicolon is used here
% because we want the answer to be displayed

val_minus3 =
        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b) − multiplies two polynomials a and b 

[q,r]=deconv(c,d) −divides polynomial c by polynomial d and displays the quotient q and remain-
der r.

polyder(p) − produces the coefficients of the derivative of a polynomial p. 

Example 1.6  
Let 

(1.5)

Compute the product  with the conv(a,b) function.

Solution:

p1=[1  −3   0  5  7  9];
p2=[2   0  −8  0  4  10  12];
p1p2=conv(p1,p2)

p1p2 =
    2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

p5 x( ) x6 3x5– 5x3 4x2– 3x 2+ + +=
x 3–=

p1 x5 3x4– 5x2 7x 9+ + +=

p2 2x6 8x4– 4x2 10x 12+ + +=

p1 p2⋅
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We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.

Example 1.7  
Let 

(1.6)

Compute the quotient  using the deconv(p,q) function.

Solution:

p3=[1   0  −3    0  5   7    9];  p4=[2  −8   0    0  4  10  12];  [q,r]=deconv(p3,p4)

q =
    0.5000
r =
     0     4    -3     0     3     2     3

Therefore, the quotient  and remainder  are

Example 1.8  
Let

(1.7)

Compute the derivative  using the polyder(p) function.

Solution:

p5=[2   0   −8   0   4   10   12];
der_p5=polyder(p5)

der_p5 =
    12     0   -32     0     8    10

Therefore,

p1 p2Þ 2x11 6x10 8x9–– 34x8 18x7 24x6–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5– 4x2 10x 12+ + +=

p3 p4⁄

q x( ) r x( )

q x( ) 0.5= r x( ) 4x5 3x4– 3x2 2x 3+ + +=

p5 2x6 8x4– 4x2 10x 12+ + +=

dp5 dx⁄
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1.5  Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

(1.8)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

Example 1.9  
Let

(1.9)

Express the numerator and denominator in factored form, using the roots(p) function.

Solution:

num=[1  −3  0  5  7  9]; den=[2  0  −8  0  4  10  12];% Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =
   2.4186 + 1.0712i    2.4186 - 1.0712i  -1.1633         
  -0.3370 + 0.9961i   -0.3370 - 0.9961i

roots_den =
   1.6760 + 0.4922i     1.6760 - 0.4922i  -1.9304         
  -0.2108 + 0.9870i    -0.2108 - 0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs. 

For the numerator, we have the factored form

and for the denominator, we have

dp5 dx⁄ 12x5 32x3– 4x2 8x 10+ + +=

R x( ) Num x( )
Den x( )
---------------------

bnxn bn 1– xn 1– bn 2– xn 2– … b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– … a1x a0+ + + + +
-------------------------------------------------------------------------------------------------------------------------= =

R x( )
pnum

pden
------------ x5 3x4– 5x2 7x 9+ + +

2x6 8x4– 4x2 10x 12+ + +
-----------------------------------------------------------------------= =

pnum x 2.4186– j1.0712–( ) x 2.4186– j1.0712+( ) x 1.1633+( )  ⋅ ⋅ ⋅=

x 0.3370 j0.9961–+( ) x 0.3370 j0.9961+ +( )⋅

pden x 1.6760– j0.4922–( ) x 1.6760– j0.4922+( ) x 1.9304+( )  ⋅ ⋅ ⋅=

x 0.2108 j– 0.9870+( ) x 0.2108 j0.9870+ +( ) x 1.0000+( )⋅ ⋅
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We can also express the numerator and denominator of this rational function as a combination of
l inear and quadratic factors.  We recall  that in a quadratic equation of the form

 whose roots are  and , the negative sum of the roots is equal to the coef-

ficient  of the  term, that is, , while the product of the roots is equal to the

constant term , that is, . Accordingly, we form the coefficient  by addition of the
complex conjugate roots and this is done by inspection; then we multiply the complex conjugate
roots to obtain the constant term  using MATLAB as indicated below.

(2.4186+1.0712i)*(2.4186 −1.0712i)    %  Form the product of the 1st set of complex conjugates

ans = 6.9971

(−0.3370+0.9961i)*(−0.3370−0.9961i) %  Form the product of the 2nd set of complex conjugates

ans = 1.1058

(1.6760+0.4922i)*(1.6760−0.4922i)

ans = 3.0512

(−0.2108+0.9870i)*(−0.2108−0.9870i)

ans = 1.0186

1.6 Using MATLAB to Make Plots
Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command which plots  versus . Here,  is the horizontal axis (abscissa) and  is the
vertical axis (ordinate).

Example 1.10  

Consider the electric circuit of Figure 1.1, where the radian frequency  (radians/second) of the
applied voltage was varied from  to  in steps of  radians/second, while the amplitude
was held constant. The ammeter readings were then recorded for each frequency. The magnitude
of the impedance  was computed as  and the data were tabulated in Table 1.1.

Plot the magnitude of the impedance, that is,  versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB command window, so we will use the English letter
w instead.

x2 bx c+ + 0= x1 x2

b x x1 x2+( )– b=

c x1 x2⋅ c= b

c

y x x y

ω
300 3000 100

Z Z V A⁄=

Z ω

ω
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Figure 1.1. Electric circuit for Example 1.10

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers which we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400....  % Use 4 periods to continue
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500.... 

TABLE 1.1  Table for Example 1.10

 (rads/s)
 

Ohms  (rads/s)
 

Ohms

300 39.339 1700 90.603

400 52.589 1800 81.088

500 71.184 1900 73.588

600 97.665 2000 67.513

700 140.437 2100 62.481

800 222.182 2200 58.240

900 436.056 2300 54.611

1000 1014.938 2400 51.428

1100 469.83 2500 48.717

1200 266.032 2600 46.286

1300 187.052 2700 44.122

1400 145.751 2800 42.182

1500 120.353 2900 40.432

1600 103.111 3000 38.845

A

V L

C

R2

R1

ω
Z

ω
Z
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2600 2700 2800 2900 3000];                % Use semicolon to suppress display of these numbers
%
z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 
1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 
90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 
48.717  46.286  44.122  42.182  40.432  38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
<enter>.

To plot z ( ) versus w ( ), we use the plot(x,y) command. For this example, we use
plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure 1.2.

Figure 1.2. Plot of impedance  versus frequency  for Example 1.10

This plot is referred to as the amplitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull−down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull−down
menu, and we select Figure.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

* Default is a particular value for a variable or condition that is assigned automatically by an operating system, and remains
in effect unless canceled or overridden by the operator.

y axis– x axis–
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box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the − and −axis respectively.

The amplitude frequency response is usually represented with the −axis in a logarithmic scale.
We can use the semilogx(x,y) command that is similar to the plot(x,y) command, except that the

−axis is represented as a log scale, and the −axis as a linear scale. Likewise, the semilogy(x,y)
command is similar to the plot(x,y) command, except that the −axis is represented as a log scale,
and the −axis as a linear scale. The loglog(x,y) command uses logarithmic scales for both axes.

Throughout this text, it will be understood that log is the common (base 10) logarithm, and ln is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x). Likewise, the loga-
rithm to the base 2 is expressed as log2(x). 

Let us now redraw the plot with the above options, by adding the following statements:

semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, our plot is as shown in Figure 1.3.

Figure 1.3. Modified frequency response plot of Figure 1.2.

If the −axis represents power, voltage, or current, the −axis of the frequency response is more
often shown in a logarithmic scale, and the −axis in dB (decibels) scale. A review of the decibel
unit follows.
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The ratio of any two values of the same quantity (power, voltage, or current) can be expressed in
decibels (dB). Thus, we say that an amplifier has  power gain, or a transmission line has a
power loss of  (or gain ). If the gain (or loss) is  the output is equal to the input.
By definition,

(1.10)

Therefore,

 represents a power ratio of 

 represents a power ratio of 

It is very useful to remember that:

 represents a power ratio of 

 represents a power ratio of 

 represents a power ratio of 

Also,

 represents a power ratio of approximately 

 represents a power ratio of approximately 

 represents a power ratio of approximately 

From these, we can estimate other values. For instance,

 and since  and 

then, 

Likewise,  and this is equivalent to a power ratio of approximately

Using the relations

and

if we let , the dB values for voltage and current ratios become

10 dB
7 dB 7–  dB 0 dB

dB 10 Pout

Pin
----------log=

10 dB 10

10n dB 10n

20 dB 100

30 dB 1 000,

60 dB 1 000 000, ,

1 dB 1.25

3 dB 2

7 dB 5

4 dB 3 dB 1 dB+= 3 dB power ratio of 2≅ 1 dB power ratio of 1.25≅

4 dB ratio of 2 1.25×( )≅ ratio of  2.5=

27 dB 20 dB 7 dB+=
100 5× 500=

y x2log 2 xlog= =

P V 2

Z
------- I 2Z= =

Z 1=
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(1.11)

and

(1.12)

To display the voltage  in a dB scale on the , we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’) switches to the current Figure Window, and displays a cross−hair
which can be moved around with the mouse. For instance, we can use the command
gtext(‘Impedance |Z| versus Frequency’), and this will place a cross−hair in the Figure window.
Then, using the mouse, we can move the cross−hair to the position where we want our label to
begin, and we press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some spe-
cific location specified by x and y, and string is the label which we want to place at that location.
We will illustrate its use with the following example which plots a 3−phase sinusoidal waveform.

The first line of the script below has the form

linspace(first_value, last_value, number_of_values)

This command specifies the number of data points but not the increments between data points. An
alternate command uses the colon notation and has the format

x=first: increment: last

This format specifies the increments between points but not the number of data points.

The script for the 3−phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a built−in function in MATLAB;
%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 
plot(x,y,x,u,x,v); %  The x−axis must be specified for each function
grid on, box on,  %  turn grid and axes box on
text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure 1.4.

In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLAB allows us to specify various line types, plot symbols, and colors. These, or a combination
of these, can be added with the plot(x,y,s) command, where s is a character string containing one or
more characters shown on the three columns of Table 1.2.

MATLAB has no default color; it starts with blue and cycles through the first seven colors listed in
Table 1.2 for each additional line in the plot. Also, there is no default marker; no markers are

dBv 10 Vout

Vin
----------

2
log 20 Vout

Vin
----------log= =

dBi 10 Iout

Iin
--------

2
log 20 Iout

Iin
--------log= =

v y axis–
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drawn unless they are selected. The default line is the solid line.

Figure 1.4. Three−phase waveforms

For example, the command plot(x,y,'m*:') plots a magenta dotted line with a star at each data
point, and plot(x,y,'rs') plots a red square at each data point, but does not draw any line because
no line was selected. If we want to connect the data points with a solid line, we must type
plot(x,y,'rs−'). For additional information we can type help plot in MATLAB’s command screen.

TABLE 1.2  Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style

b blue . point − solid line

g green o circle : dotted line

r red x x−mark −. dash−dot line

c cyan + plus −− dashed line

m magenta * star

y yellow s square

k black d diamond

w white ⁄ triangle down

Ÿ triangle up

< triangle left

> triangle right

p pentagram

h hexagram

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

sin(x) sin(x+2*pi/3) sin(x+4*pi/3)
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The plots which we have discussed thus far are two−dimensional, that is, they are drawn on two
axes. MATLAB has also a three−dimensional (three−axes) capability and this is discussed next.

The command plot3(x,y,z) plots a line in 3−space through the points whose coordinates are the
elements of , , and , where , , and  are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn, and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two−dimensional plots.

Example 1.11  
Plot the function

(1.13)
Solution:

We arbitrarily choose the interval (length) shown with the script below.

x= −10: 0.5: 10; %  Length of vector x 
y= x; %  Length of vector y must be same as x
z= −2.*x.^3+x+3.*y.^2−1; %  Vector z is function of both x and y* 

plot3(x,y,z); grid

The three−dimensional plot is shown in Figure 1.5.

Figure 1.5. Three dimensional plot for Example 1.11

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where these operations are preceded
by a dot (period). These operations will be explained in Section 1.8, Page 1−19.

x y z x y z

z 2x3– x 3y2 1–+ +=
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The command plot3(x,y,z,'bd−') will display the plot in blue diamonds, connected with a solid
line.

In a three−dimensional plot, we can use the zlabel(‘string’) command in addition to the xla-
bel(‘string’) and ylabel(‘string’).

In a two−dimensional plot, we can set the limits of the − and − axes with the axis([xmin
xmax  ymin  ymax]) command. Likewise, in a three−dimensional plot we can set the limits of all
three axes with the axis([xmin  xmax  ymin  ymax  zmin  zmax]) command. It must be placed
after the plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot
command. This must be done for each plot. The three−dimensional text(x,y,z,’string’) command
will place string beginning at the co−ordinate ( ) on the plot.

For three−dimensional plots, grid on and box off are the default states.

The mesh(x,y,z) command displays a three−dimensional plot. Another command, contour(Z,n),
draws contour lines for n levels. We can also use the mesh(x,y,z) command with two vector argu-
m en t s .  Th e s e  m u s t  b e  d e f i n e d  a s   a n d   w h e r e

. In this case, the vertices of the mesh lines are the triples .
We observe that x corresponds to the columns of , and y corresponds to the rows of .

To produce a mesh plot of a function of two variables, say , we must first generate the
 and  matrices which consist of repeated rows and columns over the range of the variables 

and . We can generate the matrices  and  with the [X,Y]=meshgrid(x,y) function which
creates the matrix  whose rows are copies of the vector x, and the matrix  whose columns are
copies of the vector y.

Example 1.12  

The volume  of a right circular cone of radius  and height  is given by

(1.14)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:

The volume of the cone is a function of both the radius  and the height , that is, 

The three−dimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, division, and exponentia-
tion. As mentioned in the footnote of the previous page, this topic will be explained in Section
1.8, Page 1−19.

x y

x y z, ,

length x( ) n= length y( ) m=
m n,[ ] size Z( )= x j( ) y i( ) Z i j,( ),,{ }

Z Z

z f x y,( )=
X Y x

y X Y
X Y

V r h

V 1
3
--πr2h=

r h 0 r 4≤ ≤ 0 h 6≤ ≤

r h V f r h,( )=
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[R,H]=meshgrid(0: 4, 0: 6);                     % Creates R and H matrices from vectors r and h
V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V)
xlabel('x−axis, radius r (meters)'); ylabel('y−axis, altitude h (meters)');
zlabel('z−axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three−dimensional plot of Figure 1.6, shows how the volume of the cone increases as the
radius and height are increased.

Figure 1.6. Volume of a right circular cone.

This, and the plot of Figure 1.5, are rudimentary; MATLAB can generate very sophisticated and
impressive three−dimensional plots. The MATLAB User’s manual contains more examples.

1.7 Subplots
MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an  matrix of plotting areas
and chooses the  area to be active. No spaces or commas are required between the three inte-
gers , , and . The possible combinations are shown in Figure 1.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.
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Figure 1.7. Possible subpot arrangements in MATLAB

1.8  Multiplication, Division and Exponentiation
MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element−by−element multiplication,
division, and exponentiation. They are explained in the following paragraphs.

In Section 1.2, the arrays , such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character (¢) to transpose a vector. Thus, a column vector can be written either as

b=[−1; 3; 6; 11]

or as

b=[−1  3  6  11]'

MATLAB produces the same display with either format as shown below.

b=[−1; 3; 6; 11]

b =
    -1
     3
     6
    11

b=[−1  3  6  11]' 

b =
    -1
     3

   111
Full Screen Default

 211
 212

 221  222
 223  224

 121  122

  221  222
 212

 211
 223 224

 221
 223

 122  121
 222
224

a  b  c  …[ ]
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     6
    11

We will now define Matrix Multiplication and Element−by−Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and
 

be two vectors. We observe that  is defined as a row vector whereas  is defined as a column
vector, as indicated by the transpose operator (′). Here, multiplication of the row vector  by
the column vector , is performed with the matrix multiplication operator (*). Then,

(B.15)

For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with the MATLAB script

A=[1   2    3   4   5]; B=[ −2   6  −3   8   7]'; A*B % Observe transpose operator (‘) in B

ans =

   68

Now, let us suppose that both  and  are row vectors, and we attempt to perform a row−by−
row multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[−2  6  −3  8  7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects

A a1   a2   a3   …   an[ ]=

B b1   b2   b3   …   bn[ ]'=

A B
A

B

A*B a1b1 a2b2 a3b3 … anbn+ + + +[ ] gle valuesin= =

A 1   2   3   4   5[ ]=

B 2–    6   3–    8   7[ ]'=

A*B

A∗B 1 2–( ) 2 6 3 3–( ) 4 8 5 7×+×+×+×+× 68= =

A B



Numerical Analysis Using MATLAB® and Excel®, Third Edition 1−21
Copyright © Orchard Publications

Multiplication, Division and Exponentiation

vector  to be a column vector, not a row vector. It recognizes that  is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. Element−by−Element Multiplication (multiplication of a row vector by another row vector)

Let

and
 

be two row vectors. Here, multiplication of the row vector  by the row vector  is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

(B.16)

This product is another row vector with the same number of elements, as the elements of 
and . 

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[−2  6 −3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element−
by−element division and exponentiation, as illustrated with the examples above.

We must remember that no space is allowed between the dot (.) and the multiplication (*),
division ( /), and exponentiation (^) operators. 

Note: A dot (.) is never required with the plus (+) and minus (−) operators.

B B

C c1   c2   c3   …   cn[ ]=

D d1   d2   d3   …   dn[ ]=

C D

C.∗D c1d1    c2d2    c3d3    …    cndn[ ]=

C
D

C 1   2   3   4   5[ ]=

D 2–    6   3–    8   7[ ]=

C.∗D 1 2–( )×    2 6×    3 3–( )×    4 8   5 7×× 2–    12   9–    32   35= =
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Example 1.13  
Write the MATLAB script that produces a simple plot for the waveform defined as 

(1.17)

in the  seconds interval.

Solution:

The MATLAB script for this example is as follows:

t=0: 0.01: 5;                                                %  Define t−axis in 0.01 increments
y=3 .* exp(−4 .* t) .* cos(5 .* t)−2 .* exp(−3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example 1.13')

Figure 1.8 shows the plot for this example. 

Figure 1.8. Plot for Example 1.13

Had we, in the example above, defined the time interval starting with a negative value equal to or
less than , say as , MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero when
. To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.

The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability of

y f t( ) 3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-------------+= =

0 t 5≤ ≤

0 1 2 3 4 5
-2

0

2

4

6

t

y=
f(t

)

Plot for Example 1.13

1– 3 t 3≤ ≤–

t 1–=

2.2 10 16–×



Numerical Analysis Using MATLAB® and Excel®, Third Edition 1−23
Copyright © Orchard Publications

Multiplication, Division and Exponentiation

displaying up to four windows of different plots.

Example 1.14  
Plot the functions

(1.18)

in the interval  using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB script to produce the four subplots is as follows:

x=linspace(0, 2*pi,100); % Interval with 100 data points
y=(sin(x) .^ 2);  z=(cos(x) .^ 2);  
w=y .* z;
v=y ./ (z+eps); %  add eps to avoid division by zero
subplot(221); % upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure 1.9.

Figure 1.9. Subplots for the functions of Example 1.14

y x2sin    z, x2cos    w, x2sin x2cos⋅    v, x2sin x2cos⁄= = = =

0 x 2π≤ ≤

0 2 4 6
0

0.5

1
y=(sinx)2

0 2 4 6
0

0.5

1
z=(cosx)2

0 2 4 6
0

0.1

0.2

w=(sinx)2*(cosx)2
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0
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The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions which display the real and imaginary parts of the complex quan-
tity z = x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity . We will also use the
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example 1.15   
Consider the electric circuit of Figure 1.10.

Figure 1.10. Electric circuit for Example 1.15

With the given values of resistance, inductance, and capacitance, the impedance  as a function

of the radian frequency  can be computed from the following expression.

(1.19)

a. Plot  (the real part of the impedance ) versus frequency .

b. Plot  (the imaginary part of the impedance ) versus frequency .

c. Plot the impedance  versus frequency  in polar coordinates.

Solution:

The MATLAB script below computes the real and imaginary parts of  that is, for simplicity,

denoted as , and plots these as two separate graphs (parts a & b). It also produces a polar plot
(part c).

w=0: 1: 2000;  %  Define interval with one radian interval
z=(10+(10 .^ 4 −j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w −10.^5./ (w+eps))));

z x iy+ r θ–= =

a

b

10 Ω

10 Ω

0.1 H

10 μF
Zab

Zab

ω

Zab Z 10 104 j 106 w⁄( )–

10 j 0.1w 105 w⁄  –( )+
--------------------------------------------------------+= =

Re Z{ } Z ω

Im Z{ } Z ω

Z ω

Zab

z
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%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);  grid;
xlabel('radian frequency w');  ylabel('Real part of Z');
%
%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);  grid;
xlabel('radian frequency w');  ylabel('Imaginary part of Z');
%  The last six statements (next six lines) below produce the polar plot of z
mag=abs(z);%  Computes |Z|
rndz=round(abs(z));%  Rounds |Z| to read polar plot easier
theta=angle(z);%  Computes the phase angle of impedance Z
polar(theta,rndz);%  Angle is the first argument
grid;
ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures 1.11, 1.12, and 1.13 respectively.

Figure 1.11. Plot for the real part of Z in Example 1.15
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Figure 1.12. Plot for the imaginary part of Z in Example 1.15

Figure 1.13. Polar plot of Z in Example 1.15

Example 1.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

1.9 Script and Function Files
MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m−files since both require the .m extension.

A script file consists of two or more built−in functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m−file with an editor such as the MATLAB’s
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Editor/Debugger.

A function file is a user−defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x .^ 3 + cos(3 .* x)

is a function file and must be saved. To save it, from the File menu of the command window, we
choose New and click on M−File. This takes us to the Editor Window where we type these two
lines and we save it as myfunction.m.

We will use the following MATLAB functions with the next example.

The function fzero(f,x) tries to find a zero of a function of one variable, where f is a string con-
taining the name of a real−valued function of a single real variable. MATLAB searches for a value
near a point where the function f changes sign, and returns that value, or returns NaN if the
search fails.

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples 1.1 and 1.2.

fplot(fcn,lims) − plots the function specified by the string fcn between the x−axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y−axis limits.
The string fcn must be the name of an m−file function or a string with variable .

NaN (Not−a−Number) is not a function; it is MATLAB’s response to an undefined expression
such as , , or inability to produce a result as described on the next paragraph. We can
avoid division by zero using the eps number, which we mentioned earlier.

Example 1.16  
Find the zeros, maxima and minima of the function 

(1.20)

in the interval 

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script:

x

0 0⁄ ∞ ∞⁄

f x( ) 1
x 0.1–( )2 0.01+

------------------------------------------ 1
x 1.2–( )2 0.04+

------------------------------------------ 10–+=

1.5 x 1.5≤ ≤–
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x=−1.5: 0.01: 1.5;
y=1./ ((x−0.1).^ 2 + 0.01) −1./ ((x−1.2).^ 2 + 0.04) −10;
plot(x,y); grid

The plot is shown in Figure 1.14.

Figure 1.14. Plot for Example 1.16 using the plot command

The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum
occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function m−file with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot  as follows:

fplot('funczero01', [−1.5  1.5]); grid

This plot is shown in Figure 1.15. As expected, this plot is identical to the plot of Figure 1.14 which
was obtained with the plot(x,y) command as shown in Figure 1.14.

-1.5 -1 -0.5 0 0.5 1 1.5
-40

-20

0

20

40

60

80

100

x 0.2–= x 0.3=
x 0.1= ymax 90=

x 1.2= ymin 34–=

f x( )



Numerical Analysis Using MATLAB® and Excel®, Third Edition 1−29
Copyright © Orchard Publications

Script and Function Files

Figure 1.15. Plot for Example 1.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in Equation (1.20) more pre-
cisely. The MATLAB script below will accomplish this.

x1= fzero('funczero01', −0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)
MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function  or a maximum of  since a maximum
of  is equal to a minimum of . This can be visualized by flipping the plot of a function

 upside−down. This function is no longer used in MATLAB and thus we will compute the
maxima and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function  can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)^2+1/100)^2*(2*x-1/5)+1/((x-6/5)^2+1/25)^2*(2*x-12/5)

When the command
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solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command prompt
and executed, produces the following:

ans =
   0.6585 + 0.3437i
ans =
   0.6585 - 0.3437i
ans =
    1.2012

The real value  above is the value of  at which the function  has its minimum value as
we observe also in the plot of Figure 1.15.

To find the value of y corresponding to this value of x, we substitute it into , that is,

x=1.2012; ymin=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymin = -34.1812

We can find the maximum value from  whose plot is produced with the script

x=−1.5:0.01:1.5; ymax=−1./((x−0.1).^2+0.01)+1./((x−1.2).^2+0.04)+10; plot(x,ymax); grid

and the plot is shown in Figure 1.16.

Figure 1.16. Plot of  for Example 1.16

Next we compute the first derivative of  and we solve for  to find the value where the max-
imum of  occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=−(1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10); zmax=diff(ymax)
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zmax =
 1/((x-1/10)^2+1/100)^2*(2*x-1/5)-1/((x-6/5)^2+1/25)^2*(2*x-12/5)

solve(zmax)

When the command

solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i

ans =
   0.6585 - 0.3437i

ans =
    1.2012
ans =
    0.0999

From the values above we choose  which is consistent with the plots of Figures 1.15
and 1.16. Accordingly, we execute the following script to obtain the value of .

x=0.0999; % Using this value find the corresponding value of ymax
ymax=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymax = 89.2000

1.10 Display Formats
MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.
The output format can changed with the format command. The available formats can be displayed
with the help format command as follows:

help format 

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display
formats as follows:

x 0.0999=
ymin
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FORMAT         Default. Same as SHORT.
FORMAT SHORT   Scaled fixed point format with 5 digits.
FORMAT LONG    Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E  Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point 
               format with 5 digits.
FORMAT LONG G  Best of fixed or floating point format
               with 15 digits.
FORMAT HEX     Hexadecimal format.
FORMAT +       The symbols +, - and blank are printed
               for positive, negative and zero elements.
               Imaginary parts are ignored.
FORMAT BANK    Fixed format for dollars and cents.
FORMAT RAT     Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE   Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short  33.3335  Four decimal digits (default)

format long  33.33333333333334 16 digits

format short e  3.3333e+01  Four decimal digits plus exponent

format short g  33.333  Better of format short or format short e

format bank  33.33 two decimal digits

format +  only + or − or zero are printed

format rat 100/3 rational approximation
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1.11 Summary
• We can get help with MATLAB topics by typing help followed by any topic available. For

example, the command help matlab\iofun will display input/output information, and help mat-
lab graphics will display help on graphics.

• The MATLAB Demos menu displays MATLAB’s capabilities. To access it, we type demo and
we see the different topics. Whenever we want to return to the command window, we click on
the Close button.

• We type quit or exit when we are done and want to leave MATLAB.

• We use the clear command if we want to clear all previous values, variables, and equations
without exiting.

• The clc command clears the screen but MATLAB still remembers all values, variables and
equations which we have already used.

• All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it
is ignored during the execution of a program. A comment can be typed on the same line as the
function or command or as a separate line.

• For computations involving complex numbers we can use either , or  to denote the imagi-
nary part of the complex number.

• In MATLAB, a polynomial is expressed as a row vector of the form . The

elements  of this vector are the coefficients of the polynomial in descending order. We must
include terms whose coefficients are zero.

• We find the roots of any polynomial with the roots(p) function where p is a row vector con-
taining the polynomial coefficients in descending order.

• We can compute the coefficients of a polynomial from a given set of roots with the poly(r)
function where r is a row vector containing the roots.

• The polyval(p,x) function evaluates a polynomial  at some specified value of the inde-
pendent variable .

• The conv(a,b) function multiplies the polynomials a and b.

• The [q,r]=deconv(c,d) function divides polynomial c by polynomial d and displays the quo-
tient q and remainder r.

• The polyder(p) function produces the coefficients of the derivative of a polynomial p.

• We can write MATLAB statements in one line if we separate them by commas or semicolons.
Commas will display the results whereas semicolons will suppress the display.

i j

an  an 1–   a2  a1  a0[ ]
ai

p x( )
x
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• Rational Polynomials are those which can be expressed in ratio form, that is, as

where some of the terms in the numerator and/or denominator may be zero. Normally, we
express the numerator and denominator of a rational function as a combination of linear and
quadratic factors.

• We use the MATLAB command plot(x,y) to make two−dimensional plots. This command
plots  versus  where x is the horizontal axis (abscissa), and y is the vertical axis (ordinate).

• If a statement, or a row vector is too long to fit in one line, it can be continued to the next line
by typing three or more periods, then pressing <enter> to start a new line, and continue to
enter data.

• We can make a two−dimensional plot more presentable with the commands grid, box,
title(‘string’), xlabel(‘string’), and ylabel(‘string’). For a three−dimensional plot, we can also
use the zlabel(‘string’) command.

• The semilogx(x,y) command is similar to the plot(x,y) command, except that the −axis is
represented as a log scale, and the −axis as a linear scale. Likewise, the semilogy(x,y) com-
mand is similar to the plot(x,y) command, except that the −axis is represented as a log scale,
and the −axis as a linear scale. The loglog(x,y) command uses logarithmic scales for both
axes.

• The function log(x) in MATLAB is the natural logarithm, whereas the common logarithm is
expressed as log10(x). Likewise, the logarithm to the base 2 is expressed as log2(x).

• The ratio of any two values of the same quantity, typically power, is normally expressed in deci-
bels (dB) and by definition,

• The command gtext(‘string’) switches to the current Figure Window, and displays a cross−hair
which can be moved around with the mouse. The command text(x,y,’string’) is similar to
gtext(‘string’); it places a label on a plot in some specific location specified by x and y, and
string is the label which we want to place at that location.

• The command linspace(first_value, last_value, number_of_values) specifies the number of
data points but not the increments between data points. An alternate command uses the colon
notation and has the format x=first: increment: last. This format specifies the increments
between points but not the number of data points.

R x( ) Num x( )
Den x( )
---------------------

bnxn bn 1– xn 1– bn 2– xn 2– … b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– … a1x a0+ + + + +
-------------------------------------------------------------------------------------------------------------------------= =

y x

x
y

y
x

dB 10 Pout

Pin
----------log=
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• MATLAB has no default color; it starts with blue and cycles through seven colors. Also, there
is no default marker; no markers are drawn unless they are selected. The default line is the
solid line.

• The plot3(x,y,z) command plots a line in 3−space through the points whose coordinates are
the elements of , , and , where x, y, and z are three vectors of the same length.

• In a two−dimensional plot, we can set the limits of the − and −axes with the axis([xmin
xmax  ymin  ymax]) command. Likewise, in a three−dimensional plot we can set the limits of
all three axes with the axis([xmin  xmax  ymin  ymax  zmin  zmax]) command. It must be
placed after the plot(x,y) or plot3(x,y,z) commands, or on the same line without first execut-
ing the plot command. This must be done for each plot. The three−dimensional
text(x,y,z,’string’) command will place string beginning at the co−ordinate ( ) on the
plot.

• The mesh(x,y,z) command displays a three−dimensional plot. Another command, con-
tour(Z,n), draws contour lines for n levels. We can also use the mesh(x,y,z) command with
two vector arguments. These must be defined as  and 
where . In this case, the vertices of the mesh lines are the triples

. We observe that x corresponds to the columns of , and y corresponds to
the rows of . To produce a mesh plot of a function of two variables, say , we must
first generate the  and  matrices which consist of repeated rows and columns over the
range of the variables  and . We can generate the matrices  and  with the [X,Y]=mesh-
grid(x,y) function which creates the matrix  whose rows are copies of the vector x, and the
matrix  whose columns are copies of the vector y.

• MATLAB can display up to four windows of different plots on the Figure window using the
command subplot(m,n,p). This command divides the window into an  matrix of plotting
areas and chooses the  area to be active.

• With MATLAB, matrix multiplication (multiplication of row by column vectors) is performed
with the matrix multiplication operator (*), whereas element−by−element multiplication is
performed with the dot multiplication operator (.*). Similarly, the division (/) and exponentia-
tion (^) operators, are used for matrix division and exponentiation, whereas dot division (./)
and dot exponentiation (.^) are used for element−by−element division and exponentiation.

• To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to .

• The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified
by the arguments xmin, xmax, ymin and ymax. There are no commas between these four
arguments. This command must be placed after the plot command and must be repeated for
each plot.

x y z

x y

x y z, ,

length x( ) n= length y( ) m=
m n,[ ] size Z( )=

x j( ) y i( ) Z i j,( ),,{ } Z
Z z f x y,( )=

X Y
x y X Y

X
Y

m n×
pth

2.2 10 16–×
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• The real(z) and imag(z) functions display the real and imaginary parts of the complex quantity
z = x + iy, and the abs(z), and the angle(z) functions compute the absolute value (magnitude)
and phase angle of the complex quantity . The polar(theta,r) function pro-
duces a plot in polar coordinates, where r is the magnitude, and theta is the angle in radians.

• MATLAB recognizes two types of files: script files and function files. Both types are referred to
as m−files. A script file consists of two or more built−in functions. Generally, a script file is one
which was generated and saved as an m−file with an editor such as the MATLAB’s Editor/
Debugger. A function file is a user−defined function using MATLAB. We use function files for
repetitive tasks. The first line of a function file must contain the word function, followed by the
output argument, the equal sign ( = ), and the input argument enclosed in parentheses. The
function name and file name must be the same, but the file name must have the extension .m.

• The MATLAB fmin(f,x1,x2) function minimizes a function of one variable. It attempts to
return a value of  where  is minimum in the interval . The string f contains
the name of the function to be minimized.

• The MATLAB fplot(fcn,lims) command plots the function specified by the string fcn between
the −axis limits specified by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also
controls the −axis limits. The string fcn must be the name of an m−file function or a string
with variable .

• The MATLAB fprintf(format,array) command used above displays and prints both text and
arrays. It uses specifiers to indicate where and in which format the values would be displayed
and printed. Thus, if %f is used, the values will be displayed and printed in fixed decimal for-
mat, and if %e is used, the values will be displayed and printed in scientific notation format.
With these commands only the real part of each parameter is processed.

• MATLAB displays the results on the screen in integer format without decimals if the result is
an integer number, or in short floating point format with four decimals if it a fractional number.
The format displayed has nothing to do with the accuracy in the computations. MATLAB per-
forms all computations with accuracy up to 16 decimal places.

z x iy+ r θ–= =

x f x( ) x1 x x2< <

x
y
x
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Exercises

1.12 Exercises
1. Use MATLAB to compute the roots of the following polynomials:

a.  

b.   

2. Use MATLAB to derive the polynomials having the following roots:

a.  

b.  Two roots at  and three roots at  

3. Use MATLAB to evaluate the polynomials below at the specified values.

a.   at 

b.   at  

4. In the electric circuit below, the applied voltage  was kept constant and the voltage 
across the capacitor was measured and recorded at several frequencies as shown on the table
below.

Plot  (in dB scale) versus  (in common log scale) and label the axes appropriately.

Capacitor voltage versus radian frequency

500 600 700 800 900 1000

88.9 98.5 103.0 104.9 105.3 104.8

1100 1200 1300 1400 1500 1600

103.8 102.4 100.7 98.9 96.5 94.9

p x( ) x3 8x2 10x 4+ + +=

p y( ) y5 7y4 19y3 25y2 16y 4+ + + + +=

6.5708– 0.7146– j0.3132+ 0.7146– j– 0.3132

x 2.000–= x 3.000–=

p x( ) x3 8x2 10x 4+ + += x 1.25=

p y( ) y5 7y4 19y3 25y2 16y 4+ + + + += y 3.75–=

VS VC

C
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R1

R2
VC

L

ω
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1.13 Solutions to End−of−Chapter Exercises
Dear Reader:

The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first
looking at the solutions that follow. It is recommended that first you go through and work out
those you feel that you know. For the exercises that you are uncertain, review this chapter and try
again. Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
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Solutions to End−of−Chapter Exercises

1.
a.

Px=[1  8  10  4]; roots(Px)

ans =
  -6.5708          
  -0.7146 + 0.3132i
  -0.7146 - 0.3132i

b.
Py=[1  7  19  25  16  4]; roots(Py)

ans =
  -2.0000          
  -2.0000          
  -1.0000          
  -1.0000 + 0.0000i
  -1.0000 - 0.0000i

2.
a.

r1=[−6.5708  −0.7146+0.3132j  −0.7146−0.3132j]; poly_r1=poly(r1)

poly_r1 =  1.0000    8.0000    9.9997    4.0000

b.

r2=[−2  −2  −3  −3  −3]; poly_r2=poly(r2)

poly_r2 =

     1    13    67   171   216   108

3.
a.

Pv=[1  8  10  4]; value=polyval(Pv, 1.25)

value = 30.9531

b.
Pw=[1  7  19  25  16  4]; value=polyval(Pw, −3.75)

value = -63.6904

p x( ) x3 8x2 10x 4+ + +=

p z( ) z5 13z4 67z3 171z2 216z 108+ + + + +=
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4.
w=[5 6 7 8 9 10 11 12 13 14 15 16]*100;
Vc=[88.9 98.5 103 104.9 105.3 104.8 103.8 102.4 100.7 98.9 96.5 94.9];
dB=20*log10(Vc); semilogx(w,dB); grid; title('Magnitude of Vc vs. w');...
xlabel('w in rads/sec'); ylabel('|Vc| in volts')

102 103 104
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Magnitude of Vc vs. w

w in rads/sec

|V
c|

 in
 v

ol
ts



Numerical Analysis Using MATLAB® and Excel®, Third Edition 2−1
Copyright © Orchard Publications

Chapter 2

Root Approximations

his chapter is an introduction to Newton’s and bisection methods for approximating roots
of linear and non−linear equations. Several examples are presented to illustrate practical
solutions using MATLAB and Excel spreadsheets.

2.1 Newton’s Method for Root Approximation
Newton’s (or Newton−Raphson) method can be used to approximate the roots of any linear or
non−linear equation of any degree. This is an iterative (repetitive procedure) method and it is
derived with the aid of Figure 2.1.

Figure 2.1. Newton’s method for approximating real roots of a function

We assume that the slope is neither zero nor infinite. Then, the slope (first derivative) at 
is

(2.1)

The slope crosses the  at  and . Since this point  lies on
the slope line, it satisfies (2.1). By substitution,

(2.2)

and in general, 
(2.3)

T

•

•
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   at point 
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Example 2.1  
Use Newton’s method to approximate the positive root of

(2.4)
to four decimal places.

Solution:

As a first step, we plot the curve of (2.4) to find out where it crosses the . This can be
done easily with a simple plot using MATLAB or a spreadsheet. We start with MATLAB and will
discuss the steps for using a spreadsheet afterwards.

We will now introduce some new MATLAB functions and review some which are discussed in
Chapter 1.

input(‘string’): It displays the text string, and waits for an input from the user. We must enclose
the text in single quotation marks.

We recall that the polyder(p) function displays the row vector whose values are the coefficients
of the first derivative of the polynomial p. The polyval(p,x) function evaluates the polynomial p
at some value x. Therefore, we can compute the next iteration for approximating a root with
Newton’s method using these functions. Knowing the polynomial p and the first approximation

, we can use the following script for the next approximation .

q=polyder(p)
x1=x0−polyval(p,x0)/polyval(q,x0)

We’ve used the fprintf command in Chapter 1; we will use it many more times. Therefore, let us
review it again.

The following description was extracted from the help fprintf function. 

It formats the data in the real part of matrix A (and in any additional matrix arguments), under control
of the specified format string, and writes it to the file associated with file identifier fid and contains C lan-
guage conversion specifications. These specifications involve the character %, optional flags, optional
width and precision fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E,
g, G, c, and s. See the Language Reference Guide or a C manual for complete details. The special for-
mats \n,\r,\t,\b,\f can be used to produce linefeed, carriage return, tab, backspace, and formfeed charac-
ters respectively. Use \\ to produce a backslash character and %% to produce the percent character.

To apply Newton’s method, we must start with a reasonable approximation of the root value. In
all cases, this can best be done by plotting  versus  with the familiar statements below. The
following two lines of script will display the graph of the given equation in the interval .

x=linspace(−4, 4, 100); % Specifies 100 values between -4 and 4
y=x .^ 2 − 5; plot(x,y); grid % The dot exponentiation is a must

f x( ) x2 5–=

x axis–

x0 x1

f x( ) x
4 x 4≤ ≤–
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Newton’s Method for Root Approximation

We chose this interval because the given equation asks for the square root of ; we expect this
value to be a value between  and . For other functions, where the interval may not be so obvi-
ous, we can choose a larger interval, observe the  crossings, and then redefine the inter-
val. The plot is shown in Figure 2.2.

Figure 2.2. Plot for the curve of Example 2.1

As expected, the curve shows one crossing between  and , so we take  as our
first approximation, and we compute the next value  as

(2.5)

The second approximation yields

(2.6)

We will use the following MATLAB script to verify (2.5) and (2.6).

%  Approximation of a root of a polynomial function p(x)
%  Do not forget to enclose the coefficients in brackets [  ]
p=input('Enter coefficients of p(x) in descending order: ');
x0=input('Enter starting value: ');
q=polyder(p); %  Calculates the derivative of p(x)
x1=x0−polyval(p,x0)/polyval(q,x0);
fprintf('\n'); % Inserts a blank line
%
%  The next function displays the value of x1 in decimal format as indicated 
%  by the specifier %9.6f, i.e., with 9 digits where 6 of these digits
%  are to the right of the decimal point such as xxx.xxxxxx, and

5
2 3
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x1 x0
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2 2( )
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4
-----------– 2.25= = = =

x2 x1
f x1( )
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---------------– 2.25 2.25( )2 5–

2 2.25( )
--------------------------– 2.25 0.0625
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----------------– 2.2361= = = =
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%  \n prints a blank line before printing x1
fprintf('The next approximation is: %9.6f \n', x1)
fprintf('\n'); % Inserts another blank line
%
fprintf('Rerun the program using this value as your next....
approximation \n');

The following lines show MATLAB’s inquiries and our responses (inputs) for the first two
approximations.

Enter coefficients of P(x) in descending order:
[1  0 −5]
Enter starting value: 2
The next approximation is:  2.250000 
Rerun the program using this value as your
next approximation 
Enter polynomial coefficients in 
descending order: [1  0 −5] 
Enter starting value: 2.25
The next approximation is:  2.236111

We observe that this approximation is in close agreement with (2.6).

In Chapter 1 we discussed script files and function files. We recall that a function file is a user−
defined function using MATLAB. We use function files for repetitive tasks. The first line of a
function file must contain the word function followed by the output argument, the equal sign (=),
and the input argument enclosed in parentheses. The function name and file name must be the
same but the file name must have the extension .m. For example, the function file consisting of
the two lines below

function y = myfunction(x)
y=x .^ 3 + cos(3 .* x)

is a function file and must be saved as myfunction.m

We will use the while end loop, whose general form is

while expression
      commands ...
end
where the commands ... in the second line are executed as long as all elements in expression of the
first line are true.

We will also be using the following commands:
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Newton’s Method for Root Approximation

disp(x): Displays the array x without printing the array name. If x is a string, the text is displayed.
For example, if , disp(v) displays 12, and disp(‘volts’) displays volts.

sprintf(format,A): Formats the data in the real part of matrix A under control of the specified
format string. For example,

sprintf('%d',round(pi))

ans =
3

where the format script %d specifies an integer. Likewise,

sprintf('%4.3f',pi)

ans =
3.142

where the format script %4.3f specifies a fixed format of 4 digits where 3 of these digits are allo-
cated to the fractional part.

Example 2.2  
Approximate one real root of the non−linear equation

(2.7)

to four decimal places using Newton’s method.

Solution:

As a first step, we sketch the curve to find out where the curve crosses the . We generate
the plot with the script below.

x=linspace(−pi, pi, 100); y=x .^ 2 + 4 .* x + 3 + sin(x) − x  .* cos(x); plot(x,y); grid

The plot is shown in Figure 2.3.

The plot shows that one real root is approximately at , so we will use this value as our first
approximation.

Next, we generate the function funcnewt01 and we save it as an m−file. To save it, from the File
menu of the command window, we choose New and click on M−File. This takes us to the Editor
Window where we type the following three lines and we save it as funcnewt01.m.

function y=funcnewt01(x)
% Approximating roots with Newton's method
y=x .^ 2 + 4 .* x + 3 + sin(x) − x .* cos(x);

v 12=

f x( ) x2 4x 3 xsin x xcos–+ + +=

x axis–

x 1–=
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Figure 2.3. Plot for the equation of Example 2.2

We also need the first derivative of y; This is 

The computation of the derivative for this example was a simple task; however, we can let MAT-
LAB do the differentiation, just as a check, and to introduce the diff(s) function. This function
performs differentiation of symbolic expressions. The syms function is used to define one or
more symbolic expressions.

syms x
y = x^2+4*x+3+sin(x)−x*cos(x); % Dot operations are not necessary with

% symbolic expressions, but correct 
% answer will be displayed if they are used.

y1=diff(y) % Find the derivative of y

y1 =
2*x+4+x*sin(x)

Now, we generate the function funcnewt02, and we save it as m−file. To save it, from the File
menu of the command window, we choose New and click on M−File. This takes us to the Editor
Window where we type these two lines and we save it as funcnewt02.m.

function y=funcnewt02(x)
%  Finding roots by Newton's method
%  The following is the first derivative of the function defined as funcnewt02
y=2 .* x + 4 + x .* sin(x);

Our script for finding the next approximation with Newton’s method follows.

x = input('Enter starting value: ');
fx = funcnewt01(x);
fprimex = funcnewt02(x);
xnext = x−fx/fprimex;
   x = xnext;

-4 -3 -2 -1 0 1 2 3 4
-10

0

10

20

30

y' 2x 4 x xsin+ +=
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Approximations with Spreadsheets

   fx = funcnewt01(x);
   fprimex = funcnewt02(x);
disp(sprintf('First approximation is x =  %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)');
   xnext=x−fx/fprimex;
   x=xnext;
   fx=funcnewt01(x);
   fprimex=funcnewt02(x);
disp(sprintf('Next approximation is x =  %9.6f \n', x))   
end;
disp(sprintf('%9.6f \n', x))

MATLAB produces the following result with  as a starting value.

Enter starting value: −1 
First approximation is: -0.894010 
Next approximation? (<enter>=no,1=yes)1
-0.895225
Next approximation? (<enter>=no,1=yes) <enter>

We can also use the fzero(f,x) function. It was introduced in Chapter 1. This function tries to
find a zero of a function of one variable. The string f contains the name of a real−valued function
of a single real variable. As we recall, MATLAB searches for a value near a point where the func-
tion f changes sign and returns that value, or returns NaN if the search fails.

2.2 Approximations with Spreadsheets
In this section, we will go through several examples to illustrate the procedure of using a spread-
sheet such as Excel* to approximate the real roots of linear and non−linear equations.

We recall that there is a standard procedure for finding the roots of a cubic equation; it is
included here for convenience.

A cubic equation of the form

(2.8)
can be reduced to the simpler form

(2.9)
where

* We will illustrate our examples with Excel, although others such as Lotus 1−2−3, and Quattro can also be used. Hence-
forth, all spreadsheet commands and formulas that we will be using, will be those of Excel.

1–

y3 py2 qy r+ + + 0=

x3 ax b+ + 0=
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(2.10)

For the solution it is convenient to let

(2.11)

Then, the values of  for which the cubic equation of (2.11) is equal to zero are

(2.12)

If the coefficients , , and  are real, then (2.13)

While MATLAB handles complex numbers very well, spreadsheets do not. Therefore, unless we
know that the roots are all real, we should not use a spreadsheet to find the roots of a cubic equa-
tion by substitution in the above formulas. However, we can use a spreadsheet to find the real
root since in any cubic equation there is at least one real root. For real roots, we can use a spread-
sheet to define a range of  values with small increments and compute the corresponding values
of . Then, we can plot  versus  to observe the values of  that make . This
procedure is illustrated with the examples that follow.

Note: In our subsequent discussion we will omit the word cell and the key <enter>. Thus B3,
C11, and so on will be understood to be cell B3, cell C11, and so on. Also, after an entry has been
made, it will be understood that the <enter> key was pressed.

Example 2.3  
Compute the roots of the polynomial

(2.14)
using Excel.

x y p
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Approximations with Spreadsheets

Solution:

We start with a blank worksheet. In an Excel worksheet, a selected cell is surrounded by a heavy
border. We select a cell by moving the thick hollow white cross pointer to the desired cell and we
click. For this example, we first select A1 and we type x. We observe that after pressing the
<enter> key, the next cell moves downwards to A2; this becomes the next selected cell. We type
0.00 in A2. We observe that this value is displayed just as 0, that is, without decimals. Next, we
type 0.05 in A3. We observe that this number is displayed exactly as it was typed. 

We will enter more values in column A, and to make all values look uniform, we click on letter A
on top of column A. We observe that the entire column is now highlighted, that is, the back-
ground on the monitor has changed from white to black. Next, from the Tools drop menu of the
Menu bar, we choose Options and we click on the Edit tab. We click on the Fixed Decimal check
box to place a check mark and we choose 2 as the number of decimal places. We repeat these
steps for Column B and we choose 3 decimal places. Then, all numbers that we will type in Col-
umn A will be fixed numbers with two decimal places, and the numbers in Column B will be fixed
with three decimal places.

To continue, we select A2, we click and holding the mouse left button down, we drag the mouse
down to A3 so that both these two cells are highlighted; then we release the mouse button.
When properly done, A2 will have a white background but A3 will have a black background. We
will now use the AutoFill* feature to fill−in the other values of  in Column A. We will use values
in 0.05 increments up to 5.00. Column A now contains 100 values of  from 0.00 to 5.00 in incre-
ments of 0.05.

Next, we select B1, and we type f(x). In B2, we type the equation formula with the = sign in front
of it, that is, we type

= A2^3-7*A2^2 + 16*A2-2

where A2 represents the first value of . We observe that B2 displays the value .
This is the value of  when  Next, we want to copy this formula to the range
B3:B102 (the colon : means B3 through B102). With B2 still selected, we click on Edit on the
main taskbar, and we click on Copy. We select the range B3:B102 with the mouse, we release the
mouse button, and we observe that this range is now highlighted. We click on Edit, then on Paste
and we observe that this range is now filled with the values of . Alternately, we can use the
Copy and Paste icons of the taskbar.

* To use this feature, we highlight cells A2 and A3. We observe that on the lower right corner of A3, there is a small black
square; this is called the fill handle. If it does not appear on the spreadsheet, we can make it visible by performing the
sequential steps Tools>Options, select the Edit tab, and place a check mark on the Drag and Drop setting. Next, we point
the mouse to the fill handle and we observe that the mouse pointer appears as a small cross. We click, hold down the mouse
button, we drag it down to A102, and we release the mouse button. We observe that, as we drag the fill handle, a pop−up
note shows the cell entry for the last value in the range.

x
x

x 0.00= 12.000–

f x( ) x 0.00=

f x( )
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To plot  versus , we click on the Chart Wizard icon of the Standard Toolbar, and on the
Chart type column we click on XY (Scatter). From the displayed charts, we choose the one on top
of the right side (the smooth curves without connection points). Then, we click on Next, Next,
Next, and Finish. A chart similar to the one on Figure 2.4 appears.

Figure 2.4. Plot of the equation of Example 2.3.

We will modify this plot to make it more presentable, and to see more precisely the 
crossing(s), that is, the roots of . This is done with the following steps:

1. We click on the Series 1 box to select it, and we delete it by pressing the Delete key.

2. We click anywhere inside the graph box. Then, we see it enclosed in six black square handles.
From the View menu, we click on Toolbars, and we place a check mark on Chart. The Chart
menu appears in two places, on the main taskbar and below it in a box where next to it is
another small box with the hand icon. Note: The Chart menu appears on the main taskbar and
on the box below it, only when the graph box is selected, that is, when it is enclosed in black
square handles. From the Chart menu box (below the main taskbar), we select Value (X) axis,
and we click on the small box next to it (the box with the hand icon). Then, on the Format axis
menu, we click on the Scale tab and we make the following entries: 

Minimum: 0.0 
Maximum: 5.0 
Major unit: 1.0 
Minor unit: 0.5

We click on the Number tab, we select Number from the Category column, and we type 0 in the
Decimal places box. We click on the Font tab, we select any font, Regular style, Size 9. We click
on the Patterns tab to select it, and we click on Low on the Tick mark labels (lower right box).
We click on OK to return to the graph.

3. From the Chart menu box we select Value (Y) axis and we click on the small box next to it (the

f x( ) x

x f(x)
0.00 -12.000
0.05 -11.217
0.10 -10.469
0.15 -9.754
0.20 -9.072
0.25 -8.422
0.30 -7.803
0.35 -7.215
0.40 -6.656
0.45 -6.126
0.50 -5.625
0.55 -5.151

f(x)

-15
-10
-5
0
5

10
15
20

0 1 2 3 4 5 6

x axis–

f x( )
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box with the hand icon). On the Format axis menu, we click on the Scale tab, and we make the
following entries:

Minimum: −1.0
Maximum: 1.0 
Major unit: 0.25 
Minor unit: 0.05

We click on the Number tab, we select Number from the Category column, and we select 2 in
the Decimal places box. We click on the Font tab, select any font, Regular style, Size 9. We click
on the Patterns tab, and we click on Outside on the Major tick mark type (upper right box). We
click on OK to return to the graph.

4. We click on Chart on the main taskbar, and on the Chart Options. We click on Gridlines, we
place check marks on Major gridlines of both Value (X) axis and Value (Y) axis. Then, we click
on the Titles tab and we make the following entries:

Chart title: f(x) =  the given equation (or whatever we wish)
Value (X) axis: x (or whatever we wish)
Value (Y) axis: y=f(x) (or whatever we wish)

5. Now, we will change the background of the plot area from gray to white. From the Chart
menu box below the main task bar, we select Plot Area and we observe that the gray back-
ground of the plot area is surrounded by black square handles. We click on the box next to it
(the box with the hand icon), and on the Area side of the Patterns tab, we click on the white
square which is immediately below the gray box. The plot area on the chart now appears on
white background.

6. To make the line of the curve  thicker, we click at any point near it and we observe that
several black square handles appear along the curve. Series 1 appears on the Chart menu box.
We click on the small box next to it, and on the Patterns tab. From the Weight selections we
select the first of the thick lines.

7. Finally, to change Chart Area square corners to round, we select Chart Area from the Chart
menu, and on the Patterns tab we place a check mark on the Round corners box.

The plot now resembles the one shown in Figure 2.5 where we have shown partial lists of  and
. The given polynomial has two roots at , and the third root is .

We will follow the same procedure for generating the graphs of the other examples which follow;
therefore, it is highly recommended that this file is saved with any name, say poly01.xls where.xls
is the default extension for file names saved in Excel.

f x( )

x
f x( ) x 2= x 3=



Chapter 2  Root Approximations

2−12 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

Figure 2.5. Modified plot of the equation of Example 2.3.

Example 2.4  
Find a real root of the polynomial

(2.15)
using Excel.

Solution:

To save lots of unnecessary work, we invoke (open) the spreadsheet of the previous example, that
is, poly01.xls (or any other file name that was assigned to it), and save it with another name such
as poly02.xls. This is done by first opening the file poly01.xls, and from the File drop down menu,
we choose the Save as option; then, we save it as poly02.xls, or any other name. When this is
done, the spreadsheet of the previous example still exists as poly01.xls. Next, we perform the fol-
lowing steps:

1. For this example, the highest power of the polynomial is 5 (odd number), and since we know
that complex roots occur in conjugate pairs, we expect that this polynomial will have at least
one real root. Since we do not know where a real root is in the x−axis interval, we arbitrarily

x f(x)
0.00 -12.000
0.05 -11.217
0.10 -10.469
0.15 -9.754
0.20 -9.072
0.25 -8.422
0.30 -7.803
0.35 -7.215
0.40 -6.656
0.45 -6.126
0.50 -5.625
0.55 -5.151
0.60 -4.704
0.65 -4.283
0.70 -3.887 x f(x) x f(x)
0.75 -3.516 1.90 -0.011 2.90 -0.081
0.80 -3.168 1.95 -0.003 2.95 -0.045
0.85 -2.843 Roots 2.00 0.000 3.00 0.000
0.90 -2.541 2.05 -0.002 3.05 0.055
0.95 -2.260 2.10 -0.009 3.10 0.121
1.00 -2.000 f(x) =0 at x=2 (double root) and at x=3

f(x) = x3 - 7x2 + 16x - 12

-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00

0 1 2 3 4 5

x

f(x
)

y f x( ) 3x5 2x3– 6x 8–+= =
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choose the interval . Then, we enter −10 and −9 in A2 and A3 respectively. Using
the AutoFill feature, we fill−in the range A4:A22, and we have the interval from −10 to 10 in
increments of 1. We must now delete all rows starting with 23 and downward. We do this by
highlighting the range A23:B102, and we press the Delete key. We observe that the chart has
changed shape to conform to the new data.

Now we select B2 where we enter the formula for the given equation, i.e.,

=3*A2^5−2*A2^3+6*A2−8

We copy this formula to B3:B22. Columns A and B now contain values of x and  respec-
tively, and the plot shows that the curve crosses the x−axis somewhere between  and

. 

A part of the table is shown in Figure 2.6. Columns A (values of x), and B (values of ),
reveal some useful information.

 
Figure 2.6. Partial table for Example 2.4

This table shows that  changes sign somewhere in the interval from  and .
Let us then redefine our interval of the x values as  in increments of 0.05, to get bet-
ter approximations. When this is done A1 contains 1.00, A2 contains 1.05, and so on. Our
spreadsheet now shows that there is a sign change from B3 to B4, and thus we expect that a
real root exists between  and . To obtain a good approximation of the real
root in that interval, we perform Steps 2 through 4 below. 

2. On the View menu, we click on Toolbars and place a check mark on Chart. We select the graph
box by clicking inside it, and we observe the square handles surrounding it. The Chart menu
on the main taskbar and the Chart menu box below it, are now displayed. From the Chart
menu box (below the main taskbar) we select Value (X) axis, and we click on the small box
next to it (the box with the hand). Next, on the Format axis menu, we click on the Scale tab
and make the following entries:
Minimum: 1.0
Maximum: 1.1
Major unit: 0.02
Minor unit: 0.01

10 x 10≤ ≤–

f x( )
x 1=

x 2=

f x( )

x f(x)
-10.00 -298068.000
-9.00 -175751.000
0.00 -8.000
1.00 -1.000
2.00 84.000
9.00 175735.000

10.00 298052.000

Sign Change

f x( ) x 1= x 2=

1 x 2≤ ≤

x 1.05= x 1.10=
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3. From the Chart menu we select Value (Y) axis, and we click on the small box next to it. Then,
on the Format axis menu, we click on the Scale tab and make the following entries:

Minimum: −1.0
Maximum: 1.0
Major unit: 0.5
Minor unit: 0.1

4. We click on the Titles tab and make the following entries:

Chart title: f(x) = the given equation (or whatever we wish)
Value (X) axis: x (or whatever we wish)
Value (Y) axis: y=f(x) (or whatever we wish)

Our spreadsheet now should look like the one in Figure 2.7 and we see that one real root is
approximately 1.06.

Figure 2.7. Graph for Example 2.4

Since no other roots are indicated on the plot, we suspect that the others are complex conjugates.
We confirm this with MATLAB as follows:

p = [ 3  0  −2  0  6  −8];  roots_p=roots(p)

x f(x)
1.00 -1.000
1.05 -0.186
1.10 0.770
1.15 1.892
1.20 3.209
1.25 4.749
1.30 6.545
1.35 8.631
1.40 11.047
1.45 13.832
1.50 17.031
1.55 20.692
1.60 24.865
1.65 29.605
1.70 34.970 x f(x)
1.75 41.021 1.00 -1.000
1.80 47.823 1.05 -0.186
1.85 55.447 1.10 0.770
1.90 63.965 1.15 1.892
1.95 73.455 1.20 3.209
2.00 84.000 f(x) = − 0.007 at x = 1.06

f (x) = 3x5 - 2x3 + 6x - 8

-1.00

-0.50

0.00

0.50

1.00

1.00 1.02 1.04 1.06 1.08 1.10

x

f(x
)

Real Root between
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roots_p =
  -1.1415 + 0.8212i
  -1.1415 - 0.8212i
   0.6113 + 0.9476i
   0.6113 - 0.9476i
   1.0604

Example 2.5  
Compute the real roots of the trigonometric function

(2.16)
using Excel.

Solution:

We invoke (open) the spreadsheet of one of the last two examples, that is, poly01.xls or poly02.xls,
and save it with another name, such as poly03.xls. 

Since we do not know where real roots (if any) are in the x−axis interval, we arbitrarily choose the
interval . Then, we enter −1.00 and −0.90 in A2 and A3 respectively, Using the Auto-
Fill feature, we fill−in the range A4:A72 and thus we have the interval from −1 to 6 in increments
of 0.10. Next, we select B2 and we enter the formula for the given equation, i.e.,

=COS(2*A2)+SIN(2*A2)+A2−1

and we copy this formula to B3:B62.

There is a root at ; this is found by substitution of zero into the given equation. We observe
that Columns A and B contain the following sign changes (only a part of the table is shown):

We observe two sign changes. Therefore, we expect two more real roots, one in the
 interval and the other in the  interval. If we redefine the 

range as 1 to 2.5, we will find that the other two roots are approximately  and .

Approximate values of these roots can also be observed on the plot of Figure 2.8 where the curve
crosses the .

y f x( ) 2xcos 2x x+sin 1–+= =

1 x 6≤ ≤–

x 0=

x f(x)
1.20 0.138
1.30 -0.041
2.20 -0.059
2.30 0.194

Sign Change

Sign Change

1.20 x 1.30≤ ≤ 2.20 x 2.30≤ ≤ x axis–

x 1.30= x 2.24=

x axis–
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Figure 2.8. Graph for Example 2.5

We can obtain more accurate approximations using Excel’s Goal Seek feature. We use Goal Seek
when we know the desired result of a single formula, but we do not know the input value which
satisfies that result. Thus, if we have the function , we can use Goal Seek to set the
dependent variable  to the desired value (goal) and from it, find the value of the independent
variable  which satisfies that goal. In the last three examples our goal was to find the values of 
for which .

To illustrate the Goal Seek feature, we will use it to find better approximations for the non−zero
roots of Example 2.5. We do this with the following steps:

1. We copy range A24:B24 (or A25:B25) to two blank cells, say J1 and K1, so that J1 contains
1.20 and K1 contains 0.138 (or 1.30 and −0.041 if range A25:B25 was copied). We increase the
accuracy of Columns J and K to 5 decimal places by clicking on Format, Cells, Numbers tab.

2. From the Tools drop menu, we click on Goal Seek, and when the Goal Seek dialog box appears,
we make the following entries:

Set cell: K1
To value: 0

By changing cell: J1

3. When this is done properly, we will observe the changes in J1 and K1. These indicate that for

x f(x)
-1.00 -3.325
-0.90 -3.101
-0.80 -2.829
-0.70 -2.515
-0.60 -2.170
-0.50 -1.801
-0.40 -1.421
-0.30 -1.039
-0.20 -0.668
-0.10 -0.319
0.00 0.000
0.10 0.279
0.20 0.510
0.30 0.690 x f(x)
0.40 0.814 0.00 0.000
0.50 0.882 1.20 0.138
0.60 0.894 1.30 -0.041
0.70 0.855 2.20 -0.059
0.80 0.770 2.30 0.194
0.90 0.647

f(x) = cos2x + sin2x + x - 1

-4

-2

0

2

4

6

-1 0 1 2 3 4 5 6

x
f(x

)

Real Root between

Real Root between

Real Root at

y f x( )=

y
x x

y f x( ) 0= =
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, .

4. We repeat the above steps for the next root near , and we verify that for
, .

Another method of using the Goal Seek feature, is with a chart such as those we’ve created for the
last three examples. We will illustrate the procedure with the chart of Example 2.5.

1. We point the mouse at the curve where it intersects the x−axis, near the  point. A
square box appears and displays Series 1, (1.30, −0.041). We observe that other points are also
displayed as the mouse is moved at different points near the curve. 

2. We click anywhere near the curve, and we observe that five handles (black square boxes) are
displayed along different points on the curve. Next, we click on the handle near the 
point, and when the cross symbol appears, we drag it towards the x−axis to change its value.
The Goal Seek dialog box then appears where the Set cell shows B24. Then, in the To value box
we enter 0, in the By changing cell we enter A24 and we click on OK. We observe now that A24
displays 1.28 and B24 displays 0.000.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a template
(model spreadsheet) with the appropriate formulas and then enter the coefficients of the polyno-
mial to find its real roots*. This is illustrated with the next example.

Example 2.6  
Construct a template (model spreadsheet), with Excel, which uses Newton’s method to approxi-
mate a real root of any polynomial with real coefficients up to the seventh power; then, use it to
compute a root of the polynomial

(2.17)

given that one real root lies in the  interval.

Solution:

1. We begin with a blank spreadsheet and we make the entries shown in Figure 2.9.

* There exists a numerical procedure, known as Bairstow’s method, that we can use to find the complex roots of a polyno-
mial with real coefficients. We will not discuss this method here; it can be found in advanced numerical analysis textbooks.

x 1.27647= y f x( ) 0.00002= =

x 2.20=

x 2.22515= y f x( ) 0.00020= =

x 1.30=

x 1.30=

y f x( ) x7 6x6– 5x5 4x4– 3x3 2x2– x 15–+ + += =

4 x 6≤ ≤
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Figure 2.9. Model spreadsheet for finding real roots of polynomials.

We save the spreadsheet of Figure 2.9 with a name, say template.xls. Then, we save it with a dif-
ferent name, say Example_2_6.xls, and in B16 we type the formula

=A16-($A$7*A16^7+$B$7*A16^6+$C$7*A16^5+$D$7*A16^4
+$E$7*A16^3+$F$7*A16^2+$G$7*A16^1+$H$7)/
($B$12*A16^6+$C$12*A16^5+$D$12*A16^4+$E$12*A16^3
+$F$12*A16^2+$G$12*A16^1+$H$12)

The use of the dollar sign ($) is explained in Paragraph 4 below.

The formula in B16 of Figure 2.10, is the familiar Newton’s formula which also appears in Row
14. We observe that B16 now displays #DIV/0! (this is a warning that some value is being
divided by zero), but this will change once we enter the polynomial coefficients, and the coeffi-
cients of the first derivative.

2. Since we are told that one real root is between 4 and 6, we take the average 5 and we enter it in
A16. This value is our first (initial) approximation. We also enter the polynomial coefficients,
and the coefficients of the first derivative in Rows 7 and 12 respectively.

3. Next, we copy B16 to C16:F16 and the spreadsheet now appears as shown in the spreadsheet
of Figure 2.10. We observe that there is no change in the values of E16 and F16; therefore, we
terminate the approximation steps there.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H
Spreadsheet for finding approximations of the real roots of polynomials 
up the 7th power by Newton's Method.

Powers of x and corresponding coefficients of given polynomial p(x)  
Enter coefficients of p(x) in Row 7 

x7 x6 x5 x4 x3 x2 x Constant

Coefficients of the derivative p'(x)
Enter coefficients of p'(x) in Row 12 

x6 x5 x4 x3 x2 x Constant

Approximations: xn+1 = xn − p(xn)/p'(xn)
Initial (x0) 1st (x1) 2nd (x2) 3rd (x3) 4th (x4) 5th (x5) 6th (x6) 7th (x7)
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Figure 2.10. Spreadsheet for Example 2.6.

4. All cells in the formula of B16, except A16, have dollar signs ($) in front of the column letter,
and in front of the row number. These cells are said to be absolute. The value of an absolute
cell does not change when it is copied from one position to another. A cell that is not absolute
is said to be relative cell. Thus, B16 is a relative cell, and $B$16 is an absolute cell. The con-
tents of a relative cell changes when it is copied from one location to another. We can easily
convert a relative cell to absolute or vice versa, by first placing the cursor in front, at the end,
or between the letters and numbers of the cell, then, we press the function key F4. In this
example, we made all cells, except A16, absolute so that the formula of B16 can be copied to
C16, D16 and so on, without changing its value. The relative cell A16, when copied to the
next column, changes to B16, when copied to the next column to the right, changes to C16,
and so on.

We can now use this template with any other polynomial by just entering the coefficients of the
new polynomial in row 7 and the coefficients of its derivative in Row 12; then, we observe the
successive approximations in Row 16.

2.3 The Bisection Method for Root Approximation

The Bisection (or interval halving) method is an algorithm* for locating the real roots of a function.

* This is a step−by−step problem−solving procedure, especially an established, recursive computational procedure for solving
a problem in a finite number of steps.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H
Spreadsheet for finding approximations of the real roots of polynomials 
up the 7th power by Newton's Method.

Powers of x and corresponding coefficients of given polynomial p(x)  
Enter coefficients of p(x) in Row 7 

x7 x6 x5 x4 x3 x2 x Constant
1 -6 5 -4 3 -2 1 -15

Coefficients of the derivative p'(x)
Enter coefficients of p'(x) in Row 12 

x6 x5 x4 x3 x2 x Constant
7 -36 25 -16 9 -4 1

Approximations: xn+1 = xn − p(xn)/p'(xn)
Initial (x0) 1st (x1) 2nd (x2) 3rd (x3) 4th (x4) 5th (x5) 6th (x6) 7th (x7)

5.0 5.20409 5.16507 5.163194 5.163190 5.163190
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The objective is to find two values of x, say  and , so that  and  have opposite
signs, that is, either  and , or  and . If any of these two condi-
tions is satisfied, we can compute the midpoint xm of the interval  with 

(2.18)

Knowing , we can find . Then, the following decisions are made:

1. If  and  have the same sign, their product will be positive, that is, .
This indicates that  and  are on the left side of the x−axis crossing as shown in Figure 2.11.
In this case, we replace  with .

Figure 2.11. Sketches to illustrate the bisection method when  and  have same sign

2. If  and  have opposite signs, their product will be negative, that is, .
This indicates that  and  are on the right side of the x−axis crossing as in Figure 2.12. In
this case, we replace  with .

Figure 2.12. Sketches to illustrate the bisection method when  and  have opposite signs

After making the appropriate substitution, the above process is repeated until the root we are
seeking has a specified tolerance. To terminate the iterations, we either: 

a.  specify a number of iterations

b.  specify a tolerance on the error of 

x1 x2 f x1( ) f x2( )

f x1( ) 0> f x2( ) 0< f x1( ) 0< f x2( ) 0>

x1 x x2≤ ≤

xm
x1 x2+

2
-----------------=

xm f xm( )

f xm( ) f x1( ) f xm( ) f x1( )⋅ 0>

xm x1

x1 xm

• • •

 are
both positive and thus

• • •

 their product is positive
both negative and thus
 their product is positive

f xm( )f x1( ) and  aref xm( )f x1( ) and 

x1x1 xmx2xm x2

f x1( ) f xm( )

f xm( ) f x1( ) f xm( ) f x1( )⋅ 0<

xm x2

x2 xm

• • •

opposite signs and thus

• • •

their product is negative
opposite signs and thus
their product is negative

 havef xm( )f x1( ) and  havef xm( )f x1( ) and 

x1 xm x2 x1 xm x2

f x1( ) f xm( )

f x( )
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We will illustrate the Bisection Method with examples using both MATLAB and Excel.

Example 2.7  
Use the Bisection Method with MATLAB to approximate one of the roots of

(2.19)
by

a. by specifying 16 iterations, and using a for end loop MATLAB program

b. by specifying 0.00001 tolerance for , and using a while end loop MATLAB program

Solution:

This is the same polynomial as in Example 2.4.

a. The for end loop allows a group of functions to be repeated a fixed and predetermined num-
ber of times. The syntax is:

for x = array
commands...
end

Before we write the program script, we must define a function assigned to the given polyno-
mial and save it as a function m−file. We will define this function as funcbisect01 and will save
it as funcbisect01.m.

function y= funcbisect01(x);
y = 3 .* x .^ 5 − 2 .* x .^ 3 + 6 .* x − 8;
%  We must not forget to type the semicolon at the end of the line above;
%  otherwise our script will fill the screen with values of y

On the script below, the statement for k = 1:16 says for , evaluate all
commands down to the end command. After the  iteration, the loop ends and any
commands after the end are computed and displayed as commanded.

Let us also review the meaning of the fprintf('%9.6f %13.6f \n', xm,fm) line. Here, %9.6f and
%13.6f are referred to as format specifiers or format scripts; the first specifies that the value of
xm must be expressed in decimal format also called fixed point format, with a total of 9 digits, 6
of which will be to the right of the decimal point. Likewise, fm must be expressed in decimal
format with a total of 13 digits, 6 of which will be to the right of the decimal point. Some other
specifiers are %e for scientific format, %s for string format, and %d for integer format. For
more information, we can type help fprintf. The special format \n specifies a linefeed, that is, it
prints everything specified up to that point and starts a new line. We will discuss other special
formats as they appear in subsequent examples.

y f x( ) 3x5 2x3– 6x 8–+= =

f x( )

k 1 k, 2 … k, , 16= = =

k 16=
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The script for the first part of Example 2.7 is given below.

x1=1;  x2=2; % We know this interval from Example 2.4, Figure 2.6
disp('   xm             fm') % xm is the average of x1 and x2, fm is f(xm)
disp('-------------------------') % insert line under xm and fm
for k=1:16;

         f1=funcbisect01(x1); f2=funcbisect01(x2);
xm=(x1+x2) / 2; fm=funcbisect01(xm);
fprintf('%9.6f %13.6f \n', xm,fm) % Prints xm and fm on same line;
if (f1*fm<0)
   x2=xm;
else

         x1=xm;
         end

end

When this program is executed, MATLAB displays the following:

  xm             fm
-------------------------
 1.500000     17.031250 
 1.250000      4.749023 
 1.125000      1.308441 
 1.062500      0.038318 
 1.031250     -0.506944 
 1.046875     -0.241184 
 1.054688     -0.103195 
 1.058594     -0.032885 
 1.060547      0.002604 
 1.059570     -0.015168 
 1.060059     -0.006289 
 1.060303     -0.001844 
 1.060425      0.000380 
 1.060364     -0.000732 
 1.060394     -0.000176 
 1.060410      0.000102 

We observe that the values are displayed with 6 decimal places as we specified, but for the
integer part unnecessary leading zeros are not displayed.

b. The while end loop evaluates a group of commands an indefinite number of times. The syntax
is:

while expression
      commands...
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end

The commands between while and end are executed as long as all elements in expression are
true. The script should be written so that eventually a false condition is reached and the loop
then terminates.

There is no need to create another function m−file; we will use the same as in part a. Now we
type and execute the following while end loop program.

x1=1; x2=2; tol=0.00001;
disp('    xm            fm'); disp('-------------------------')
while (abs(x1-x2)>2*tol);
   f1=funcbisect01(x1); f2=funcbisect01(x2); xm=(x1+x2)/2;
   fm=funcbisect01(xm);
   fprintf('%9.6f %13.6f \n', xm,fm);
   if (f1*fm<0);
      x2=xm;
   else

      x1=xm;
   end
end

When this program is executed, MATLAB displays the following:

  xm            fm
-------------------------
 1.500000     17.031250 
 1.250000      4.749023 
 1.125000      1.308441 
 1.062500      0.038318 
 1.031250     -0.506944 
 1.046875     -0.241184 
 1.054688     -0.103195 
 1.058594     -0.032885 
 1.060547      0.002604 
 1.059570     -0.015168 
 1.060059     -0.006289 
 1.060303     -0.001844 
 1.060425      0.000380 
 1.060364     -0.000732 
 1.060394     -0.000176 
 1.060410      0.000102 
 1.060402     -0.000037 
 1.060406      0.000032 
 1.060404     -0.000003
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Next, we will use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has the
following syntax.

=IF(logical_test,value_if_true,value_if_false)

where

logical_test: any value or expression that can be evaluated to true or false.

value_if_true: the value that is returned if logical_test is true. 

If logical_test is true and value_if_true is omitted, true is returned. Value_if_true can be another
formula.

value_if_false is the value that is returned if logical_test is false. If logical_test is false and
value_if_false is omitted, false is returned. Value_if_false can be another formula.

These statements may be clarified with the following examples.

=IF(C11>=1500,A15, B15):If the value in C11 is greater than or equal to 1500, use the value in
A15; otherwise use the value in B15.

=IF(D22<E22, 800, 1200):If the value in D22 is less than the value of E22, assign the number
800; otherwise assign the number 1200.

=IF(M8<>N17, K7*12, L8/24):If the value in M8 is not equal to the value in N17, use the value in
K7 multiplied by 12; otherwise use the value in L8 divided by 24.

Example 2.8  

Use the bisection method with an Excel spreadsheet to approximate the value of  within
0.00001 accuracy.

Solution:

Finding the square root of 5 is equivalent to finding the roots of . We expect the posi-
tive root to be in the  interval so we assign  and . The average of these
values is . We will create a template as we did in Example 2.6 so we can use it with any
polynomial equation. We start with a blank spreadsheet and we make the entries in rows 1
through 12 as shown in Figure 2.13.

Now, we make the following entries in rows 13 and 14.

A13: 2
B13: 3
C13: =(A13+B13)/2

5

x2 5– 0=

2 x 3< < x1 2= x2 3=

xm 2.5=
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Figure 2.13. Partial spreadsheet for Example 2.8

D13: =$A$9*A13^7+$B$9*A13^6+$C$9*A13^5+$D$9*A13^4
        +$E$9*A13^3+$F$9*A13^2+$G$9*A13^1+$H$9*A13^0
E13: =$A$9*C13^7+$B$9*C13^6+$C$9*C13^5+$D$9*C13^4
         +$E$9*C13^3+$F$9*C13^2+$G$9*C13^1+$H$9*C13^0 
F13: =D13*E13
A14: =IF(A14=A13, C13, B13) 
B14: =IF(A14=A13, C13, B13) 

We copy C13 into C14 and we verify that C14: =(A14+B14)/2

Next, we highlight D13:F13 and on the Edit menu we click on Copy. We place the cursor on D14
and from the Edit menu we click on Paste. We verify that the numbers on D14:F14 are as shown
on the spreadsheet of Figure 2.14. Finally, we highlight A14:F14, from the Edit menu we click on
Copy, we place the cursor on A15, and holding the mouse left button, we highlight the range
A15:A30. Then, from the Edit menu, we click on Paste and we observe the values in A15:F30.

The square root of 5 accurate to six decimal places is shown on C30 in the spreadsheet of Figure
2.14.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G H
Spreadsheet for finding approximations of the real roots  
of polynomials using the Bisection method

Equation: y = f(x) = x2 − 5 = 0

Powers of x and corresponding coefficients of given polynomial f(x) 
Enter coefficients of f(x) in Row 9 

x7 x6 x5 x4 x3 x2 x Constant
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0 -5

x1 x2 xm f(x1) f(xm) f(x1)f(xm)
(x1+x2)/2
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Figure 2.14. Entire spreadsheet for Example 2.8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G H
Spreadsheet for finding approximations of the real roots  
of polynomials using the Bisection method

Equation: y = f(x) = x2 − 5 = 0

Powers of x and corresponding coefficients of given polynomial f(x) 
Enter coefficients of f(x) in Row 9 

x7 x6 x5 x4 x3 x2 x Constant
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0 -5

x1 x2 xm f(x1) f(xm) f(x1)f(xm)
(x1+x2)/2

2.00000 3.00000 2.50000 -1.00000 1.25000 -1.25000
2.00000 2.50000 2.25000 -1.00000 0.06250 -0.06250
2.00000 2.25000 2.12500 -1.00000 -0.48438 0.48438
2.12500 2.25000 2.18750 -0.48438 -0.21484 0.10406
2.18750 2.25000 2.21875 -0.21484 -0.07715 0.01657
2.21875 2.25000 2.23438 -0.07715 -0.00757 0.00058
2.23438 2.25000 2.24219 -0.00757 0.02740 -0.00021
2.23438 2.24219 2.23828 -0.00757 0.00990 -0.00007
2.23438 2.23828 2.23633 -0.00757 0.00116 -0.00001
2.23438 2.23633 2.23535 -0.00757 -0.00320 0.00002
2.23535 2.23633 2.23584 -0.00320 -0.00102 0.00000
2.23584 2.23633 2.23608 -0.00102 0.00007 0.00000
2.23584 2.23608 2.23596 -0.00102 -0.00047 0.00000
2.23596 2.23608 2.23602 -0.00047 -0.00020 0.00000
2.23602 2.23608 2.23605 -0.00020 -0.00006 0.00000
2.23605 2.23608 2.23607 -0.00006 0.00000 0.00000
2.23605 2.23607 2.23606 -0.00006 -0.00003 0.00000
2.23606 2.23607 2.23606 -0.00003 -0.00001 0.00000
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Summary

2.4 Summary
• Newton’s (or Newton−Raphson) method can be used to approximate the roots of any linear or

non−linear equation of any degree. It uses the formula

To apply Newton’s method, we must begin with a reasonable approximation of the root value.
In all cases, this can best be done by plotting  versus .

• We can use a spreadsheet to approximate the real roots of linear and non−linear equations but
to approximate all roots (real and complex conjugates) it is advisable to use MATLAB.

• The MATLAB the while end loop evaluates a group of statements an indefinite number of
times and thus can be effectively used for root approximation.

• For approximating real roots we can use Excel’s Goal Seek feature. We use Goal Seek when
we know the desired result of a single formula, but we do not know the input value which sat-
isfies that result. Thus, if we have the function , we can use Goal Seek to set the
dependent variable  to the desired value (goal) and from it, find the value of the indepen-
dent variable  which satisfies that goal.

• For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a tem-
plate (model spreadsheet) with the appropriate formulas and then enter the coefficients of the
polynomial to find its real roots.

• The Bisection (or interval halving) method is an algorithm for locating the real roots of a
function. The objective is to find two values of x, say  and , so that  and  have
opposite signs, that is, either  and , or  and . If any of these
two conditions is satisfied, we can compute the midpoint xm of the interval  with 

• We can use the Bisection Method with MATLAB to approximate one of the roots by specify-
ing a number of iterations using a for end or by specifying a tolerance using a while end loop 
program.

• We can use an Excel spreadsheet to construct a template that approximates a real root of a
function with the bisection method. This requires repeated use of the IF function which has
the =IF(logical_test,value_if_true,value_if_false)

xn 1+ xn
f xn( )
f ' xn( )
---------------–=

f x( ) x

y f x( )=

y
x

x1 x2 f x1( ) f x2( )

f x1( ) 0> f x2( ) 0< f x1( ) 0< f x2( ) 0>

x1 x x2≤ ≤

xm
x1 x2+

2
-----------------=
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2.5 Exercises

1. Use MATLAB to sketch the graph  for each of the following functions, and verify
from the graph that  and , where  and  defined below, have opposite signs. Then,
use Newton’s method to estimate the root of  that lies between  and .

a.

b.

Hint: Start with 

2. Repeat Exercise 1 above using the Bisection method.

3. Repeat Example 2.5 using MATLAB.

Hint: Use the procedure of Example 2.2

y f x( )=

f a( ) f b( ) a b
f x( ) 0= a b

f1 x( ) x4 x 3–+= a 1= b 2=

f2 x( ) 2x 1+ x 4+–= a 2= b 4=

x0 a b+( ) 2⁄=
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2.6 Solutions to End-of-Chapter Exercises
1.

a.
x=−2:0.05:2; f1x=x.^4+x−3; plot(x,f1x); grid

From the plot above we see that the positive root lies between  and  so we
choose  and  so we take  as our first approximation. We compute
the next value  as

The second approximation yields

Check with MATLAB:

pa=[1 0 0 1 −3]; roots(pa)

ans =

  -1.4526          
   0.1443 + 1.3241i
   0.1443 - 1.3241i
   1.1640

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-2

0

2

4

6

8

10

12

14

16

x 1= x 1.25=

a 1= b 1.25= x0 1.1=

x1

x1 x0
f x0( )
f ' x0( )
---------------– 1.1 1.1( )4 1.1 3–+

4 1.1( )3 1+
-------------------------------------– 1.1 0.436–( )

6.324
---------------------– 1.169= = = =

x2 x1
f x1( )
f ' x1( )
---------------– 1.169 1.169( )4 1.169 3–+

4 1.169( )3 1+
-------------------------------------------------– 1.169 0.0365

7.39
----------------– 1.164= = = =
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b.
x=−5:0.05:5; f2x=sqrt(2.*x+1)−sqrt(x+4); plot(x,f2x); grid

Warning: Imaginary parts of complex X and/or Y arguments ignored.

From the plot above we see that the positive root is very close to  and so we take
 as our first approximation. To compute the next value  we first need to find the

first derivative of . We rewrite it as

Then,

and

Thus, the real root is exactly . We also observe that since ,

there was no need to find the first derivative .

Check with MATLAB:

syms x; f2x=sqrt(2.*x+1)−sqrt(x+4); solve(f2x)

ans =

  3          

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

x 3=

x0 3= x1

f2 x( )

f2 x( ) 2x 1+ x 4+– 2x 1+( )1 2⁄ x 4+( )1 2⁄–= =

d
dx
------ f2 x( )⋅ 1

2
--- 2x 1+( ) 1– 2⁄ 2⋅ ⋅ 1

2
--- x 4+( ) 1– 2⁄ 1⋅ ⋅– 1

2x 1+
------------------- 1

2 x 4+
-------------------–= =

x1 x0
f x0( )
f ' x0( )
---------------– 3 2 3 1+× 3 4+–

1 7⁄ 1 2 7( )⁄–
------------------------------------------------– 3 0

1 2 7( )⁄
----------------------– 3= = = =

x 3= f x0( ) 7 7– 0= =

f ' x0( )
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2. 
a. We will use the for end loop MATLAB program and specify 12 iterations. Before we write

the program script, we must define a function assigned to the given polynomial and save it
as a function m−file. We will define this function as exercise2 and will save it as
exercise2.m

function y= exercise2(x);
y = x .^ 4 +x − 3;

After saving this file as exercise2.m, we execute the following program:

x1=1;  x2=2; % x1=a and x2=b
disp('   xm             fm') % xm is the average of x1 and x2, fm is f(xm)
disp('-------------------------') % insert line under xm and fm
for k=1:12;

         f1=exercise2(x1); f2=exercise2(x2);
xm=(x1+x2) / 2; fm=exercise2(xm);
fprintf('%9.6f %13.6f \n', xm,fm)% Prints xm and fm on same line;
if (f1*fm<0)
   x2=xm;
else

x1=xm;
end

end

MATLAB displays the following:

   xm             fm
-------------------------
1.500000      3.562500 
1.250000      0.691406 
1.125000     -0.273193 
1.187500      0.176041 
1.156250     -0.056411 
1.171875      0.057803 

 1.164063      0.000200 
 1.160156     -0.028229 
 1.162109     -0.014045 
 1.163086     -0.006930 
 1.163574     -0.003367 
 1.163818     -0.001584 

b. We will use the while end loop MATLAB program and specify a tolerance of 0.00001.

We need to redefine the function m−file because the function in part (b) is not the same as
in part a.
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function y= exercise2(x);
y = sqrt(2.*x+1)−sqrt(x+4);

After saving this file as exercise2.m, we execute the following program:

x1=2.1; x2=4.3; tol=0.00001;      %  If we specify x1=a=2 and x2=b=4, the program
% will not display any values because xm=(x1+x2)/2 = 3 = answer
disp('    xm            fm'); disp('-------------------------')
while (abs(x1-x2)>2*tol);
   f1=exercise2(x1); f2=exercise2(x2); xm=(x1+x2)/2;
   fm=exercise2(xm);
   fprintf('%9.6f %13.6f \n', xm,fm);
   if (f1*fm<0);

      x2=xm;
   else

      x1=xm;
   end
end

When this program is executed, MATLAB displays the following:

    xm            fm
-------------------------

 3.200000      0.037013 
 2.650000     -0.068779 
 2.925000     -0.014289 
 3.062500      0.011733 
 2.993750     -0.001182 
 3.028125      0.005299 
 3.010938      0.002065 
 3.002344      0.000443 
 2.998047     -0.000369 
 3.000195      0.000037 
 2.999121     -0.000166 
 2.999658     -0.000065 
 2.999927     -0.000014 
 3.000061      0.000012 
 2.999994     -0.000001 
 3.000027      0.000005 
 3.000011      0.000002
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3.
From Example 2.5,

We use the following script to plot this function.

x=−5:0.02:5; y=cos(2.*x)+sin(2.*x)+x−1; plot(x,y); grid

Let us find out what a symbolic solution gives.

syms x; y=cos(2*x)+sin(2*x)+x−1; solve(y)

ans =
[0]
[2]

The first value (0) is correct as it can be seen from the plot above and also verified by substi-
tution of  into the given function. The second value (2) is not exactly correct as we can
see from the plot. This is because when solving equations of periodic functions, there are an
infinite number of solutions and MATLAB restricts its search for solutions to a limited range
near zero and returns a non−unique subset of solutions.

To find a good approximation of the second root that lies between  and , we write
and save the function files exercise3 and exercise3der as defined below.

function y=exercise3(x)
% Finding roots by Newton's method using MATLAB
y=cos(2.*x)+sin(2.*x)+x−1;

function y=exercise3der(x)

y f x( ) 2xcos 2x x+sin 1–+= =

-5 -4 -3 -2 -1 0 1 2 3 4 5
-8

-6

-4

-2

0

2

4

6

x 0=

x 2= x 3=
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% Finding roots by Newton's method
% The following is the first derivative of
% the function defined as exercise3
y=−2.*sin(2.*x)+2.*cos(2.*x)+1;

Now, we write and execute the following program and we find that the second root is
 and this is consistent with the value shown on the plot.

x = input('Enter starting value: ');
fx = exercise3(x);
fprimex = exercise3der(x);
xnext = x−fx/fprimex;
   x = xnext;
   fx = exercise3(x);
   fprimex = exercise3der(x);
disp(sprintf('First approximation is x =  %9.6f \n', x))
while input('Next approximation? (<enter>=no,1=yes)');
   xnext=x−fx/fprimex;
   x=xnext;
   fx=exercise3(x);
   fprimex=exercise3der(x);
disp(sprintf('Next approximation is x =  %9.6f \n', x))   
end;
disp(sprintf('%9.6f \n', x))

Enter starting value: 3

First approximation is x = 2.229485

x 2.2295=
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Chapter 3

Sinusoids and Phasors

his chapter is an introduction to alternating current waveforms. The characteristics of sinu-
soids are discussed and the frequency, phase angle, and period are defined. Voltage and cur-
rent relationships are expressed in sinusoidal terms. Phasors which are rotating vectors in

terms of complex numbers, are also introduced and their relationships to sinusoids are derived. 

3.1 Alternating Voltages and Currents

The waveforms shown in Figure 3.1 may represent alternating currents or voltages.

Figure 3.1. Examples of alternating voltages and currents

Thus an alternating current (AC) is defined as a periodic current whose average value over a period
is zero. Stated differently, an alternating current alternates between positive and negative values
at regularly recurring intervals of time. Also, the average of the positive and negative values over a
period is zero.
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As shown in Figure 3.1, the period T of an alternating current or voltage is the smallest value of
time which separates recurring values of the alternating waveform. 

Unless otherwise stated, our subsequent discussion will be restricted to sine or cosine waveforms
and these are referred to as sinusoids. Two main reasons for studying sinusoids are: (1) many phys-
ical phenomena such as electric machinery produce (nearly) sinusoidal voltages and currents and
(2) by Fourier analysis, any periodic waveform which is not a sinusoid, such as the square and saw-
tooth waveforms on the previous page, can be represented by a sum of sinusoids.

3.2 Characteristics of Sinusoids

Consider the sine waveform shown in Figure 3.2, where  may represent either a voltage or a
current function, and let  where  is the amplitude of this function. A sinusoid (sine
or cosine function) can be constructed graphically from the unit circle, which is a circle with radius
of one unit, that is,  as shown, or any other unit. Thus, if we let the phasor (rotating vector)
travel around the unit circle with an angular velocity , the  and  functions are gen-
erated from the projections of the phasor on the horizontal and vertical axis respectively. We
observe that when the phasor has completed a cycle (one revolution), it has traveled  radians or

 degrees, and then repeats itself to form another cycle. 

Figure 3.2. Generation of a sinusoid by rotation of a phasor

At the completion of one cycle,  (one period), and since  is the angular velocity, com-
monly known as angular or radian frequency, then 

(3.1)

The term frequency in Hertz, denoted as , is used to express the number of cycles per second.
Thus, if it takes one second to complete one cycle (one revolution around the unit circle), we say

f t( )
f t( ) A tsin= A

A 1=

ω ωtcos ωsin t

2π
360°
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Characteristics of Sinusoids

that the frequency is  or one cycle per second.

The frequency is denoted by the letter  and in terms of the period  and (3.1) we have

(3.2)

The frequency  is often referred to as the cyclic frequency to distinguish it from the radian fre-
quency .

Since the cosine and sine functions are usually known in terms of degrees or radians, it is conve-
nient to plot sinusoids versus  (radians) rather that time . For example, ,

and  are plotted as shown in Figure 3.3.

Figure 3.3. Plot of the cosine and sine functions

By comparing the sinusoidal waveforms of Figure 3.3, we see that the cosine function will be the
same as the sine function if the latter is shifted to the left by  radians, or . Thus, we say
that the cosine function leads (is ahead of) the sine function by  radians or . Likewise, if we
shift the cosine function to the right by  radians or , we obtain the sine waveform; in this
case, we say that the sine function lags (is behind) the cosine function by  radians or . 

Another common expression is that the cosine and sine functions are out-of-phase by , or there is
a phase angle of  between the cosine and sine functions. It is possible, of course, that two sinusoids
are out-of-phase by a phase angle other than . Figure 3.4 shows three sinusoids which are out-
of-phase. If the phase angle between them is  degrees, the two sinusoids are said to be in-phase.

We must remember that when we say that one sinusoid leads or lags another sinusoid, these are of
the same frequency. Obviously, two sinusoids of different frequencies can never be in phase.
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Figure 3.4. Out-of-phase sinusoids

It is convenient to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, it is acceptable to express

as

since the subtraction inside the parentheses needs not to be performed.

When two sinusoids are to be compared in terms of their phase difference, these must first be writ-
ten either both as cosine functions, or both as sine functions, and should also be written with pos-
itive amplitudes. We should remember also that a negative amplitude implies  phase shift.

Example 3.1  

Find the phase difference between the sinusoids

and

Solution: 

We recall that the minus (−) sign indicates a phase shift, and that the sine function lags the
cosine by . Then, 

and

-4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

ϕ

θ

ωt0

1.25 ωt ϕ–( )sin

ωtsin

0.75 ωt θ+( )sin

v t( ) 100 2000πt π 6⁄–( )sin=

v t( ) 100 2000πt 30°–( )sin=

180°

i1 120 100πt 30°–( )cos=

i2 6– 100πt 30°–( )sin=

180°±
90°

xsin– x 180°±( )sin=   and  xsin x 90°–( )cos=
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Characteristics of Sinusoids

and comparing  with , we see that  leads  by , or  lags  by .

In our subsequent discussion, we will be using several trigonometric identities, derivatives and
integrals involving trigonometric functions. We, therefore, provide the following relations and
formulas for quick reference. Let us also review the definition of a radian and its relationship to
degrees with the aid of Figure 3.5.

Figure 3.5. Definition of radian

As shown in Figure 3.5, the radian is a circular angle subtended by an arc equal in length to the
radius of the circle, whose radius is  units in length. The circumference of a circle is  units;
therefore, there are  or  radians in  degrees. Then,

(3.3)

The angular velocity is expressed in radians per second, and it is denoted by the symbol . Then,
a rotating vector that completes  revolutions per second, has an angular velocity  radi-
ans per second.

Some useful trigonometric relations are given below for quick reference.

(3.4)

(3.5)

(3.6)

(3.7)

i2 6 100πt 210°–( )sin 6 100πt 150°+( )sin= =

6 100πt 150° 90°–+( )cos 6 100πt 60°+( )cos==

i2 i1 i2 i1 90° i1 i2 90°

r

r

π radians

1 radian = 57.3 deg

r 2πr
2π 6.283… 360°

1 radian 360°
2π

----------- 57.3°≈=

ω
n ω 2πn=

0°cos 360°cos 2πcos 1= = =

30°cos π
6
---cos 3

2
------- 0.866= = =

45°cos π
4
---cos 2

2
------- 0.707= = =

60°cos π
3
---cos 1

2
--- 0.5= = =
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

90°cos π
2
---cos 0= =

120°cos 2π
3

------cos 1–
2

------ 0.5–= = =

150°cos 5π
6

------cos 3–
2

---------- 0.866–= = =

180°cos πcos 1–= =

210°cos 7π
6

------cos 3–
2

---------- 0.866–= = =

225°cos 5π
4

------cos 2–
2

---------- 0.707–= = =

240°cos 4π
3

------cos 1–
2

------ 0.5–= = =

270°cos 3π
2

------cos 0= =

300°cos 5π
3

------cos 0.5= =

330°cos 11π
6

---------cos 0.866= =

0sin ° 360sin ° 2sin π 0= = =

30sin ° π
6
---sin 1

2
--- 0.5= = =

45sin ° π
4
---sin 2

2
------- 0.707= = =

60sin ° π
3
---sin 1

2
--- 0.866= = =

90sin ° π
2
---sin 1= =

120sin ° 2π
3

------sin 3
2

------- 0.866= = =
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Characteristics of Sinusoids

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

150sin ° 5π
6

------sin 1
2
--- 0.5= = =

180sin ° πsin 0= =

210sin ° 7π
6

------sin 1–
2

------ 0.5–= = =

225sin ° 5π
4

------sin 2–
2

---------- 0.707–= = =

240sin ° 4π
3

------sin 3–
2

---------- 0.866–= = =

270sin ° 3π
2

------sin 1–= =

300sin ° 5π
3

------sin 3–
2

---------- 0.866–= = =

330sin ° 11π
6

---------sin 1–
2

------ 0.5–= = =

θ–( )cos θcos=

90° θ+( )cos θsin–=

180° θ–( )cos θcos–=

θ–( )sin θsin–=

90° θ+( )sin θcos=

180° θ–( )sin θsin=

θtan θsin
θcos

------------=

θcot θcos
θsin

------------ 1
θtan

-----------= =

θsec 1
θcos

------------=

θcsc 1
θsin

-----------=

90° θ+( )tan θcot–=
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(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

180° θ–( )tan θtan–=

θ φ+( )cos θ φcoscos θsin φsin–=

θ φ–( )cos θ φcoscos θsin φsin+=

θ φ+( )sin θsin φcos θcos φsin+=

θ φ–( )sin θsin φcos θcos– φsin=

θ φ+( )tan θ φtan+tan
1 θ φtantan–
--------------------------------=

θ φ–( )tan θ φtan–tan
1 θ φtantan+
--------------------------------=

θ2cos θ2sin+ 1=

2θcos θ2cos θ2sin–=

2sin θ 2 θ θcossin=

2θtan 2 θtan
1 θ2tan–
----------------------=

θ2cos 1
2
--- 1 2θcos+( )=

θ2sin 1
2
--- 1 2θcos–( )=

θ φcoscos 1
2
--- θ φ+( ) 1

2
--- θ φ–( )cos+cos=

θ φsincos 1
2
--- θ φ+( ) 1

2
---– θ φ–( )sinsin=

θsin φcos 1
2
--- θ φ+( ) 1

2
--- θ φ–( )sin+sin=

θsin φsin 1
2
--- θ φ–( )cos 1

2
---– θ φ+( )cos=
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Characteristics of Sinusoids

Let Figure 3.6 be any triangle. 

Figure 3.6. General triangle

Then, 

by the law of sines,

(3.60)

by the law of cosines,

(3.61)

(3.62)

(3.63)
and by the law of tangents,

(3.64)

The following differential and integral trigonometric and exponential functions, are used exten-
sively in engineering.

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

β α
γa b

c

a
αsin

----------- b
βsin

----------- c
γsin

----------= =

a2 b2 c2 2bc αcos–+=

b2 a2 c2 2ac βcos–+=

c2 a2 b2 2ab γcos–+=

a b–
a b+
------------

1
2
--- α β–( )tan

1
2
--- α β+( )tan

------------------------------= b c–
b c+
-----------

1
2
--- β γ–( )tan

1
2
--- β γ+( )tan

----------------------------= c a–
c a+
-----------

1
2
--- γ α–( )tan

1
2
--- γ α+( )tan

-----------------------------=

xd
d vsin( ) vcos dv

dx
------=

xd
d vcos( ) vsin–

dv
dx
------=

xd
d ev( ) ev dv

dx
------=

axsin xd∫
1
a
---– ax c+cos=

acos x xd∫
1
a
--- ax c+sin=

eax xd∫
1
a
---eax c+=
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3.3 Inverse Trigonometric Functions

The notation  or  is used to denote an angle whose cosine is . Thus, if ,
then . Similarly, if , then , and if , then .
These are called Inverse Trigonometric Functions.

Example 3.2  

Find the angle  if 

Solution:

Here, we want to find the angle θ given that its cosine is 0.5. From (3.7), . Therefore,

3.4 Phasors

In the language of mathematics, the square root of minus one is denoted as , that is, . In
the electrical engineering field, we denote  as  to avoid confusion with current . Essentially,  is
an operator that produces a  counterclockwise rotation to any vector to which it is applied as a
multiplying factor. Thus, if it is given that a vector  has the direction along the right side of the

-axis as shown in Figure 3.7, multiplication of this vector by the operator  will result in a new
vector  whose magnitude remains the same, but it has been rotated counterclockwise by .
Also, another multiplication of the new vector  by  will produce another counterclockwise
direction. In this case, the vector  has rotated  and its new value now is . When this
vector is rotated by another  for a total of , its value becomes . A fourth 
rotation returns the vector to its original position, and thus its value is again . Therefore, we

conclude that , , , and the rotating vector  is referred to as a phasor.

Note: In our subsequent discussion, we will designate the -axis (abscissa) as the real axis, and the
-axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as

“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.*

An imaginary number is the product of a real number, say , by the operator . Thus,  is a real
number and  is an imaginary number.

* A more appropriate nomenclature for the real and imaginary axes would be the axis of the cosines and the axis of the sines
respectively.

y1–cos arc ycos y y xcos=

x y1–cos= w vsin= v w1–sin= z utan= u z1–tan=

θ 0.51–cos θ=

60°cos 0.5=

θ 60°=

i i 1–=

i j i j
90°

A
x j

jA 90°
jA j 90°

A 180° A–

90° 270° j A–( ) jA–= 90°
A

j 2 1–= j 3 j–= j 4 1= A

x
y

r j r
jr
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Addition and Subtraction of Phasors

Figure 3.7. The j operator

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number  where  and  are both real numbers, is a complex number.
Then,  and  where  denotes real part of , and  the
imaginary part of . When written as , it is said to be expressed in rectangular form.

Since in engineering we use complex quantities as phasors, henceforth any complex number will
be referred to as a phasor.

By definition, two phasors  and  where  and , are equal if and only if
their real parts are equal and also their imaginary parts are equal. Thus,  if and only if

 and .

3.5 Addition and Subtraction of Phasors

The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we change
the signs of the components of the subtrahend and we perform addition. Thus, if  and

, then

and

Example 3.3  

It is given that , and . Find  and 

Solution:

x

y
jA

j jA( ) j2A A–= =

j A–( ) j 3A jA–= =

j jA–( ) j– 2A A= =

A

A a jb+= a b
a Re A{ }= b Im A{ }= Re A{ } A b Im A{ }=

A A a jb+=

A B A a jb+= B c jd+=

A B=

a c= b d=

A a jb+=

B c jd+=

A B+ a c+( ) j b d+( )+=

A B– a c–( ) j b d–( )+=

A 3 j4+= B 4 j2–= A B+ A B–
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3.6 Multiplication of Phasors

Phasors are multiplied using the rules of elementary algebra, and making use of the fact that
. Thus, if  and , then

and since , it follows that

(3.71)

Example 3.4  

It is given that  and . Find 

Solution:

The conjugate of a phasor, denoted as , is another phasor with the same real component, and
with an imaginary component of opposite sign. Thus, if , then .

Example 3.5  

It is given that . Find 

Solution:

The conjugate of the phasor  has the same real component, but the imaginary component has
opposite sign. Then, 

If a phasor  is multiplied by its conjugate, the result is a real number. Thus, if , then

A B+ 3 j4+( )= 4 j2–( )+ 3 4+( ) j 4 2–( )+ 7 j2+= =

A B– 3 j4+( )= 4 j2–( )– 3 4–( ) j 4 2+( )+ 1– j6+= =

j 2 1–= A a jb+= B c jd+=

A B⋅ a jb+( ) c jd+( )⋅ ac jad jbc j2bd+ + += =

j 2 1–=

A B⋅ ac jad jbc b– d+ + ac bd–( ) j ad bc+( )+= =

A 3 j4+= B 4 j2–= A B⋅

A B⋅ 3 j4+( ) 4 j2–( )⋅ 12 j6– j16 j 28–+ 20 j10+= = =

A∗

A a jb+= A∗ a j– b=

A 3 j5+= A∗

A
A∗ 3 j– 5=

A A a jb+=

A A∗⋅ a jb+( ) a jb–( ) a2 jab– jab j 2b2–+ a2 b2+= = =
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Division of Phasors

Example 3.6  

It is given that . Find 

Solution:

3.7 Division of Phasors

When performing division of phasors, it is desirable to obtain the quotient separated into a real
part and an imaginary part. This procedure is called rationalization of the quotient, and it is done by
multiplying the denominator by its conjugate. Thus, if  and , then,

(3.72)

In (3.72), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the  operator from the denominator of the quotient. Using this procedure, we
see that the quotient is easily separated into a real and an imaginary part.

Example 3.7  

It is given that , and . Find 

Solution:

Using the procedure of (3.72), we get

3.8 Exponential and Polar Forms of Phasors

The relations

(3.73)

and

A 3 j5+= A A∗⋅

A A∗⋅ 3 j5+( ) 3 j5–( ) 32 52+ 9 25 34=+= = =

A a jb+= B c jd+=

A
B
---- a jb+

c jd+
-------------- a jb+( ) c jd–( )

c jd+( ) c jd–( )
------------------------------------- A

B
---- B∗

B∗
-------⋅ ac bd+( ) j bc ad–( )+

c2 d 2+
------------------------------------------------------= = = =

ac bd+( )
c2 d 2+

----------------------- j bc ad–( )
c2 d 2+

----------------------+=

j

A 3 j4+= B 4 j3+= A B⁄

A
B
---- 3 j4+

4 j3+
-------------- 3 j4+( ) 4 j3–( )

4 j3+( ) 4 j3–( )
-------------------------------------- 12 j9– j16 12+ +

42 32+
-------------------------------------------- 24 j7+

25
----------------- 24

25
------ j 7

25
------+ 0.96 j0.28+= = = = = =

e jθ θ j θsin+cos=
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(3.74)

are known as the Euler’s identities.

Multiplying (3.73) by the real positive constant C we get:

(3.75)

This expression represents a phasor, say , and thus

(3.76)

Equating real and imaginary parts in (3.75) and (3.76), we get

(3.77)

Squaring and adding the expressions in (3.77), we get

Then,

or

(3.78)

Also, from (3.77)

or

(3.79)

Therefore, to convert a phasor from rectangular to exponential form, we use the expression

(3.80)

To convert a phasor from exponential to rectangular form, we use the expressions

(3.81)

     e jθ– θ j– θsincos=

Ce jθ C θ jC θsin+cos=

a jb+

Ce jθ a jb+=

a C θcos=   and  b C θsin=

a2 b2+ C θcos( )2 C θsin( )2
+ C2 θ2cos θ2sin+( ) C2= = =

C2 a2 b2+=

C a2 b2+=

b
a
--- C θsin

C θcos
--------------- θtan= =

  θ b
a
---⎝ ⎠
⎛ ⎞1–tan=

a jb+ a2 b2+ e
j tan 1–  ba

---⎝ ⎠
⎛ ⎞

=

Ce jθ C θ jC θsin+cos=

Ce jθ– C θ j– C θsincos=
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Exponential and Polar Forms of Phasors

The polar form is essentially the same as the exponential form but the notation is different, that is,

(3.82)

where the left side of (3.82) is the exponential form, and the right side is the polar form.

We must remember that the phase angle  is always measured with respect to the positive real axis,
and rotates in the counterclockwise direction.

In Examples 3.8 and 3.9 below, we will verify the results with the following MATLAB co-ordi-
nate transformation functions:

[theta,r] = cart2pol(x,y) − transforms from Cartesian to polar co−ordinates. 

[x,y] = pol2cart(theta,r) − transforms from polar to Cartesian co−ordinates

Example 3.8  

Convert the following phasors to exponential and polar forms:

a.     b.     c.     d. 

Solution:

a. The real and imaginary components of this phasor are shown in Figure 3.8.

Figure 3.8. The components of 

Then,

Check with MATLAB:

x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi;  disp(magx); disp(thetax)

   5

   53.1301

or

Ce jθ C θ∠=

θ

3 j4+ 1– j2+ 2– j– 4 j3–

Re

Im
4

3

5

53.1°

3 j4+

3 j4+ 32 42+ e j 4 3⁄( ) –tan⋅ 5e j53.1° 5 53.1°∠= = =
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x = 3; y = 4; [theta,r] = cart2pol(x,y), deg = theta*180/pi

theta =

    0.9273

r =

     5

deg =

   53.1301

We can also verify the result with Simulink®* as shown in the model of Figure 3.9. The 
value for the Gain block has been specified as  to convert radians into degrees.

Figure 3.9. Simulink model for Example 3.8 (a)

b. The real and imaginary components of this phasor are shown in Figure 3.10.

Figure 3.10. The components of 
Then,

Check with MATLAB:

y=−1+j*2; magy=abs(y); thetay=angle(y)*180/pi;  disp(magy); disp(thetay)

* The reader who is not familiar with Simulink may skip this model and all others without loss of continuity. For
an introduction to Simulink, please refer to “Introduction to Simulink with Engineering Applications”, ISBN 0-
9744239-7-1. A brief introduction to Simulink is provided in Appendix B.

K
180 π⁄

Re

Im
2

−1

116.6°
63.4°

5

1– j2+

1– j2+ 12 22+ e j 2 1–⁄( ) –tan 5e j116.6° 5 116.6°∠ 2.236 116.6°∠= = = =



Numerical Analysis Using MATLAB® and Excel®, Third Edition 3−17
Copyright © Orchard Publications

Exponential and Polar Forms of Phasors

    2.2361

  116.5651

or

x = −1; y = 2; [theta,r] = cart2pol(x,y), deg = theta*180/pi

theta =

    2.0344

r =

    2.2361

deg =

  116.5651

Check with the Simulink model of Figure 3.11:

Figure 3.11. Simulink model for Example 3.8 (b)

c. The real and imaginary components of this phasor are shown in Figure 3.12. 

Then,

Figure 3.12. The components of 

Check with MATLAB:

v=−2−j*1; magv=abs(v); thetav=angle(v)*180/pi;  disp(magv); disp(thetav)

2– j– 1 22 12+ e j 1– 2–⁄( ) –tan⋅ 5e j206.6° 5 206.6°∠ 5e j 153.4–( )° 2.236 153.4– °∠= = = = =

Re

Im

−2

−1

206.6°

−153.4°(Measured26.6°
Clockwise)5

2– j–
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    2.2361

   -153.4349

or

x = −2; y = −1; [theta,r] = cart2pol(x,y), deg = theta*180/pi

theta =

   -2.6779

r =

    2.2361

deg =

 -153.4349

Check with the Simulink model of Figure 3.13:

Figure 3.13. Simulink model for Example 3.8 (c)

d. The real and imaginary components of this phasor are shown in Figure 3.14.

Figure 3.14. The components of 
Then,

Check with MATLAB:

w=4−j*3; magw=abs(w); thetaw=angle(w)*180/pi;  disp(magw); disp(thetaw)

Re

Im
4

−3
5

323.1°

−36.9°

4 j3–

4 j– 3 42 32+ e j 3– 4⁄( ) –tan⋅ 5e j323.1° 5 323.1°∠ 5e j36.9– ° 5 36.9– °∠= = = = =
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Exponential and Polar Forms of Phasors

   5

  -36.8699

or

x = 4; y = −3; [theta,r] = cart2pol(x,y), deg = theta*180/pi

theta =

   -0.6435

r =

     5

deg =

  -36.8699

Check with the Simulink model of Figure 3.15:

Figure 3.15. Simulink model for Example 3.8 (d)

Example 3.9  

Express the phasor  in exponential and in rectangular forms.

Solution:

We recall that . Since each  rotates a vector by  counterclockwise, then  is
the same as  rotated counterclockwise by . Therefore,

The components of this phasor are shown in Figure 3.16.

2 30°∠–

1– j2= j 90° 2 30°∠–

2 30°∠ 180°

2 30°∠– 2 30° 180°+( )∠ 2 210°∠ 2 150°–∠= = =
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Figure 3.16. The components of 
Then,

Check with MATLAB:

r = −2; theta = 30/pi; [x,y] = pol2cart(theta*180/pi,r)

x =

   -1.7578

y =

   -0.9541

Check with the Simulink model of Figure 3.17:

Figure 3.17. Simulink model for Example 3.9

Note: The rectangular form is most useful when we add or subtract phasors; however, the expo-
nential and polar forms are most convenient when we multiply or divide phasors.

To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add
the phase angles, that is, if

then,

(3.83)

Re

Im

−1.73

−1

210°

2
−150°(Measured

30°
Clockwise)

2 150°–∠

2 150– °∠ 2e j– 150°
= 2 150° j 150°sin–cos( ) 2 0.866– j0.5–( ) 1.73– j–= = =

A M θ∠=   and  B N φ∠=

AB MN θ φ+( )∠ Me jθNe jφ MNe j θ φ+( )
= = =
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Exponential and Polar Forms of Phasors

Example 3.10  

Multiply  by 

Solution:
Multiplication in polar form yields 

and multiplication in exponential form yields

Check with MATLAB:

r1=12.58; r2=7.22; deg1=74.3; deg2=−118.7; r=r1*r2, deg=deg1+deg2

r =

   90.8276

deg =

  -44.4000

Check with the Simulink model of Figure 3.18*:

Figure 3.18. Simulink model for Example 3.10

* It would certainly be a waste of time to use Simulink for such an application. It can be done faster with just
MATLAB.  The intent here is to introduce relevant Simulink blocks for more complicated models.

A 12.58 74.3°∠= B 7.22 118.7°–∠=

AB 12.58 7.22×( ) 74.3° 118.7°–( )+[ ]∠ 90.83 44.4– °∠= =

AB 12.58e j74.3°( ) 7.22e j– 118.7°( ) 90.83e j 74.3° 118.7°–( ) 90.83e j– 44.4°= = =
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To divide one phasor by another when both are expressed in exponential or polar form, we divide
the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase angle of
the divisor from the phase angle of the dividend, that is, if

then,

(3.84)

Example 3.11  

Divide  by 

Solution:

Division in polar form yields

Division in exponential form yields

Check with MATLAB:

r1=12.58; r2=7.22; deg1=74.3; deg2=−118.7; r=r1/r2, deg=deg1−deg2

r =

    1.7424

deg =

   193

Check with the Simulink model of Figure 3.19*:

* Same comment as on the footnote of the previous page.

A M θ∠=   and  B N φ∠=

A
B
---- M

N
----- θ φ–( )∠ Me jθ

Ne jφ
------------- M

N
----e j θ φ–( )

= = =

A 12.58 74.3°∠= B 7.22 118.7°–∠=

A
B
---- 12.58 74.3°∠

7.22 118.7°–∠
---------------------------------- 1.74 74.3° 118.7°–( )–[ ]∠ 1.74 193°∠ 1.74 167– °∠= = = =

A
B
---- 12.58e j74.3°

7.22e j118.7°–
----------------------------- 1.74e j74.3°e j118.7° 1.74e j193° 1.74e j– 167°= = = =
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Exponential and Polar Forms of Phasors

Figure 3.19. Simulink model for Example 3.11
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3.9 Summary

• An alternating current (or voltage) alternates between positive and negative values at regularly
recurring intervals of time.

• The period T of an alternating current or voltage is the smallest value of time which separates
recurring values of the alternating waveform.

• Sine and cosine waveforms and these are referred to as sinusoids.

• The angular velocity  is commonly known as angular or radian frequency and 

• The term frequency in Hertz, denoted as , is used to express the number of cycles per sec-
ond. The frequency is denoted by the letter  and in terms of the period , . The fre-
quency  is often referred to as the cyclic frequency to distinguish it from the radian frequency

.

• The cosine function leads (is ahead of) the sine function by  radians or , and the sine
function lags (is behind) the cosine function by  radians or . Alternately, we say that
the cosine and sine functions are out-of-phase by , or there is a phase angle of  between
the cosine and sine functions.

• Two (or more) sinusoids can be out-of-phase by a phase angle other than .

• It is important to remember that when we say that one sinusoid leads or lags another sinusoid,
these are of the same frequency since two sinusoids of different frequencies can never be in
phase.

• It is customary to express the phase angle in degrees rather than in radians in a sinusoidal func-
tion. For example, we write  as 

• When two sinusoids are to be compared in terms of their phase difference, these must first be
written either both as cosine functions, or both as sine functions, and should also be written
with positive amplitudes.

• A negative amplitude implies  phase shift.

• The radian is a circular angle subtended by an arc equal in length to the radius of the circle,
whose radius is  units in length. The circumference of a circle is .

• The notation  or  is used to denote an angle whose cosine is . Thus, if
, then . These are called Inverse Trigonometric Functions.

• A phasor is a rotating vector expressed as a complex number where  is an operator that
rotates a vector by  in a counterclockwise direction.

ω ωT 2π=

Hz
f T f 1 T⁄=

f
ω

π 2⁄ 90°
π 2⁄ 90°
90° 90°

90°

v t( ) 100 2000πt π 6⁄–( )sin= v t( ) 100 2000πt 30°–( )sin=

180°

r 2πr

y1–cos arc ycos y
y xcos= x y1–cos=

j
90°
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Summary

• Two phasors  and  where  and , are equal if and only if their real
parts are equal and also their imaginary parts are equal. Thus,  if and only if  and

.

• The sum of two phasors has a real component equal to the sum of the real components, and an
imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

 and , then  and 

• Phasors are multiplied using the rules of elementary algebra. If  and ,
then 

• The conjugate of a phasor, denoted as , is another phasor with the same real component,
and with an imaginary component of opposite sign. Thus, if , then .

• When performing division of phasors, it is desirable to obtain the quotient separated into a
real part and an imaginary part. This is achieved by multiplying the denominator by its conju-
gate. Thus, if  and , then,

• The relations  and  are known as the Euler’s identi-
ties.

• To convert a phasor from rectangular to exponential form, we use the expression

• To convert a phasor from exponential to rectangular form, we use the expressions

• The polar form is essentially the same as the exponential form but the notation is different,
that is,

and it is important to remember that the phase angle  is always measured with respect to the
positive real axis, and rotates in the counterclockwise direction.

• The rectangular form is most useful when we add or subtract phasors; however, the exponen-
tial and polar forms are most convenient when we multiply or divide phasors.

A B A a jb+= B c jd+=

A B= a c=

b d=

A a jb+= B c jd+= A B+ a c+( ) j b d+( )+= A B– a c–( ) j b d–( )+=

A a jb+= B c jd+=

A B⋅ ac jad jbc b– d+ + ac bd–( ) j ad bc+( )+= =

A∗

A a jb+= A∗ a j– b=

A a jb+= B c jd+=

A
B
---- a jb+

c jd+
-------------- a jb+( ) c jd–( )

c jd+( ) c jd–( )
------------------------------------- ac bd+( ) j bc ad–( )+

c2 d 2+
------------------------------------------------------ ac bd+( )

c2 d 2+
----------------------- j bc ad–( )

c2 d 2+
----------------------+= = = =

e jθ θ j θsin+cos= e jθ– θ j– θsincos=

a jb+ a2 b2+ e
j tan 1–  b

a
---⎝ ⎠

⎛ ⎞
=

Ce jθ C θ jC θsin+cos=

Ce jθ– C θ j– C θsincos=

Ce jθ C θ∠=

θ
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• To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we
add the phase angles, that is, if

then,

• To divide one phasor by another when both are expressed in exponential or polar form, we
divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the
phase angle of the divisor from the phase angle of the dividend, that is, if

then,

A M θ∠=   and  B N φ∠=

AB MN θ φ+( )∠ Me jθNe jφ MNe j θ φ+( )
= = =

A M θ∠=   and  B N φ∠=

A
B
---- M

N
----- θ φ–( )∠ Me jθ

Ne jφ
------------- M

N
----e j θ φ–( )

= = =
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Exercises

3.10 Exercises

1. Perform the following operations, and check your answers with MATLAB.

a.    b.    c.   d.  

e.    f.   g. 

2. Perform the following operations, and check your answers with MATLAB.

a.     b.     c.     d. 

3. Any phasor  can be expressed as

Using the identities  or , compute:

a.     b. 

Check your answers with MATLAB

4. Compute the exponential and polar forms of

a.     b.  

Check your answers with MATLAB.

5. Compute the rectangular form of

a.     b.  

Check your answers with MATLAB

6. Find the real and imaginary components of 

2 j4–( ) 3 j4+( )+ 3– j5+( ) 1 j6+( )– 2 j3–( ) 2 j3–( )∗– 3 j2–( ) 3 j2–( )∗⋅

2 j4–( ) 3 j5+( )⋅ 3 j2–( ) 2– j3–( )⋅ 2 j4–( ) 3 j5+( ) 3 j2–( ) 2– j3–( )⋅ ⋅ ⋅

22 j6+
3 j2+

----------------- 8 j6+
3– j–

--------------- 120
4 j10–
----------------- 3 j2–( )

3 j2–( )∗
---------------------

A

A a jb+ r θ j θsin+cos( ) re jθ= = =

re jθ( ) rne jnθ= re jθn rn e jθ n⁄=

12 j5+6 100 2 1 j–( )4

9 j5+
4– j2–

------------------ 8– j3+
2– j4+

------------------

4 30°∠
5 150°–∠
---------------------- e j60°

2e j30°––
-------------------

9 j4–
5– jx+

------------------
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3.11 Solutions to End−of−Chapter Exercises

1.
a.

b.

c.

d.

e.

f.

g.

Check with MATLAB:

(2−4j)+(3+4j), (−3+5j)−(1+6j), (2−3j)−(2+3j), (3−2j)*(3+2j),...

(2−4j)*(3+5j), (3−2j)*(−2−3j), (2−4j)*(3+5j)*(3−2j)*(−2−3j)

ans =

     5

ans =

  -4.0000 - 1.0000i

ans =

        0 - 6.0000i

ans =

    13

ans =

  26.0000 - 2.0000i

ans =

 -12.0000 - 5.0000i

ans =

 -3.2200e+002 - 1.0600e+002i

2 j4–( ) 3 j4+( )+ 5 0+ 5= =

3– j5+( ) 1 j6+( )– 4– j–=

2 j3–( ) 2 j3–( )∗– 2 j3–( ) 2 j3+( )– 0 j6–= =

3 j2–( ) 3 j2–( )∗⋅ 3 j2–( ) 3 j2+( )⋅ 9 j6 j6– 4+ + 13= = =

2 j4–( ) 3 j5+( )⋅ 6 j10 j12– 20+ + 26 j2–= =

3 j2–( ) 2– j3–( )⋅ 6– j9– j4 6–+ 12– j5–= =

2 j4–( ) 3 j5+( ) 3 j2–( ) 2– j3–( )⋅ ⋅ ⋅ 6 j10 j12– 20+ +( ) 6– j9– j4 6–+( )⋅=

26 j2–( ) 12– j5–( )⋅=

312– j130– j24 10–+ 322– j106–==
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Solutions to End−of−Chapter Exercises

2.

a.

b.

c.

d.

Check with MATLAB:

22+6j)/(3+2j), (8+6j)/(−3−j), 120/(4−10j), (3−2j)/(3+2j)

ans =

      6 - 2i      

ans =

   -3 - 1i      

ans =

   120/29 + 300/29i   

ans =

     5/13 - 12/13i

3.
a.

b.

Check with MATLAB:

(12+5j)^(1/6), (100*sqrt(2)*(1−j))^(1/4)

22 j6+
3 j2+

----------------- 22 j6+
3 j2+

----------------- 3 j2–
3 j2–
--------------⋅ 66 j44– j18 12+ +

32 22+
---------------------------------------------- 78 j26–

13
-------------------- 6 j2–= = = =

8 j6+
3– j–

--------------- 8 j6+
3– j–

--------------- 3– j+
3– j+

---------------⋅ 24– j8 j18– 6–+

32 12+
-------------------------------------------- 30– j10–

10
------------------------ 3– j–= = = =

120
4 j10–
----------------- 120

4 j10–
----------------- 4 j10+

4 j10+
-----------------⋅ 480 j1200+

42 102+
----------------------------- 480

116
--------- j 1200

116
------------⋅+ 120

29
--------- j 300

29
---------⋅+= = = =

3 j2–( )
3 j2–( )∗

--------------------- 3 j2–( )
3 j2+( )

------------------- 3 j2–( )
3 j2–( )

------------------⋅ 9 j6– j6– 4–

32 22+
---------------------------------- 5 j12–

13
----------------- 5

13
------ j 12

13
------⋅–= = = =

12 j5+6 13e j0.3956 136 e j0.3948 6⁄⋅ 131 6⁄ e j0.0658⋅= = =

1.5334 0.0658 j 0.0658sin+cos( ) 1.53 j0.10+==

100 2 1 j–( )4 100 2 2e jπ 4⁄–⋅4 100 2 2e jπ 4⁄–⋅( )
1 4⁄

100 2( )
1 4⁄

2
1 4⁄

e
jπ– 16⁄

⋅= ==

3.4485 1.0905×( ) π 16⁄( ) j π 16⁄( )sin–cos( ) 3.6883 j0.7337–==
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ans =

   1.5301 + 0.1008i

ans =

   3.6883 - 0.7337i

4.
a.

b.

Check with MATLAB:

x=(9+5j)/(−4−2j); abs(x), angle(x)*180/pi,...

y=(−8+3j)/(−2+4j); abs(y), angle(y)*180/pi

ans =

    2.3022

ans =

 -177.5104

ans =

    1.9105

ans =

   42.8789

5.
a.

b.

9 j5+
4– j2–

------------------ 92 52+ e j 5 9⁄( )1–tan⋅

42 22+ e j 2– 4–⁄( )1–tan⋅
-------------------------------------------------------- 106 e j0.5071⋅

20 e j3.6052⋅
----------------------------------- 2.3022e j– 3.0981= ==

2.3022e j177.5081– ° 2.3022 177.5081– °∠==

8– j3+
2– j4+

------------------ 82 32+ e j 3 8–⁄( )1–tan⋅

22 42+ e j 4 2–⁄( )1–tan⋅
------------------------------------------------------ 73

20
---------- e j0.3588–

e j1.1071–
------------------⋅ 1.9105e j0.7483= = =

1.9105e j42.8744° 1.9105 42.8744°∠==

4 30°∠
5 150°–∠
---------------------- 4 5⁄( ) 180°∠ 0.8–= =

e j60°

2e j30°––
------------------- 0.5e j90° 0.5 90° j 90°sin+cos( )– 0.5 0 j+( )– j0.5–= = =–=
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Solutions to End−of−Chapter Exercises

Check with MATLAB:

4*(cos(pi/6)+sin(pi/6)*j)/(5*(cos(−5*pi/6)+sin(−5*pi/6)*j)),...

exp(pi*j/3)/(−2*exp(−pi*j/6))

ans =

  -0.8000 - 0.0000i

ans =

  -0.0000 - 0.5000i

6.

9 j4–
5– jx+

------------------ 9 j4–
5– jx+

------------------ 5– j– x
5– j– x

--------------⋅ 45– j9x– j20 4x–+

52 x2+
--------------------------------------------------- 4x– 45–

x2 25+
---------------------- j 9x– 20+

x2 25+
-----------------------+= = =
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Chapter 4

Matrices and Determinants

his chapter is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are introduced. Some definitions and examples are
not applicable to subsequent material presented in this text, but are included for subject

continuity, and reference to more advance topics in matrix theory. These are denoted with a dag-
ger ( † ) and may be skipped. 

4.1 Matrix Definition
A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix  is denoted as

(4.1)

The numbers  are the elements of the matrix where the index  indicates the row, and  indi-
cates the column in which each element is positioned. Thus,  indicates the element posi-
tioned in the fourth row and third column.

A matrix of  rows and  columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order  (or ). Thus, if a matrix has five rows
and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements  are called the main diagonal elements.

Alternately, we say that the matrix elements , are located on the main

diagonal.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–
4 7– 6

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
am1 am2 am3 … amn

=

aij i j

a43

m n m n×

m n= m n

a11  a22  a33  …  ann, , , ,

a11  a22  a33  …  ann, , , ,
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† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

4.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(4.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
.

If  and  are conformable for addition (subtraction), their sum (difference) will

be another matrix  with the same order as  and , where each element of  is the sum (dif-
ference) of the corresponding elements of  and , that is,

(4.3)

Example 4.1  

Compute  and  given that

 and 

Solution:

and

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; −1  2  5];  % Define matrices A and B
A+B % Add A and B

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix theory text-
books.

A A

A aij= B bij= A B=

aij bij= i 1 2 3 … m, , , ,= j 1 2 3 … n, , , ,=

m n×

A aij= B bij=

C A B C
A B

C A B± aij bij±[ ]= =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+
0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =

A B– 1 2– 2 3– 3 0–
0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =
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Matrix Operations

ans =
     3     5     3
    -1     3     9

A−B    % Subtract B from A

ans =
    -1    -1     3
     1    -1    -1

If  is any scalar (a positive or negative number), and not [ ] which is a  matrix, then mul-
tiplication of a matrix  by the scalar , is the multiplication of every element of  by .

Example 4.2  
Multiply the matrix

by (a)  and (b) 

Solution:

a.

b.

Check with MATLAB:

k1=5; k2=(−3 + 2*j); % Define scalars k1 and k2
A=[1 −2; 2  3]; % Define matrix A
k1*A % Multiply matrix A by constant k1

ans =
     5   -10
    10    15

k2*A %Multiply matrix A by constant k2

k k 1 1×
A k A k

A 1 2–
2 3

=

k1 5= k2 3– j2+=

k1 A⋅ 5 1 2–
2 3

× 5 1× 5 2–( )×
5 2× 5 3×

5 10–
10 15

= = =

k2 A⋅ 3– j2+( ) 1 2–
2 3

× 3– j2+( ) 1× 3– j2+( ) 2–( )×
3– j2+( ) 2× 3– j2+( ) 3×

3– j2+ 6 j4–
6– j4+ 9– j6+

= = =
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ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only when
the number of columns of matrix  is equal to the number of rows of matrix . That is, the prod-
uct  (but not ) is conformable for multiplication only if  is an  and matrix  is
an  matrix. The product  will then be an  matrix. A convenient way to determine
if two matrices are conformable for multiplication is to write the dimensions of the two matrices
side−by−side as shown below.

For the product  we have:

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we
add these products.

Example 4.3  
Given that

 and 

compute the products  and 

Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is

A B A B⋅
A B

A B⋅ B A⋅ A m p× B
p n× A B⋅ m n×

m × p     p × n
A           B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A ⋅ B 

B A⋅

 Here, B and A are not conformable for multiplication

                     B           A 
      p × n    m × p

A B⋅
A B

C 2 3 4= D
1
1–
2

=

C D⋅ D C⋅

C D 1 3  3 1×× C D⋅
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Special Forms of Matrices

feasible, and will result in a , that is, 

The dimensions for  and  are respectively  and therefore, the product  is also
feasible. Multiplication of these will produce a 3 × 3 matrix as follows.

Check with MATLAB:

C=[2  3  4];  D=[1;  −1;  2]; % Define matrices C and D
C*D % Multiply C by D

ans =
     7

D*C % Multiply D by C

ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix. 

4.3 Special Forms of Matrices
† A square matrix is said to be upper triangular when all the elements below the diagonal are

zero. The matrix  below is an upper triangular matrix.

(4.4)

1 1×

C D⋅ 2 3 4
1
1–
2

2( ) 1( )⋅ 3( ) 1–( )⋅ 4( ) 2( )⋅+ + 7= = =

D C 3 1  1 3×× D C⋅

D C⋅
1
1–
2

2 3 4
1( ) 2( )⋅ 1( ) 3( )⋅ 1( ) 4( )⋅
1–( ) 2( )⋅ 1–( ) 3( )⋅ 1–( ) 4( )⋅

2( ) 2( )⋅ 2( ) 3( )⋅ 2( ) 4( )⋅

2 3 4
2– 3– 4–
4 6 8

= = =

A

A

a11 a12 a13 … a1n

0 a22 a23 … a2n

0 0 … … …
… … 0 … …
0 0 0 … amn

=
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In an upper triangular matrix, not all elements above the diagonal need to be non−zero. For
applications, refer to Chapter 14.

† A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix  below is a lower triangular matrix. For applications, refer to Chapter 14.

(4.5)

In a lower triangular matrix, not all elements below the diagonal need to be non−zero.

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  below is a diagonal matrix.

(4.6)

† A diagonal matrix is called a scalar matrix, if  where  is a sca-
lar. The matrix  below is a scalar matrix with .

(4.7)

A scalar matrix with , is called an identity matrix . Shown below are ,  , and
 identity matrices. 

(4.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

B

B

a11 0 0 … 0
a21 a22 0 … 0
… … … 0 0
… … … … 0
am1 am2 am3 … amn

=

C

C

a11 0 0 … 0
0 a22 0 … 0
0 0 … 0 0
0 0 0 … 0
0 0 0 … amn

=

a11 a22 a33 … ann k= = = = = k

D k 4=

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2× 3 3×
4 4×

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n×
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Special Forms of Matrices

eye(4)% Display a 4 by 4 identity matrix

ans =

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as
matrix . For example, let  be defined as

A=[1  3  1; −2  1 −5; 4 −7  6] % Define matrix A

A =

     1     3     1
    -2     1    -5
     4    -7     6

then,

eye(size(A))

displays

ans =

     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and
columns of matrix  are interchanged. For example, if

(4.9)

In MATLAB we use the apostrophe (′) symbol to denote and obtain the transpose of a matrix.
Thus, for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =
     1     2     3
     4     5     6

A A

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=
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A'% Display the transpose of A

ans =
     1     4
     2     5
     3     6

† A symmetric matrix , is one such that  = , that is, the transpose of a matrix  is the
same as . An example of a symmetric matrix is shown below.

(4.10)

† If a matrix  has complex numbers as elements, the matrix obtained from  by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as . 

An example is shown below.

† MATLAB has two built−in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,
conj(A), computes the conjugate of a matrix . Using MATLAB with the matrix  defined as
above, we obtain

A = [1+2j   j;  3   2−3j] % Define and display matrix A

A =
  1.0000 + 2.0000i       0 + 1.0000i
  3.0000            2.0000 - 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =
  1.0000 - 2.0000i       0 - 1.0000i
  3.0000            2.0000 + 3.0000i

† A square matrix A such that , is called skew−symmetric. For example, 

A AT A A
A

A
1 2 3
2 4 5–

3 5– 6

= AT
1 2 3
2 4 5–

3 5– 6

A= =

A A
A A∗

A 1 j2+ j
3 2 j3–

= A∗ 1 j2– j–
3 2 j3+

=

A A

AT A–=

A
0 2 3–
2– 0 4–
3 4 0

=     AT
0 2– 3
2 0 4
3– 4– 0

A–= =
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Therefore, matrix  above is skew symmetric.

† A square matrix  such that , is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that , is called skew−Hermitian. For example,

Therefore, matrix  above is skew−Hermitian.

4.4 Determinants

Let matrix  be defined as the square matrix

(4.11)

then, the determinant of , denoted as , is defined as

(4.12)

The determinant of a square matrix of order  is referred to as determinant of order .

Let  be a determinant of order , that is,

(4.13)

A

A AT∗ A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

  AT
1 1 j+ 2

1 j– 3 j–
2 j 0

  AT*
1 1 j+ 2

1 j– 3 j–
2 j 0

A====

A

A AT∗ A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

  AT
j 1– j– 2–

1 j– 3j j
2 j 0

  AT*
j– 1– j+ 2–

1 j+ 3j– j–
2 j– 0

A–====

A

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

A detA

detA a11a22a33…ann a12a23a34…an1 a13a24a35…an2 …
             an1…a22a13… an2– …a23a14 an3…a24a15 …–––

+ + +=

n n

A 2

A
a11 a12

a21 a22

=
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Then,
(4.14)

Example 4.4  
Given that

 and 

compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  −1; 2  0]; % Define matrices A and B
det(A) % Compute the determinant of A

ans =
    -2

det(B) % Compute the determinant of B

ans =
     2

While MATLAB has the built−in function det(A) for computing the determinant of a matrix A,
this function is not included in the MATLAB Run−Time Function Library List that is used with
the Simulink Embedded MATLAB Function block.* The MATLAB user−defined function file
below can be used to compute the determinant of a  matrix.

% This file computes the determinant of a 2x2 matrix
% It must be saved as function (user defined) file
% det2x2.m in the current Work Directory. Make sure
% that his directory is added to MATLAB's search
% path accessed from the Editor Window as File>Set Path>
% Add Folder. It is highly recommended that this 
% function file is created in MATLAB's Editor Window.
%
function y=det2x2(A);

* For an example using this block, please refer to Introduction to Simulink with Engineering Applications, ISBN
0−9744239−7−1, Page 16−3.

detA a11 a22 a21a12–=

A 1 2
3 4

= B 2 1–
2 0

=

detA detB

detA 1 4⋅ 3 2⋅– 4 6– 2–= = =

detA 2 0⋅ 2 1–( )⋅– 0 2–( )– 2= = =

2 2×
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y=A(1,1)*A(2,2)−A(1,2)*A(2,1);
% 
% To run this program, define the 2x2 matrix in
% MATLAB's Command Window as A=[....] and then 
% type det2x2(A) at the command prompt. 

Let  be a matrix of order 3, that is,

(4.15)

then,  is found from 

(4.16)

A convenient method to evaluate the determinant of order 3, is to write the first two columns to
the right of the  matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (4.16) above.

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example 4.5  

Compute  and  given that

 and 

Solution:

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

detA

detA a11 a22 a33 a12 a23 a31 a11 a22 a33+ +=

a11 a22 a33 a11 a22 a33 a11 a22 a33–––

3 3×

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +

−

detA detB

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–
1 0 2–
0 5– 6–

=
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or

Likewise,

or

Check with MATLAB:

A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   −3   −4;  1   0   −2;  0   −5   −6]; det(B) % Define matrix B and compute detB

ans =
   -18

The MATLAB user−defined function file below can be used to compute the determinant of a
 matrix.

% This file computes the determinant of a 3x3 matrix
% It must be saved as function (user defined) file
% det3x3.m in the current Work Directory. Make sure
% that his directory is added to MATLAB's search
% path accessed from the Editor Window as File>Set Path>
% Add Folder. It is highly recommended that this 
% function file is created in MATLAB's Editor Window.
%
function y=det3x3(A);
y=A(1,1)*A(2,2)*A(3,3)+A(1,2)*A(2,3)*A(3,1)+A(1,3)*A(2,1)*A(3,2)...
    −A(3,1)*A(2,2)*A(1,3)−A(3,2)*A(2,3)*A(1,1)−A(3,3)*A(2,1)*A(1,2);
%
% To run this program, define the 3x3 matrix in
% MATLAB's Command Window as A=[....] and then 
% type det3x3(A) at the command prompt.

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0× 0×( ) 3 1× 1×( ) 5 1× 1×( )
2 0× 5×( )– 1 1× 2×( ) 0 1× 3×( )––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–
1 0 2– 1 2–
0 5– 6– 2 6–

=

detB 2 0× 6–( )×[ ] 3–( ) 2–( )× 0×[ ] 4–( ) 1× 5–( )×[ ]
0 0× 4–( )×[ ]– 5–( ) 2–( )× 2×[ ] 6–( ) 1× 3–( )×[ ]––

+ +
20 38– 18–= =

=

3 3×
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4.5 Minors and Cofactors

Let matrix  be defined as the square matrix of order  as shown below.

(4.17)

If we remove the elements of its  row, and  column, the determinant of the remaining 

square matrix is called the minor of determinant , and it is denoted as .

The signed minor  is called the cofactor of  and it is denoted as .

Example 4.6  
Given that

(4.18)

compute the minors ,     ,      and the cofactors ,  and .

Solution:

and

The remaining minors

and cofactors

A n

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

ith jth n 1–

A Mij

1–( )i j+
Mij aij αij

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 α11 α12 α13

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

α11 1–( )1 1+
M11 M11         α12 1–( )1 2+

M12 M12         α13 M13 1–( )1 3+
M13= =–= == =

M21    M22    M23    M31    M32    M33, , , , ,
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are defined similarly.

Example 4.7  
Given that

(4.19)

compute its cofactors.

Solution:

(4.20)

                                                   (4.21)

                        (4.22)

(4.23)

                         (4.24)

It is useful to remember that the signs of the cofactors follow the pattern

that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

α21 α22 α23 α31 α32 and α33, , , , ,

A
1 2 3–
2 4– 2
1– 2 6–

=

α11 1–( )1 1+ 4– 2
2 6–

20= =           α12 1–( )1 2+ 2 2
1– 6–

10= =

α13 1–( )1 3+ 2 4–
1– 2

0         α21 1–( )2 1+ 2 3–
2 6–

6= == =

α22 1–( )2 2+ 1 3–
1– 6–

9–= =           α23 1–( )2 3+ 1 2
1– 2

4–= =

α31 1–( )3 1+ 2 3–
4– 2

8–= =         α32 1–( )3 2+ 1 3–
2 2

8–= =,

α33 1–( )3 3+ 1 2
2 4–

8–= =

+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +

A A
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Example 4.8  

Compute the determinant of  using the elements of the first row.

(4.25)

Solution:

Check with MATLAB:

A=[1  2  −3; 2  −4  2; −1  2  −6];  det(A) %  Define matrix A and compute detA

ans =
    40

The MATLAB user−defined function file below can be used to compute the determinant of a
 matrix.

We must use the above procedure to find the determinant of a matrix  of order 4 or higher.
Thus, a fourth−order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

(4.26)

Determinants of order five or higher can be evaluated similarly.

Example 4.9  
Compute the value of the determinant

A

A
1 2 3–
2 4– 2
1– 2 6–

=

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–
1– 2

–– 1 20× 2 10–( )× 3 0×–– 40= =

4 4×

A

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =
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(4.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

Next, using the procedure of Example 4.5 or Example 4.8, we find

, , , 
and thus

We can verify our answer with MATLAB as follows:

A=[ 2  −1  0  −3; −1  1  0  −1; 4  0  3  −2;  −3  0  0  1]; delta = det(A)

delta =
   -33

The MATLAB user−defined function file below can be used to compute the determinant of a
 matrix.

% This file computes the determinant of a nxn matrix
% It must be saved as function (user defined) file
% detnxn.m in the current Work Directory. Make sure
% that his directory is added to MATLAB's search
% path accessed from the Editor Window as File>Set Path>
% Add Folder. It is highly recommended that this 
% function file is created in MATLAB's Editor Window.
% 
function y=detnxn(A);
% The following statement initializes y
y=0;
% The following statement defines the size of the matrix A
[n,n]=size(A);
% MATLAB allows us to use the user-defined functions to be recursively 
% called on themselves so we can call det2x2(A) for a 2x2 matrix,
% and det3x3(A) for a 3x3 matrix.

A

2 1– 0 3–
1– 1 0 1–
4 0 3 2–
3– 0 0 1

=

A=2
1 0 1–
0 3 2–
0 0 1

a[ ]

1–( )
1– 0 3–

0 3 2–
0 0 1

–

b[ ]

 
+4

1– 0 3–
1 0 1–
0 0 1

c[ ]

3–( )
1– 0 3–

1 0 1–
0 3 2–

–

d[ ]

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

a[ ] 6= b[ ] 3–= c[ ] 0= d[ ] 36–=

detA a[ ] b[ ] c[ ] d[ ]+ + + 6 3– 0 36–+ 33–= = =

n n×
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if n==2
    y=det2x2(A);
    return
end
%
if n==3
    y=det3x3(A);
    return
end
% For 4x4 or higher order matrices we use the following:
% (We can define n and matrix A in Command Window
for i=1:n
    y=y+(−1)^(i+1)*A(1,i)*detnxn(A(2:n, [1:(i−1) (i+1):n]));
end
%
% To run this program, define the nxn matrix in
% MATLAB's Command Window as A=[....] and then 
% type detnxn(A) at the command prompt.

Some useful properties of determinants are given below.

Property 1:

If all elements of one row or one column are zero, the determinant is zero. An example of this is the
determinant of the cofactor  above.

Property 2:

If all the elements of one row or column are m times the corresponding elements of another row or col-
umn, the determinant is zero. For example, if

(4.28)

then,

(4.29)

Here,  is zero because the second column in  is 2 times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1]; det(A)

ans =
     0

c[ ]

A
2 4 1
3 6 1
1 2 1

=

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A
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Property 3:

If two rows or two columns of a matrix are identical, the determinant is zero. This follows from Prop-
erty 2 with .

4.6  Cramer’s Rule
Let us consider the systems of the three equations below

(4.30)

and let

Cramer’s rule states that the unknowns , , and  can be found from the relations

(4.31)

provided that the determinant Δ (delta) is not zero.

We observe that the numerators of (4.31) are determinants that are formed from Δ by the substi-
tution of the known values A, B, and C, for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (4.30) is a homogeneous set of equations, that is, if , then,  are
all zero as we found in Property 1 above. Then,  also.

Example 4.10  

Use Cramer’s rule to find  if

(4.32)

and verify your answers with MATLAB.

m 1=

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=

Δ
a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====

x y z

x
D1

Δ
------= y

D2

Δ
------= z

D3

Δ
------=

A B C 0= = = D1  D2  and D3, ,
x y z 0= = =

v1 v2  and v3, ,

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 4−19
Copyright © Orchard Publications

Cramer’s Rule

Solution:

Rearranging the unknowns , and transferring known values to the right side, we obtain

(4.33)

Now, by Cramer’s rule,

Therefore, using (4.31) we obtain

(4.34)

We will verify with MATLAB as follows.

% The following script will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  −1  3;  −4  −3  −2;  3  1 −1]; % The elements of the determinant D
delta=det(B); % Compute the determinant D of B
d1=[5  −1  3;  8  −3  −2;  4  1  −1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  −4  8  −2;  3  4  −1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  −1  5; −4  −3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3

v

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

Δ
2 1– 3
4– 3– 2–
3 1 1–

2 1–
4– 3–
3 1

6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–
4 1 1–

5 1–
8 3–
4 1

15 8 24 36 10 8–+ + + + 85= = =

D2

2 5 3
4– 8 2–
3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–
4– 3–
3 1

24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1

Δ
------ 85

35
------ 17

7
------= = = x2

D2

Δ
------ 170

35
---------– 34

7
------–= = = x3

D3

Δ
------ 55

35
------– 11

7
------–= = =
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v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3
%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3

v1=
    17/7
v2=
   -34/7     
v3=
   -11/7 

These are the same values as in (4.34)

4.7  Gaussian Elimination Method
We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done
by multiplying the terms of any of the equations of the system by a number such that we can add
(or subtract) this equation to another equation in the system so that one of the unknowns will be
eliminated. Then, by substitution to another equation with two unknowns, we can find the sec-
ond unknown. Subsequently, substitution of the two values found can be made into an equation
with three unknowns from which we can find the value of the third unknown. This procedure is
repeated until all unknowns are found. This method is best illustrated with the following example
which consists of the same equations as the previous example.

Example 4.11  

Use the Gaussian elimination method to find  of

(4.35)

Solution:

As a first step, we add the first equation of (4.35) with the third to eliminate the unknown  and
we obtain the following equation.

v1 v2  and v3, ,

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

v2
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(4.36)

Next, we multiply the third equation of (4.35) by 3, and we add it with the second to eliminate
. Then, we obtain the following equation.

(4.37)

Subtraction of (4.37) from (4.36) yields

(4.38)

Now, we can find the unknown  from either (4.36) or (4.37). By substitution of (4.38) into
(4.36) we obtain

(4.39)

Finally, we can find the last unknown  from any of the three equations of (4.35). By substitu-
tion into the first equation we obtain

(4.40)

These are the same values as those we found in Example 4.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example 4.11. However, it becomes impractical if the coefficients are large or fractional
numbers. 

The Gaussian elimination is further discussed in Chapter 14 in conjunction with the  factor-
ization method.

4.8 The Adjoint of a Matrix

Let us assume that  is an  square matrix and  is the cofactor of . Then the adjoint of ,
denoted as , is defined as the  square matrix shown on the next page.

5v1 2v3+ 9=

v2

5v1 5v3– 20=

7v3 11  or  v3
11
7

------–=–=

v1

5v1 2 11
7

------–⎝ ⎠
⎛ ⎞⋅+ 9  or  v1

17
7

------==

v2

v2 2v1 3v3 5–+ 34
7
------ 33

7
------– 35

7
------– 34

7
------–= = =

LU

A n αij aij A

adjA n
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(4.41)

We observe that the cofactors of the elements of the  row (column) of , are the elements of
the  column (row) of .

Example 4.12  

Compute  given that

(4.42)

Solution:

4.9 Singular and Non−Singular Matrices

An  square matrix  is called singular if ; if , A is called non−singular. If an 
square matrix  is nearly singular, that is, if the determinant of that matrix is very small, the
matrix is said to be ill−conditioned. This topic is discussed in Appendix C.

Example 4.13  
Given that

adjA

α11 α21 α31 … αn1

α12 α22 α32 … αn2

α13 α23 α33 … αn3

… … … … …
α1n α2n α3n … αnn

=

ith A
ith adjA

adjA

A
1 2 3
1 3 4
1 4 3

=

adjA

  3 4
4 3

2 3
4 3

–   2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

    1 2
1 4

–   1 2
1 3

7– 6 1–
1 0 1–
1 2– 1

= =

n A detA 0= detA 0≠ n
A



Numerical Analysis Using MATLAB® and Excel®, Third Edition 4−23
Copyright © Orchard Publications

The Inverse of a Matrix

(4.43)

determine whether this matrix is singular or non−singular.

Solution:

Therefore, matrix  is singular.

4.10   The Inverse of a Matrix

If  and B are  square matrices such that , where  is the identity matrix,  is

called the inverse of , denoted as , and likewise,  is called the inverse of , that is,

If a matrix  is non−singular, we can compute its inverse from the relation

(4.44)

Example 4.14  
Given that

(4.45)

compute its inverse, that is, find 

Solution:

Here, , and since this is a non−zero value, it is possible to
compute the inverse of  using (4.44).
From Example 4.12,

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A

A n AB BA I= = I B

A B A 1–= A B

A B 1–=

A

A 1– 1
detA
------------adjA=

A
1 2 3
1 3 4
1 4 3

=

A 1–

detA 9 8 12 9– 16– 6–+ + 2–= =

A
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Then,

(4.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)   % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(4.47)

Example 4.15  
Prove the validity of (4.47) for

Proof:

Then,

and

adjA
7– 6 1–

1 0 1–
1 2– 1

=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–
1 0 1–
1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =

A A 1– I

AA 1– I   or   A 1– A I ==

A 4 3
2 2

=

detA 8 6– 2   and   adjA 2 3–
2– 4

== =

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2⁄
1– 2

= = =
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4.11  Solution of Simultaneous Equations with Matrices
Consider the relation

(4.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector)
whose elements are the unknowns. We assume that  and  are conformable for multiplication.

Multiplication of both sides of (4.48) by  yields:

(4.49)
or

(4.50)

Therefore, we can use (4.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example 4.16  
Given the system of equations

(4.51)

compute the unknowns  using the inverse matrix method.

Solution:

In matrix form, the given set of equations is  where

(4.52)

Then,

AA 1– 4 3
2 2

1 3– 2⁄
1– 2

4 3– 6– 6+
2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B= = =

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8=⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

x1 x2  and x3, ,

AX B=

A
2 3 1
1 2 3
3 1 2

=   X
x1

x2

x3

=   B
9
6
8

=, ,
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(4.53)
or

(4.54)

Next, we find the determinant , and the adjoint .

Therefore,

and by (4.53) we obtain the solution as follows.

(4.55)

To verify our results, we could use the MATLAB inv(A) function, and multiply  by . How-
ever, it is easier to use the matrix left division operation ; this is MATLAB’s solution of

 for the matrix equation , where matrix  is the same size as matrix . For this
example,

A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]'; X=A \ B    % Observe that B is a column vector

X =
    1.9444
    1.6111
    0.2778

As stated earlier, while MATLAB has the built−in function det(A) for computing the determi-
nant of a matrix A, this function is not included in the MATLAB Run−Time Function Library
List that is used with the Simulink Embedded MATLAB Function block. The MATLAB user−
defined function file below can be used to compute the determinant of a  matrix. A user-
defined function to compute the inverse of an  is presented in Chapter 14.

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–
5– 7 1

=

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–
5– 7 1

= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–
5– 7 1

9
6
8

1
18
------

35
29
5

35 18⁄
29 18⁄
5 18⁄

1.94
1.61
0.28

= = = = =

A 1– B
X A \ B=

A 1– B A X⋅ B= X B

2 2×
n n×



Numerical Analysis Using MATLAB® and Excel®, Third Edition 4−27
Copyright © Orchard Publications

Solution of Simultaneous Equations with Matrices

Example 4.17  
For the electric circuit of Figure 4.1, the mesh equations are

 
Figure 4.1. Circuit for Example 4.17

(4.56)

Use the inverse matrix method to compute the values of the currents .

Solution:

For this example, the matrix equation is or , where

The next step is to find . This is found from the relation

(4.57)

Therefore, we find the determinant and the adjoint of . For this example, we find that

(4.58)

Then,

and

+
−

V = 100 v

9 Ω 9 Ω 4 Ω

2 Ω2 Ω1 Ω

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=

I1 I2  and I3, ,

RI V = I R 1– V=

R
10 9– 0

9– 20 9–
0 9– 15

=   V
100

0
0

   and   I
I1

I2

I3

==,

R 1–

R 1– 1
detR
------------ adjR=

R

detR 975=   adjR
219 135 81
135 150 90
81 90 119

  =,

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =
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Check with MATLAB:

R=[10  −9  0;  −9  20  −9;  0  −9  15]; V=[100  0  0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
above script could also have been written as:

R(1,1)=10; R(1,2)=−9; %  No need to make entry for A(1,3) since it is zero.
R(2,1)=−9; R(2,2)=20; R(2,3)=−9; R(3,2)=−9; R(3,3)=15; V=[100 0 0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT
(Matrix Multiplication) functions, to obtain the values of the three currents in Example 4.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix  as shown in Figure 4.2. Then, we enter the elements of matrix  in G3:G5.

Figure 4.2. Solution of Example 4.17 with a spreadsheet

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =

R V

1
2
3
4
5
6
7
8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462
R-1= 0.138 0.154 0.092 I= 13.846

0.083 0.092 0.122 8.3077
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2. Next, we compute and display the inverse of R, that is, . We choose B7:D9 for the elements
of this inverted matrix. We format this block for number display with three decimal places.
With this range highlighted and making sure that the cell marker is in B7, we type the formula

=MININVERSE(B3:D5)
and we press the Crtl−Shift−Enter keys simultaneously. We observe that  appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current . As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl−Shift−Enter keys simultaneously. The values of I then appear in G7:G9.

Example 4.18  

For the phasor circuit of Figure 4.3, the current  can be found from the relation

Figure 4.3. Circuit for Example 4.18

(4.59)

and the voltages  and  can be computed from the nodal equations

(4.60)

(4.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like

R 1–

R 1–

I

IX

+

−

R185 Ω

50 Ω

R2
C

L

R3 = 100 Ω

IXVS
−j100 Ω

j200 Ω
170∠0°

V1 V2

IX
V1 V2–

R3
-------------------=

V1 V2

V1 170 0°∠–

85
--------------------------------

V1 V2–

100
-------------------

V1 0–

j200
---------------+ + 0=

V2 170 0°∠–

j100–
--------------------------------

V2 V1–

100
-------------------

V2 0–

50
---------------+ + 0=

Ix
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terms, collecting, and then writing the above relations in matrix form as , where
, , and .

Solution:

The elements of the  matrix are the coefficients of  and . Simplifying and rearranging the

nodal equations of (4.60) and (4.61), we obtain

Next, we write (4.62) in matrix form as

(4.62)

where the matrices , , and  are as indicatedin (4.63).

We will use MATLAB to compute the voltages  and , and to do all other computations.
The script is shown below.

Y=[0.0218−0.005j  −0.01;  −0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I; % Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('    V1       V2'); disp('  ------------------'); % Display V1 and V2 with dash line underneath
fprintf('%9.3f %9.3f\n',V(1),V(2)) % Display values of V1 and V2 in tabular form
fprintf('\n')% Insert another line

    V1         V2
  ------------------
  104.905    53.416

Next, we find  from

R3=100; IX=(V(1)−V(2))/R3 % Compute the value of IX

IX =
   0.5149 - 0.0590i

and this is the rectangular form of . For the polar form we use

magIX=abs(IX) % Compute the magnitude of IX

magIX =

YV I=

Y admit cetan= V voltage= I current=

Y V1 V2

0.0218 j0.005–( )V1 0.01V2– 2=

0.01– V1 0.03 j0.01+( )V2+ j1.7=

0.0218 j0.005– 0.01–
0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

Y V I

V1 V2

IX

IX
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    0.5183

thetaIX=angle(IX)*180/pi % Compute angle theta in degrees

thetaIX =
   -6.5326

Therefore, in polar form 

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements.

IX 0.518 6.53°–∠=
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4.12 Summary
• A matrix is a rectangular array of numbers whose general form is

The numbers  are the elements of the matrix where the index  indicates the row, and 
indicates the column in which each element is positioned. A matrix of  rows and  columns
is said to be of  order matrix. If , the matrix is said to be a square matrix of order

.

• Two matrices  and  are equal, that is, , if and only if 

• Two matrices are said to be conformable for addition (subtraction), if they are of the same order

. If  and  are conformable for addition (subtraction), their sum (dif-

ference) will be another matrix  with the same order as  and , where each element of 
i s  t h e  s u m  ( d i f f e r e n c e )  o f  t h e  c o r r e s po n d i n g  e l eme n t s  o f   a n d  ,  i . e . ,

• If  is any scalar (a positive or negative number), and not [ ] which is a  matrix, then
multiplication of a matrix  by the scalar , is the multiplication of every element of  by .

• Two matrices  and  are said to be conformable for multiplication  in that order, only
when the number of columns of matrix  is equal to the number of rows of matrix . That is,
the product  (but not ) is conformable for multiplication only if  is an  and
matrix  is an  matrix. The product  will then be an  matrix. 

• For matrix multiplication, the operation is row by column. Thus, to obtain the product ,
we multiply each element of a row of  by the corresponding element of a column of ; then,
we add these products.

• Division of one matrix by another, is not defined.

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
am1 am2 am3 … amn

=

aij i j

m n
m n× m n=

m

A aij= B bij= A B=

aij bij= i 1 2 3 … m, , , ,= j 1 2 3 … n, , , ,=

m n× A aij= B bij=

C A B C
A B

C A B± aij bij±[ ]= =

k k 1 1×
A k A k

A B A B⋅
A B

A B⋅ B A⋅ A m p×
B p n× A B⋅ m n×

A B⋅
A B
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Summary

• A scalar matrix is a square matrix where  and  is a scalar. 
A scalar matrix with , is called an identity matrix .

• The MATLAB eye(n) function displays an  identity matrix and the eye(size(A)) func-
tion displays an identity matrix whose size is the same as matrix .

• The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and
columns of matrix  are interchanged. 

• The determinant of a square matrix  where

is denoted as  and it is defined as

• If from a matrix  be defined as

we remove the elements of its  row, and  column, the determinant of the remaining

 square matrix is called the minor of determinant , and it is denoted as .

• The signed minor  is called the cofactor of  and it is denoted as .

• Let  be a square matrix of any size; the value of the determinant of  is the sum of the prod-
ucts obtained by multiplying each element of any row or any column by its cofactor. We must
use this procedure to find the determinant of a matrix  of order 4 or higher.

a11 a22 a33 … ann k= = = = = k

k 1= I

n n×
A

A AT

A

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

detA

detA a11a22a33…ann a12a23a34…an1 a13a24a35…an2 …
             an1…a22a13… an2– …a23a14 an3…a24a15 …–––

+ + +=

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

ith jth

n 1– A Mij

1–( )i j+
Mij aij αij

A A

A
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• Some useful properties of determinants are:

a. If all elements of one row or one column are zero, the determinant is zero.

b. If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero. 

c. If two rows or two columns of a matrix are identical, the determinant is zero. 

• Cramer’s rule states that if a system of equations is defined as

and we let

the unknowns , , and  can be found from the relations

provided that the determinant Δ (delta) is not zero.

• We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can
be done by multiplying the terms of any of the equations of the system by a number such that
we can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns,
we can find the second unknown. Subsequently, substitution of the two values found can be
made into an equation with three unknowns from which we can find the value of the third
unknown. This procedure is repeated until all unknowns are found.

• If  is an  square matrix and  is the cofactor of , the adjoint of , denoted as , is
defined as the  square matrix below.

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=

Δ
a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====

x y z

x
D1

Δ
------= y

D2

Δ
------= z

D3

Δ
------=

A n αij aij A adjA

n
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Summary

• An  square matrix  is called singular if ; if , A is called non-singular.

• If  and B are  square matrices such that , where  is the identity matrix,  is

called the inverse of , denoted as , and likewise,  is called the inverse of , that is,

• If a matrix  is non-singular, we can compute its inverse from the relation

• Multiplication of a matrix  by its inverse produces the identity matrix , that is,

• If  and  are matrices whose elements are known,  is a matrix (a column vector) whose
elements are the unknowns and  and  are conformable for multiplication, we can use the

relation  to solve any set of simultaneous equations that have solutions. We refer to
this method as the inverse matrix method of solution of simultaneous equations.

• The matrix left division operation is defined as ; this is MATLAB’s solution of

 for the matrix equation , where matrix  is the same size as matrix . 

• We can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT (Matrix Multipli-
cation) functions, to solve any set of simultaneous equations that have solutions. However, we
cannot use them to compute matrices that include complex numbers in their elements.

adjA

α11 α21 α31 … αn1

α12 α22 α32 … αn2

α13 α23 α33 … αn3

… … … … …
α1n α2n α3n … αnn

=

n A detA 0= detA 0≠

A n AB BA I= = I B

A B A 1–= A B

A B 1–=

A

A 1– 1
detA
------------adjA=

A A 1– I

AA 1– I   or   A 1– A I ==

A B X
A X

X=A 1– B

X A \ B=

A 1– B A X⋅ B= X B
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4.13  Exercises

For Exercises 1 through 3 below, the matrices , ,  and  are defined as:

1. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.

a.     b.     c.     d.     e.     f.     g.     h.  

2. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.

a.     b.     c.     d.     e.     f.     g.     h. 

3. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.

a.     b.     c.     d.     e.     f.  

4. Solve the following system of equations using Cramer’s rule. Verify your answers with Excel or
MATLAB.

   

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Use the MATLAB det(A) function to find the unknowns of the system of equations below.

7. Solve the following system of equations using the inverse matrix method. Verify your answers
with Excel or MATLAB.

A B C D

A
1 1– 4–
5 7 2–
3 5– 6

=     B
5 9 3–
2– 8 2
7 4– 6

=     C=
4 6
3– 8
5 2–

    D 1 2– 3
3– 6 4–

=

A B+ A C+ B D+ C D+ A B– A C– B D– C D–

A B⋅ A C⋅ B D⋅ C D⋅ B A⋅ C A⋅ D A⋅ D· C⋅

detA detB detC detD det A B⋅( ) det A C⋅( )

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

x1– 2x2 3x3– 5x4+ + 14=

x1 3x2 2x3 x4–+ + 9=

3x1 3– x2 2x3 4x4+ + 19=

4x1 2x2 5x3 x4+ + + 27=

1 3 4
3 1 2–
2 3 5

x1

x2

x3

⋅
3–
2–
0

=
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8. Use Excel to find the unknowns for the system

Verify your answers with the MATLAB left division operation.

2 4 3 2–
2 4– 1 3
1– 3 4– 2
2 2– 2 1

x1

x2

x3

x4

⋅

1
10
14–
7

=
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4.14 Solutions to End−of−Chapter Exercises
1.

a.    b.   not conformable for addition

c.  not conformable for addition   d.   not conformable for addition

e.   f.    not conformable for subtraction

g.   not conformable for subtraction   h.   not conformable for subtraction

2.

a. 

Check with MATLAB:

A=[1  −1  −4; 5  7  −2; 3  −5  6]; B=[5  9  −3; −2  8  2; 7  −4  6]; A*B

ans =

   -21    17   -29

    -3   109   -13

    67   -37    17

  b.   

  c.    not conformable for multiplication

  d.   

A B+
1 5+ 1– 9+ 4– 3–
5 2– 7 8+ 2– 2+
3 7+ 5– 4– 6 6+

6 8 7–
3 15 0
10 9– 12

= =     A C+

B D+ C D+

A B–
1 5– 1– 9– 4– 3+
5 2+ 7 8– 2– 2–
3 7– 5– 4+ 6 6–

4– 10– 1–
7 1– 4–
4– 1– 0

= =     A C–

B D– C D–

A B⋅
1 5 1–( ) 2–( ) 4–( ) 7×+×+× 1 9 1–( ) 8 4–( ) 4–( )×+×+× 1 3–( ) 1–( ) 2 4–( ) 6×+×+×

5 5 7 2–( ) 2–( ) 7×+×+× 5 9 7 8 2–( ) 4–( )×+×+× 5 3–( ) 7 2 2–( ) 6×+×+×
3 5 5–( ) 2–( ) 6 7×+×+× 3 9 5–( ) 8 6 4–( )×+×+× 3 3–( ) 5–( ) 2 6 6×+×+×

=

21– 17 29–
3– 109 13–

67 37– 17

=

A C⋅
1 4 1–( ) 3–( ) 4–( ) 5×+×+× 1 6 1–( ) 8 4–( ) 2–( )×+×+×

5 4 7 3–( ) 2–( ) 5×+×+× 5 6 7 8 2–( ) 2–( )×+×+×
3 4 5–( ) 3–( ) 6 5×+×+× 3 6 5–( ) 8 6 2–( )×+×+×

13– 6
11– 90

57 34–

= =

B D⋅

D⋅
4 1 6 3–( )×+× 4 2–( ) 6 6×+× 4 3 6 4–( )×+×
3–( ) 1 8 3–( )×+× 3–( ) 2–( ) 8 6×+× 3–( ) 3 8 4–( )×+×

5 1 2–( ) 3–( )×+× 5 2–( ) 2–( ) 6×+× 5 3 2–( ) 4–( )×+×

14– 28 12–
27– 54 41–

11 22– 23

= =
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e.  

   f.    not conformable for multiplication

g. 

   h. 

3.

   a. 

   b. 

   c.   does not exist; matrix must be square

   d.   does not exist; matrix must be square

   e.   and from parts (a) and (b),  

   f.   does not exist because  does not exist

B A⋅
5 1 9 5 3–( ) 3×+×+× 2–( ) 1 8 5× 2 3×++× 7 1 4–( ) 5 6 3×+×+×

5 1–( ) 9 7 3–( ) 5–( )×+×+× 2–( ) 1–( ) 8 7× 2 5–( )×++× 7 1–( ) 4–( ) 7 6 5–( )×+×+×
5 4–( ) 9 2–( ) 3–( ) 6×+×+× 2–( ) 4–( ) 8 2–( )× 2 6×++× 7 4–( ) 4–( ) 2–( ) 6 6×+×+×

=

41 73 56–
44 48 4
5 65– 16

=

C A⋅

D A⋅ 1 1 2–( ) 5 3 3×+×+× 1 1–( ) 2–( ) 7 3 5–( )×+×+× 1 4–( ) 2–( ) 2–( ) 3 6×+×+×
3–( ) 1 6 5 4–( ) 3×+×+× 3–( ) 1–( ) 6 7 4–( ) 5–( )×+×+× 3–( ) 4–( ) 6 2–( ) 4–( ) 6×+×+×

=

0 30– 18
15 65 24–

=

D C⋅ 1 4 2–( ) 3–( ) 3 5×+×+× 1 6 2–( ) 8 3 2–( )×+×+×
3–( ) 4 6 3–( ) 4–( ) 5×+×+× 3–( ) 6 6 8 4–( ) 2–( )×+×+×

25 16–
50– 38

= =

 detA
1 1– 4– 1 1–
5 7 2– 5 7
3 5– 6 3 5–

=

1 7 6×× 1–( ) 2–( )× 3 4–( ) 5 5–( )××+× 3 7 4–( ) 5–( )+×× 2–( ) 1 6 5 1–( )××+××[ ]–+=

42 6 100 84–( )– 10– 30–( )–+ + 252==

 detB
5 9 3– 5 9
2– 8 2 2– 8
7 4– 6 7 4–

=

5 8 6×× 9 2× 7 3–( ) 2–( ) 4–( )××+× 7 8 3–( ) 4–( )+×× 2 5 6 2–( ) 9××+××[ ]–+=

240 126 24– 168–( )– 40 108–( )–+ + 658==

detC

detD

et A B⋅( ) detA detB⋅= det A B⋅( ) 252 658× 165816= =

det A C⋅( ) detC
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4.

5.
  (1)

  (2)

  (3)

Multiplication of (1) by  yields
  (4)

Addition of (2) and (4) yields

  (5)

Δ
1 2– 1 1 2–
2– 3 1 2– 3
3 4 5– 3 4

=

1 3 5–( ) 2–( ) 1 3 1 2–( ) 4 3 3 1 4 1 1 5–( ) 2–( ) 2–( )××+××+××[ ]–××+××+××=

15– 6– 8– 9– 4– 20+ 22–==

D1

4– 2– 1 4 2–
9 3 1 9 3

0 4 5– 0 4

=

4– 3 5–( ) 2–( ) 1 0 1 9 4 0 3 1 4 1 4 5–( ) 9 2–( )××+××+××[ ]–××+××+××=

60 0 36 0– 16 90–+ + + 22==

D2

1 4– 1 1 4–
2– 9 1 2– 9
3 0 5– 3 0

=

1 9 5–( ) 4–( ) 1 3 1 2–( ) 0 3 9 1 0 1 1 5–( ) 2–( ) 4–( )××+××+××[ ]–××+××+××=

45– 12– 0– 27– 0– 40+ 44–==

D3

1 2– 4– 1 2–
2– 3 9 2– 3
3 4 0 3 4

=

1 3 0 2–( ) 9 3 4–( ) 2–( ) 4 3 3 4–( ) 4 9 1 0 2–( ) 2–( )××+××+××[ ]–××+××+××=

0 54– 32 36 36– 0–+ + 22–==

x1

D1
Δ

------- 22
22–

--------- 1–= = = x2

D2
Δ

------- 44–
22–

--------- 2= = = x3

D3
Δ

------- 22–
22–

--------- 1= = =

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

2
2x1 4x2 2x3+– 8–=

x2 3x3+– 1=
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Solutions to End−of−Chapter Exercises

Multiplication of (1) by  yields
  (6)

Addition of (3) and (6) yields

  (7)

Multiplication of (5) by 10 yields

  (8)

Addition of (7) and (8) yields
  (9)

or
  (10)

Substitution of (10) into (7) yields
  (11)

or 
  (12)

and substitution of (10) and (12) into (1) yields

  (13)

or
 (14)

6.

Delta=[−1  2  −3  5; 1  3  2  −1; 3  −3  2  4; 4  2  5  1];

D1=[14  2  −3  5; 9  3  2  −1; 19  −3  2  4; 27  2  5  1];

D2=[−1  14  −3  5; 1  9  2  −1; 3  19  2  4; 4  27  5  1];

D3=[−1  2  14  5; 1  3  9  −1; 3  −3  19  4; 4  2  27  1];

D4=[−1  2  −3  14; 1  3  2  9; 3  −3  2  19; 4  2  5  27];

x1=det(D1)/det(Delta), x2=det(D2)/det(Delta),...

x3=det(D3)/det(Delta), x4=det(D4)/det(Delta)

x1=1     x2=2     x3=3     x4=4

3–

3– x1 6x2 3x3–+ 12=

10x2 8x3– 12=

10x2 30x3+– 10=

22x3 22=

x3 1=

10x2 8– 12=

x2 2=

x1 4 1+– 4–=

x1 1–=
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7.

detA

1 3 4
3 1 2–
2 3 5

1 3
3 1
2 3

1 1 5 3 2–( ) 2 4 3 3 2 1 4 3 2–( )×+×× 1 5 3 3××+×[ ]–××+××+××=

=

             5 12– 36 8– 6 45–+ + 18–==

adjA
11 3– 10–
19– 3– 14
7 3 8–

=

A 1– 1
detA
------------ adjA⋅ 1

18–
---------

11 3– 10–
19– 3– 14
7 3 8–

⋅
11 18⁄– 3 18⁄ 10 18⁄
19 18⁄ 3 18⁄ 14 18⁄–
7 18⁄– 3– 18⁄ 8 18⁄

= = =

X

x1
x2
x3

11 18⁄– 3 18⁄ 10 18⁄
19 18⁄ 3 18⁄ 14 18⁄–
7 18⁄– 3– 18⁄ 8 18⁄

3–
2–
0

33 18 6 18⁄– 0+⁄
57– 18 6 18 0+⁄–⁄
21 18 6 18⁄ 0+ +⁄

27 18⁄
63– 18⁄
27 18⁄

1.50
3.50–
1.50

= = = = =
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Solutions to End−of−Chapter Exercises

8.

A=[2  4  3  −2;  2  −4  1  3; −1  3  −4  2;  2  −2  2  1];

B=[1  10  −14  7]'; A\B

ans =

  -11.5000

    1.5000

   12.0000

    9.0000
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Chapter 5

Differential Equations, State Variables, and State Equations

his chapter is a review of ordinary differential equations and an introduction to state vari-
ables and state equations. Solutions of differential equations with numerical methods is dis-
cussed in Chapter 9.

5.1 Simple Differential Equations
In this section we present two simple examples to show the importance of differential equations in
engineering applications.

Example 5.1  
The current and voltage in a capacitor are related by

(5.1)

where  is the current through the capacitor,  is the voltage across the capacitor, and the
constant  is the capacitance in farads (F). For this example  and the capacitor is being
charged by a constant current . Find the voltage  across this capacitor as a function of time
given that the voltage at some reference time  is . 

Solution:

It is given that the current, as a function of time, is constant, that is,

(5.2)

By substitution of (5.2) into (5.1) we obtain

and by separation of the variables,
(5.3)

Integrating both sides of (5.3) we obtain
(5.4)

where  represents the constants of integration of both sides.

T

iC t( ) C
dvC
dt

---------=

iC t( ) vC t( )

C C 1 F=

I vC

t 0= V0

iC t( ) I cons ttan= =

dvC
dt

--------- I=

dvC Idt=

vC t( ) It k+=

k
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We can find the value of the constant  by making use of the initial condition, i.e., at ,
 and (5.4) then becomes

(5.5)

or , and by substitution into (5.4),

(5.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-
duced across the terminals of the capacitor.

Example 5.2  

Find the current  through an inductor whose slope at the coordinate  is  and the
current  passes through the point .

Solution:

We are given that

(5.7)

By separating the variables we obtain
(5.8)

and integrating both sides we obtain
(5.9)

where  represents the constants of integration of both sides.

We find the value of the constant  by making use of the initial condition. For this example,
 and thus at , . With these values (5.9) becomes

(5.10)

or , and by substitution into (5.9),

(5.11)

5.2 Classification
Differential equations are classified by:

1. Type - Ordinary or Partial

k t 0=

vC V0=

V0 0 k+=

k V0=

vC t( ) It V0+=

iL t( ) t iL,( ) tcos

iL π 2⁄ 1,( )

diL
dt
------- tcos=

diL tdtcos=

iL t( ) t k+sin=

k

k
ω 1= ωt t π 2⁄= = iL 1=

1 π
2
---sin k+=

k 0=

iL t( ) tsin=
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Classification

2. Order - The highest order derivative which is included in the differential equation

3. Degree - The exponent of the highest power of the highest order derivative after the differential
equation has been cleared of any fractions or radicals in the dependent variable and its deriva-
tives

For example, the differential equation

is an ordinary differential equation of order  and degree .

If the dependent variable  is a function of only a single variable , that is, if , the differ-
ential equation which relates  and  is said to be an ordinary differential equation and it is abbrevi-
ated as ODE. 

The differential equation

is an ODE with constant coefficients.

The differential equation

is an ODE with variable coefficients.

If the dependent variable  is a function of two or more variables such as , where 
and  are independent variables, the differential equation that relates , , and  is said to be a
partial differential equation and it is abbreviated as PDE.

An example of a partial differential equation is the well-known one-dimensional wave equation
shown below.

Most engineering problems are solved with ordinary differential equations with constant coeffi-
cients; however, partial differential equations provide often quick solutions to some practical
applications as illustrated with the following three examples.

d4y
dx4
--------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

5 d3y
dx3
--------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 4

6 d2y
dx2
--------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 6

3 dy
dx
------⎝ ⎠
⎛ ⎞ 8 y2

x3 1+
--------------+ + + + ye 2x–=

4 2

y x y f x( )=

y x

d2y
dt2
-------- 3dy

dt
------ 2+ + 5 4tcos=

x2 d2y
dt2
-------- xdy

dt
------ x2 n2–( )+ + 0=

y y f x t,( )= x
t y x t

∂2y
∂t2
-------- a2∂2y

∂x2
--------=
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Example 5.3  

The equivalent resistance  of three resistors , , and  in parallel is obtained from

Given that initially , , and , compute the change in  if  is
increased by  and  is decreased by  while  does not change.

Solution:

The initial value of the equivalent resistance is .

Now, we treat  and  as constants and differentiating  with respect to  we obtain

Similarly,

and the total differential  is

By substitution of the given numerical values we obtain

Therefore, the eequivalent resistance decreases by .

Example 5.4  

In a series  electric circuit that is excited by a sinusoidal voltage, the magnitude of the imped-

ance  is computed from . Initially,  and . Find the change
in the impedance  if the resistance  is increased by  ( ) and the capacitive reac-
tance  is decreased by  ( ).

RT R1 R2 R3

1
RT
------ 1

R1
------ 1

R2
------ 1

R3
------+ +=

R1 5 Ω= R2 20 Ω= R3 4 Ω= RT R2

10 % R3 5 % R1

RT 5 20 4|| || 2 Ω= =

R2 R3 RT R1

1
RT

2
------–

∂RT
∂R1
---------- 1

R1
2

------–=    or   
∂RT
∂R1
----------

RT
R1
------⎝ ⎠

⎛ ⎞
2

=

∂RT
∂R2
----------

RT
R2
------⎝ ⎠

⎛ ⎞
2

=    and   
∂RT
∂R3
----------

RT
R3
------⎝ ⎠

⎛ ⎞
2

=

dRT

RT
∂RT
∂R1
----------dR1

∂RT
∂R2
----------dR2

∂RT
∂R3
----------dR3+ +

RT
R1
------⎝ ⎠

⎛ ⎞
2
dR1

RT
R2
------⎝ ⎠

⎛ ⎞
2
dR2

RT
R3
------⎝ ⎠

⎛ ⎞
2
dR+ += =

dRT
2
5
---⎝ ⎠

⎛ ⎞ 2
0( ) 2

20
------⎝ ⎠

⎛ ⎞ 2
2( ) 2

4
---⎝ ⎠

⎛ ⎞ 2
0.2–( )+ + 0.02 0.05– 0.03–= = =

3 %

RC

Z Z R 2 XC
2+= R 4 Ω= XC 3 Ω=

Z R 0.25 Ω 6.25 %
XC 0.125 Ω 4.167%–
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Classification

Solution:

We will first find the partial derivatives  and ; then we compute the change in impedance

from the total differential . Thus,

and

and by substitution of the given values

Therefore, if  increases by  and  decreases by , the impedance  increases by
.

Example 5.5  

A light bulb is rated at  volts and  watts. If the voltage decreases by  volts and the resis-
tance of the bulb is increased by , by how much will the power change?

Solution:

At  volts and  watts, the bulb resistance is

and since

and the total differential is

That is, the power will decrease by  watts.

∂Z
∂R
------- ∂Z

∂XC
----------

dZ

∂Z
∂R
------- R

R 2 XC
2+

---------------------------=    and   ∂Z
∂XC
----------

XC

R 2 XC
2+

---------------------------=

dZ ∂Z
∂R
------- dR ∂Z

∂XC
---------- dXC+

R dR XC dXC+

R 2 XC
2+

----------------------------------------= =

dZ 4 0.25( ) 3 0.125–( )+

4 2 32+
----------------------------------------------------- 1 0.375 –

5
-------------------------- 0.125= = =

R 6.25 % XC 4.167% Z

4.167%

120 75 5
8 Ω

V 120= P 75=

R V2

P
------ 120 2

75
------------ 192 Ω= = =

P V2

R
------=    then   ∂P

∂V
------- 2V

R
-------=    and   ∂P

∂R
------- V2

R2
------–=

dP ∂P
∂V
------- dV ∂P

∂R
------- dR+ 2V

R
-------dV V2

R2
------– dR 2 120( )

192
----------------- 5–( ) 1202

1922
-----------– 8( ) 9.375–= = ==

9.375
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5.3 Solutions of Ordinary Differential Equations (ODE)

A function  is a solution of a differential equation if the latter is satisfied when  and its
derivatives are replaced throughout by  and its corresponding derivatives. Also, the initial
conditions must be satisfied.

For example a solution of the differential equation

is

since  and its second derivative satisfy the given differential equation.

Any linear, time-invariant system can be described by an ODE which has the form

(5.12)

If the excitation in (B12) is not zero, that is, if , the ODE is called a non-homogeneous
ODE. If , it reduces to:

(5.13)

The differential equation of (5.13) above is called a homogeneous ODE and has  different linearly
independent solutions denoted as .

We will now prove that the most general solution of (5.13) is:
(5.14)

where the subscript  on the left side is used to emphasize that this is the form of the solution of
the homogeneous ODE and  are arbitrary constants.

y f x( )= y
f x( )

d2y
dx2
-------- y+ 0=

y k1 xsin k2 xcos+=

y

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
---------------- … a1

dy
dt
------ a0 y+ + + +

             
bm

d mx
dt m
---------- bm 1–

d m 1– x
dt n 1–
----------------- … b1

dx
dt
------ b0x+ + + +

Excitation Forcing( ) Function x t( )

=

NON HOMOGENEOUS DIFFERENTIAL EQUATION–

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

x t( ) 0≠
x t( ) 0=

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
---------------- … a1

dy
dt
------ a0 y+ + + + 0=

HOMOGENEOUS DIFFERENTIAL EQUATION

n
y1 t( ) y2 t( ) y3 t( ) … yn t( ), ,,,

yH t( ) k1 y1 t( ) k2 y2 t( ) k3 y3 t( ) … kn yn t( )+ + + +=

H
k1 k2 k3 … kn, , , ,
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Solutions of Ordinary Differential Equations (ODE)

Proof:

Let us assume that  is a solution of (5.13); then by substitution, 

(5.15)

A solution of the form  will also satisfy (5.13) since

(5.16)

If  and  are any two solutions, then  will also be a solution
since

and

 

Therefore,

(5.17)

In general, if

are the  solutions of the homogeneous ODE of (5.13), the linear combination

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary

y1 t( )

an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
------------------ … a1

dy1
dt

-------- a0 y1+ + + + 0=

k1y1 t( )

an
d n

dtn
------- k1 y1( ) an 1–

d n 1–

dtn 1–
------------- k1 y1( ) … a1

d
dt
----- k1 y1( ) a0 k1 y1( )+ + + +

k1 an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
------------------ … a1

dy1
dt

-------- a0 y1+ + + +
⎝ ⎠
⎜ ⎟
⎛ ⎞

0==

y y1 t( )= y y2 t( )= y y1 t( ) y2 t( )+=

an
d ny1

dtn
----------- an 1–

d n 1– y1

dt n 1–
------------------ … a1

dy1
dt

-------- a0 y1+ + + + 0=

an
d ny2

dtn
----------- an 1–

d n 1– y2

dt n 1–
------------------ … a1

d y2
dt

---------- a0 y2+ + + + 0=

an
d n

dtn
------- y1 y2+( ) an 1–

d n 1–

dtn 1–
------------- y1 y2+( ) … a1

d
dt
----- y1 y2+( ) a0 y1 y2+( )+ + + +

an
d n

dtn
------- y1 an 1–

d n 1–

dtn 1–
------------- y1 … a1

d
dt
----- y1 a0 y1

an
d n

dtn
------- y2 an 1–

d n 1–

dtn 1–
------------- y2 … a1

d
dt
----- y2 a0 y2

+ + + +

+ + + + + 0

=

=

y k1y1 t( ) k2y1 t( ) k3y3 t( ) … knyn t( ), ,,,=

n

y k1y1 t( ) k2y1 t( ) k3y3 t( ) … knyn t( )+ +++=
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solution, will be referred to as the natural response, and will be denoted as  or simply . The
particular solution of a non-homogeneous ODE will be referred to as the forced response, and will
be denoted as  or simply . Accordingly, we express the total solution of the non-homoge-
neous ODE of (5.12) as:

(5.18)

The natural response  contains arbitrary constants and these can be evaluated from the given
initial conditions. The forced response , however, contains no arbitrary constants. It is impera-
tive to remember that the arbitrary constants of the natural response must be evaluated from the
total response.

5.4 Solution of the Homogeneous ODE
Let the solutions of the homogeneous ODE

(5.19)

be of the form

(5.20)

Then, by substitution of (5.20) into (5.19) we obtain

or

(5.21)

We observe that (5.21) can be satisfied when

(5.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield
trivial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the
only meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

(5.23)

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions
are , and thus the solutions of the homogeneous ODE are:

yN t( ) yN

yF t( ) yF

y t( ) y Natural
Response

y Forced
Response

+ yN yF+= =

yN

yF

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
---------------- … a1

dy
dt
------ a0 y+ + + + 0=

y kest=

an ksnest an 1– ksn 1– est … a1 ksest a0 kest+ + + + 0=

an sn an 1– sn 1– … a1 s a0+ + + +( ) kest 0=

an sn an 1– sn 1– … a1 s a0+ + + +( ) 0   or  k 0    or  s= ∞–= =

an sn an 1– sn 1– … a1 s a0+ + + + 0=

Characteristic Equation

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

s1 s2 s3 … sn, , , ,
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Solution of the Homogeneous ODE

(5.24)

Case I − Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the  solutions
of (5.23) are independent and the most general solution is:

(5.25)

Case II − Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the
terms of (5.24) are not independent and therefore (5.25) does not represent the most general solu-
tion. If, for example, , then,

and we see that one term of (5.25) is lost. In this case, we express one of the terms of (5.25), say

 as . These two represent two independent solutions and therefore the most general
solution has the form:

(5.26)

If there are  equal roots the most general solution has the form:

(5.27)

Case III − Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is  where  and  are real numbers, then another root is

. Then, 

(5.28)

y1 k1e
s1t

= y2 k2e
s2t

= y3 k3e
s3t

= … yn kne
snt

=, , , ,

n

yN k1e
s1t

= k2e
s2t

… kne
snt

+ + +

FOR DISTINCT ROOTS

s1 s2=

k1e
s1t

k2e
s2t

+ k1e
s1t

k2e
s1t

+ k1 k2+( )e
s1t

k3e
s1t

= = =

k2e
s1t

k2te
s1t

yN k1 k2t+( )e
s1t

= k3e
s3t

… kne
snt

+ + +

m

yN k1 k2t … kmtm 1–+ + +( ) e
s1t

= kn i– e
s2t

… kne
snt

+ + +

FOR M EQUAL ROOTS

s1 α– jβ+= α β

s1 α– j– β=

k1e
s1t

k2e
s2t

+ k1e αt– jβ t+ k2e αt– j– β t+ e αt– k1ejβt k2e j– β t+( )= =

e αt– k1 βtcos jk1 βsin t k2 βtcos jk2– βsin t+ +( )=

e αt– k1 k2+( ) βtcos j k1 k2–( ) βsin t+[ ]=

e αt– k3 βtcos k4 βsin t+( ) e αt– k5 βt ϕ+( )cos==

FOR TWO COMPLEX CONJUGATE ROOTS
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If (5.28) is to be a real function of time, the constants  and  must be complex conjugates.
The other constants , , , and the phase angle  are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or

b. The Method of Variation of Parameters

We will study the Method of Undetermined Coefficients first.

5.5 Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of . Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the non-homogeneous ODE

(5.29)

where , , and  are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if  and  are any two solutions of (5.29), the linear combination
, where  and  are arbitrary constants, is also a solution, that is, if we know

the two solutions, we can obtain the most general solution by forming the linear combination of
 and . To be certain that there exist no other solutions, we examine the Wronskian Determi-

nant defined below.

(5.30)

If (5.30) is true, we can be assured that all solutions of (5.29) are indeed the linear combination of
 and .

The forced response is obtained by observation of the right side of the given ODE as it is illus-
trated by the examples that follow.

k1 k2

k3 k4 k5 ϕ

order 2

a
t2

2

d

d y b d
dt
-----y cy+ + f x( )=

a b c

y1 y2

y3 k1 y1 k2 y2+= k1 k2

y1 y2

W y1 y2,( )
y1 y2

d
dx
------ y1

d
dx
------ y2

≡ y1
d

dx
------ y2 y2

d
dx
------ y1– 0≠=

WRONSKIAN DETERMINANT

y1 y2
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Example 5.6  
Find the total solution of the ODE

(5.31)

subject to the initial conditions  and  where 

Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the char-

acteristic equation  whose roots are  and . The total response is:

(5.32)

The constants  and  are evaluated from the given initial conditions. For this example,

or
(5.33)

Also, 

or
(5.34)

Simultaneous solution of (5.33) and (5.34) yields  and . By substitution into
(5.32), we obtain 

(5.35)
Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4')

y =
(-7/2*exp(-3*t)*exp(t)+13/2)/exp(t)

pretty(y)
      - 7/2 exp(-3 t) exp(t) + 13/2
      -----------------------------
                 exp(t)

The function , of relation (5.35), shown in Figure 5.1, was plotted with the use of the
MATLAB script

t2

2

d

d y 4dy
dt
------ 3y+ + 0=

y 0( ) 3= y' 0( ) 4= y' dy dt⁄=

s2 4s 3+ + 0= s1 1–= s2 3–=

y t( ) yN t( ) k1e t– k2e 3t–+= =

k1 k2

y 0( ) 3 k1e0 k2e0    += =

k1 k2+ 3=

y' 0( ) 4 dy
dt
------

t 0=

k1e t–– 3k2e 3t––
t 0=

= = =

k1– 3k2– 4=

k1 6.5= k2 3.5–=

y t( ) yN t( ) 6.5e t– 3.5e 3t––= =

y f t( )=
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y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4'); ezplot(y,[0 5])

Figure 5.1. Plot for the function  of Example 5.6.

Example 5.7  
Find the total solution of the ODE

(5.36)

subject to the initial conditions  and 

Solution:

The left side of (5.36) is the same as that of Example 5.6.Therefore,

(5.37)

(We must remember that the constants  and  must be evaluated from the total response).

To find the forced response, we assume a solution of the form

(5.38)

We can find out whether our assumption is correct by substituting (5.38) into the given ODE of
(5.36). Then, 

(5.39)

from which  and the total solution is

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

t

13/2 exp(-t)-7/2 exp(-3 t)

y f t( )=

t2

2

d

d y 4dy
dt
------ 3y+ + 3e 2t–=

y 0( ) 1= y' 0( ) 1–=

yN t( ) k1e t– k2e 3t–+=

k1 k2

yF Ae 2t–=

4Ae 2t– 8Ae 2t–– 3Ae 2t–+ 3e 2t–=

A 3–=
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(5.40)

The constants  and  are evaluated from the given initial conditions. For this example,

or
(5.41)

Also,

or
 (5.42)

Simultaneous solution of (5.41) and (5.42) yields  and . By substitution into
(5.40), we obtain

(5.43)

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=3*exp(−2*t)', 'y(0)=1', 'Dy(0)=−1')

y = 
(-3*exp(-2*t)*exp(t)+3/2*exp(-3*t)*exp(t)+5/2)/exp(t)

pretty(y)

     -3 exp(-2 t) exp(t) + 3/2 exp(-3 t) exp(t) + 5/2
     ------------------------------------------------
                     exp(t)

The plot is shown in Figure 5.2 was produced with the MATLAB script

y=dsolve('D2y+4*Dy+3*y=3*exp(−2*t)', 'y(0)=1', 'Dy(0)=−1'); ezplot(y,[0 8])

Example 5.8  
Find the total solution of the ODE

(5.44)

subject to the initial conditions  and 

y t( ) yN yF+ k1e t– k2e 3t– 3– e 2t–+= =

k1 k2

y 0( ) 1 k1e0 k2e0 3e0–+= =

k1 k2+ 4=

y' 0( ) 1– dy
dt
------

t 0=

k1e t–– 3k2e 3t–– 6e 2t–+
t 0=

= = =

k1– 3k2– 7–=

k1 2.5= k2 1.5=

y t( ) yN yF+ 2.5e t– 1.5e 3t– 3– e 2t–+= =

t2

2

d

d y 6dy
dt
------ 9y+ + 0=

y 0( ) 1–= y' 0( ) 1=
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Figure 5.2. Plot for the function  of Example 5.7.

Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found

from the characteristic equation  whose roots are  (repeated roots).
Thus, the total response is

(5.45)

Next, we evaluate the constants  and  from the given initial conditions. For this example,

 
or

(5.46)
Also,

or
(5.47)

From (5.46) and (5.47) we obtain  and . By substitution into (5.45),

(5.48)
Check with MATLAB:

y=dsolve('D2y+6*Dy+9*y=0', 'y(0)=−1', 'Dy(0)=1')

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

5/2 exp(-t)+3/2 exp(-3 t)-3 exp(-2 t)

y f t( )=

s2 6s 9+ + 0= s1 s2 3–= =

y t( ) yN k1e 3t– k2 te 3t–+= =

k1 k2

y 0( ) 1– k1e0 k2 0( )e0+= =

k1 1–=

y' 0( ) 1 dy
dt
------

t 0=

3k1e 3t–– k2e 3t– 3k2te 3t––+
t 0=

= = =

3k1– k2+ 1=

k1 1–= k2 2–=

y t( ) e– 3t– 2te 3t––=
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y =
-exp(-3*t)-2*exp(-3*t)*t

The plot shown in Figure 5.3 was produced with the MATLAB script

y=dsolve('D2y+6*Dy+9*y=0', 'y(0)=−1', 'Dy(0)=1'); ezplot(y,[0 3])

Figure 5.3. Plot for the function  of Example 5.8.

Example 5.9  
Find the total solution of the ODE

(5.49)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants 
and . By inspection, the roots of the characteristic equation of (5.49) are  and 
and thus the natural response has the form

(5.50)

Next, we find the forced response by assuming a solution of the form

(5.51)

We can find out whether our assumption is correct by substitution of (5.51) into the given ODE of
(5.49). Then, 

0 0.5 1 1.5 2 2.5 3
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t

-exp(-3 t)-2 exp(-3 t) t

y f t( )=

t2

2

d

d y 5dy
dt
------ 6y+ + 3e 2t–=

k1

k2 s1 2–= s2 3–=

yN k1e 2t– k2 e 3t–+=

yF Ae 2t–=
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(5.52)

but the sum of the three terms on the left side of (5.52) is zero whereas the right side can never be
zero unless we let  and this produces a meaningless result.

The problem here is that the right side of the given ODE of (5.49) has the same form as one of the

terms of the natural response of (5.50), namely the term .

To work around this problem, we assume that the forced response has the form

(5.53)

that is, we multiply (5.51) by  in order to eliminate the duplication of terms in the total response.
Then, by substitution of (5.53) into (5.49) and equating like terms, we find that . There-
fore, the total response is

(5.54)

Check with MATLAB:

y=dsolve('D2y+5*Dy+6*y=3*exp(−2*t)')

y =
-3*exp(-2*t)+3*t*exp(-2*t)+C1*exp(-3*t)+C2*exp(-2*t)

We observe that the first and last terms of the displayed expression above have the same form and
thus they can be combined to form a single term C3*exp(-2*t).

Example 5.10  
Find the total solution of the ODE

(5.55)

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants 
and . We observe that the left side of (5.55) is the same of that of Example 5.9. Therefore, the
natural response is the same, that is, it has the form

(5.56)

Next, to find the forced response and we assume a solution of the form

4Ae 2t– 10Ae 2t–– 6Ae 2t–+ 3e 2t–=

t ∞→

k1 e 2t–

yF Ate 2t–=

t
A 3=

y t( ) yN yF+ k1e 2t– k2e 3t– 3te 2t–+ += =

t2

2

d

d y 5dy
dt
------ 6y+ + 4 5tcos=

k1

k2

yN k1e 2t– k2e 3t–+=
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(5.57)

We can find out whether our assumption is correct by substitution of the assumed solution of
(5.57) into the given ODE of (5.56). Then,

but this relation is invalid since by equating cosine and sine terms, we find that  and
also . This inconsistency is a result of our failure to recognize that the derivatives of 
produce new terms of the form  and these terms must be included in the forced response.
Accordingly, we let

(5.58)

and by substitution into (5.55) we obtain

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

(5.59)

We use MATLAB to solve (5.59)

format rat; [k3 k4]=solve(19*x+25*y, 25*x−19*y−4)

k3 =
50/493
k4 =
-38/493

Therefore, the total solution is

(5.60)

Check with MATLAB:

y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)'); y=simple(y)

y =
-38/493*cos(5*t)+50/493*sin(5*t)+C1*exp(-3*t)+C2*exp(-2*t)

In most engineering problems the right side of the non−homogeneous ODE consists of elementary

functions such as  (constant),  where  is a positive integer, , , , and linear
combinations of these. Table 5.1 summarizes the forms of the forced response for a second order

yF A 5tcos=

25A 5tcos– 25A 5sin t– 6A 5tcos+ 19A 5tcos– 25A 5sin t– 4 5tcos= =

A 4– 19⁄=

A 0= A 5tcos
B 5tsin

yF k3 5sin t k4 5tcos+=

25– k3 5tsin 25k4 5cos t 25k3 5cos t+– 25k4 5sin t– 6k3 5tsin 6k4 5cos t+ + 4 5cos t=

19k3 25k4+ 0=

25k3 19– k4 4=

y t( ) yN yF t( )+ k1e 2t– k2e 3t– 50
493
--------- 5tsin 38–

493
--------- 5tcos+ + += =

k xn n ekx kxcos kxsin
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ODE with constant coefficients.

We must remember that if  is the sum of several terms, the most general form of the forced
response  is the linear combination of these terms. Also, if a term in  is a duplicate of a
term in the natural response , we must multiply  by the lowest power of  that will
eliminate the duplication.

Example 5.11  
Find the total solution of the ODE

(5.61)

Solution:

No initial conditions are given; therefore we will express solution in terms of the constants  and
. The roots of the characteristic equation are equal, that is, , and thus the natural

response has the form

(5.62)

To find the forced response (particular solution), we refer to the table of the previous page and

from the last row we choose the term . This term with , , and ,

TABLE 5.1 Form of the forced response for 2nd order differential equations

Forced Response of the ODE 

Form of Forced Response 

 (constant)  (constant)

 ( = positive integer)

 (  =real or complex)

 or  ( =constant)

 or  

+ 

ad2y
dt2
-------- bdy

dt
------ cy+ + f t( )=

f t( ) yF t( )

k K

k t n n K0 t n K1 tn 1– … Kn 1– t Kn+ + + +

ker t r Ker t

k αtcos k αtsin α K1cosαt K2 αtsin+

k t ner t αtcos k t ner t αsin t K0 t n K1 tn 1– … Kn 1– t Kn+ + + +( )er t αtcos

K0 t n K1 tn 1– … Kn 1– t Kn+ + + +( )er t αtsin

f t( )
yF t( ) yF t( )

yN t( ) yF t( ) t

t2

2

d

d y 4dy
dt
------ 4y+ + te 2t– e 2t––=

k1

k2 s1 s2 2–= =

yN k1e 2– t k2 te 2– t+=

k t ner t αtcos n 1= r 2–= α 0=
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reduces to . Therefore the forced response will have the form

(5.63)

But the terms  and  are also present in (5.61); therefore, we multiply (5.62) by  to
obtain a suitable form for the forced response which now is

(5.64)

Now, we need to evaluate the constants  and . This is done by substituting (5.64) into the
given ODE of (5.61) and equating with the right side. We use MATLAB do the computations as
shown below.

syms t k3 k4 % Define symbolic variables
f0=(k3*t^3+k4*t^2)*exp(−2*t); % Forced response (5.64)
f1=diff(f0); f1=simple(f1) % Compute and simplify first derivative

f1 =
-t*exp(-2*t)*(-3*k3*t-2*k4+2*k3*t^2+2*k4*t)

f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative

f2 =
2*exp(-2*t)*(3*k3*t+k4-6*k3*t^2-4*k4*t+2*k3*t^3+2*k4*t^2)

f=f2+4*f1+4*f0; f=simple(f) % Form and simplify the left side of the given ODE

f = 2*(3*k3*t+k4)*exp(-2*t)

Finally, we equate f above with the right side of the given ODE, that is

(5.65)

and we find  and . By substitution of these values into (5.64) and combining
the forced response with the natural response, we obtain the total solution

(5.66)

We verify this solution with MATLAB as follows:

z=dsolve('D2y+4*Dy+4*y=t*exp(−2*t)−exp(−2*t)')

z =
1/6*exp(-2*t)*t^3-1/2*exp(-2*t)*t^2
+C1*exp(-2*t)+C2*t*exp(-2*t)

kte 2– t

yF k3 t k4+( )e 2– t=

e 2t– te 2t– t2

yF k3 t3 k4 t2+( )e 2– t=

k3 k4

2 3k3 t k4+( )e 2t– te 2t– e 2t––=

k3 1 6⁄= k4 1 2⁄–=

y t( ) k1e 2– t k2te 2– t 1
6
---t3e

2– t 1
2
---t2e

2– t
–+ +=
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5.6 Using the Method of Variation of Parameters for the Forced Response

In certain non−homogeneous ODEs, the right side  cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters.
This method will work with all linear equations including those with variable coefficients such as

(5.67)

provided that the general form of the natural response is known.

Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants  and  by two variables  and
 that satisfy the following three relations:

(5.68)

(5.69)

(5.70)

Simultaneous solution of (5.68) and (5.69) will yield the values of  and ; then, inte-
gration of these will produce  and , which when substituted into (5.67) will yield the total
solution.

Example 5.12  
Find the total solution of

(5.71)

in terms of the constants  and  by the

a.  method of undetermined coefficients

b.  method of variation of parameters

Solution:

With either method, we must first find the natural response. The characteristic equation yields

f t( )

d2y
dt2
-------- α t( )dy

dt
------ β t( )y+ + f t( )=

k1 k2 u1

u2

y u1 y1 u2 y2+=

du1
dt
------- y1

du2
dt

-------- y2+ 0=

du1
dt

--------
dy1
dt

--------⋅
du2
dt

--------
dy2
dt

--------⋅+ f t( )=

du1 dt⁄ du2 dt⁄

u1 u2

d2y
dt2
-------- 4dy

dt
------ 3y+ + 12=

k1 k2
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the roots  and . Therefore, the natural response is

(5.72)

a. Using the method of undetermined coefficients we let  (a constant). Then, by substitu-
tion into (5.71) we obtain  and thus the total solution is

(5.73)

b. With the method of variation of parameters we begin with the natural response found above as
(5.72) and we let the solutions  and  be represented as

(5.74)

Then by (5.68), the total solution is

or

(5.75)
Also, from (5.69),

or

(5.76)

and from (5.70),

or

(5.77)

Next, we find  and  by Cramer’s rule as follows:

(5.78)

and

s1 1–= s2 3–=

yN k1e t– k2 e 3– t+=

yF k3=

k3 4=

y t( ) yN yF+ k1e t– k2e 3– t 4+ += =

y1 y2

y1 e t–=   and  y2 e 3t–=

y u1y1 u2y2+=

  y u1e t– u2e 3t–+=

du1
dt

--------y1
du2
dt

--------y2+ 0=

  
du1
dt

--------e t– du2
dt

--------e 3t–+ 0=

du1
dt

--------
dy1
dt

--------⋅
du2
dt

--------
dy2
dt

--------⋅+ f t( )=

  
du1
dt

-------- e t––( )
du2
dt

-------- 3e 3t––( )+ 12=

du1 dt⁄ du2 dt⁄

du1
dt

--------

0 e 3t–

12 3e 3t––

e t– e 3t–

e t–– 3e 3t––

------------------------------------------- 12e 3t––

3e 4t–– e 4t–+
-------------------------------- 12e 3t––

2e 4t––
------------------ 6et= = = =
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(5.79)

Now, integration of (5.78) and (5.79) and substitution into (5.75) yields

(5.80)

(5.81)

We observe that the last expression in (5.81) is the same as (5.73) of part (a).

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=12')

y =
(4*exp(t)+C1*exp(-3*t)*exp(t)+C2)/exp(t)

Example 5.13  
Find the total solution of

(5.82)

in terms of the constants  and  by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use
the method of variation of parameters.

The characteristic equation is  from which  and thus the natural response is

(5.83)
We let

(5.84)
Then, by (5.68) the solution is

(5.85)

du2
dt

--------

e t– 0

e t–– 12
2e 4t––

--------------------------------- 12e t–

2e 4t––
--------------- 6– e3t= = =

u1 6 et td∫ 6et k1+= = u2 6– e3t td∫ 2– e3t k2+= =

y u1e t– u2e 3t–+ 6et k1+( )e t– 2– e3t k2+( )e 3t–+= =

6 k1e t– 2 k2e 3t–+–+ k1e t– k2e 3t– 4+ +==

d2y
dt2
-------- 4y+ 2ttan=

k1 k2

s2 4+ 0= s j2±=

yN k1ej2t k2e j– 2t+=

y1 2tcos=   and  y2 2tsin=

y u1y1 u2y2 + u1 2tcos u2 2tsin  += =
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Also, from (5.69),

or

(5.86)

and from (5.70),

(5.87)

Next, we find  and  by Cramer’s rule as follows:

(5.88)

and

(5.89)

Now, integration of (5.88) and (5.89) and substitution into (5.85) yields

(5.90)

(5.91)

(5.92)

Check with MATLAB:

y=dsolve('D2y+4*y=tan(2*t)')

y =
-1/4*cos(2*t)*log((1+sin(2*t))/cos(2*t))+C1*cos(2*t)+C2*sin(2*t)

du1
dt

--------y1
du2
dt

--------y2+ 0=

  
du1
dt

-------- 2tcos
du2
dt

-------- 2tsin+ 0=

du1
dt

--------
dy1
dt

--------⋅
du2
dt

--------
dy2
dt

--------⋅+ f t( )
du1
dt

--------= = 2 2tsin–( )
du2
dt

-------- 2 2tcos( )+ 2ttan=

du1 dt⁄ du2 dt⁄

du1
dt

--------

0 2tsin
2ttan 2 2tcos
2tcos 2tsin

2 2tsin– 2 2tcos

------------------------------------------------------

2t2sin
2tcos

---------------–

2 2t2cos 2 2t2sin+
-------------------------------------------- 2t2sin–

2 2tcos
------------------= = =

du2
dt

--------

2tcos 0
2 2tsin– 2ttan

2
-------------------------------------------------- 2tsin

2
------------= =

u1
1
2
---–

2t2sin
2tcos

--------------- td∫ 2tsin
4

------------ 1
4
--- 2tsec 2ttan+( )ln– k1+= =

u2
1
2
--- 2tsin td∫ 2tcos

4
-------------– k2+= =

y u1y1 u2y2 + 2t 2tcossin
4

--------------------------- 1
4
--- 2t 2tsec 2ttan+( )lncos– k1 2tcos+ 2t 2tcossin

4
---------------------------– k2 2tsin+= =

1
4
--- 2t 2tsec 2ttan+( )lncos– k1 2tcos k2 2tsin+ +=
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5.7 Expressing Differential Equations in State Equation Form
A first order differential equation with constant coefficients has the form

(5.93)

In a second order differential equation the highest order is a second derivative.

An nth−order differential equation can be resolved to  first−order simultaneous differential equa-
tions with a set of auxiliary variables called state variables. The resulting first−order differential
equations are called state space equations, or simply state equations. The state variable method offers
the advantage that it can also be used with non−linear and time−varying systems. However, our
discussion will be limited to linear, time−invariant systems.

State equations can also be solved with numerical methods such as Taylor series and Runge−
Kutta methods; these will be discussed in Chapter 9. The state variable method is best illustrated
through several examples presented in this chapter. 

Example 5.14  
A system is described by the integro−differential equation

(5.94)

Differentiating both sides and dividing by  we obtain

(5.95)

or

(5.96)

Next, we define two state variables  and  such that

(5.97)
and

(5.98)

Then,

(5.99)

a1
dy
dt
------ a0 y t( )+ x t( )=

n

Ri Ldi
dt
----- 1

C
---- i td

∞–

t

∫+ + e jωt=

L

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i+ + 1

L
---jωe jωt=

d2t
dt2
------- R

L
---- di

dt
----- 1

LC
-------- i 1

L
---jωe jωt+––=

x1 x2

x1 i=

x2
di
dt
----- dx1

dt
-------- x· 1= = =

x· 2 d2i dt2⁄=
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where  denotes the derivative of the state variable .

From (5.96) through (5.99), we obtain the state equations

(5.100)

It is convenient and customary to express the state equations in matrix form. Thus, we write the
state equations of (5.100) as

(5.101)

We usually write (5.101) in a compact form as

(5.102)
where

 (5.103)

The output  is expressed by the state equation

(5.104)

where  is another matrix, and  is a column vector. Therefore, the state representation of a sys-
tem can be described by the pair of the of the state space equations

 (5.105)

The state space equations of (5.105) can be realized with the block diagram of Figure 5.1.

Figure 5.4. Block diagram for the realization of the state equations of (5.105)

x· k xk

x· 1 x2=

x· 2
R
L
---x2– 1

LC
-------x1– 1

L
---jωe jωt+=

x· 1

x· 2

0 1
1

LC
-------– R

L
---–

x1

x2

0
1
L
--- jωe jωt u+=

x· Ax bu+=

x· x· 1

x· 2

A  
0 1
1

LC
-------– R

L
---–

x,=, x1

x2

   b
0

1
L
--- jωe jωt  and  u,=, any input= = =

y t( )

y Cx du+=

C d

x· Ax bu+=

y Cx du+=

u b

A

C

d

x

+ +

++ yΣ Σdt∫
x·
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We will learn how to solve the matrix equations of (5.105) in the subsequent sections.

Example 5.15  
A fourth−order system is described by the differential equation

(5.106)

where  is the output and  is any input. Express (5.106) as a set of state equations.

Solution:

The differential equation of (5.106) is of fourth−order; therefore, we must define four state vari-
ables that will be used with the resulting four first−order state equations. 

We denote the state variables as , and , and we relate them to the terms of the given
differential equation as

(5.107)

We observe that

(5.108)

and in matrix form 

(5.109)

In compact form, (5.109) is written as
(5.110)

where

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t( )+ + + + u t( )=

y t( ) u t( )

x1 x2 x3, ,  x4

x1 y t( )= x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x· 1 x2=

x· 2 x3=

x· 3 x4=

d 4y
dt4
--------- x· 4 a0x1– a1x2 a2x3–– a3x4– u t( )+= =

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t( )+=

x· Ax bu+=
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5.8 Solution of Single State Equations
Let us consider the state equations 

(5.111)

where , , , and  are scalar constants, and the initial condition, if non−zero, is denoted as

(5.112)

We will now prove that the solution of the first state equation in (5.111) is

(5.113)

Proof:

First, we must show that (5.113) satisfies the initial condition of (5.112). This is done by substitu-
tion of  in (5.113). Then, 

(5.114)

The first term in the right side of (5.114) reduces to  since

(5.115)

The second term of (5.114) is zero since the upper and lower limits of integration are the same.
Therefore, (5.114) reduces to  and thus the initial condition is satisfied.

Next, we must prove that (5.113) satisfies also the first equation in (5.111). To prove this, we dif-
ferentiate (5.113) with respect to  and we obtain

x·

x· 1

x· 2

x· 3

x· 4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u,=, , , u t( )=

x· αx βu+=

y k1x k2u+=

α β k1 k2

x0 x t0( )=

x t( ) e
α t t0–( )

x0 eα t e ατ– βu τ( ) τd
t0

t

∫+=

t t0=

x t0( ) e
α t0 t0–( )

x0 eα t e α– τβu τ( ) τd
t0

t0

∫+=

x0

e
α t0 t0–( )

x0 e0x0 x0= =

x t0( ) x0=

t

x· t( ) d
dt
----- e

α t t0–( )
x0( ) d

dt
----- eαt e ατ– βu τ( ) τd

t0

t

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

+=
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(5.116)

We observe that the bracketed terms of (5.116) are the same as the right side of the assumed solu-
tion of (5.113). Therefore, 

and this is the same as the first equation of (5.111). The second equation of (5.111) is an algebraic
equation whose coefficients are scalar constants.

In summary, if  and  are scalar constants, the solution of

(5.117)
with initial condition

 (5.118)
is obtained from the relation

(5.119)

5.9 The State Transition Matrix          
Let us again consider the state equations pair

(5.120)

where for two or more simultaneous differential equations  and  are  or higher order
matrices, and  and  are column vectors with two or more rows. In this section we will intro-

duce the state transition matrix , and we will prove that the solution of the matrix differential
equation 

(5.121)
with initial conditions

(5.122)
is obtained from the relation

x· t( ) αe
α t t0–( )

x0 αeαt e ατ– βu τ( ) τ eαt e ατ– βu τ( )[ ] τ t=
+d

t0

t

∫+=

α e
α t t0–( )

x0 eαt e ατ– βu τ( ) τd
t0

t

∫+ eα te α t– βu t( )+=

x· t( ) α e
α t t0–( )

x0 eα t τ–( )βu τ( ) τd
t0

t

∫+ βu t( )+=

x· αx βu+=

α β

x· αx βu+=

x0 x t0( )=

x t( ) e
α t t0–( )

x0 eαt e α– τβu τ( ) τd
t0

t

∫+=

x· Ax bu+=

y Cx du+=

A C 2 2×
b d

eAt

x· Ax bu+=

x t0( ) x0=
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(5.123)

Proof:

Let  be any  matrix whose elements are constants. Then, another  matrix denoted as
, is said to be the state transition matrix of (5.34), if it is related to the matrix  as the matrix

power series

(5.124)

where  is the  identity matrix.

From (5.124), we find that

(5.125)

Differentiation of (5.124) with respect to  yields

(5.126)

and by comparison with (5.124) we obtain

(5.127)

To prove that (5.123) is the solution of the first equation of (5.120), we must prove that it satisfies
both the initial condition and the matrix differential equation. The initial condition is satisfied
from the relation

(5.128)

where we have used (5.125) for the initial condition. The integral is zero since the upper and lower
limits of integration are the same.

To prove that the first equation of (5.120) is also satisfied, we differentiate the assumed solution

with respect to  and we use (5.127), that is,

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

A n n× n n×
ϕ t( ) A

ϕ t( ) eAt I At 1
2!
-----A2t2 1

3!
-----A3t3 … 1

n!
-----Antn+ + + + +=≡

I n n×

ϕ 0( ) eA0 I A0 …+ + I= = =

t

ϕ' t( ) d
dt
-----eAt 0 A 1 A2t …+ +⋅+ A A2t …+ += = =

d
dt
-----eAt AeAt=

x t0( ) e
A t0 t0–( )

x0 e
At0 e A– τbu τ( ) τd

t0

t0

∫+ eA0x0 0+ Ix0 x0= = = =

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

t

d
dt
-----eAt AeAt=
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Then,

or

(5.129)

We recognize the bracketed terms in (5.129) as , and the last term as . Thus, the expres-
sion (5.129) reduces to

In summary, if  is an  matrix whose elements are constants, , and  is a column vec-
tor with n elements, the solution of

(5.130)
with initial condition

(5.131)
is

(5.132)

Therefore, the solution of second or higher order systems using the state variable method, entails

the computation of the state transition matrix , and integration of (5.132).

5.10 Computation of the State Transition Matrix 

Let  be an  matrix, and  be the  identity matrix. By definition, the eigenvalues ,
 of  are the roots of the nth order polynomial

(5.133)

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of
(5.133) can be real (unequal or equal), or complex numbers.

Evaluation of the state transition matrix  is based on the Cayley−Hamilton theorem. This theo-
rem states that a matrix can be expressed as an  degree polynomial in terms of the matrix

 as

(5.134)

x· t( ) Ae
A t t0–( )

x0 AeAt e A– τbu τ( ) τd
t0

t

∫ eAte A– tbu t( )+ +=

x· t( ) A e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+ eAte A– tbu t( )+=

x t( ) bu t( )

x· t( ) Ax bu+=

A n n× n 2≥ b

x· t( ) Ax bu+=

x0 x t0( )=

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

eAt

eAt

A n n× I n n× λi

i 1 2 … n, , ,= A

det A λI–[ ] 0=

eAt

n 1–( )th
A

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=
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where the coefficients  are functions of the eigenvalues . We accept (5.134) without proving
it. The proof can be found in Linear Algebra and Matrix Theory textbooks.

Since the coefficients  are functions of the eigenvalues , we must consider the following cases:

Case I: Distinct Eigenvalues (Real or Complex)

If , that is, if all eigenvalues of a given matrix  are distinct, the
coefficients  are found from the simultaneous solution of the following system of equa-
tions:

(5.135)

Example 5.16  

Compute the state transition matrix  given that 

Solution:

We must first find the eigenvalues  of the given matrix . These are found from the expansion
of

For this example,

or

Therefore,
(5.136)

Next, we must find the coefficients  of (5.134). Since  is a  matrix, we only need to con-
sider the first two terms of that relation, that is,

ai λ

ai λ

λ1 λ2 λ3 … λn≠ ≠ ≠ ≠ A

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

eAt A 2– 1
0 1–

=

λ A

det A λI–[ ] 0=

det A λI–[ ] det 2– 1
0 1–

λ 1 0
0 1

–
⎩ ⎭
⎨ ⎬
⎧ ⎫

det 2– λ– 1
0 1– λ–

0= = =

2– λ–( ) 1– λ–( ) 0==

λ 1+( ) λ 2+( ) 0=

λ1 1  and  λ2 2–=–=

ai A 2 2×
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(5.137)

The coefficients  and  are found from (5.135). For this example,

or

(5.138)

Simultaneous solution of (5.138) yields

(5.139)

and by substitution into (5.137),

or

(5.140)

In summary, we compute the state transition matrix  for a given matrix  using the following
procedure:
1. We find the eigenvalues  from . We can write  at once by subtract-

ing  from each of the main diagonal elements of . If the dimension of  is a  matrix,
it will yield two eigenvalues; if it is a  matrix, it will yield three eigenvalues, and so on. If
the eigenvalues are distinct, we perform steps 2 through 4 below; otherwise we refer to Case
II.

2. If the dimension of  is a  matrix, we use only the first 2 terms of the right side of the
state transition matrix 

(5.141)

If  matrix is a  matrix, we use the first 3 terms, and so on.

eAt a0I a1A+=

a0 a1

a0 a1λ1+ e
λ1t

=

a0 a1λ2+ e
λ2t

=

a0 a1 1–( )+ e t–=

a0 a1 2–( )+ e 2t–=

a0 2e t– e 2t––=

a1 e t– e 2t––=

eAt 2e t– e 2t––( ) 1 0
0 1

e t– e 2t––( ) 2– 1
0 1–

+=

eAt e 2t– e t– e 2t––

0 e t–
=

eAt A

λ det A λI–[ ] 0= A λI–[ ]
λ A A 2 2×

3 3×

A 2 2×

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

A 3 3×
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3. We obtain the  coefficients from

We use as many equations as the number of the eigenvalues, and we solve for the coefficients
.

4. We substitute the  coefficients into the state transition matrix of (5.141), and we simplify.

Example 5.17  

Compute the state transition matrix  given that

(5.142)

Solution:

1. We first compute the eigenvalues from . We obtain  at once, by sub-
tracting  from each of the main diagonal elements of . Then,

(5.143)

and expansion of this determinant yields the polynomial

 (5.144)

We will use MATLAB roots(p) function to obtain the roots of (5.144).

p=[1  −6  11  −6]; r=roots(p); fprintf(' \n'); fprintf('lambda1 = %5.2f \t', r(1));...
fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))

lambda1 = 3.00   lambda2 = 2.00   lambda3 = 1.00

and thus the eigenvalues are

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

ai

ai

eAt

A
5 7 5–
0 4 1–
2 8 3–

=

det A λI–[ ] 0= A λI–[ ]
λ A

det A λI–[ ] det
5 λ– 7 5–

0 4 λ– 1–
2 8 3– λ–

0= =

λ3 6λ2 11λ 6–+– 0=



Chapter 5  Differential Equations, State Variables, and State Equations

5−34 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

(5.145)

2. Since  is a  matrix, we need to use the first  terms of (5.134), that is,

(5.146)

3. We obtain the coefficients  from 

or

(5.147)

We will use the following MATLAB script for the solution of (5.147).

B=sym('[1  1  1; 1  2  4; 1  3  9]'); b=sym('[exp(t); exp(2*t); exp(3*t)]'); a=B\b; fprintf(' \n');...
disp('a0 = '); disp(a(1)); disp('a1 = '); disp(a(2)); disp('a2 = '); disp(a(3))

a0 = 
3*exp(t)-3*exp(2*t)+exp(3*t)
a1 = 
-5/2*exp(t)+4*exp(2*t)-3/2*exp(3*t)
a2 = 
1/2*exp(t)-exp(2*t)+1/2*exp(3*t)

Thus,

(5.148)

4. We also use MATLAB to perform the substitution into the state transition matrix, and to per-
form the matrix multiplications. The script is shown below.

syms t; a0 = 3*exp(t)+exp(3*t)−3*exp(2*t); a1 = −5/2*exp(t)−3/2*exp(3*t)+4*exp(2*t);...
a2 = 1/2*exp(t)+1/2*exp(3*t)−exp(2*t);...
A = [5  7  −5;  0  4  −1;  2  8  −3]; eAt=a0*eye(3)+a1*A+a2*A^2

λ1 1= λ2 2= λ3 3=

A 3 3× 3

eAt a0I a1A a2A2+ +=

a0 a1 and a2, ,

a0 a1λ1 a2λ1
2+ + e

λ1t
=

a0 a1λ2 a2λ2
2+ + e

λ2t
=

a0 a1λ3 a2λ3
2+ + e

λ3t
=

a0 a1 a2+ + et=

a0 2a1 4a2+ + e2t=

a0 3a1 9a2+ + e3t=

a0 3et 3e2t– e3t+=

a1
5
2
---et– 4e2t 3

2
---e3t–+=

a2
1
2
---et e2t–

1
2
---e3t+=
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eAt =
[-2*exp(t)+2*exp(2*t)+exp(3*t),-6*exp(t)+5*exp(2*t)+exp(3*t),
4*exp(t)-3*exp(2*t)-exp(3*t)]
[-exp(t)+2*exp(2*t)-exp(3*t),-3*exp(t)+5*exp(2*t)-exp(3*t),
2*exp(t)-3*exp(2*t)+exp(3*t)]
[-3*exp(t)+4*exp(2*t)-exp(3*t),-9*exp(t)+10*exp(2*t)-exp(3*t),
6*exp(t)-6*exp(2*t)+exp(3*t)]

Thus,

Case II: Multiple Eigenvalues

In this case, we will assume that the polynomial of

(5.149)

has  roots, and  of these roots are equal. In other words, the roots are 

(5.150)

The coefficients  of the state transition matrix

(5.151)

are found from the simultaneous solution of the system of equations of (5.152) below.

Example 5.18  

Compute the state transition matrix  given that

Solution:

1. We first find the eigenvalues  of the matrix  and these are found from the polynomial of
. For this example,

eAt
2et– 2e2t e3t+ + 6– et 5e2t e3t+ + 4et 3e2t– e3t–

et– 2e2t e3t–+ 3et– 5e2t e3t–+ 2et 3e2t– e3t+

3et– 4e2t e3t–+ 9et– 10e2t e3t–+ 6et 6e2t– e3t+

=

det A λI–[ ] 0=

n m

λ1 λ2= λ3= … λm,  λm 1+  ,  λn=

ai

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

eAt

A 1– 0
2 1–

=

λ A
det A λI–[ ] 0=
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(5.152)

and thus,

2. Since  is a  matrix, we only need the first two terms of the state transition matrix, that
is,

(5.153)

3. We find  and  from (5.152). For this example,

or

and by substitution with , we obtain

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

d
dλ1
--------- a0 a1λ1 a2λ1

2 … an 1– λ1
n 1–+ + + +( ) d

dλ1
--------e

λ1t
=

d 2

dλ1
2

-------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d 2

dλ1
2

--------e
λ1t

=

…

d m 1–

dλ1
m 1–

--------------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d m 1–

dλ1
m 1–

---------------e
λ1t

=

a0 a1λm 1+ a2λm 1+
2 … an 1– λm 1+

n 1–+ + + + e
λ m 1+ t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

det A λI–[ ] det 1– λ– 0
2 1– λ–

0= =

1– λ–( ) 1– λ–( ) 0==

λ 1+( )2 0==

λ1 λ2 1–= =

A 2 2×

eAt a0I a1A+=

a0 a1

a0 a1λ1+ e
λ1t

=

d
dλ1
--------- a0 a1λ1+( ) d

dλ1
---------e

λ1t
=

a0 a1λ1+ e
λ1t

=

a1 te
λ1t

=

λ1 λ2 1–= =
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Simultaneous solution of the last two equations yields

(5.154)

4. By substitution of (5.154) into (5.153), we obtain 

(5.155)

We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix. To find out
how it is used, we invoke the help eig command.

We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.16 through
5.18, and we will briefly discuss eigenvectors on the next section.

For Example 5.16:

A= [−2  1; 0  −1]; lambda=eig(A)

lambda =
    -2
    -1

For Example 5.17:

B = [5  7  −5;  0  4  −1;  2  8  −3]; lambda=eig(B)

lambda =
    1.0000
    3.0000
    2.0000

For Example 5.18:

C = [−1  0; 2  −1]; lambda=eig(C)

lambda =
    -1
    -1

a0 a1– e t–=

a1 te t–=

a0 e t– te t–+=

a1 te t–=

eAt e t– te t–+( ) 1 0
0 1

te t– 1– 0
2 1–

+ eAt e t– 0

2te t– e t–
= = =

n n×
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5.11 Eigenvectors
Consider the relation

(5.156)

where  is an  matrix,  is a column vector, and  is a scalar number. We can express this
relation in matrix form as

 (5.157)

We write (5.157) as
(5.158)

or

(5.159)

The equations of (5.159) will have non−trivial solutions if and only if its determinant is zero*, that
is, if

(5.160)

Expansion of the determinant of (5.160) results in a polynomial equation of degree  in , and it
is called the characteristic equation.

We can express (5.160) in a compact form as

(5.161)

As we know, the roots  of the characteristic equation are the eigenvalues of the matrix , and
corresponding to each eigenvalue , there is a non−trivial solution of the column vector , i.e.,

*. This is because we want the vector X in (5.158) to be a non−zero vector and the product  to be zero.

AX λX=

A n n× X λ

a11 a12 … a1n

a21 a22 … a2n

… … … …
an1 an2 … ann

x1

x2

…
xn

λ

x1

x2

…
xn

=

A λI–( )X 0=

a11 λ–( )x1 a12x2 … a1nxn

a21x1 a22 λ–( )x2 … a2nxn

… … … …
an1x1 an2x2 … ann λ–( )xn

0=

A λI–( )X

det

a11 λ–( ) a12 … a1n

a21 a22 λ–( ) … a2n

… … … …
an1 an2 … ann λ–( )

0=

n λ

det A λI–( ) 0=

λ A
λ X
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Eigenvectors

. This vector  is called eigenvector. Obviously, there is a different eigenvector for each
eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to
unit length. This is done by dividing each component of the eigenvector by the square root of the
sum of the squares of their components, so that the sum of the squares of their components is
equal to unity.

In many engineering applications the unit eigenvectors are chosen such that  where

 is the transpose of the eigenvector , and  is the identity matrix.

Two vectors  and  are said to be orthogonal if their inner (dot) product is zero. A set of eigen-
vectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors)
and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram−
Schmidt Orthogonalization Procedure; it is discussed in Chapter 14.

The example which follows, illustrates the relationships between a matrix , its eigenvalues, and
eigenvectors.

Example 5.19  
Given the matrix

a. Find the eigenvalues of 

b. Find eigenvectors corresponding to each eigenvalue of 

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.17, where we found the eigenvalues to be

b. We begin with

and we let

Then,

X 0≠ X

X XT⋅ I=

XT X I

X Y

A

A
5 7 5–
0 4 1–
2 8 3–

=

A

A

λ1 1= λ2 2= λ3 3=

AX λX=

X
x1

x2

x3

=



Chapter 5  Differential Equations, State Variables, and State Equations

5−40 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

(5.162)

or

(5.163)

Equating corresponding rows and rearranging, we obtain

(5.164)

For , (5.164) reduces to

(5.165)

By Crame’s rule, or MATLAB, we obtain the indeterminate values

(5.166)

Since the unknowns  are scalars, we can assume that one of these, say , is
known, and solve  and  in terms of . Then, we obtain , and . 

Therefore, an eigenvector for  is

(5.167)

since any eigenvector is a scalar multiple of the last vector in (5.167).

Similarly, for , we obtain , and . Then, an eigenvector for  is

5 7 5–
0 4 1–
2 8 3–

x1

x2

x3

λ
x1

x2

x3

=

5x1 7x2 5x3–

0 4x2 x3–

2x1 8x2 3x3–

λx1

λx2

λx3

=

5 λ–( )x1 7x2 5x3–

0 4 λ–( )x2 x3–

2x1 8x2 3 λ–( )x3–

0
0
0

=

λ 1=

4x1 7x2 5x3–+ 0=

3x2 x3– 0=

2x1 8x2 4x3–+ 0=

x1 0 0⁄= x2 0 0⁄= x3 0 0⁄=

x1 x2  and x3, , x2

x1 x3 x2 x1 2x2= x3 3x2=

λ 1=

Xλ 1=

x1

x2

x3

=
2x2

x2

3x2

x2

2
1
3

2
1
3

= = =

λ 2= x1 x2= x3 2x2= λ 2=
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Eigenvectors

(5.168)

Finally, for , we obtain , and . Then, an eigenvector for  is

(5.169)

c. We find the unit eigenvectors by dividing the components of each vector by the square root of
the sum of the squares of the components. These are:

The unit eigenvectors are

 (5.170)

We observe that for the first unit eigenvector the sum of the squares is unity, that is,

(5.171)

and the same is true for the other two unit eigenvectors in (5.170).

Xλ 2=

x1

x2

x3

=
x2

x2

2x2

x2

1
1
2

1
1
2

= = =

λ 3= x1 x– 2= x3 x2= λ 3=

Xλ 3=

x1

x2

x3

=
x– 2

x2

x2

x2

1–
1
1

1–
1
1

= = =

22 12 32+ + 14=

12 12 22+ + 6=

1–( )2 12 12+ + 3=

Unit Xλ 1=

2
14

----------

1
14

----------

3
14

----------

= Unit Xλ 2=

1
6

-------

1
6

-------

2
6

-------

= Unit Xλ 3=

1–

3
-------

1
3

-------

1
3

-------

=

2
14

----------⎝ ⎠
⎛ ⎞ 2 1

14
----------⎝ ⎠
⎛ ⎞ 2 3

14
----------⎝ ⎠
⎛ ⎞ 2

+ + 4
14
------ 1

14
------ 9

14
------+ + 1= =
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5.12 Summary
• Differential equations are classified by:

Type − Ordinary or Partial

Order − The highest order derivative which is included in the differential equation

Degree − The exponent of the highest power of the highest order derivative after the differen-
tial equation has been cleared of any fractions or radicals in the dependent variable and its
derivatives

• If the dependent variable  is a function of only a single variable , that is, if , the
differential equation which relates  and  is said to be an ordinary differential equation and
it is abbreviated as ODE.

• If the dependent variable  is a function of two or more variables such as , where 
and  are independent variables, the differential equation that relates , , and  is said to be
a partial differential equation and it is abbreviated as PDE.

• A function  is a solution of a differential equation if the latter is satisfied when  and
its derivatives are replaced throughout by  and its corresponding derivatives. Also, the
initial conditions must be satisfied.

• The ODE

is a non−homogeneous differential equation if the right side, known as forcing function, is not
zero. If the forcing function is zero, the differential equation is referred to as homogeneous dif-
ferential equation.

• The most general solution of an homogeneous ODE is the linear combination

where the subscript  is used to denote homogeneous and  are arbitrary con-
stants.

• Generally, in engineering the solution of the homogeneous ODE, also known as the comple-
mentary solution, is referred to as the natural response, and is denoted as  or simply .
The particular solution of a non−homogeneous ODE is be referred to as the forced response,
and is denoted as  or simply . The total solution of the non−homogeneous ODE is the
summation of the natural and forces responses, that is,

y x y f x( )=

y x

y y f x t,( )= x
t y x t

y f x( )= y
f x( )

an
d ny
dtn
--------- an 1–

d n 1– y
dt n 1–
---------------- … a1

dy
dt
------ a0 y+ + + + bm

d mx
dt m
---------- bm 1–

d m 1– x
dt n 1–
----------------- … b1

dx
dt
------ b0x+ + + +=

yH t( ) k1 y1 t( ) k2 y2 t( ) k3 y3 t( ) … kn yn t( )+ + + +=

H k1 k2 k3 … kn, , , ,

yN t( ) yN

yF t( ) yF
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Summary

The natural response  contains arbitrary constants and these can be evaluated from the
given initial conditions. The forced response , however, contains no arbitrary constants. It is
imperative to remember that the arbitrary constants of the natural response must be evaluated
from the total response.

• For an  order homogeneous differential equation the solutions are

where  are the solutions of the characteristic equation

and  are the constant coefficients of the ODE

• If the roots of the characteristic equation are distinct, the  solutions of the natural response
are independent and the most general solution is:

• If the solution of the characteristic equation contains  equal roots, the most general solution
has the form:

• If the characteristic equation contains complex roots, these occur as complex conjugate pairs.
Thus, if one root is  where  and  are real numbers, then another root is

. Then, for two complex conjugate roots we evaluate the constants from the
expressions

• The forced response of a non−homogeneous ODE can be found by the method of undeter-
mined coefficients or the method of variation of parameters.

• With the method of undetermined coefficients, the forced response is a function similar to the
right side of the non−homogeneous ODE. The form of the forced response for second order
non−homogeneous ODEs is given in Table 5.1.

• In certain non−homogeneous ODEs, the right side  cannot be determined by the method
of undetermined coefficients. For these ODEs we must use the method of variation of parame-

y t( ) y Natural
Response

y Forced
Response

+ yN yF+= =

yN

yF

nth

y1 k1e
s1t

= y2 k2e
s2t

= y3 k3e
s3t

= … yn kne
snt

=, , , ,

s1 s2 … sn, , ,

an sn an 1– sn 1– … a1 s a0+ + + + 0=

an an 1– … a1 a0, , , ,

n

yN k1e
s1t

= k2e
s2t

… kne
snt

+ + +

m

yN k1 k2t … kmtm 1–+ + +( ) e
s1t

= kn i– e
s2t

… kne
snt

+ + +

s1 α– jβ+= α β

s2 α– j– β=

k1e
s1t

k2e
s2t

+ e α t– k3 βtcos k4 βsin t+( ) e α t– k5 βt ϕ+( )cos==

f t( )
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ters. This method will work with all linear equations including those with variable coefficients
provided that the general form of the natural response is known.

• For second order ODEs with constant coefficients, the method of variation of parameters
replaces the constants  and  by two variables  and  that satisfy the following three
relations:

Simultaneous solution of last two expressions above will yield the values of  and
; then, integration of these will produce  and , which when substituted into the

first will yield the total solution.

• An nth−order differential equation can be resolved to  first−order simultaneous differential
equations with a set of auxiliary variables called state variables. The resulting first−order differ-
ential equations are called state space equations, or simply state equations. 

• The state representation of a system can be described by the pair of the of the state space
equations

• In a system of state equations of the form

where , , , and  are scalar constants, and the initial condition, if non−zero is denoted
as , the solution of the first state equation above is

• In a system of state equations of the form

k1 k2 u1 u2

y u1 y1 u2 y2+=

du1
dt
------- y1

du2
dt

-------- y2+ 0=

du1
dt

--------
dy1
dt

--------⋅
du2
dt

--------
dy2
dt

--------⋅+ f t( )=

du1 dt⁄

du2 dt⁄ u1 u2

n

x· Ax bu+=

y Cx du+=

x· αx βu+=

y k1x k2u+=

α β k1 k2

x0 x t0( )=

x t( ) e
α t t0–( )

x0 eαt e ατ– βu τ( ) τd
t0

t

∫+=

x· Ax bu+=

y Cx du+=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 5−45
Copyright © Orchard Publications

Summary

where for two or more simultaneous differential equations  and  are  or higher order
matrices, and  and  are column vectors with two or more rows, the solution of the matrix
differential equation  with initial conditions  is obtained from the
relation

where the state transition matrix  is defined as the matrix power series

and  is the  identity matrix.

• If  is an  matrix, and  be the  identity matrix, the eigenvalues ,  of
 are the roots of the nth order polynomial

• Evaluation of the state transition matrix  is based on the Cayley−Hamilton theorem. This
theorem states that a matrix can be expressed as an  degree polynomial in terms of the
matrix  as

where the coefficients  are functions of the eigenvalues .

• If , that is, if all eigenvalues of a given matrix  are distinct, the coeffi-
cients  are found from the simultaneous solution of the following system of equations:

• If the polynomial of  has  roots, and  of these roots are equal, that is, if
, the coefficients  of the state transition matrix

A C 2 2×
b d

x· Ax bu+= x t0( ) x0=

x t( ) e
A t t0–( )

x0 eAt e A– τbu τ( ) τd
t0

t

∫+=

eAt

ϕ t( ) eAt I At 1
2!
-----A2t2 1

3!
-----A3t3 … 1

n!
-----Antn+ + + + +=≡

I n n×

A n n× I n n× λi i 1 2 … n, , ,=

A

det A λI–[ ] 0=

eAt

n 1–( )th
A

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=

ai λ

λ1 λ2 λ3 … λn≠ ≠ ≠ ≠ A

ai

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

a0 a1λ2 a2λ2
2 … an 1– λ2

n 1–+ + + + e
λ2t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

det A λI–[ ] 0= n m
λ1 λ2= λ3= … λm,  λm 1+  ,  λn= ai

eAt a0I a1A a2A2 … an 1– An 1–+ + + +=
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are found from the simultaneous solution of the system of equations below.

• We can use the MATLAB eig(x) function to find the eigenvalues of an  matrix.

• If  is an  matrix,  is a non−zero column vector, and  is a scalar number, the vector
 is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue. Eigen-

vectors are generally expressed as unit eigenvectors, that is, they are normalized to unit length.
This is done by dividing each component of the eigenvector by the square root of the sum of
the squares of their components, so that the sum of the squares of their components is equal to
unity.

a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + + e
λ1t

=

d
dλ1
--------- a0 a1λ1 a2λ1

2 … an 1– λ1
n 1–+ + + +( ) d

dλ1
--------e

λ1t
=

d 2

dλ1
2

-------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d 2

dλ1
2

--------e
λ1t

=

…

d m 1–

dλ1
m 1–

--------------- a0 a1λ1 a2λ1
2 … an 1– λ1

n 1–+ + + +( ) d m 1–

dλ1
m 1–

---------------e
λ1t

=

a0 a1λm 1+ a2λm 1+
2 … an 1– λm 1+

n 1–+ + + + e
λ m 1+ t

=

…

a0 a1λn a2λn
2 … an 1– λn

n 1–+ + + + e
λnt

=

n n×

A n n× X λ
X
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Exercises

5.13 Exercises
Solve the following ODEs by any method and verify your answers with MATLAB.

1.

 
2.

3.  Hint: Use 

4.

5 Express the integro−differential equation below as a matrix of state equations where
 are constants.

6. Express the matrix of the state equations below as a single differential equation, and let
.

7. Compute the eigenvalues of the matrices , , and  below.

Hint: One of the eigenvalues of matrix C is .

d2y
dt2
-------- 4dy

dt
------ 3y+ + t 1–=

d2y
dt2
-------- 4dy

dt
------ 3y+ + 4e t–=

d2y
dt2
-------- 2dy

dt
------ y+ + t2cos= t2cos 1

2
--- 2t 1+cos( )=

d2y
dt2
-------- y+ tsec=

k1 k2  and k3, ,

dv2

dt2
-------- k3

dv
dt
------ k2v k1 v td

0

t

∫+ + + 3tsin 3tcos+=

x y( ) y t( )=

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
1– 2– 3– 4–

x1

x2

x3

x4

⋅

0
0
0
1

u t( )+=

A B C

A 1 2
3 1–

= B a 0
a– b

= C
0 1 0
0 0 1
6– 11– 6–

=

1–
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8. Compute  given thateAt

A
0 1 0
0 0 1
6– 11– 6–

=
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Solutions to End−of−Chapter Exercises

5.14 Solutions to End−of−Chapter Exercises

1. The characteristic equation of the homogeneous part is  from which 

and . Thus . For the forced response, we refer to Table 5.1 and we
assume a solution of the form  and the total solution is

The first and second derivatives of  are

and by substitution into the given ODE

Equating like terms we obtain

and simultaneous solution of the last two yields  and . Therefore,

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=t−1’); y=simple(y)

y =
 -7/9+1/3*t+C1/exp(t)+C2/exp(t)^3

2. The characteristic equation of the homogeneous part is the same as for Exercise 1 and thus

. For the forced response, we refer to Table 5.1 and we assume a solution of

the form  where we multiplied  by  to avoid the duplication with . By sub-
stitution of this assumed solution into the given ODE and using MATLAB to find the first and
second derivatives we obtain:

s2 4s 3+ + 0= s1 1–=

s2 3–= yN k1e t– k2e 3t–+=

yF k3t k4+=

y k1e t– k2e 3t– k3t k4+ + +=

y

dy dt⁄ k1e t–– 3k2e 3t–– k3+=

d 2y dt2⁄ k1e t– 9k2e 3t–+=

k1e t– 9k2e 3t– 4 k1e t–– 3k2e 3t–– k3+( ) 3 k1e t– k2e 3t– k3t k4+ + +( )+ + + t 1–=

4k3 3k3t 3k4+ + t 1–=

3k3t t=

4k3 3k4+ 1–=

k3 1 3⁄= k4 7 9⁄–=

y k1e t– k2e 3t– 1
3
---t 7

9
---–+ +=

yN k1e t– k2e 3t–+=

yF k3te t–= e t– t k1e t–

y k1e t– k2e 3t– k3te t–+ +=
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We will use MATLAB to find the first and second derivatives of this expression.

syms t k3 % Define symbolic variables
y0=k3*t*exp(−t); % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative

f1 =
-k3*exp(-t)*(-1+t)

Thus, the first derivative of  is

y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
k3*exp(-t)*(-2+t)

and the second derivative of  is

f=y2+4*y1+3*y0; f=simple(f) % Form and simplify the left side of the given ODE

f =
2*k3/exp(t)

and by substitution into the given ODE

or . Therefore,

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=4*exp(−t)'); y=simple(y)

2*t/exp(t)-1/exp(t)+C1/exp(t)+C2/exp(t)^3

We observe that the second and third terms of the displayed expression above have the same
form and thus they can be combined to form a single term C3/exp(t).

3. The characteristic equation yields two equal roots  and thus the natural response
has the form

For the forced response we assume a solution of the form

yF

dyF dt⁄ k3e t– k3te t––=

y

d 2yF dt2⁄ 2k3e t–– k3te t–+=

2k3e t– 4e t–=

k3 2=

y k1e t– k2e 3t– 2te t–+ +=

s1 s2 1–= =

yN k1e t– k2te t–+=

yF k3 2t k4 2t k5+sin+cos=
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Solutions to End−of−Chapter Exercises

We will use MATLAB to find the first and second derivatives of this expression.

syms t k1 k2 k3 k4 k5 % Define symbolic variables
y0=k3*cos(2*t)+k4*sin(2*t)+k5; % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative

f1 =
-2*k3*sin(2*t)+2*k4*cos(2*t)

Thus, the first derivative of  is

y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
-4*k3*cos(2*t)-4*k4*sin(2*t)

and the second derivative of  is

f=y2+2*y1+y0; f=simple(f) % Form and simplify the left side of the given ODE

f =
-3*k3*cos(2*t)-3*k4*sin(2*t)-4*k3*sin(2*t)+4*k4*cos(2*t)+k5

Simplifying this expression and equating with the right side of the given ODE we obtain:

Equating like terms and solving for the  terms we obtain

Simultaneous solution of the first two equations above yields  and .
Therefore, the forced response is 

and the total response is

Check with MATLAB:

yF

dyF dt⁄ 2k– 3 2tsin 2k4 2tcos+=

y

d 2yF dt2⁄ 4k3 2tcos– 4k4– 2tsin=

3k3– 4k4+( ) 2tcos 4k3 3k4+( ) 2t k5+sin– 2tcos
2

------------- 1
2
---+=

k

3k3– 4k4+ 1 2⁄=

4k3– 3k4– 0=

k5 1 2⁄=

k3 3– 50⁄= k4 4 50⁄=

yF 3– 50⁄( ) 2t 4 50⁄( ) 2t 1 2⁄+sin+cos=

y k1e t– k2te t– 1
2
--- 3 2tcos 4 2tsin–

50
---------------------------------------–+ +=
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y=dsolve('D2y+2*Dy+y=cos(2*t)/2+1/2'); f=simple(y)

f =
-3/50*cos(2*t)+2/25*sin(2*t)+1/2+C1*exp(-t)+C2*exp(-t)*t

4. It is very difficult, if not impossible, to assume a solution for the forced response of this ODE.
Therefore, we will use the method of variation of parameters.

The characteristic equation is  from which  and thus the natural response is

We let

Then, by (5.68) the solution is
  (1)

Also, from (5.69),

or

and from (5.70),

Next, we find  and  by Cramer’s rule as follows:

  (2)

and

  (3)

Integration of (2) and (3) above and substitution into (1) yields

s2 1+ 0= s j±=

yN k1e jt k2e j– t+=

y1 tcos=   and  y2 tsin=

y u1y1 u2y2 + u1 tcos u2 tsin  += =

du1
dt

--------y1
du2
dt

--------y2+ 0=

  
du1
dt

-------- tcos
du2
dt

-------- tsin+ 0=

du1
dt

--------
dy1
dt

--------⋅
du2
dt

--------
dy2
dt

--------⋅+ f t( )
du1
dt

--------= = tsin–( )
du2
dt

-------- tcos( )+ tsec=

du1 dt⁄ du2 dt⁄

du1
dt

--------

0 tsin
tsec tcos
tcos tsin
tsin– tcos

-----------------------------------------

tsin
tcos

----------–

t2cos t2sin+
------------------------------- ttan–

1
------------- ttan–= = = =

du2
dt

--------

tcos 0
tsin– tsec

1
----------------------------------------- 1

1
--- 1= = =

u1 ttan–( ) td∫ tcosln–( )– k1+ tcosln k1+= = =

u2 td∫ t k2+= =



Numerical Analysis Using MATLAB® and Excel®, Third Edition 5−53
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

Check with MATLAB:

y=dsolve('D2y+y=sec(t)'); f=simple(y)

f =
sin(t)*t+log(cos(t))*cos(t)+C1*sin(t)+C2*cos(t)

5. Differentiating the given integro−differential equation with respect to  we obtain

or

  (1)

We let

Then, 

and by substitution into (1)

Thus, the state equations are

and in matrix form

y u1y1 u2y2 + tcosln k1+( ) tcos t k2+( ) tsin+= =

k1 tcos k2 tsin t tsin t tcosln( )cos+ + +=

t

dv3

dt3
-------- k3

dv2

dt2
-------- k2

dv
dt
------ k1v+ + + 3 3t 3 3tsin–cos 3 3t 3tsin–cos( )= =

dv3

dt3
-------- k3

dv2

dt2
--------–= k2– dv

dt
------ k1– v 3 3t 3tsin–cos( )+

v x1= dv
dt
------ x2 x1

·
= = dv2

dt2
-------- x3 x2

·
= =

dv3

dt3
-------- x3

·=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos( )+=

x1
· x2=

x2
· x3=

x3
· k1x1– k2x2– k3x3– 3 3t 3tsin–cos( )+=

x1
·

x2
·

x3
·

0 1 0
0 0 1
k1– k2– k– 3

x1

x2

x3

⋅
0
0
1

3 3t 3tsin–cos( )⋅+=
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6. Expansion of the given matrix yields

            

 Letting  we obtain

7.
a.

, , , and thus 
b.

, and thus 
c.

 and it is given that . Then,

and thus 

8.
a. Matrix  is the same as Matrix C in Exercise 7. Then,

x1
· x2= x2

· x3= x3
· x2= x4

· x– 1 2x2– 3x3– 4x4– u t( )+=

x y=

dy4

dt4
-------- 4 dy3

dt3
-------- 3dy2

dt2
-------- 2dy

dt
------ y+ + ++ u t( )=

A 1 2
3 1–

= det A λI–( ) det 1 2
3 1–

λ 1 0
0 1

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

det 1 λ– 2
3 1– λ–

0= = =

1 λ–( ) 1– λ–( ) 6– 0= 1– λ– λ λ2 6–+ + 0= λ2 7= λ1 7= λ2 7–=

B a 0
a– b

= det B λI–( ) det a 0
a– b

λ 1 0
0 1

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

det a λ– 0
a– b λ–

0= = =

a λ–( ) b λ–( ) 0= λ1 a= λ2 b=

C
0 1 0
0 0 1
6– 11– 6–

= det C λI–( ) det
0 1 0
0 0 1
6– 11– 6–

λ
1 0 0
0 1 0
0 0 1

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

det
λ– 1 0
0 λ– 1
6– 11– 6 λ––

0==

λ2 6– λ–( ) 6– 11–( ) λ–( )– λ3 6λ2 11λ 6+ + + 0= = λ1 1–=

λ3 6λ2 11λ 6+ + +
λ 1+( )

---------------------------------------------- λ2 5λ 6+ + λ 1+( ) λ 2+( ) λ 3+( )⇒ 0= =

λ1 1–= λ2 2–= λ1 3–=

A

λ1 1–= λ2 2–= λ1 3–=
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and since  is a  matrix the state transition matrix is

  (1)
Then,

syms t; A=[1  −1  1; 1  −2  4; 1  −3  9];...
a=sym('[exp(−t); exp(−2*t); exp(−3*t)]'); x=A\a; fprintf(' \n');...
disp('a0 = '); disp(x(1)); disp('a1 = '); disp(x(2)); disp('a2 = '); disp(x(3))

a0 = 
3*exp(-t)-3*exp(-2*t)+exp(-3*t)
a1 = 
5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t)
a2 = 
1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)
Thus, 

Now, we compute  of (1) with the following MATLAB code:

syms t; a0=3*exp(−t)−3*exp(−2*t)+exp(−3*t); a1=5/2*exp(−t)−4*exp(−2*t)+3/2*exp(−3*t);...
a2=1/2*exp(−t)−exp(−2*t)+1/2*exp(−3*t); A=[0 1 0; 0 0 1; −6 −11 −6]; fprintf(' \n');...
eAt=a0*eye(3)+a1*A+a2*A^2

eAt =
[3*exp(-t)-3*exp(-2*t)+exp(-3*t), 5/2*exp(-t)-4*exp(-2*t)+3/
2*exp(-3*t), 1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t)]
[-3*exp(-t)+6*exp(-2*t)-3*exp(-3*t), -5/2*exp(-t)+8*exp(-
2*t)-9/2*exp(-3*t),  -1/2*exp(-t)+2*exp(-2*t)-3/2*exp(-3*t)]
[3*exp(-t)-12*exp(-2*t)+9*exp(-3*t), 5/2*exp(-t)-16*exp(-
2*t)+27/2*exp(-3*t),   1/2*exp(-t)-4*exp(-2*t)+9/2*exp(-
3*t)]

Then,

A 3 3×

eAt a0I a1A a2A2+ +=

a0 a1λ1 a2λ1
2+ + e

λ1t
= a0 a1– a2+ e t–=⇒

a0 a1λ2 a2λ2
2+ + e

λ2t
= a0 2a1– 4a2+ e 2t–=⇒

a0 a1λ3 a2λ3
2+ + e

λ3t
= a0 3a1– 9a2+ e 3t–=⇒

a0 3e t– 3e 2t–– 3e 3t–+=

a1 2.5e t– 4e 2t–– 1.5e 3t–+=

a2 0.5e t– e 2t–– 0.5e 3t–+=

eAt



Chapter 5  Differential Equations, State Variables, and State Equations

5−56 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

eAt
3e t– 3e 2t–– e 3t–+ 2.5e t– 4e 2t–– 1.5e 3t–+ 0.5e t– e 2t–– 0.5e 3t–+

3– e t– 6e 2t– 3e 3t––+ 2.5– e t– 8e 2t– 4.5e 3t––+ 0.5– e t– 2e 2t– 1.5e 3t––+

3e t– 12e 2t–– 9e 3t–+ 2.5e t– 16e 2t–– 13.5e 3t–+ 0.5e t– 4e 2t–– 4.5e 3t–+

=
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Chapter 6

Fourier, Taylor, and Maclaurin Series

his chapter is an introduction to Fourier and power series. We begin with the definition of
sinusoids that are harmonically related and the procedure for determining the coefficients of
the trigonometric form of the series. Then, we discuss the different types of symmetry and

how they can be used to predict the terms that may be present. Several examples are presented to
illustrate the approach. The alternate trigonometric and the exponential forms are also presented. 
We conclude with a discussion on power series expansion with the Taylor and Maclaurin series. 

6.1 Wave Analysis
The French mathematician Fourier found that any periodic waveform, that is, a waveform that
repeats itself after some time, can be expressed as a series of harmonically related sinusoids, i.e.,
sinusoids whose frequencies are multiples of a fundamental frequency (or first harmonic). For
example, a series of sinusoids with frequencies , , , and so on, contains the
fundamental frequency of , a second harmonic of , a third harmonic of ,
and so on. In general, any periodic waveform  can be expressed as

(6.1)

or

(6.2)

where the first term  is a constant, and represents the  (average) component of .
Thus, if  represents some voltage , or current , the term  is the average value of

 or .

The terms with the coefficients  and  together, represent the fundamental frequency compo-

nent *. Likewise, the terms with the coefficients  and  together, represent the second har-
monic component , and so on.

* We recall that  where  is a constant.

T

1 MHz 2 MHz 3 MHz
1 MHz 2 MHz 3 MHz

f t( )

f t( ) 1
2
---a0 a1 ωtcos a2 2ωtcos a3 3ωt a4 4ωtcos+cos …+ + + +=

 + b1 ωtsin b2 2ωtsin b3 3ωt b4 4ωtsin+sin …+ + +

f t( ) 1
2
---a0 an nωtcos bn nωtsin+( )

n 1=

∞

∑+=

a0 2⁄ DC f t( )

f t( ) v t( ) i t( ) a0 2⁄

v t( ) i t( )

a1 b1

ω a2 b2

k1 ωtcos k2 ωtsin+ k ωt θ+( )cos= θ

2ω
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Since any periodic waveform  can be expressed as a Fourier series, it follows that the sum of
the , the fundamental, the second harmonic, and so on, must produce the waveform .
Generally, the sum of two or more sinusoids of different frequencies produce a waveform that is
not a sinusoid as shown in Figure 6.1.

Figure 6.1. Summation of a fundamental, second and third harmonic

6.2 Evaluation of the Coefficients 

Evaluations of  and  coefficients of (6.1) is not a difficult task because the sine and cosine are
orthogonal functions, that is, the product of the sine and cosine functions under the integral evalu-
ated from  to  is zero. This will be shown shortly.

Let us consider the functions  and  where  and  are any integers, and for conve-
nience, we have assumed that . Then,

(6.3)

(6.4)

(6.5)

The integrals of (6.3) and (6.4) are zero since the net area over the 0 to  area is zero. The inte-

gral of (6.5) is also is zero since

f t( )
DC f t( )

0 2 4 6 8 10 12
-3

-2

-1

0

1

2

3

Total
Fundamental

2nd Harmonic

3rd Harmonic

ai bi

0 2π

mtsin mcos t m n
ω 1=

mtsin td
0

2π

∫ 0=

mcos t td
0

2π

∫ 0=

mtsin( ) ntcos( )
0

2π

∫ td 0=

2π
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Evaluation of the Coefficients

This is also obvious from the plot of Figure 6.2, where we observe that the net shaded area above
and below the time axis is zero.

Figure 6.2. Graphical proof of 

Moreover, if  and  are different integers, then,

(6.6)

since

The integral of (6.6) can also be confirmed graphically as shown in Figure 6.3, where  and
. We observe that the net shaded area above and below the time axis is zero.

x ycossin 1
2
--- x y+( )sin x y–( )sin+[ ]=

xsin xcos

xsin xcos⋅

mtsin( ) ntcos( )
0

2π

∫ td 0=

m n

mtsin( ) ntsin( ) td
0

2π

∫ 0=

xsin( ) ysin( ) 1
2
--- x y–( )cos x y–( )cos–[ ]=

m 2=

n 3=

2xsin 3xsin 2xsin 3xsin⋅
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Figure 6.3. Graphical proof of  for  and 

Also, if  and  are different integers, then,

(6.7)

since

The integral of (6.7) can also be confirmed graphically as shown in Figure 6.4, where  and
. We observe that the net shaded area above and below the time axis is zero.

Figure 6.4. Graphical proof of  for  and 

However, if in (6.6) and (6.7), , then,

(6.8)

and

(6.9)

The integrals of (6.8) and (6.9) can also be seen to be true graphically with the plots of Figures 6.5
and 6.6.

It was stated earlier that the sine and cosine functions are orthogonal* to each other. The simpli-

* We will discuss orthogonal functions in Chapter 14

mtsin( ) ntsin( ) td
0

2π

∫ 0= m 2= n 3=

m n

mcos t( ) ntcos( ) td
0

2π

∫ 0=

xcos( ) ycos( ) 1
2
--- x y+( )cos x y–( )cos+[ ]=

m 2=

n 3=

3xcos 2xcos 2xcos 3xcos⋅

mcos t( ) ntcos( ) td
0

2π

∫ 0= m 2= n 3=

m n=

mtsin( )2 td
0

2π

∫ π=

mcos t( )2 td
0

2π

∫ π=
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Evaluation of the Coefficients

fication obtained by application of the orthogonality properties of the sine and cosine functions,
becomes apparent in the discussion that follows.

Figure 6.5. Graphical proof of 

Figure 6.6. Graphical proof of 

In (6.1), for simplicity, we let . Then,

(6.10)

To evaluate any coefficient, say , we multiply both sides of (6.10) by . Then,

xsin
x2sin

mtsin( )2 td
0

2π

∫ π=

xcos

x2cos

mcos t( )2 td
0

2π

∫ π=

ω 1=

f t( ) 1
2
---a0 a1 tcos a2 2tcos a3 3t a4 4tcos+cos …+ + + +=

 + b1 tsin b2 2tsin b3 3t b4 4tsin+sin …+ + +

b2 2tsin

f t( ) 2tsin 1
2
---a0 2tsin a1 t 2tsincos a2 2t 2tsincos a3 3t 2tsin a4 4t 2tsincos+cos …+ + + +=

b1 t 2tsinsin b2 2tsin( )2 b3 3t 2tsin b4 4t 2tsinsin+sin …+ + +
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Next, we multiply both sides of the above expression by , and we integrate over the period  to
. Then, 

(6.11)

We observe that every term on the right side of (6.11) except the term

is zero as we found in (6.6) and (6.7). Therefore, (6.11) reduces to

or

and thus we can evaluate this integral for any given function . The remaining coefficients can
be evaluated similarly. 

The coefficients , , and  are found from the following relations.

(6.12)

(6.13)

(6.14)

dt 0
2π

f t( ) 2tsin td
0

2π

∫
1
2
---a0 2tsin td

0

2π

∫ a1 t 2tsincos td
0

2π

∫ a2 2t 2tsincos td
0

2π

∫+ +=

 + a3 3t 2tsincos td
0

2π

∫ a4 4t 2tsincos td
0

2π

∫ …+ +

 + b1 tsin 2tsin td
0

2π

∫ b2 2tsin( )2 td
0

2π

∫ b3 3tsin 2tsin td
0

2π

∫+ +

 + b4 4tsin 2tsin td
0

2π

∫ …+

b2 2tsin( )2 td
0

2π

∫

f t( ) 2tsin td
0

2π

∫ b2 2tsin( )2 td
0

2π

∫ b2π= =

b2
1
π
--- f t( ) 2tsin td

0

2π

∫=

f t( )

a0 an bn

1
2
---a0

1
2π
------ f t( ) td

0

2π

∫=

an
1
π
--- f t( ) nt tdcos

0

2π

∫=

bn
1
π
--- f t( ) nt tdsin

0

2π

∫=
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Symmetry

The integral of (6.12) yields the average ( ) value of .

6.3 Symmetry
With a few exceptions such as the waveform of Example 6.6, the most common waveforms used
in science and engineering, do not have the average, cosine, and sine terms all present. Some
waveforms have cosine terms only, while others have sine terms only. Still other waveforms have
or have not  components. Fortunately, it is possible to predict which terms will be present in
the trigonometric Fourier series, by observing whether or not the given waveform possesses some
kind of symmetry.

We will discuss three types of symmetry that can be used to facilitate the computation of the trig-
onometric Fourier series form. These are:

1. Odd symmetry − If a waveform has odd symmetry, that is, if it is an odd function, the series will
consist of sine terms only. In other words, if  is an odd function, all the  coefficients
including , will be zero.

2. Even symmetry − If a waveform has even symmetry, that is, if it is an even function, the series
will consist of cosine terms only, and  may or may not be zero. In other words, if  is an
even function, all the  coefficients will be zero.

3. Half−wave symmetry − If a waveform has half−wave symmetry (to be defined shortly), only odd
(odd cosine and odd sine) harmonics will be present. In other words, all even (even cosine and
even sine) harmonics will be zero.

We will now define even and odd functions and we should remember that even functions have
nothing to do with even harmonics, and odd functions have nothing to do with odd harmonics.

A function  is an even function of time if the following relation holds.

(6.15)

that is, if in an even function we replace  with , the function  does not change. Thus,
polynomials with even exponents only, and with or without constants, are even functions. For
instance, the cosine function is an even function because it can be written as the power series*

Other examples of even functions are shown in Figure 6.7.

* We will discuss power series later in this chapter.

DC f t( )

DC

f t( ) ai

a0

a0 f t( )
bi

f t( )

f t–( ) f t( )=

t t– f t( )

tcos 1 t2

2!
----- t4

4!
-----+– t6

6!
-----– …+=
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Figure 6.7. Examples of even functions

A function  is an odd function of time if the following relation holds.

(6.16)

that is, if in an odd function we replace  with , we obtain the negative of the function .
Thus, polynomials with odd exponents only, and no constants are odd functions. For instance,
the sine function is an odd function because it can be written as the power series

Other examples of odd functions are shown in Figure 6.8.

Figure 6.8. Examples of odd functions

We observe that for odd functions, . However, the reverse is not always true; that is, if
, we should not conclude that  is an odd function. An example of this is the function

 in Figure 6.7.

The product of two even or two odd functions is an even function, and the product of an even
function times an odd function, is an odd function.

Henceforth, we will denote an even function with the subscript , and an odd function with the
subscript . Thus,  and  will be used to represent even and odd functions of time
respectively.

Also,

(6.17)

t

f(t)

t

f(t)

t

f(t)

k

0 0 0

t2
t2 k+

f t( )

f– t–( ) f t( )=

t t– f t( )

tsin t t3

3!
----- t5

5!
-----+– t7

7!
-----– …+=

t

f(t)

mt

t

f(t)

t

f(t)

0 0 0

t3

f 0( ) 0=

f 0( ) 0= f t( )

f t( ) t2=

e
o fe t( ) fo t( )

fe t( ) td
T–

T

∫ 2 fe t( ) td
0

T

∫=
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Symmetry

and

(6.18)

A function  that is neither even nor odd can be expressed as

(6.19)

or as

(6.20)

By addition of (6.16) with (6.17), we get

(6.21)

that is, any function of time can be expressed as the sum of an even and an odd function.

To understand half−wave symmetry, we recall that any periodic function with period , is
expressed as

(6.22)

that is, the function with value  at any time , will have the same value again at a later time
.

A periodic waveform with period , has half−wave symmetry if

(6.23)

that is, the shape of the negative half−cycle of the waveform is the same as that of the positive
half−cycle, but inverted.

We will test the waveforms of Figures 6.9 through 6.13 for any of the three types of symmetry.

1. Square waveform

For the waveform of Figure 6.9, the average value over one period  is zero, and therefore,
. It is also an odd function and has half−wave symmetry since  and

.

fo t( ) td
T–

T

∫ 0=

f t( )

fe t( ) 1
2
--- f t( ) f t–( )+[ ]=

fo t( ) 1
2
--- f t( ) f– t–( )[ ]=

f t( ) fe t( ) fo t( )+=

T

f t( ) f t T+( )=

f t( ) t
t T+

T

f– t T 2⁄+( ) f t( )=

T
a0 0= f t–( )– f t( )=

f t T 2⁄+( )– f t( )=
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Figure 6.9. Square waveform test for symmetry

An easy method to test for half−wave symmetry is to choose any half−period  length on the
time axis as shown in Figure 6.9, and observe the values of  at the left and right points on the
time axis, such as  and . If there is half−wave symmetry, these will always be equal but
will have opposite signs as we slide the half−period  length to the left or to the right on the
time axis at non−zero values of .

2. Square waveform with ordinate axis shifted

If we shift the ordinate axis  radians to the right, as shown in Figure 6.10, we see that the
square waveform now becomes an even function and has half−wave symmetry since 
and . Also, .

Figure 6.10. Square waveform with ordinate shifted by 

Obviously, if the ordinate axis is shifted by any other value other than an odd multiple of ,
the waveform will have neither odd nor even symmetry.

3. Sawtooth waveform

For the sawtooth waveform of Figure 6.11, the average value over one period  is zero and there-
fore, . It is also an odd function because , but has no half−wave symmetry

0
π 2π

T

ωt

T/2

T/2

A

−A
f a( )

f b( )

T 2⁄
f t( )

f a( ) f b( )
T 2⁄

f t( )

π 2⁄
f t–( ) f t( )=

f t T 2⁄+( )– f t( )= a0 0=

0
π/2 2π

T

ωt

T/2 T/2

A

−A

−π/2
π−π−2π

π 2⁄

π 2⁄

T
a0 0= f t–( )– f t( )=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 6−11
Copyright © Orchard Publications

Symmetry

since 

Figure 6.11. Sawtooth waveform test for symmetry

4. Triangular waveform

For this triangular waveform of Figure 6.12, the average value over one period  is zero and
therefore, . It is also an odd function since . Moreover, it has half−wave sym-
metry because 

Figure 6.12. Triangular waveform test for symmetry

5. Fundamental, Second and Third Harmonics of a Sinusoid

Figure 6.13 shows a fundamental, second, and third harmonic of a typical sinewave where the
half period , is chosen as the half period of the period of the fundamental frequency. This is
necessary in order to test the fundamental, second, and third harmonics for half−wave symmetry.
The fundamental has half−wave symmetry since the  and  values, when separated by ,
are equal and opposite. The second harmonic has no half−wave symmetry because the ordinates

 on the left and  on the right, although are equal, there are not opposite in sign. The third
harmonic has half−wave symmetry since the  and  values, when separated by  are equal
and opposite. These waveforms can be either odd or even depending on the position of the ordi-
nate. Also, all three waveforms have zero average value unless the abscissa axis is shifted up or
down.

f t T 2⁄+( ) f t( )≠–

0
2π

T

ωt

T/2

A

−A

π−π−2π

T/2

T
a0 0= f t–( )– f t( )=

f t T 2⁄+( ) f t( )=–

0 2π

T

ωt

A

−A

π−π
−2π

T/2 T/2

T 2⁄

a a– T 2⁄

b b
c c– T 2⁄
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Figure 6.13. Fundamental, second, and third harmonic test for symmetry

In the expressions of the integrals in (6.12) through (6.14), Page 6−6, the limits of integration for
the coefficients  and  are given as  to , that is, one period . Of course, we can choose
the limits of integration as  to . Also, if the given waveform is an odd function, or an even
function, or has half−wave symmetry, we can compute the non−zero coefficients  and  by
integrating from  to  only, and multiply the integral by . Moreover, if the waveform has half−
wave symmetry and is also an odd or an even function, we can choose the limits of integration
from  to  and multiply the integral by . The proof is based on the fact that, the product of
two even functions is another even function, and also that the product of two odd functions
results also in an even function. However, it is important to remember that when using these
shortcuts, we must evaluate the coefficients  and  for the integer values of  that will result
in non−zero coefficients. This point will be illustrated in Example 6.2.

6.4 Waveforms in Trigonometric Form of Fourier Series 
We will now derive the trigonometric Fourier series of the most common periodic waveforms.

Example 6.1  
Compute the trigonometric Fourier series of the square waveform of Figure 6.14.

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

a

−a

b b

−c

c

Fundamental

2nd harmonic

3rd harmonic

T/2
(for fundamental) (for 2nd harmonic)

T/2 T/2
(for 3rd harmonic)

an bn 0 2π T

π– +π
an bn

0 π 2

0 π 2⁄ 4

an bn n
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Figure 6.14. Square waveform for Example 6.1

Solution:

The trigonometric series will consist of sine terms only because, as we already know, this wave-
form is an odd function. Moreover, only odd harmonics will be present since this waveform has
half−wave symmetry. However, we will compute all coefficients to verify this. Also, for brevity,
we will assume that .

The  coefficients are found from

(6.24)

and since  is an integer (positive or negative) or zero, the terms inside the parentheses on the
second line of (6.24) are zero and therefore, all  coefficients are zero, as expected, since the
square waveform has odd symmetry. Also, by inspection, the average ( ) value is zero, but if
we attempt to verify this using (6.24), we will get the indeterminate form . To work around
this problem, we will evaluate  directly from (6.12). Then,

(6.25)

The  coefficients are found from (6.14), that is,

(6.26)

For , (6.26) yields

0
π 2π

T

ωt

A

−A

ω 1=

ai

an
1
π
--- f t( ) ntcos td

0

2π

∫
1
π
--- A ntcos td

0

π

∫ A–( ) ntcos td
π

2π

∫+
A
nπ
------ ntsin 0

π ntsin π
2π–( )= ==

A
nπ
------ nπ 0– n2π nπsin+sin–sin( ) A

nπ
------ 2 nπ n2πsin–sin( )==

n
ai

DC
0 0⁄

a0

a0
1
π
--- A td

0

π

∫ A–( ) td
π

2π

∫+ A
π
---- π 0– 2π– π+( ) 0= = =

bi

bn
1
π
--- f t( ) ntsin td

0

2π

∫
1
π
--- A ntsin td

0

π

∫ A–( ) ntsin td
π

2π

∫+ A
nπ
------ ncos– t 0

π ntcos π
2π+( )= ==

A
nπ
------ nπcos– 1 2nπ nπcos–cos+ +( ) A

nπ
------ 1 2 nπcos– 2nπcos+( )==
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as expected, since the square waveform has half−wave symmetry.

For , (6.21) reduces to

and thus 

and so on.

Therefore, the trigonometric Fourier series for the square waveform with odd symmetry is

(6.27)

It was stated above that, if the given waveform has half−wave symmetry, and it is also an odd or
an even function, we can integrate from  to , and multiply the integral by . We will apply
this property to the following example.

Example 6.2  
Compute the trigonometric Fourier series of the square waveform of Example 1 by integrating
from  to , and multiplying the result by .

Solution:

Since the waveform is an odd function and has half−wave symmetry, we are only concerned with
the odd  coefficients. Then,

(6.28)

For , (6.28) becomes

bn
A
nπ
------ 1 2– 1+( ) 0= =

n odd=

bn
A
nπ
------ 1 2 1+ +( ) 4A

nπ
-------= =

b1
4A
π

-------=
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5π
-------=

f t( ) 4A
π

------- ωt 1
3
--- 3ωt 1

5
--- 5ωtsin …+ +sin+sin⎝ ⎠

⎛ ⎞ 4A
π

------- 1
n
--- nωtsin

n odd=
∑= =

0 π 2⁄ 4

0 π 2⁄ 4

bn

bn 41
π
--- f t( ) ntsin td

0

π 2⁄

∫
4A
nπ
------- ncos– t 0

π 2⁄( ) 4A
nπ
------- nπ

2
---cos– 1+⎝ ⎠

⎛ ⎞= = =

n odd=
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(6.29)

as before, and thus the series is the same as in Example 1.

Example 6.3  
Compute the trigonometric Fourier series of the square waveform of Figure 6.15.

Solution:

This is the same waveform as in Example 6.1, except that the ordinate has been shifted to the
right by  radians, and has become an even function. However, it still has half−wave symme-
try. Therefore, the trigonometric Fourier series will consist of odd cosine terms only.

Figure 6.15. Waveform for Example 6.3

Since the waveform has half−wave symmetry and is an even function, it will suffice to integrate
from  to , and multiply the integral by . The  coefficients are found from

(6.30)

We observe that for , all  coefficients are zero, and thus all even harmonics are zero
as expected. Also, by inspection, the average ( ) value is zero.

For , we observe from (6.30) that , will alternate between  and  depending

on the odd integer assigned to . Thus,

(6.31)

For , and so on, (6.30) becomes

bn
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nπ
------- 0– 1+( ) 4A

nπ
-------= =

π 2⁄

0

π / 2

2π

T

ωt

A

−A

π

3π / 2
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π
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0

π 2⁄

∫
4
π
--- A ntcos td

0

π 2⁄

∫
4A
nπ
------- ntsin 0

π 2⁄( ) 4A
nπ
------- nπ

2
---sin⎝ ⎠

⎛ ⎞= = = =

n even= an

DC

n odd= n π
2
---sin +1 1–

n
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4A
nπ
-------±=

n 1 5 9 13, , ,=



Chapter 6  Fourier, Taylor, and Maclaurin Series

6−16 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

and for , and so on, it becomes

Then, the trigonometric Fourier series for the square waveform with even symmetry is

(6.32)

Alternate Solution:

Since the waveform of Example 6.3 is the same as of Example 6.1, but shifted to the right by 
radians, we can use the result of Example 6.1, i.e.,

(6.33)

and substitute  with , that is, we let . With this substitution, relation
(6.33) becomes

(6.34)

and using the identities , , and so on, we rewrite
(6.34) as 

(6.35)

and this is the same as (6.27).

Therefore, if we compute the trigonometric Fourier series with reference to one ordinate, and
afterwards we want to recompute the series with reference to a different ordinate, we can use the
above procedure to save time. 

an
4A
nπ
-------=

n 3 7 11 15, , ,=

an
4A–
nπ

----------=

f t( ) 4A
π

------- ωcos t 1
3
---– 3ωt 1

5
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⎛ ⎞ 4A
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------- 1–( )
n 1–( )

2
----------------1

n
--- ncos ωt
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∑= =

π 2⁄

f t( ) 4A
π

------- ωt 1
3
--- 3ωt 1

5
--- 5ωtsin …+ +sin+sin⎝ ⎠

⎛ ⎞=

ωt ωt π 2⁄+ ωt ωτ π 2⁄+=

f τ( ) 4A
π

------- ωτ π
2
---+⎝ ⎠

⎛ ⎞ 1
3
--- 3 ωτ π

2
---+⎝ ⎠

⎛ ⎞ 1
5
--- 5 ωτ π

2
---+⎝ ⎠

⎛ ⎞sin …+ +sin+sin=

4A
π

------- ωτ π
2
---+⎝ ⎠

⎛ ⎞ 1
3
--- 3ωτ 3π

2
------+⎝ ⎠

⎛ ⎞ 1
5
--- 5ωτ 5π

2
------+⎝ ⎠

⎛ ⎞sin …+ +sin+sin=

x π 2⁄+( )sin xcos= x 3π 2⁄+( )sin xcos–=
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Example 6.4  
Compute the trigonometric Fourier series of the sawtooth waveform of Figure 6.16.

Figure 6.16. Sawtooth waveform

Solution:

This waveform is an odd function but has no half−wave symmetry; therefore, it contains sine
terms only with both odd and even harmonics. Accordingly, we only need to evaluate the 
coefficients. By inspection, the  component is zero. As before, we will assume that .

If we choose the limits of integration from  to  we will need to perform two integrations since

However, we can choose the limits from  to , and thus we will only need one integration
since

Better yet, since the waveform is an odd function, we can integrate from  to , and multiply the
integral by ; this is what we will do.

From tables of integrals,

(6.36)

Then,

0 2π

T

ωt

A

−A

π−π−2π

bn

DC ω 1=

0 2π

f t( )

A
π
----t 0 t π< <

A
π
----t 2A– π t 2π< <⎩

⎪
⎨
⎪
⎧

=

π– +π

f t( ) A
π
----t= π– t π< <

0 π
2

x ax xdsin∫
1
a2
----- asin x x

a
---– axcos=
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(6.37)

We observe that:

1. If ,  and . Then, (6.37) reduces to

that is, the even harmonics have negative coefficients.

2. If , , . Then,

that is, the odd harmonics have positive coefficients.

Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is

(6.38)

Example 6.5  

Find the trigonometric Fourier series of the triangular waveform of Figure 6.17. Assume .

 
Figure 6.17. Triangular waveform for Example 6.5

Solution:

This waveform is an odd function and has half−wave symmetry; then, the trigonometric Fourier
series will contain sine terms only with odd harmonics. Accordingly, we only need to evaluate the

 coefficients. We will choose the limits of integration from  to , and will multiply the
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∫
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∫
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------- 1
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π 2A
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nπ
-------–= =

n odd= nπsin 0= nπcos 1–=
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-------= =
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4
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integral by .

By inspection, the  component is zero. From tables of integrals,

(6.39)

Then, 

(6.40)

We are only interested in the odd integers of , and we observe that:

For odd integers of , the sine term yields

Thus, the trigonometric Fourier series for the triangular waveform with odd symmetry is

(6.41)

Example 6.6  
A half−wave rectification waveform is defined as

(6.42)

Express  as a trigonometric Fourier series. Assume .

Solution:

The waveform for this example is shown in Figure 6.18.

4
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Figure 6.18.  for Example 6.6

By inspection, the average is a non−zero value, and the waveform has neither odd nor even sym-
metry. Therefore, we expect all terms to be present. The  coefficients are found from

For this example,

and from tables of integrals

Then,

(6.43)

Using the trigonometric identities

and

we obtain

and

Then, by substitution into (6.43),

(6.44)
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Next, we can evaluate all the  coefficients, except , from (6.44). 

First, we will evaluate  to obtain the  value. By substitution of , we get 
Therefore, the  value is

(6.45)

We cannot use (6.44) to obtain the value of ; therefore, we will evaluate the integral

From tables of integrals,

and thus,
(6.46)

From (6.44) with , we get

(6.47)

(6.48)

We see that for odd integers of , . However, for , we get

(6.49)

(6.50)

(6.51)

and so on.

Now, we need to evaluate the  coefficients. For this example,
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and from tables of integrals,

Therefore,

that is, all the  coefficients, except , are zero.

We will find  by direct substitution into (6.14) for . Thus,

(6.52)

Combining (6.45) and (6.47) through (6.52), we find that the trigonometric Fourier series for the
half−wave rectification waveform with no symmetry is

(6.53)

Example 6.7  
A full−wave rectification waveform is defined as

(6.54)

Express  as a trigonometric Fourier series. Assume .

Solution:
The waveform is shown in Figure 6.19 where the ordinate was arbitrarily chosen as shown.

Figure 6.19. Full−wave rectified waveform with even symmetry
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By inspection, the average is a non−zero value. We choose the period of the input sinusoid so that
the output will be expressed in terms of the fundamental frequency. We also choose the limits of
integration as  and , we observe that the waveform has even symmetry. 

Therefore, we expect only cosine terms to be present. The  coefficients are found from

where for this example,

(6.55)

and from tables of integrals,

Since

we express (6.55) as

(6.56)

To simplify the last expression in (6.56), we make use of the trigonometric identities

and
 

Then, (6.56) simplifies to 

(6.57)

Now, we can evaluate all the  coefficients, except , from (6.57). First, we will evaluate  to
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obtain the  value. By substitution of , we get

Therefore, the  value is

(6.58)

From (6.57) we observe that for all , other than , .
To obtain the value of , we must evaluate the integral 

From tables of integrals,

and thus,

(6.59)

For , from (6.57) we get

(6.60)

(6.61)

(6.62)

(6.63)

and so on. Then, combining the terms of (6.58) and (6.60) through (6.63) we get

(6.64)

Therefore, the trigonometric form of the Fourier series for the full−wave rectification waveform with
even symmetry is
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(6.65)

This series of (6.65) shows that there is no component of the fundamental frequency. This is
because we chose the period to be from  and . Generally, the period is defined as the short-
est period of repetition. In any waveform where the period is chosen appropriately, it is very
unlikely that a Fourier series will consist of even harmonic terms only.

6.5 Alternate Forms of the Trigonometric Fourier Series
We recall that the trigonometric Fourier series is expressed as

(6.66)

If a given waveform does not have any kind of symmetry, it may be advantageous of using the
alternate form of the trigonometric Fourier series where the cosine and sine terms of the same fre-
quency are grouped together, and the sum is combined to a single term, either cosine or sine.
However, we still need to compute the  and  coefficients separately.

We use the triangle shown in Figure 6.20 for the derivation of the alternate forms.

Figure 6.20. Derivation of the alternate form of the trigonometric Fourier series

We assume , and for , we rewrite (6.66) as
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and, in general, for , we get

(6.67)

Similarly,

and, in general, where , we get

(6.68)

The series of (6.67) and (6.68) can be expressed as phasors. Since it is customary to use the cosine
function in the time domain to phasor transformation, we choose to use the transformation of
(6.63) below.

(6.69)

Example 6.8  
Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of
Figure 6.21.
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Figure 6.21. Waveform for Example 6.8
Solution:

The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd
and even terms present. Also, by inspection the  value is not zero.

We will compute the  and  coefficients, the  value, and we will combine them to get an
expression in the form of (6.63). Then,

(6.70)

We observe that for , .
For ,

(6.71)

and

(6.72)

The  value is

(6.73)

The  coefficients are
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(6.74)

Then,
(6.75)

(6.76)

(6.77)

(6.78)
From (6.69),

where

(6.79)

Thus, for , we get:

(6.80)

Similarly,

(6.81)

(6.82)

and

(6.83)

Combining the terms of (6.73) and (6.80) through (6.83), we find that the alternate form of the
trigonometric Fourier series representing the waveform of this example is
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(6.84)

6.6 The Exponential Form of the Fourier Series 
The Fourier series are often expressed in exponential form. The advantage of the exponential
form is that we only need to perform one integration rather than two, one for the , and
another for the  coefficients in the trigonometric form of the series. Moreover, in most cases
the integration is simpler.

The exponential form is derived from the trigonometric form by substitution of

(6.85)

and

(6.86)

into . Thus,

(6.87)

and grouping terms with same exponents, we get

(6.88)

The terms of (6.88) in parentheses are usually denoted as

(6.89)

(6.90)

(6.91)
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Then, (6.88) is written as

(6.92)

We must remember that the  coefficients, except , are complex and occur in complex conju-
gate pairs, that is,

(6.93)

We can derive a general expression for the complex coefficients , by multiplying both sides of

(6.92) by  and integrating over one period, as we did in the derivation of the  and 
coefficients of the trigonometric form. Then, with ,

(6.94)

We observe that all the integrals on the right side of (6.97) are zero except the last. Therefore,

or

and, in general, for ,

(6.95)

or

(6.96)

We can derive the trigonometric Fourier series from the exponential series by addition and sub-
traction of the exponential form coefficients  and . Thus, from (6.89) and (6.90),
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or

(6.97)

Similarly, 

(6.98)

or

(6.99)

Symmetry in Exponential Series

1. For even functions, all coefficients are real

We recall from (6.89) and (6.90) that

(6.100)

and

(6.101)

Since even functions have no sine terms, the  coefficients in (6.100) and (6.101) are zero.
Therefore, both  and  are real.

2. For odd functions, all coefficients are imaginary

Since odd functions have no cosine terms, the  coefficients in (6.100) and (6.101) are zero.
Therefore, both  and  are imaginary.

3. If there is half−wave symmetry,  for 

We recall from the trigonometric Fourier series that if there is half−wave symmetry, all even
harmonics are zero. Therefore, in (6.100) and (6.101) the coefficients  and  are both zero
for , and thus, both  and  are also zero for .

4. If there is no symmetry,  is complex.

5.  always 

This can be seen in (6.100) and (6.101)
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Example 6.9  
Compute the exponential Fourier series for the square waveform of Figure 6.22 below. Assume
that .

Figure 6.22. Waveform for Example 6.9

Solution:

This is the same waveform as in Example 6.1, and as we know, it is an odd function, has half−
wave symmetry, and its  component is zero. Therefore, the  coefficients will be imaginary,

 for , and . Using (6.95) with , we get

and for ,

as expected.

For ,

(6.102)

For , ; then,

(6.103)
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as expected.

For , . Therefore,

(6.104)

Using (6.92), that is,

we obtain the exponential Fourier series for the square waveform with odd symmetry as

(6.105)

The minus (−) sign of the first two terms within the parentheses results from the fact that
. For instance, since , it follows that . We

observe that  is purely imaginary, as expected, since the waveform is an odd function.

To prove that (6.105) and (6.22) are the same, we group the two terms inside the parentheses of
(6.105) for which ; this will produce the fundamental frequency . Then, we group
the two terms for which , and this will produce the third harmonic , and so on.

6.7 Line Spectra
When the Fourier series are known, it is useful to plot the amplitudes of the harmonics on a fre-
quency scale that shows the first (fundamental frequency) harmonic, and the higher harmonics
times the amplitude of the fundamental. Such a plot is known as line spectrum and shows the
spectral lines that would be displayed by a spectrum analyzer*.

Figure 6.23 shows the line spectrum of the square waveform of Example 6.1.

Figure 6.23. Line spectrum for square waveform of Example 6.1

* An instrument that displays the spectral lines of a waveform.

n odd= e jnπ– 1–=

Cn
n odd=

A
2jπn
------------ e jnπ– 1–( )

2 A
2jπn
------------ 1– 1–( )2 A

2jπn
------------ 2–( )2 2A

jπn
--------= = = =

f t( ) … C 2– e j2ωt– C 1– e jωt– C0 C1e jωt C2e j2ωt …+ + + + + +=

f t( ) 2A
jπ
------- … 1

3
---e j3ωt–– e jωt–– e jωt 1

3
---e j3ωt+ +⎝ ⎠

⎛ ⎞ 2A
jπ
------- 1

n
---e jnωt

n odd=
∑= =

C n– Cn∗= C3 2A j3π⁄= C 3– C3∗ 2A– j3π⁄= =

f t( )

n 1= ωtsin
n 3= 3ωtsin

bn

nωt0 1 3 5 7 9

4/π



Chapter 6  Fourier, Taylor, and Maclaurin Series

6−34 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

Figure 6.24 shows the line spectrum for the half−wave rectification waveform of Example 6.6.

Figure 6.24. Line spectrum for half−wave rectifier of Example 6.6

The line spectra of other waveforms can be easily constructed from the Fourier series.

Example 6.10  
Compute the exponential Fourier series for the waveform of Figure 6.25, and plot its line spectra.
Assume .

Figure 6.25. Waveform for Example 6.11
Solution:
This recurrent rectangular pulse is used extensively in digital communications systems. To deter-
mine how faithfully such pulses will be transmitted, it is necessary to know the frequency compo-
nents.

As shown in Figure 6.25, the pulse duration is . Thus, the recurrence interval (period) , is
 times the pulse duration. In other words,  is the ratio of the pulse repetition time to the dura-

tion of each pulse.

For this example, the components of the exponential Fourier series are found from

(6.106)

The value of the average (  component) is found by letting . Then, from (6.106) we get
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(6.107)

For the values for , integration of (6.106) yields

(6.108)

and thus,

(6.109)

The relation of (6.109) has the  form, and the line spectrum is shown in Figures 6.26
through 6.28, for ,  and  respectively by using the MATLAB scripts below.

fplot('sin(2.*x)./(2.*x)',[−4  4  −0.4  1.2])

fplot('sin(5.*x)./(5.*x)',[−4  4  −0.4  1.2])

fplot('sin(10.*x)./(10.*x)',[−4  4 −0.4  1.2])

Figure 6.26. Line spectrum of (6.109) for 
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Figure 6.27. Line spectrum of (6.109) for 

Figure 6.28. Line spectrum of (6.112) for 

The spectral lines are separated by the distance  and thus, as  gets larger, the lines get closer
together while the lines are further apart as  gets smaller.

6.8 Numerical Evaluation of Fourier Coefficients
Quite often, it is necessary to construct the Fourier expansion of a function based on observed
values instead of an analytic expression. Examples are meteorological or economic quantities
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whose period may be a day, a week, a month or even a year. In these situations, we need to eval-
uate the integral(s) using numerical integration.

The procedure presented here, will work for both the waveforms that have an analytical solution
and those that do not. Even though we may already know the Fourier series from analytical
methods, we can use this procedure to check our results.

Consider the waveform of  shown in Figure 6.29, were we have divided it into small pulses of
width . Obviously, the more pulses we use, the better the approximation.

If the time axis is in degrees, we can choose  to be  and it is convenient to start at the zero
point of the waveform. Then, using a spreadsheet, such as Microsoft Excel, we can divide the
period  to  in  intervals, and enter these values in Column  of the spreadsheet.

 

Figure 6.29. Waveform whose analytical expression is unknown

Since the arguments of the sine and the cosine are in radians, we multiply degrees by 
(3.1459...) and divide by  to perform the conversion. We enter these in Column  and we
denote them as . In Column  we enter the corresponding values of  as measured
from the waveform. In Columns  and  we enter the values of  and the product 
respectively. Similarly, we enter the values of  and  in Columns  and  respectively.

Next, we form the sums of  and , we multiply these by , and we divide by  to
obtain the coefficients  and . To compute the coefficients of the higher order harmonics, we
form the products , , , , and so on, and we enter these in subse-
quent columns of the spreadsheet.

Figure 6.30 is a partial table showing the computation of the coefficients of the square waveform,
and Figure 6.31 is a partial table showing the computation of the coefficients of a clipped sine
waveform. The complete tables extend to the seventh harmonic to the right and to  down.
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Figure 6.30. Numerical computation of the coefficients of the square waveform (partial listing)
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Numerical Evaluation of Fourier Coefficients

Figure 6.31. Numerical computation of the coefficients of a clipped sine waveform (partial listing)
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6.9 Power Series Expansion of Functions
A power series has the form

(6.110)

Some familiar power series expansions for real values of  are

(6.111)

(6.112)

(6.113)

The following example illustrates the fact that a power series expansion can lead us to a Fourier
Series.

Example 6.11  

If the applied voltage  is small (no greater than 5 volts), the current  in a semiconductor diode
can be approximated by the relation

(6.114)

where  and  are arbitrary constants, and the input voltage is a sinusoid, that is, 

(6.115)

Express the current  in (6.114) as a power series.

Solution:

The term  inside the parentheses of (6.114) suggests the power series expansion of (6.111).
Accordingly, we rewrite (6.114) as

(6.116)

Substitution of (6.115) into (6.116) yields, 

akxk

k 0=

∞

∑ a0 a1x a2x2 …+ + +=

x

ex 1 x x2

2!
----- x3

3!
----- x4

4!
----- …+ + + + +=

xsin x x3

3!
-----– x5

5!
----- x7

7!
-----– …+ +=

xcos 1 x2

2!
-----– x4

4!
----- x6

6!
-----– …+ +=

v i

i a ekv 1–( )=

a k

v Vmax ωtcos=

i

ekv

i a 1 kv kv( )2

2!
------------- kv( )3

3!
------------- kv( )4

4!
------------- … 1–+ + + + +⎝ ⎠

⎛ ⎞ a kv kv( )2

2!
------------- kv( )3

3!
------------- kv( )4

4!
------------- …+ + + +⎝ ⎠

⎛ ⎞= =
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Taylor and Maclaurin Series

(6.117)

This expression can be simplified with the use of the following trigonometric identities:

(6.118)

Then, substitution of (6.118) into (6.117) and after simplification, we obtain a series of the fol-
lowing form:

(6.119)

We recall that the series of (6.119) is the trigonometric series form of the Fourier series. We
observe that it consists of a constant term, a term of the fundamental frequency, and terms of all
harmonic frequencies, that is, higher frequencies which are multiples of the fundamental fre-
quency.

6.10 Taylor and Maclaurin Series

A function  which possesses all derivatives up to order  at a point  can be expanded
in a Taylor series as 

(6.120)

If , (6.120) reduces to

(6.121)

Relation (6.121) is known as Maclaurin series, and has the form of power series of (6.110) with

.

To appreciate the usefulness and application of the Taylor series, we will consider the plot of Fig-
ure 6.32, where  represents some experimental data for the current−voltage ( ) characteris-
tics of a semiconductor diode operating at the  volts region.
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Figure 6.32. Current-voltage (i-v) characteristics for a typical semiconductor diode

Now, suppose that we want to approximate the function  by a power series, in the neighbor-
hood of some arbitrary point  shown in Figure 6.33. We assume that the first  deriva-
tives of the function  exist at this point.

We begin by referring to the power series of (6.110), where we observe that the first term on the
right side is a constant. Therefore, we are seeking a constant that it will be the best approximation
to the given curve in the vicinity of point . Obviously, the horizontal line  passes through
point , and we denote this first approximation as  shown in Figure 6.34.

Figure 6.33. Approximation of the function  by a power series
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Taylor and Maclaurin Series

 
Figure 6.34. First approximation of 

The next term in the power series is the linear term . Thus, we seek a linear term of the form
. But since we want the power series to be a good approximation to the given function for

some distance on either side of point , we are interested in the difference . Accordingly,
we express the desired power series as

(6.122)

Now, we want the linear term  to be the best approximation to the function 
in the vicinity of point . This will be accomplished if the linear term has the same slope as the
given function as shown in Figure 6.35.

Figure 6.35. Second approximation of 

It is evident that the slope of  at  is  and therefore, the linear term
 can be expressed as .
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The third term in (6.122), that is,  is a quadratic and therefore, we choose such that
it matches the second derivative of the function  in the vicinity of point  as shown in Figure
6.36.

Figure 6.36. Third approximation of 

Then,  or . The remaining coefficients , and so on of (6.122)
are found by matching the third, fourth, fifth, and higher order derivatives of the given function
with these coefficients. When this is done, we obtain the following Taylor series.

(6.123)

We can also describe any function that has an analytical expression, by a Taylor series as illus-
trated by the following example.

Example 6.12  
Compute the first three terms of the Taylor series expansion for the function

(6.124)
at .

Solution:

The Taylor series expansion about point  is given by 

(6.125)

and since we are asked to compute the first three terms, we must find the first and second deriva-
tives of .
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From math tables, , so . To find  we need to find the first

derivative of , so we let . Then, using , we get

 (6.126)

Next, using the trigonometric identity

(6.127)

and by substitution of (6.127) into (6.126), we get,

(6.128)

Now, at point  we have:

(6.129)

and by substitution into (6.125),

(6.130)

We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where f
is a symbolic expression, n produces the first  terms in the series, and a defines the Taylor
approximation about point . A detailed description can be displayed with the help taylor com-
mand. For example, the following MATLAB script computes the first 8 terms of the Taylor series
expansion of  about .

x=sym('x'); y=tan(x); z=taylor(y,8,pi/4); pretty(z)

                                                              2                                             3                                                4
1 + 2x - 1/2 pi + 2(x - 1/4 pi) + 8/3(x - 1/4 pi) + 10/3(x - 1/4 pi)

       64             5   244             6   2176             7
     + -- (x - 1/4 pi)  + --- (x - 1/4 pi)  + ---- (x - 1/4 pi)
       15                 45                  315

xd
d xtan x2sec= f ′ x( ) x2sec= f'' x( )
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d

dx
------ xsec x xtan⋅sec=

dz
dx
------ 2 xsec d
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------ f'' x( ) 2 x2tan 1+( ) xtan= =

a π 4⁄=

f a( ) f π
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---⎝ ⎠
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4
---⎝ ⎠

⎛ ⎞= 1 1+ 2     f'' a( ) f'' π
4
---⎝ ⎠

⎛ ⎞= 2 12 1+( )1 4= == == =

fn x( ) 1 2 x π
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---–⎝ ⎠

⎛ ⎞ 2 x π
4
---–⎝ ⎠
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+ += …+
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Example 6.13  
Express the function

(6.131)
in a Maclaurin’s series.

Solution:

A Maclaurin’s series has the form of (6.132), that is,

(6.132)

For this function, we have  and thus . Since all derivatives are , then,
 and therefore, 

(6.133)

MATLAB displays the same result.

t=sym('t'); fn=taylor(exp(t)); pretty(fn)

                   2        3         4          5
      1 + t + 1/2 t  + 1/6 t  + 1/24 t  + 1/120 t

Example 6.14  

In a semiconductor diode , the instantaneous current  and voltage  are related as

(6.134)

where  is the DC (average) component of the current, the constant  has a value between 
and  depending on the material and physical structure of the diode, and  is the thermal volt-
age which depends on the temperature, and its value at room temperature is approximately

.

Expand this relation into a power series that can be used to compute the current when the volt-
age is small and varies about .

Solution:

Since the voltage is small and varies about , we can use the following Maclaurin’s series.
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(6.135)

The first term  on the right side of (6.135) is found by letting  in (6.134). Then,

(6.136)

To compute the second and third terms of (6.135), we must find the first and second derivatives
of (6.134). These are:

(6.137)

(6.138)

Then, by substitution of (6.136), (6.137), and (6.138) into (6.135) we get

(6.139)
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6.11 Summary

• Any periodic waveform  can be expressed as

where the first term  is a constant, and represents the  (average) component of .
The terms with the coefficients  and  together, represent the fundamental frequency com-
ponent . Likewise, the terms with the coefficients  and  together, represent the second
harmonic component , and so on. The coefficients , , and  are found from the fol-
lowing relations:

• If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine
terms only. Odd functions are those for which .

• If a waveform has even symmetry, that is, if it is an even function, the series will consist of
cosine terms only, and  may or may not be zero. Even functions are those for which

• A periodic waveform with period , has half−wave symmetry if

that is, the shape of the negative half−cycle of the waveform is the same as that of the positive
half−cycle, but inverted. If a waveform has half−wave symmetry only odd (odd cosine and odd
sine) harmonics will be present. In other words, all even (even cosine and even sine) harmon-
ics will be zero. 

• The trigonometric Fourier series for the square waveform with odd symmetry is

f t( )

f t( ) 1
2
---a0 an nωtcos bn nωtsin+( )

n 1=

∞

∑+=

a0 2⁄ DC f t( )

a1 b1

ω a2 b2

2ω a0 an bn

1
2
---a0

1
2π
------ f t( ) td

0

2π

∫=

an
1
π
--- f t( ) nt tdcos

0

2π

∫=

bn
1
π
--- f t( ) nt tdsin

0

2π

∫=

f t–( )– f t( )=

a0

f t–( ) f t( )=

T

f– t T 2⁄+( ) f t( )=

f t( ) 4A
π

------- ωt 1
3
--- 3ωt 1

5
--- 5ωtsin …+ +sin+sin⎝ ⎠

⎛ ⎞ 4A
π

------- 1
n
--- nωtsin

n odd=
∑= =



Numerical Analysis Using MATLAB® and Excel®, Third Edition 6−49
Copyright © Orchard Publications

Summary

• The trigonometric Fourier series for the square waveform with even symmetry is

• The trigonometric Fourier series for the sawtooth waveform with odd symmetry is

• The trigonometric Fourier series for the triangular waveform with odd symmetry is

• The trigonometric Fourier series for the half−wave rectification waveform with no symmetry is

• The trigonometric Fourier series for the full−wave rectification waveform with even symmetry
is

• The Fourier series are often expressed in exponential form as

where the  coefficients are related to the trigonometric form coefficients as

• The  coefficients, except , are complex, and appear as complex conjugate pairs, that is,
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• In general, for ,

• We can derive the trigonometric Fourier series from the exponential series from the relations

and

• For even functions, all coefficients are real

• For odd functions, all coefficients are imaginary

• If there is half−wave symmetry,  for 

•  always 

• A line spectrum is a plot that shows the amplitudes of the harmonics on a frequency scale.

• The frequency components of a recurrent rectangular pulse follow a  form.

• We can evaluate the Fourier coefficients of a function based on observed values instead of an
analytic expression using numerical evaluations with the aid of a spreadsheet.

• A power series has the form

• A function  that possesses all derivatives up to order  at a point  can be expanded
in a Taylor series as 

If , the series above reduces to

and this relation is known as Maclaurin series

• We can also obtain a Taylor series expansion with the MATLAB taylor(f,n,a) function where
f is a symbolic expression, n produces the first  terms in the series, and a defines the Taylor
approximation about point .
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Exercises

6.12 Exercises
1. Compute the first 5 components of the trigonometric Fourier series for the waveform below.

Assume .

2. Compute the first 5 components of the trigonometric Fourier series for the waveform below.
Assume .

3. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume .

4. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume . 
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A
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0
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A
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5. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume .

6. Compute the first 5 components of the exponential Fourier series for the waveform below.
Assume .

Figure 6.37. Waveform for Exercise 6

7. Compute the first 4 terms of the Maclaurin series for each of the following functions.

a. b.  c.  

Confirm your answers with MATLAB.

8. Compute the first 4 terms of the Taylor series for each of the following functions.

a. b.  

Confirm your answers with MATLAB.

9. In a non−linear device, the voltage and current are related as

where  is a constant and  is the DC component of the instantaneous voltage . Expand
this function into a power series that can be used to compute the current , when the voltage

 is small, and varies about .
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Solutions to End−of−Chapter Exercises

6.13 Solutions to End−of−Chapter Exercises
1.

This is an even function; therefore, the series consists of cosine terms only. There is no half−
wave symmetry and the average (  component) is not zero. We will integrate from  to 
and multiply by . Then,

  (1)

From tables of integrals,

and thus (1) becomes

and since  for all integer ,

  (2)

We cannot evaluate the average  from (2); we must use (1). Then, for ,

or

We observe from (2) that for , . Then,

and so on.
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Therefore,

2.

This is an even function; therefore, the series consists of cosine terms only. There is no half−
wave symmetry and the average (  component) is not zero.

  (1)

and with

(1) simplifies to

and since  for all integer ,

We observe that the fourth harmonic and all its multiples are zero. Therefore,
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3.

This is neither an even nor an odd function and has no half−wave symmetry; therefore, the
series consists of both cosine and sine terms. The average (  component) is not zero. Then,

and with 

The  value is 

For 

Recalling that

for ,  and for , . Then,

and

By substitution into the expression

we find that 
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------ e jnt– td

0

π

∫= ==

DC

C0
A
2π
------ e0 td

0

π

∫
A
2π
------t

0

π A
2
----= = =

n 0≠

Cn
A
2π
------ e jnt– td

0

π

∫
A

j2– nπ
---------------e jnt–

0

π
=

A
j2nπ
------------ 1 e jnπ––( )= =

e jnπ– nπ j nπsin–cos=

n even= e jnπ– 1= n odd= e jnπ– 1–=

Cn even=
A

j2nπ
------------ 1 1–( ) 0= =

Cn odd=
A

j2nπ
------------ 1 1–( )–[ ] A

jnπ
--------= =

f t( ) … C 2– e j2ωt– C 1– e jωt– C0 C1e jωt C2ej2ωt …+ + + + + +=
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The minus (−) sign of the first two terms within the parentheses results from the fact that
. For instance, since , it follows that . We

observe that  is complex, as expected, since there is no symmetry.

4.

This is the same waveform as in Exercise 3 where the  component has been removed.
Then,

It is also the same waveform as in Example 6.9, Page 6−32, except that the amplitude is halved.
This waveform is an odd function and thus the expression for  is imaginary.

5.

This is the same waveform as in Exercise 3 where the vertical axis has been shifted to make the
waveform an even function. Therefore, for this waveform  is real. Then,

The  value is 

For 

f t( ) A
2
---- A

jπ
----- … 1

3
---e j3ωt– e jωt––– ejωt 1

3
---ej3ωt …+ + +⎝ ⎠

⎛ ⎞+=

C n– Cn∗= C1 2A jπ⁄= C 1– C1∗ 2A– jπ⁄= =

f t( )

0 ωt

f t( )
A 2⁄

A– 2⁄

DC

f t( ) A
jπ
----- … 1

3
---e j3ωt– e jωt––– ejωt 1

3
---ej3ωt …+ + +⎝ ⎠

⎛ ⎞=

f t( )

0 ωt

A

f t( )

π
π 2⁄π– 2⁄

π–

Cn

Cn
1

2π
------ f t( )e jnt– td

π–

π

∫
A
2π
------ e jnt– td

π– 2⁄

π 2⁄

∫==

DC

C0
A
2π
------t

π– 2⁄

π 2⁄ A
2π
------ π

2
--- π

2
---+⎝ ⎠

⎛ ⎞ A
2
----= = =

n 0≠
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and we observe that for , 

For ,  alternates in plus (+) and minus (−) signs, that is,

Thus,

where the plus (+) sign is used with  and the minus (−) sign is used with
. We can express  in a more compact form as

6.

We will find the exponential form coefficients  from

From tables of integrals

Then,

Cn
A
2π
------ e jnt– td

π– 2⁄

π 2⁄

∫
A

j2– nπ
---------------e jnt–

π– 2⁄

π 2⁄
= A

j2– nπ
--------------- e jnπ 2⁄– e jnπ 2⁄–( )= =

A
j2nπ
------------ e jnπ 2⁄ e jnπ 2⁄––( ) A

nπ
------ e jnπ 2⁄ e jnπ 2⁄––

j2
--------------------------------------⎝ ⎠
⎛ ⎞ A

nπ
------ nπ

2
------sin= ==

n even= Cn 0=

n odd= Cn

Cn
A
nπ
------  if  n 1 5 9 …, , ,= =

Cn
A
nπ
------–   if  n 3 7 11 …, , ,= =

f t( ) A
2
---- A

nπ
------e jnωt±⎝ ⎠

⎛ ⎞

n odd=
∑+=

n 1 5 9 …, , ,=

n 3 7 11 …, , ,= f t( )

f t( ) A
2
---- 1–( ) n 1–( ) 2⁄ A

nπ
------e jnωt

n odd=
∑+=

0 ωt

A

−A

f t( ) 2A
π

-------t 1–

ππ–

π– 2⁄ π 2⁄

Cn

Cn
1

2π
------ f t( )e jnt– td

π–

π

∫=

xeax xd∫
eax

a2
------- ax 1–( )=
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Integrating and rearranging terms we get

and since  for all integer ,

For ,  and for , , and 

Also, by inspection, the  component . Then,

The coefficients of the terms  and  are positive because all coefficients of  are
real. This is to be expected since  is an even function. It also has half−wave symmetry and
thus  for  as we’ve found.

7.

a. , , , , , , ,
, and so on. Therefore,

MATLAB displays the same result.

x=sym('x'); fn=taylor(exp(−x)); pretty(fn)

                    2        3         4          5
       1 - x + 1/2 x  - 1/6 x  + 1/24 x  - 1/120 x

Cn
1

2π
------ 2A

π
-------– t 1–⎝ ⎠

⎛ ⎞ e jnt– td
π–

0

∫
2A
π

-------t 1–⎝ ⎠
⎛ ⎞ e jnt– td

0

π

∫+=

Cn
1

2π
------ 4A

n2π
---------– 4A

n2π
--------- nπ e jnπ e jnπ––

j2
----------------------------⋅ e jnπ e jnπ–+

2
----------------------------+⎝ ⎠

⎛ ⎞ 2A
n

------- e jnπ e jnπ––
j2

----------------------------⋅–+=

4A
2n2π2
-------------- 1– nπ nπsin nπcos nπ

2
------ nπsin–+ +⎝ ⎠

⎛ ⎞=

nπsin 0= n

Cn
2A

n2π2
----------- nπcos 1–( )=

n even= Cn 0= n odd= nπcos 1–= Cn
4– A

n2π2
-----------=

DC C0 0=

f t( ) 4A
π2
-------– … 1

9
---e j3ωt– e jωt– ejωt 1

9
---ej3ωt …+ + + + +⎝ ⎠

⎛ ⎞=

e j3ωt– e jωt– Cn

f t( )
Cn 0= n even=

f x( ) f 0( ) f' 0( )x f'' 0( )
2!

------------x2 …
f n( ) 0( )

n!
-----------------xn+ + + +=

f x( ) e x–= f 0( ) 1= f' x( ) e x––= f' 0( ) 1–= f'' x( ) e x–= f'' 0( ) 1= f''' x( ) e x––=

f''' 0( ) 1–=

fn x( ) 1 x– x2

2!
----- x3

3!
-----– …+ +=
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b. , , , , , ,

, , and so on. Therefore,

MATLAB displays the same result.

x=sym('x'); fn=taylor(sin(x)); pretty(fn)

                       3          5
              x - 1/6 x  + 1/120 x

c. , , , , , ,
, , and so on. Therefore,

MATLAB displays the same result.

x=sym('x'); fn=taylor(sinh(x)); pretty(fn)

                  3          5
         x + 1/6 x  + 1/120 x

8.

a. , , , , ,

, , , and so on. Therefore,

or

MATLAB displays the same result.

x=sym('x'); y=1/x; z=taylor(y,4,−1); pretty(z)

                     2          3
     -2 - x - (x + 1)  - (x + 1)

b. , , , ,

f x( ) xsin= f 0( ) 0= f' x( ) xcos= f' 0( ) 1= f'' x( ) xsin–= f'' 0( ) 0=

f''' x( ) xcos–= f''' 0( ) 1–=

fn x( ) x x3

3!
----- x5

5!
----- x7

7!
-----–+– …+=

f x( ) hxsin= f 0( ) 0= f' x( ) hxcos= f' 0( ) 1= f'' x( ) hxsin= f'' 0( ) 0=

f''' x( ) hxcos= f''' 0( ) 1=

fn x( ) x x3

3!
----- x5

5!
----- x7

7!
----- …+ + + +=

fn x( ) f a( ) f' a( ) x a–( ) f'' a( )
2!

------------ x a–( )2 f''' a( )
3!

------------- x a–( )3 …+ + + +=

f x( ) 1 x⁄= f a( ) f 1–( ) 1–= = f' x( ) 1– x2⁄= f' a( ) f' 1–( ) 1–= = f'' x( ) 2 x3⁄=

f'' a( ) f'' 1–( ) 2–= = f''' x( ) 6– x4⁄= f''' a( ) f''' 1–( ) 6–= =

fn x( ) 1– x 1+( )– x 1+( )2– x 1+( )3–= …+

fn x( ) 2– x– x 1+( )2– x 1+( )3–= …+

f x( ) xsin= f a( ) f π 4⁄–( ) 2 2⁄–= = f' x( ) xcos= f' a( ) f' π 4⁄–( ) 2 2⁄= =
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,  ,  ,

, and so on. Therefore,

MATLAB displays the same result.

x=sym('x'); y=sin(x); z=taylor(y,4,−pi/4); pretty(z)

                1/2        1/2                     1/2             2
         - 1/2 2    + 1/2 2    (x + 1/4 pi) + 1/4 2    (x + 1/4 pi)

                 1/2             3
         - 1/12 2    (x + 1/4 pi)

9.

The Taylor series for this relation is 

Since the voltage  is small, and varies about , we expand this relation about  and
the series reduces to the Maclaurin series below.

  (1)

By substitution of  into the given relation we get 

The first and second derivatives of  are

and by substitution into (1)

f'' x( ) xsin–= f'' a( ) f'' π 4⁄–( ) 2 2⁄= = f''' x( ) xcos–=

f''' a( ) f''' π 4⁄–( ) 2 2⁄–= =

fn x( ) 2 2⁄– 2 2⁄( )+ x π 4⁄+( ) 2 4⁄( )+ x π 4⁄+( )2 2 12⁄( ) x π 4⁄+( )
3

–= …+

i v( ) k 1 v
V
----+⎝ ⎠

⎛ ⎞ 1.5
=

i v( ) i v0( ) i' v0( ) v v0–( )
i'' v0( )

2!
-------------- v v0–( )2 i''' v0( )

3!
--------------- v v0–( )3 …+ + + +=

v v 0= v 0=

i v( ) i 0( ) i' 0( )v i'' 0( )
2!

------------v2 …+ + +=

v 0=

i 0( ) k=

i

i' v( ) 3k
2V
------- 1 v

V
----+⎝ ⎠

⎛ ⎞ 1 2⁄
= i' 0( ) 3k

2V
-------=

i'' v( ) 3k
4V 2
---------- 1 v

V
----+⎝ ⎠

⎛ ⎞ 1 2⁄–
= i'' 0( ) 3k

4V 2
----------=

i v( ) k 3k
2V
-------v 3k

8V 2
----------v2 …+ + + k 1 3

2V
-------v 3

8V 2
----------v2 …+ + +⎝ ⎠

⎛ ⎞= =
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MATLAB displays the same result.

x=sym('x'); i=sym(‘i’); v=sym(‘v’); k=sym(‘k’); V=sym(‘V’);...
i=k*(1+v/V)^1.5; z=taylor(i,4,0); pretty(z)

                            2           3
               k v       k v         k v
       k + 3/2 --- + 3/8 ---- - 1/16 ----
                V          2           3
                          V           V
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Chapter 7

Finite Differences and Interpolation

his chapter begins with finite differences and interpolation which is one of its most impor-
tant applications. Finite Differences form the basis of numerical analysis as applied to other
numerical methods such as curve fitting, data smoothing, numerical differentiation, and

numerical integration. These applications are discussed in this and the next three chapters.

7.1 Divided Differences

Consider the continuous function  and let  be some values of

 in the interval . It is customary to show the independent variable , and its corre-
sponding values of  in tabular form as in Table 7.1.

Let  and  be any two, not necessarily consecutive values of , within this interval. Then, the
first divided difference is defined as:

(7.1)

Likewise, the second divided difference is defined as:

(7.2)

TABLE 7.1  The variable x and  in tabular form

x

… …

T

y f x( )= x0  x1  x2  …  xn 1–  xn, , , , ,

x x0 x xn≤ ≤ x

y f x( )=

y f x( )=

f x( )

x0 f x0( )

x1 f x1( )

x2 f x2( )

xn 1– f xn 1–( )

xn f xn( )

xi xj x

f xi xj,( )
f xi( ) f xj( )–

xi xj–
-----------------------------=

f xi xj xk, ,( )
f xi xj,( ) f xj xk,( )–

xi xk–
---------------------------------------------=
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The third, fourth, and so on divided differences, are defined similarly.

The divided differences are indicated in a difference table where each difference is placed
between the values of the column immediately to the left of it as shown in Table 7.2.

Example 7.1  

Form a difference table showing the values of  given as , the values of

 corresponding to , and the first through the fourth divided differences.

Solution:

We construct Table 7.3 with six columns. The first column contains the given values of , the
second the values of , and the third through the sixth contain the values of the first through
the fourth divided differences. These differences are computed from (7.1), (7.2), and other rela-
tions for higher order divided differences. For instance, the second value on the first divided dif-
ference is found from (7.1) as

and third value on the second divided difference is found from (7.2) as

Likewise, for the third divided difference we have

TABLE 7.2  Conventional presentation of divided differences

x f x( )

x0 f x0( )

f x0 x1,( )

x1 f x1( ) f x0 x1 x2, ,( )

f x1 x2,( ) f x0 x1 x2 x3, , ,( )

x2 f x2( ) f x1 x2 x3, ,( )

f x2 x3,( )

x3 f x3( )

x 0  1  2  3  4  7  and 9, , , , , ,

f x( ) y f x( ) x3= =

x
f x( )

1 27–
1 3–
--------------- 13=

37 93–
3 7–

------------------ 14=
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Divided Differences

and for the fourth

We observe that, if the values of the  divided difference are the same, as in the fifth column
(third divided differences for this example), all subsequent differences will be equal to zero.

In most cases, the values of  in a table are equally spaced. In this case, the differences are sets of
consecutive values. Moreover, the denominators are all the same; therefore, they can be omitted.
These values are referred to as just the differences of the function.

If the constant difference between successive values of  is , the typical value of  is

(7.3)

We can now express the first differences in terms of the difference operator  as

(7.4)

Likewise, the second differences are

(7.5)

TABLE 7.3  Divided differences for Example 7.1

Function Divided Differences

x First Second Third Fourth
0 0

1
1 1 4

13 1
3 27 8 0

37 1
4 64 14 0

93 1
7 343 20

193
9 729

f x( ) x3=

4 8–
0 4–
------------ 1=

1 1–
0 4–
------------ 0=

nth

x

x h xk

xk x0 kh   for   k+ … 2 1 0 1 2 …, , , ,–,–,= =

Δ

Δfk fk 1+ fk–=

Δ2fk Δ Δfk( ) Δfk 1+ Δfk–= =
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and, in general, for positive integer values of 

(7.6)

The difference operator  obeys the law of exponents, that is,

(7.7)

We construct the difference table in terms of the difference operator  as shown in Table 7.4.

Example 7.2  

Construct a difference table showing the values of x given as  and , the values of

 corresponding to , and the first through the fourth differences.

TABLE 7.4  Divided differences table in terms of the difference operator 

Function Differences

x f First Second Third Fourth

n

Δnfk Δ Δn 1– fk( ) Δn 1– fk 1+ Δn 1– fk–= =

Δ

Δm Δnfk( ) Δm n+ fk=

Δ

Δ

…

x0 f0

Δf0

x1 f1 Δ2f0

Δf1 Δ3f0

x2 f2 Δ2f1 Δ4f0

Δf2 Δ3f1

x3 f3 Δ2f2

Δf3

x4 f4

…

xn fn

1 2 3 4 5 6 7, , , , , , 8

f x( ) y f x( ) x3= =
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Solution:

Following the same procedure as in the previous example, we construct Table 7.5.

We observe that the fourth differences are zero, as expected.

Using the binomial expansion

(7.8)

we can show that

(7.9)

For ,  and , relation (7.9) reduces to

(7.10)

TABLE 7.5  Difference table for Example 7.2

Function Differences

k xk fk

1 1 1
7

2 2 8 12
19 6

3 3 27 18 0
37 6

4 4 64 24 0
61 6

5 5 125 30 0
91 6

6 6 216 36 0
127 6

7 7 343 42
169

8 8 512

Δfk Δ2fk Δ3fk Δ4fk …

Δ4fk

n
j⎝ ⎠

⎛ ⎞ n!
j! n j–( )!
---------------------=

Δnfk fk n+ nfk n 1–+–
n n 1–( )

2!
--------------------fk n 2–+ … 1–( )n 1– nfk 1+ 1–( )nfk+ + + +=

k 0= n 1 2 3, ,= 4

Δf0 f2 f1–=

Δ2f0 f2 2f1– f0+=

Δ3f0 f3 3f2– 3f1 f0–+=

Δ4f0 f4 4f3 6f2 4– f1 f0+ +–=
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It is interesting to observe that the first difference in (7.10), is the difference quotient whose limit
defines the derivative of a continuous function that is defined as

(7.11)

As with derivatives, the  differences of a polynomial of degree  are constant.

7.2 Factorial Polynomials
The factorial polynomials are defined as

(7.12)
and

(7.13)

These expressions resemble the power functions  and  in elementary algebra.

Using the difference operator  with (7.12) and (7.13) we obtain 

(7.14)
and

(7.15)

We observe that (7.14) and (7.15) are very similar to differentiation of  and .

Occasionally, it is desirable to express a polynomial as a factorial polynomial. Then, in anal-
ogy with Maclaurin power series, we can express that polynomial as

(7.16)

and now our task is to compute the coefficients .
For , relation (7.16) reduces to

(7.17)

To compute the coefficient , we take the first difference of in (7.16). Using (7.14) we
obtain

(7.18)

and letting , we find that

Δy
Δx
-------

Δx 0→
lim

f x1 Δx+( ) f x1( )–

Δx
--------------------------------------------

Δx 0→
lim=

nth n

x( ) n( ) x x 1–( ) x 2–( )… x n– 1+( )=

x( ) n( )– 1
x 1–( ) x 2–( )… x n+( )

----------------------------------------------------------=

xn x n–

Δ

Δ x( ) n( ) n x( ) n 1–( )
=

Δ x( ) n( )– n– x( ) n 1–( )–
=

xn x n–

pn x( )

pn x( ) a0 a1 x( ) 1( ) a2 x( ) 2( ) … an x( ) n( )
+ + + +=

ak

x 0=

a0 pn 0( )=

a1 pn x( )

Δpn x( ) 1x0a1 2a2 x( ) 1( ) 3a3 x( ) 2( ) … nan x( ) n 1–( )
+ + + +=

x 0=
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(7.19)

Differencing again we obtain

(7.20)

and for ,

(7.21)

In general,

(7.22)

Factorial polynomials provide an easier method of constructing a difference table. With this
method we perform the following steps:

1. We divide in (7.16) by  to obtain a quotient  and a remainder  which turns out

to be the constant term . Then, we express (7.16) as

(7.23)

2. We divide  in (7.23) by  to obtain a quotient and a remainder  which
turns out to be the constant term . Then,

(7.24)

By substitution of (7.24) into (7.23), and using the form of relation (7.16), we obtain

(7.25)

3. We divide  in (7.25) by  to obtain a quotient and a remainder  which
turns out to be the constant term , and thus

(7.26)

By substitution of (7.26) into (7.25), we obtain

(7.27)

a1 Δpn 0( )=

Δ2pn x( ) 2 1a2⋅ 3 2a⋅ 3 x( ) 1( ) … n n 1–( )an x( ) n 2–( )
+ + +=

x 0=

a2
Δ2pn 0( )

2 1⋅
--------------------

Δ2pn 0( )
2!

--------------------= =

aj
Δjpn 0( )

j!
-------------------   for   j 0 1 2 … n, , , ,= =

pn x( ) x q0 x( ) r0

a0

pn x( ) r0 xq0 x( )+=

q0 x( ) x 1–( ) q1 x( ) r1

a1

q0 x( ) r1 x 1–( )q1 x( )+=

pn x( ) r0 x r1 x 1–( )q1 x( )+[ ]+ r0 r1 x( ) 1( ) x x 1–( )q1 x( )+ += =

q1 x( ) x 2–( ) q2 x( ) r2

a2

q1 x( ) r2 x 2–( )q2 x( )+=

pn x( ) r0 r1 x( ) 1( ) x x 1–( ) r2 x 2–( )q2 x( )+[ ]+ +=

r0 r1 x( ) 1( )+ r2 x( ) 2( ) x x 1–( ) x 2–( )q2 x( )+ +=
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Continuing with the above procedure, we obtain a new quotient whose degree is one less than
preceding quotient and therefore, the process of finding new quotients and remainders terminates
after  steps. 

The general form of a factorial polynomial is

(7.28)

and from (7.16) and (7.22),

(7.29)

or

(7.30)

Example 7.3  
Express the algebraic polynomial 

(7.31)

as a factorial polynomial. Then, construct the difference table with .

Solution:

Since the highest power of the given polynomial  is , we must evaluate the remainders
 and ; then, we will use (7.28) to determine . We can compute the remainders

by long division, but for convenience, we will use the MATLAB deconv(p,q) function which
divides the polynomial p by q. 

The MATLAB script is as follows:

px=[1  −5  0  3  4]; % Coefficients of given polynomial
d0=[1  0]; % Coefficients of first divisor, i.e, x
[q0,r0]=deconv(px,d0) % Computation of first quotient and remainder
d1=[1  −1]; % Coefficients of second divisor, i.e, x−1
[q1,r1]=deconv(q0,d1) % Computation of second quotient and remainder
d2=[1  −2]; % Coefficients of third divisor, i.e, x−2
[q2,r2]=deconv(q1,d2) % Computation of third quotient and remainder
d3=[1  −3]; % Coefficients of fourth divisor, i.e, x−3
[q3,r3]=deconv(q2,d3) % Computation of fourth quotient and remainder
d4=[1  −4]; % Coefficients of fifth (last) divisor, i.e, x−4
[q4,r4]=deconv(q3,d4) % Computation of fifth (last) quotient and remainder

q0 =

n 1+( )

pn x( ) r0 r1 x( ) 1( )+ r2 x( ) 2( ) … rn 1– x( ) n 1–( ) rn x( ) n( )
+ + + +=

rj aj
Δjpn 0( )

j!
-------------------= =

Δjpn 0( ) j!rj=

p x( ) x4 5x3– 3x 4+ +=

h 1=

p x( ) 4
r0 r1 r2 r3, , , r4 pn x( )
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Factorial Polynomials

     1    -5     0     3
r0 =
     0     0     0     0     4
q1 =
     1    -4    -4
r1 =
     0     0     0    -1
q2 =
     1    -2
r2 =
     0     0    -8
q3 =
     1
r3 =
     0     1
q4 =
     0
r4 =
     1

Therefore, with reference to (7.28), the factorial polynomial is

(7.32)

We can verify that (7.32) is the same polynomial as (7.31), by expansion of the factorials using
(7.12). This can be easily done with the MATLAB collect(‘s_expr’) function, where ‘s_expr’ is
a symbolic expression. For this example, the MATLAB script is

syms x; px=collect((x*(x−1)*(x−2)*(x−3))+(x*(x−1)*(x−2))−(8*x*(x−1))−x+4)

px =
x^4-5*x^3+3*x+4

We observe that this is the same algebraic polynomial as in (7.31).

We will now compute the leading entries for the difference table using (7.30) and (7.32). Then,

pn x( ) 4 x( ) 1( )– 8 x( ) 2( )– x( ) 3( ) x( ) 4( )+ +=
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(7.33)

1. We enter the values of (7.33) in the appropriate spaces as shown in Table 7.6.

2. We obtain the next set of values by crisscross addition as shown in Table 7.7.

3. The second crisscross addition extends the difference table as shown in Table 7.8.

TABLE 7.6  Leading entries of (7.33) in table form

4
−1

−16
6

24
0

TABLE 7.7  Crisscross addition to find second set of values

4

−1

3 −16

−17 6

−10 24

30 0

24

Δ0p 0( ) 0! 4⋅ 4= =

Δ1p 0( ) 1! 1–( )⋅ 1–= =

Δ2p 0( ) 2! 8–( )⋅ 16–= =

Δ3p 0( ) 3! 1⋅ 6= =

Δ4p 0( ) 4! 1⋅ 24= =

Δ5p 0( ) 5! 0⋅ 0= =

x p x( ) Δ Δ2 Δ3 Δ4 Δ5

x p x( ) Δ Δ2 Δ3 Δ4 Δ5
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Factorial Polynomials

4. Continuation of this procedure produces the complete difference table. This is shown in Table
7.9.

TABLE 7.8  Second crisscross addition to find third set of values

x p(x)

4

−1

3 −16

−17 6

−14 −10 24

−27 30 0

20 24

54

TABLE 7.9  Complete difference table for Example 7.3

x p(x)

4

−1

3 −16

−17 6

−14 −10 24

−27 30 0

−41 20 24

−7 54

−48 74

67

19

Δ Δ2 Δ3 Δ4 Δ5

Δ Δ2 Δ3 Δ4 Δ5
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7.3 Antidifferences
We recall from elementary calculus that when we know the first derivative of a function, we can
integrate or antidifferentiate to find the function. By a similar method, we can find the antidifference

of a factorial polynomial. We denote the antidifference as . It is computed from

(7.34)

Example 7.4  
Compute the antidifference of the algebraic polynomial 

(7.35)

Solution:

This is the same algebraic polynomial as that of the previous example, where we found that the
corresponding factorial polynomial is

(7.36)

Then, by (7.34), its antidifference is

(7.37)

where C is an arbitrary constant.

Antidifferences are very useful in finding sums of series. Before we present an example, we need
to review the definite sum and the fundamental theorem of sum calculus. These are discussed
below.

In analogy with definite integrals for continuous functions, in finite differences we have the defi-
nite sum of  which for the interval  is denoted as

(7.38)

Also, in analogy with the fundamental theorem of integral calculus which states that

Δ 1– pn x( )

Δ 1– x( ) n( ) x( ) n 1+( )

n 1+( )
--------------------=

p x( ) x4 5x3– 3x 4+ +=

pn x( ) 4 x( ) 1( )– 8 x( ) 2( )– x( ) 3( ) x( ) 4( )+ +=

Δ 1– pn x( ) x( ) 5( )

5
------------- x( ) 4( )

4
------------- 8 x( ) 3( )

3
-------------– x( ) 2( )

2
-------------– 4 x( ) 1( ) C+ + +=

pn x( ) a x a n 1–( )h+≤ ≤

pn x( )
x α=

α n 1–( )h+

∑ pn α( ) pn α h+( ) pn α 2h+( ) … pn α n 1–( )h+[ ]+ + + +=
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Antidifferences

(7.39)

we have the fundamental theorem of sum calculus which states that

(7.40)

Example 7.5  

Derive a simple expression, in closed form, that computes the sum of the cubes of the first  odd
integers.

Solution:

An odd number can be expressed as , and thus its cube is . To use (7.40), we
must express this term as a factorial polynomial. Recalling from (7.12) that

(7.41)

and using the MATLAB expand(f) function where f is a symbolic expression, we execute

syms m; f = (2*m−1)^3; expand(f)

and we obtain
ans =
8*m^3-12*m^2+6*m-1

Thus

(7.42)

Following the procedure of Example 7.3, we find with MATLAB as

pm=[8  −12  6  −1];
d0=[1 0];
[q0,r0]=deconv(pm,d0)
d1=[1  −1];
[q1,r1]=deconv(q0,d1)
d2=[1  −2];
[q2,r2]=deconv(q1,d2)
d3=[1  −3];
[q3,r3]=deconv(q2,d3)

q0 =
     8   -12     6

f x( ) xd
a

b

∫ f b( ) f a( )–=

pn x( )
x α=

α n 1–( )h+

∑ Δ 1– pn x( )
α

α nh+=

n

2m 1– 2m 1–( )3

x( ) n( ) x x 1–( ) x 2–( )… x n– 1+( )=

p m( ) 2m 1–( )3 8m3 12m2– 6m 1–+==

pn m( )
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r0 =
     0     0     0    -1
q1 =
     8    -4
r1 =
     0     0     2
q2 =
     8
r2 =
     0    12
q3 =
     0
r3 =
     8

Therefore,

(7.43)

Taking the antidifference of (7.43) we obtain

(7.44)

and with (7.40)

(7.45)

Since

(7.46)

relation (7.45) reduces to

(7.47)

pn m( ) 8 m( ) 3( ) 12 m( ) 2( ) 2 m( ) 1( ) 1–+ +=

Δ 1– pn m( ) 8 m( ) 4( )

4
------------------ 12 m( ) 3( )

3
--------------------- 2 m( ) 2( )

2
------------------ m( ) 1( )–+ +=

2 m( ) 4( ) 4 m( ) 3( ) m( ) 2( ) m( ) 1( )–+ +=

cubes∑ 2 m( ) 4( ) 4 m( ) 3( ) m( ) 2( ) m( ) 1( )
–+ + m 1=

n 1+
=

2 n 1+( )n n 1–( ) n 2–( ) 4 n 1+( )n n 1–( ) n 1+( )n n 1+( )–+ +=

2 1( ) 4( )
– 4– 1( ) 3( ) 1( ) 2( )

– 1( ) 1( )
+

1( ) 4( ) 1 1 1–( ) 1 2–( ) 1 3–( ) 0= =

1( ) 3( ) 1 1 1–( ) 1 2–( ) 0= =

1( ) 2( ) 1 1 1–( ) 0= =

1( ) 1( ) 1=

cubes∑ 2 n 1+( )n n 1–( ) n 2–( ) 4 n 1+( )n n 1–( ) n 1+( )n n 1+( )– 1+ + +=
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Newton’s Divided Difference Interpolation Method

and this can be simplified with the MATLAB collect(f) function as follows.

syms n; sum=collect(2*(n+1)*n*(n−1)*(n−2)+4*(n+1)*n*(n−1)+(n+1)*n−(n+1)+1)
sum =
2*n^4-n^2

that is,

(7.48)

We can verify that this is the correct expression by considering the first  odd integers
. The sum of their cubes is

This is verified with (7.48) since

One important application of finite differences is interpolation. Newton’s divided−difference inter-
polation method, Lagrange’s interpolation method, Gregory−Newton forward, and Gregory−
Newton backward interpolation methods are discussed in Sections 7.4 through 7.7 below. We
will use spreadsheets to facilitate the computations. Interpolation using MATLAB is discussed in
Section 7.8 below.

7.4 Newton’s Divided Difference Interpolation Method

This method, has the advantage that the values  need not be equally spaced, or
taken in consecutive order. It uses the formula 

(7.49)

where , , and  are the first, second, and third divided differ-
ences respectively.

Example 7.6  

Use Newton’s divided−difference method to compute  from the experimental data shown in
Table 7.10.

cubes∑ 2n4 n2– n2 2n2 1–( )= =

4
1 3 5  and 7, , ,

1 27 125 343+ + + 496=

n2 2n2 1–( ) 42 2 42 1–⋅( ) 16 31⋅ 496= = =

x0 x1 x2 … xn, , , ,

f x( ) f x0( ) x x0–( ) f x0 x1,( ) x x0–( ) x x1–( ) f x0 x1 x2, ,( )+ +=

 x x0–( ) x x1–( ) x x2–( ) f x0 x1 x2 x3, , ,( )+

f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

f 2( )



Chapter 7  Finite Differences and Interpolation

7−16 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

Solution:

We must compute the first, second, and third divided differences as required by (7.49).

The first divided differences are: 

(7.50)

The second divided differences are: 

(7.51)

and the third divided differences are:

(7.52)

With these values, we construct the difference Table 7.11.

TABLE 7.10  Data for Example 7.6

x −1.0 0.0 0.5 1.0 2.5 3.0

3.0 −2.0 −0.375 3.0 16.125 19.0y f x( )=

2.000– 3.000–
0 1.0–( )–

------------------------------------- 5.000–=

0.375– 2.000–( )–
0.5 0.0–

--------------------------------------------- 3.250=

3.000 0.375–( )–
1.0 0.5–

----------------------------------------- 6.750=

16.125 3.000–
2.5 1.0–

------------------------------------ 8.750=

19.000 16.125–
3.0 2.5–

--------------------------------------- 5.750=

3.250 5.000–( )–
0.5 1.0–( )–

----------------------------------------- 5.500=

6.750 3.250–
1.0 0.0–

--------------------------------- 3.500=

8.750 6.750–
2.5 0.5–

--------------------------------- 1.000=

5.750 8.750–
3.0 1.0–

--------------------------------- 1.500–=

3.500 5.500–
1.0 1.0–( )–

--------------------------------- 1.000–=

1.000 3.500–
2.5 0.0–

--------------------------------- 1.000–=

1.500– 1.000–
3.0 0.5–

------------------------------------- 1.000–=
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Lagrange’s Interpolation Method

Now, we have all the data that we need to find . We start with ,* and for  in
(7.49), we use . Then,

This, and other interpolation problems, can also be solved with a spreadsheet. The Excel spread-
sheet for this example is shown in Figure 7.1.

7.5 Lagrange’s Interpolation Method
Lagrange’s interpolation method uses the formula

(7.53)

and, like Newton’s divided difference method, has the advantage that the values 
need not be equally spaced or taken in consecutive order.

TABLE 7.11  Difference table for Example 7.6

1st Divided Difference 2nd Divided Difference 3rd Divided Difference

x
−1.0 3.000

−5.000
0.0 −2.000 5.500

3.250 −1.000
0.5 −0.375 3.500

6.750 −1.000
1.0 3.000 1.000

8.750 −1.000
2.5 16.125 −1.500

5.750
3.0 19.000

* We chose this as our starting value so that  will be between  and 

f x( ) f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

f 2( ) x0 0.00= x

f 2( ) f 1( ) f 2.5( )

x 2=

f 2( ) 2.0– 2 0–( ) 3.250( ) 2 0–( ) 2 0.5–( ) 3.500( ) 2 0–( ) 2 0.5–( ) 2 1–( ) 1.000–( )+ + +=

2.0– 6.5 10.5 3–+ +=

12=

f x( )
x x1–( ) x x2–( )… x xn–( )

x0 x1–( ) x0 x2–( )… x0 xn–( )
------------------------------------------------------------------------f x0( )

x x0–( ) x x2–( )… x xn–( )
x1 x0–( ) x1 x2–( )… x1 xn–( )

------------------------------------------------------------------------f x1( )+=

 
x x0–( ) x x1–( )… x xn 1––( )

xn x0–( ) xn x2–( )… xn xn 1––( )
------------------------------------------------------------------------------f xn( )+  

x0 x1 x2 … xn, , , ,
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Figure 7.1. Spreadsheet for Example 7.6

Example 7.7  
Repeat Example 7.6 using Lagrange’s interpolation formula.

Solution: 

All computations appear in the spreadsheet of Figure 7.2 where we have used relation (7.53).

Interpolation with Newton's Divided Difference Formula
f(x) = f(x0)+(x-x0)f(x0,x1)+(x-x0)(x-x1)f(x0,x1,x2)+(x-x0)(x-x1)(x-x2)f(x0,x1,x2,x3)
In this example, w e w ant to evaluate f(x) at x= 2

1st divided 2nd divided 3rd divided
difference difference difference

x f(x) f(x0, x1) f(x0, x1, x2) f(x0,x1,x2,x3)
-1.00 3.000

-5.000
0.00 -2.000 5.500

3.250 -1.000
0.50 -0.375 3.500

6.750 -1.000
1.00 3.000 1.000

8.750 -1.000
2.50 16.125 -1.500

5.750
3.00 19.000

We use the above formula w ith starting value x0.00
f(2)=B12+(E3-E18)*C13+(E3-E18)*(E3-A14)*D14+(E3-E18)*(E3-A14)*(E3-A16)*E15
or f(2)= 12.00
The plot below  verif ies that our answ er is correct
-1.000 3.000
0.000 -2.000
0.500 -0.375
1.000 3.000
2.500 16.125
3.000 19.000

-5

0

5

10

15

20

-1.0 0.0 1.0 2.0 3.0

x

f(x
)
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Gregory−Newton Forward Interpolation Method

 
Figure 7.2. Spreadsheet for Example 7.7

7.6 Gregory−Newton Forward Interpolation Method
This method uses the formula

(7.54)

where  is the first value of the data set, , , and  are the first, second, and third for-

ward* differences respectively.

The variable  is the difference between an unknown point  and a known point  divided by
the interval , that is,

(7.55)

* This is an expression to indicate that we use the differences in a forward sequence, that is, the first entries on the columns
where the differences appear.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G H I J K L
Lagrange's Interpolation Method

Numer. Denom. Division
Interpol. at x= 2 Partial Partial of Partial

Prods Prods Prods
x f(x) x-x1 x-x2 x-x3 x-x4 x-x5 f(x0)

x0 -1.00 3.000 2.000 1.500 1.000 -0.500 -1.000 3.000 4.500
x1 0.00 -2.000 x0-x1 x0-x2 x0-x3 x0-x4 x0-x5 -0.107
x2 0.50 -0.375 -1.000 -1.500 -2.000 -3.500 -4.000 -42.000
x3 1.00 3.000 x-x0 x-x2 x-x3 x-x4 x-x5 f(x1)
x4 2.50 16.125 3.000 1.500 1.000 -0.500 -1.000 -2.000 -4.500
x5 3.00 19.000 x1-x0 x1-x2 x1-x3 x1-x4 x1-x5 -1.200

1.000 -0.500 -1.000 -2.500 -3.000 3.750
x-x0 x-x1 x-x3 x-x4 x-x5 f(x2)
3.000 2.000 1.000 -0.500 -1.000 -0.375 -1.125

x2-x0 x2-x1 x2-x3 x2-x4 x2-x5 0.600
1.500 0.500 -0.500 -2.000 -2.500 -1.875

x-x0 x-x1 x-x2 x-x4 x-x5 f(x3)
3.000 2.000 1.500 -0.500 -1.000 3.000 13.500

x3-x0 x3-x1 x3-x2 x3-x4 x3-x5 4.500
2.000 1.000 0.500 -1.500 -2.000 3.000

x-x0 x-x1 x-x2 x-x3 x-x5 f(x4)
3.000 2.000 1.500 1.000 -1.000 16.125 -145.125

x4-x0 x4-x1 x4-x2 x4-x3 x4-x5 11.057
3.500 2.500 2.000 1.500 -0.500 -13.125

x-x0 x-x1 x-x2 x-x3 x-x4 f(x5)
3.000 2.000 1.500 1.000 -0.500 19.000 -85.500

x5-x0 x5-x1 x5-x2 x5-x3 x5-x4 -2.850
4.000 3.000 2.500 2.000 0.500 30.000

f(2)= Sum= 12

f x( ) f0 rΔf0
r r 1–( )

2!
------------------Δ2f0

r r 1–( ) r 2–( )
3!

----------------------------------Δ3f0 …+ + + +=

f0 Δf0 Δ2f0 Δ3f0

r x x1

h

r
x x1–( )

h
-------------------=
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The formula of (7.54) is valid only when the values  are equally spaced with inter-
val . It is used to interpolate values near the smaller values of , that is, the values near the
beginning of the given data set. The formula that we will study on the next section, is used to
interpolate values near the larger values of , that is, the values near the end of the given data
set.

Example 7.8  

Use the Gregory−Newton forward interpolation formula to compute  from the following
data. 

Solution:

We enter the given  and  values in a difference table; then, we compute the first, second,
and third differences. These are not divided differences and therefore, we simply subtract the second
value of  from the first, the third from the second, and so on, as shown in Table 7.13.

For this example,

(7.56)

and with the values shown in Table 7.13 and using (7.54), we obtain

(7.57)

The spreadsheet of Figure 7.3 shows the layout and computations for this example. 

TABLE 7.12  Table for Example 7.8

x 1.00 1.05 1.10 1.15 1.20 1.25

1.000000 1.257625 1.531000 1.820875 2.128000 2.453125

x0 x1 x2 … xn, , , ,

h x

x

f 1.03( )

y f x( )=

x f x( )

f x( )

f0 f 1.00( ) 1.000000= =

h x1 x0– 1.05 1.00– 0.05= = =

r
x x1–

h
-------------- 1.03 1.00–

0.05
--------------------------- 0.60= = =

f 1.03( ) 1.000000 0.60( ) 0.257625( )⋅ 0.60( ) 0.60 1–( )⋅
2!

--------------------------------------------+ +=

 0.60( ) 0.60 1–( ) 0.60 2–( )⋅
3!

-------------------------------------------------------------------- 0.000750( )⋅ 1.152727=+
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Gregory−Newton Backward Interpolation Method

7.7 Gregory−Newton Backward Interpolation Method
This method uses the formula

(7.58)

where  is the first value of the data set, , , and  are the first, second and third
backward differences, and

Expression (7.58) is valid only when the values  are equally spaced with interval
. It is used to interpolate values near the end of the data set, that is, the larger values of .

Backward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.

Example 7.9  

Use the Gregory−Newton backward interpolation formula to compute  from the data set
of Table 7.14.

TABLE 7.13  Difference table for Example 7.8

1st Difference 2nd Difference 3rd Difference

x
1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125 0.000750
1.20 2.128000 0.018000

0.325125
1.25 2.453125

f x( ) f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

f x( ) f0 rΔf 1–
r r 1+( )

2!
------------------Δ2f 2–

r r 1+( ) r 2+( )
3!

-----------------------------------Δ3f 3– …+ + + +=

f0 Δf 1– Δ2f 2– Δ3f 3–

r
x x1–( )

h
-------------------=

x0 x1 x2 … xn, , , ,

h x

f 1.18( )
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Figure 7.3. Spreadsheet for Example 7.8

TABLE 7.14  Data for Example 7.9

x 1.00 1.05 1.10 1.15 1.20 1.25
1.000000 1.257625 1.531000 1.820875 2.128000 2.453125

Gregory-Newton Forward Interpolation Method

See expressions (7.54) and (7.55)

Interpolate f(x) at x= 1.03

x f(x) Δf Δ2f Δ3f
1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125 0.000750
1.20 2.128000 0.018000

0.325125
1.25 2.453125

h= A10-A8= 0.05 r= (D5-A8)/C20=0.6

f(1.12)=B8+F20*C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3)
= 1.152727

1.00 1.000000
1.05 1.257625
1.10 1.531000
1.15 1.820875
1.20 2.128000
1.25 2.453125

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1.00 1.05 1.10 1.15 1.20 1.25

y f x( )=
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Gregory−Newton Backward Interpolation Method

Solution:

We arbitrarily choose  as our starting point since  lies between  and
. Then,

and

Now, by (7.58) we have:

The computations were made with the spreadsheet of Figure 7.4.

If the increments in  values are small, we can use the Excel VLOOKUP function to perform
interpolation. The syntax of this function is as follows.

VLOOKUP(lookup_value, table_array, col_index_num, range lookup)

where:

lookup_value is the value being searched in the first column of the lookup table

table_array are the columns forming a rectangular range or array

col_index_num is the column where the answer will be found

range lookup is a logical value (TRUE or FALSE) that specifies whether we require VLOOKUP to
find an exact or an approximate match. If TRUE is omitted, an approximate match is returned.
In other words, if an exact match is not found, the next largest value that is less than the
lookup_value is returned. If FALSE is specified, VLOOKUP will attempt to find an exact match,
and if one is not found, the error value #N/A will be returned.

A sample spreadsheet is shown in Figure 7.5 where the values of x extend from −5 to +5 volts.
Only a partial table is shown.

f0 2.128000= f 1.18( ) f 1.15( )

f 1.20( )
h 1.20 1.15– 0.05= =

r x x1–( ) h⁄ 1.18 1.20–( ) 0.05⁄ 0.4–= = =

f 1.18( ) 2.128 0.4–( ) 0.307125( ) 0.4–( ) 0.4– 1+( )
2!

------------------------------------------ 0.01725( )

0.4–( ) 0.4– 1+( ) 0.4– 2+( )
3!

-------------------------------------------------------------------- 0.00075( ) 2.003032=

+ +

+

=

x
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Figure 7.4. Spreadsheet for Example 7.9

7.8 Interpolation with MATLAB
MATLAB has several functions that perform interpolation of data. We will study the following:

1. interp1(x,y,xi) performs one dimensional interpolation where x and y are related as y = f(x)
and xi is some value for which we want to find y(xi) by linear interpolation, i.e., “table lookup”.
This command will search the x vector to find two consecutive entries between which the
desired value falls. It then performs linear interpolation to find the corresponding value of y. To
obtain a correct result, the components of the x vector must be monotonic, that is, either in
ascending or descending order.

Gregory-Newton Backward Interpolation Method

See formula 7.58

Interpolate f(x) at x= 1.18

x f(x) Δ f Δ2f Δ3f
1.00 1.000000

0.257625
1.05 1.257625 0.015750

0.273375 0.000750
1.10 1.531000 0.016500

0.289875 0.000750
1.15 1.820875 0.017250

0.307125
1.20 2.128000

h= A16-A14= 0.05 r= (C5-A16)/C18= -0.4

f(1.18)= B16+F18*C15+(F18*(F18+1)*D14)/FACT(2)+(F18*(F18+1)*(F18+2)*E13)/FACT(3)
= 2.003032

1.00 1.000000

1.05 1.257625

1.10 1.531000

1.15 1.820875

1.20 2.128000

0.000

0.500

1.000

1.500

2.000

2.500

1.00 1.05 1.10 1.15 1.20
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Figure 7.5. Using the Excel VLOOKUP function for interpolation

2. interp1(x,y,xi,’method’) performs the same operation as interp1(x,y,xi) where the string
method allows us to specify one of the methods listed below.

nearest − nearest neighbor interpolation

linear − linear interpolation; this is the default interpolation

spline − cubic spline interpolation; this does also extrapolation

cubic − cubic interpolation; this requires equidistant values of x

3. interp2(x,y,z,xi,yi) is similar to interp1(x,y,xi) but performs two dimensional interpolation;

4. interp2(x,y,z,xi,yi,’method’) is similar to interp1(x,y,xi,’method’) but performs two dimen-
sional interpolation. The default is linear. The spline method does not apply to two dimen-
sional interpolation.

We will illustrate the applications of these functions with the examples below.

V I
-2.000 -0.0330
-1.975 -0.0326
-1.950 -0.0323
-1.925 -0.0320
-1.900 -0.0316
-1.875 -0.0313
-1.850 -0.0309 A B
-1.825 -0.0306 8 -1.8500 -0.0309266
-1.800 -0.0302 9 -1.8250 -0.0305803
-1.775 -0.0299
-1.750 -0.0295 =VLOOKUP(-1.8375,A2:B282,2) = -0.030927
-1.725 -0.0292 =VLOOKUP(-1.8375,A2:B282,2,TRUE) = -0.030927
-1.700 -0.0288 =VLOOKUP(-1.8375,A2:B282,2,FALSE) = #N/A
-1.675 -0.0285
-1.650 -0.0281 A B
-1.625 -0.0277 264 4.5500 0.1484323
-1.600 -0.0274 265 4.5750 0.1496775
-1.575 -0.0270
-1.550 -0.0267 =VLOOKUP(4.5535,A2:B282,2) = 0.1484323
-1.525 -0.0263

-0.05

0.00

0.05

0.10

0.15

0.20

-2 -1 0 1 2 3 4 5
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Example 7.10  

The  (current−voltage) relation of a non−linear electrical device is given by

(7.59)

where  is in volts and  in milliamperes. Compute  for 30 data points of  within the interval
, plot  versus  in this range, and using linear interpolation compute  when

 volts.

Solution:

We are required to use 30 data points within the given range; accordingly, we will use the MAT-
LAB linspace(first_value, last_value, number_of_values) command. The script below pro-
duces 30 values in volts, the corresponding values in milliamperes, and plots the data for this
range. Then, we use the interp1(x,y,xi) command to interpolate at the desired value.

% This script is for Example_7_10.m
% It computes the values of current (in milliamps) vs. voltage (volts)
% for a diode whose v−i characteristics are i=0.1(exp(0.2v)−1).
% We can use the MATLAB function 'interp1' to linearly interpolate
% the value of milliamps for any value of v within the specified interval.
%
v=linspace(−2, 5, 30); % Specify 30 intervals in the −2<=v<=5 interval
a=0.1.* (exp(0.2 .* v)−1); % We use "a" for current instead of "i" to avoid conflict 

% with imaginary numbers
v_a=[v;a]'; % Define "v_a" as a two−column matrix to display volts

% and amperes side−by−side.
plot(v,a); grid;
title('volt−ampere characteristics for a junction diode');
xlabel('voltage (volts)');
ylabel('current (milliamps)');
fprintf('     volts   milliamps \n'); % Heading of the two−column matrix
fprintf(' \n');
disp(v_a); % Display values of volts and amps below the heading
ma=interp1(v,a,1.265); % Linear (default) interpolation
fprintf('current (in milliamps) @ v=1.265 is %2.4f \n', ma)

The data and the value obtained by interpolation are shown below.

    volts   milliamps 

   -2.0000   -0.0330
   -1.7586   -0.0297
   -1.5172   -0.0262
   -1.2759   -0.0225

i v–

i t( ) 0.1 e0.2v t( ) 1–( )=

v i i v
2 v 5≤ ≤( )– i v i

v 1.265=
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   -1.0345   -0.0187
   -0.7931   -0.0147
   -0.5517   -0.0104
   -0.3103   -0.0060
   -0.0690   -0.0014
    0.1724    0.0035
    0.4138    0.0086
    0.6552    0.0140
    0.8966    0.0196
    1.1379    0.0256
    1.3793    0.0318
    1.6207    0.0383
    1.8621    0.0451
    2.1034    0.0523
    2.3448    0.0598
    2.5862    0.0677
    2.8276    0.0760
    3.0690    0.0847
    3.3103    0.0939
    3.5517    0.1035
    3.7931    0.1135
    4.0345    0.1241
    4.2759    0.1352
    4.5172    0.1468
    4.7586    0.1590
    5.0000    0.1718

current (in milliamps) @ v=1.265 is 0.0288

The plot for this example is shown in Figure 7.6.



Chapter 7  Finite Differences and Interpolation

7−28 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

Figure 7.6. Plot for Example 7.10

Example 7.11  
Plot the function

(7.60)

in  the interval  with 120 intermediate values .  Then,  use the MATLAB
interp1(x,y,xi,’method’) function to interpolate at , , , and . Compare the
values obtained with the linear, cubic, and spline methods, with the analytical values.

Solution:

The script below plots (7.60) and produces the values of analytical values, for comparison with
the linear, cubic, and spline interpolation methods.

% This is the script for Example_7_11
%
x=linspace(0,2*pi,120); % We need these two
y=(cos(x)) .^ 5; % statements for the plot
%
analytic=(cos([pi/8 pi/4 3*pi/5 3*pi/7]').^ 5);
% 
plot(x,y); grid; title('y=cos^5(x)'); xlabel('x'); ylabel('y');
%
linear_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'linear');
% The label 'linear' on the right side of the above statement
% could be have been omitted since the default is linear
%
cubic_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'cubic');

-2 0 2 4 6
-0.05

0

0.05

0.1

0.15

0.2
volt-ampere characteristics for a junction diode

voltage (volts)

cu
rr

en
t (

m
ill

ia
m

ps
)

y f x( ) x5cos= =

0 x 2π≤ ≤
π 8⁄ π 4⁄ 3π 5⁄ 3π 7⁄
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%
spline_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]','spline');
% 
y=zeros(4,4);% Construct a 4 x 4 matrix of zeros
y(:,1)=analytic; % 1st column of matrix
y(:,2)=linear_int; % 2nd column of matrix
y(:,3)=cubic_int; % 3rd column of matrix
y(:,4)=spline_int; % 4th column of matrix
fprintf(' \n'); % Insert line
fprintf('Analytic \t Linear Int \t Cubic Int \t Spline Int \n')
fprintf(' \n');
fprintf('%8.5f\t %8.5f\t %8.5f\t %8.5f\n',y')
fprintf(' \n');
% 
% The statements below compute the percent error for the three
% interpolation methods as compared with the exact (analytic) values
%
error1=(linear_int−analytic).*100 ./ analytic;
error2=(cubic_int−analytic).*100 ./ analytic;
error3=(spline_int−analytic).*100 ./ analytic;
%
z=zeros(4,3); % Construct a 4 x 3 matrix of zeros
z(:,1)=error1; % 1st column of matrix
z(:,2)=error2; % 2nd column of matrix
z(:,3)=error3; % 3rd column of matrix
% fprintf(' \n'); % Insert line
disp('The percent errors for each interpolation method are:')
fprintf(' \n');
fprintf('Linear Int \t Cubic Int \t Spline Int \n')
fprintf(' \n');
fprintf('%8.5f\t %8.5f\t %8.5f\n',z')
fprintf(' \n'); 

The plot for the function of this example is shown in Figure 7.7.
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Figure 7.7. Plot the function of Example 7.11

The analytical and interpolated values are shown below for comparison.

Analytic  Linear Int  Cubic Int  Spline Int 

 0.67310    0.67274    0.67311    0.67310
 0.17678    0.17718    0.17678    0.17678
-0.00282   -0.00296   -0.00281   -0.00282
 0.00055    0.00062    0.00054    0.00055

The percent errors for each interpolation method are:
 
Linear Int  Cubic Int  Spline Int 
 
-0.05211     0.00184     0.00002
 0.22707    -0.00012     0.00011
 5.09681    -0.40465    -0.01027
13.27678    -0.64706    -0.07445

Example 7.12  
For the impedance example of Section 1.7 in Chapter 1 whose script and plot are shown below,
use the spline method of interpolation to find the magnitude of the impedance at .

Solution:

% The file is Example_7_12.m
% It calculates and plots the impedance Z(w) versus radian frequency w.

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y=cos5(x)

x

y

ω 792 rad s⁄=
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%
% Use the following five statements to obtain |Z| versus radian frequency w
w=300:100:3000;
z=zeros(28,2);
z(:,1)=w';
z(:,2)=(10+(10.^4−j.*10.^6./w)./(10+j.*(0.1.*w−10.^5./w)))';
fprintf('%2.0f\t %10.3f\n',abs(z)')
%
w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500....
                        1600 1700 1800 1900 2000 2100 2200 2300....
                        2400 2500 2600 2700 2800 2900 3000];
z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056 1014.938...
                        469.830 266.032 187.052 145.751 120.353...
                        103.111 90.603 81.088 73.588 67.513 62.481...
                        58.240 54.611 51.468 48.717 46.286 44.122...
                        42.182 40.432 38.845];
semilogx(w,z); grid;
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms');
%
zi=interp1(w,z,792,'spline');
fprintf(' \n')
fprintf('Magnitude of Z at w=792 rad/s is %6.3f Ohms \n', zi)
fprintf(' \n')

The plot for the function of this example is shown in Figure 7.8.

Figure 7.8. Plot for the function of Example 7.12
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MATLAB interpolates the impedance at  and displays the following message:

Magnitude of Z at w=792 rad/s is 217.034 Ohms 

Two−dimensional plots were briefly discussed in Chapter 1. For convenience, we will review the
following commands which can be used for two−dimensional interpolation.

1. mesh(Z) − Plots the values in the matrix Z as height values above a rectangular grid, and con-
nects adjacent points to form a mesh surface.

2. [X,Y]=meshgrid(x,y) − Generates interpolation arrays which contain all combinations of the
x and y points which we specify. X and Y comprise a pair of matrices representing a rectangular
grid of points in the  plane. Using these points, we can form a function  where

 is a matrix.

Example 7.13  
Generate the plot of the function

(7.61)

in three dimensions , , and . This function is the equivalent of the function  in
two dimensions. Here,  is a matrix that contains the distances from the origin to each point in
the pair of  matrices that form a rectangular grid of points in the  plane.

Solution:

The matrix  that contains the distances from the origin to each point in the pair of 
matrices, is

(7.62)

We let the origin be at , and the plot in the intervals  and
. Then, we write and execute the following MATLAB script.

% This is the script for Example_7_13
x=−2*pi: pi/24: 2*pi; % Define interval in increments of pi/24
y=x; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices
R=sqrt(X.^ 2 + Y.^ 2); % Compute distances from origin (0,0) to x−y points
Z=sin(R)./ (R+eps); % eps prevents division by zero
mesh(X,Y,Z); % Generate mesh plot for Z=sin(R)/R
xlabel('x'); ylabel('y'); zlabel('z');

ω 792 rad s⁄=

x y– z f x y,( )=

z

Z Rsin
R

-----------=

x y z y xsin x⁄=

R
X Y,[ ] x y–

R X Y,[ ]

R X 2 Y 2+=

x0 y0,( ) 0 0,( )= 2π– x 2π≤ ≤

2π– y 2π≤ ≤
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title('Plot for the Three−dimensional sin(R) / R Function')

The plot for the function of this example is shown in Figure 7.9.

Figure 7.9. Plot for Example 7.13

Example 7.14  
Generate the plot of the function

(7.63)

in three dimensions , , and . Use the cubic method to interpolate the value of  at 
and .

Solution:

We let the origin be at , and the plot in the intervals  and

. Then, we write and execute the following script.

% This is the script for Example_7_14
x=−10: 0.25: 10; % Define interval in increments of 0.25
y=x; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices
Z=X.^3+Y.^3−3.*X.*Y;
mesh(X,Y,Z); % Generate mesh plot
xlabel('x'); ylabel('y'); zlabel('z');
title('Plot for the Function of Example 7.14');
z_int=interp2(X,Y,Z, −1,2,'cubic');
fprintf(' \n')

z x3 y3 3xy–+=

x y z z x 1–=

y 2=

x0 y0,( ) 0 0,( )= 10– x 10≤ ≤

10– y 10≤ ≤
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fprintf('Interpolated Value of z at x = −1 and y = 2 is z = %4.2f \n',z_int)
fprintf(' \n')

The plot for the function of this example is shown in Figure 7.10.

Figure 7.10. Plot for Example 7.14

Interpolated Value of z at x = -1 and y = 2 is z = 13.00 

Example 7.15  
A land surveyor measured and recorded the data below for a rectangular undeveloped land which
lies approximately 500 meters above sea level.

500.08  500.15  500.05  500.08  500.14  500.13  500.09  500.15
500.12  500.01  500.11  500.18  500.15  500.12  500.05  500.15
500.13  500.12  500.09  500.11  500.11 500.05  500.15  500.02
500.09  500.17  500.17  500.14  500.16  500.09  500.02  500.11
500.08  500.09  500.13  500.18  500.14  500.14  500.14  500.15
500.15  500.10  500.11  500.11  500.12  500.13  500.14  500.12
500.17  500.12  500.13  500.18  500.13  500.15  500.17  500.11
500.13  500.14  500.13  500.09  500.14  500.16  500.17  500.14
500.15  500.09  500.14  500.18  500.17  500.08  500.13  500.09
500.12  500.15  500.14  500.01  500.16  500.12  500.11  500.10
500.02  500.19  500.01  500.08  500.12  500.02  500.16  500.12
500.19  500.21  500.17  500.03  500.17  500.09  500.14  500.17

This rectangular land parcel is 175 meters wide and 275 meters deep. The measurements shown
above were made at points 25 meters apart.
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a. Denoting the width as the , the depth as the  and the height as the ,
plot the given data to form a rectangular grid.

b. Interpolate the value of  at  m, and  m.

c. Compute the maximum height and its location on the  plane.

Solution:

The MATLAB script and plot are shown below and explanations are provided with comment
statements.

% This script is for Example_7_15
%
x=0: 25: 175;  % x−axis varies across the rows of z
y=0: 25: 275; % y−axis varies down the columns of z
z=[500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15;
   500.12 500.01 500.11 500.18 500.15 500.12 500.05 500.15;
   500.13 500.12 500.09 500.11 500.11 500.05 500.15 500.02;
   500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11;
   500.08 500.09 500.13 500.18 500.14 500.14 500.14 500.15;
   500.15 500.10 500.11 500.11 500.12 500.13 500.14 500.12;
   500.17 500.12 500.13 500.18 500.13 500.15 500.17 500.11;
   500.13 500.14 500.13 500.09 500.14 500.16 500.17 500.14;
   500.15 500.09 500.14 500.18 500.17 500.08 500.13 500.09;
   500.12 500.15 500.14 500.01 500.16 500.12 500.11 500.10;
   500.02 500.19 500.01 500.08 500.12 500.02 500.16 500.12;
   500.19 500.21 500.17 500.03 500.17 500.09 500.14 500.17];
%
mesh(x,y,z); axis([0 175  0 275  500 502]); grid off; box off
xlabel('x−axis, m'); ylabel('y−axis, m'); zlabel('Height, meters above sea level'); title('Parcel
map')
% The pause command below stops execution of the program for 10 seconds
%  so that we can see the mesh plot
pause(10);
z_int=interp2(x,y,z,108,177,'cubic');
disp('Interpolated z is:'); z_int
[xx,yy]=meshgrid(x,y);
xi=0: 2.5: 175; % Make x−axis finer
% size(xi); % Returns a row vector containing the size of xi where the
% first element denotes the number of rows and the second is the number
% of columns. Here, size(xi) = 1  71
disp('size(xi)'); size(xi)
yi=0: 2.5: 275; % Make y−axis finer
disp('size(yi)'); size(yi)
[xxi,yyi]=meshgrid(xi,yi); % Forms grid of all combinations of xi and yi

x axis– y axis– z axis–

z x 108= y 177=

x y–
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% size(xxi) = size(yyi) = size(zzi) = 111  71
disp('size(xxi)'); size(xxi); disp('size(yyi)'); size(yyi); disp('size(zzi)'); size(zzi)
size(xxi), size(yyi), size(zzi)
zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation − interpolates
% all combinations of xxi and yyi and constructs the matrix zzi
mesh(xxi,yyi,zzi); % Plot smoothed data
hold on;
[xx,yy]=meshgrid(x,y); % Grid with original data
plot3(xx,yy,z,'*k'); axis([0 175  0 275  500 503]); grid off; box off
xlabel('x−axis, m'); ylabel('y−axis, m'); zlabel('Height, meters above sea level');
title('Map of Rectangular Land Parcel')
hold off;
% max(x) returns the largest element of vector x
% max(A) returns a row vector which contains the maxima of the columns
% in matrix A. Likewise max(zzi) returns a row vector which contains the
% maxima of the columns in zzi. Observe that size(max(zzi)) = 1  71
% and size(max(max(zzi))) = 1  1
zmax=max(max(zzi)) % Estimates the peak of the terrain
% The 'find' function returns the subscripts where a relational expression
% is true. For Example,
% A=[a11 a12 a13; a21 a22 a23; a31 a32 a33] or
% A=[−1 0 3; 2 3 −4; −2 5 6];
% [i,j]=find(A>2)
% returns
% i =
%
%    2
%    3
%    1
%    3
%
%
% j =
%
%    2
%    2
%    3
%    3
% That is, the elements a22=3, a32=5, a13=3 and a33=6 
%  satisfy the condition A>2
% The == operator compares two variables and returns ones when they
%  are equal, and zeros when they are not equal
%
[m,n]=find(zmax==zzi)
% m =
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%
%   65
%
% n =
%
%   36
%
% that is, zmax is located at zzi = Z(65)(36)
%
% the x−cordinate is found from
xmax=xi(n)
% xmax =
%
%   1.7500 % Column 36; size(xi) = 1  71
% and the y−coordinate is found from
ymax=yi(m)
% ymax =
%
%   3.2000 % Row 65; size(yi) = 1  111
% Remember that i is the row index, j is the column index, and x−axis 
% varies across the rows of z and y−axis varies down the columns of z

Interpolated z is:
z_int =
  500.1492

size(xi)

ans =
     1    71

size(yi)

ans =
     1   111

size(xxi)

ans =
   111    71

size(yyi)

ans =
   111    71

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation − interpolates
% all combinations of xxi and yyi and constructs the matrix zzi
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size(zzi)

ans =
   111    71

zmax=max(max(zzi)) % Estimates the peak of the terrain

zmax =
  500.2108

m =
   111
n=
     9
xmax =
    20

ymax =
   275

These values indicate that  where the  and  coordinates are  and
. The interpolated value of  at  m and  m is . The plot is

shown in Figure 7.11. 

Figure 7.11. Plot for Example 7.15

zmax 500.21= x y x 20=

y 275= z x 108= y 177= z 500.192=
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Summary

7.9 Summary
• The first divided difference is defined as:

where  and  are any two, not necessarily consecutive values of , within an interval.

• Likewise, the second divided difference is defined as:

and the third, fourth, and so on divided differences are defined similarly.

• If the values of  are equally spaced and the denominators are all the same, these values are
referred to as the differences of the function.

• If the constant difference between successive values of  is , the typical value of  is

• We can now express the first differences are usually expressed in terms of the difference oper-
ator  as

• Likewise, the second differences are expressed as

and, in general, for positive integer values of 

• The difference operator  obeys the law of exponents which states that

• The  differences  are found from the relation

For ,  and , the above relation reduces to

f xi xj,( )
f xi( ) f xj( )–

xi xj–
-----------------------------=

xi xj x

f xi xj xk, ,( )
f xi xj,( ) f xj xk,( )–

xi xk–
---------------------------------------------=

x

x h xk

xk x0 kh   for   k+ … 2 1 0 1 2 …, , , ,–,–,= =

Δ
Δfk fk 1+ fk–=

Δ2fk Δ Δfk( ) Δfk 1+ Δfk–= =

n

Δnfk Δ Δn 1– fk( ) Δn 1– fk 1+ Δn 1– fk–= =

Δ

Δm Δnfk( ) Δm n+ fk=

nth Δnfk

Δnfk fk n+ nfk n 1–+–
n n 1–( )

2!
--------------------fk n 2–+ … 1–( )n 1– nfk 1+ 1–( )nfk+ + + +=

k 0= n 1 2 3, ,= 4
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• As with derivatives, the  differences of a polynomial of degree  are constant.

• The factorial polynomials are defined as

and

Using the difference operator  with the above relations we obtain 

and

These are very similar to differentiation of  and .

• We can express any algebraic polynomial  as a factorial polynomial . Then, in anal-
ogy with Maclaurin power series, we can express that polynomial as

where

• Factorial polynomials provide an easier method of constructing a difference table. The proce-
dure is as follows:

1. We divide  by  to obtain a quotient and a remainder  which turns out to be

the constant term . Then, the factorial polynomial reduces to

Δf0 f2 f1–=

Δ2f0 f2 2f1– f0+=

Δ3f0 f3 3f2– 3f1 f0–+=

Δ4f0 f4 4f3 6f2 4– f1 f0+ +–=

nth n

x( ) n( ) x x 1–( ) x 2–( )… x n– 1+( )=

x( ) n( )– 1
x 1–( ) x 2–( )… x n+( )

----------------------------------------------------------=

Δ

Δ x( ) n( ) n x( ) n 1–( )
=

Δ x( ) n( )– n– x( ) n 1–( )–
=

xn x n–

fn x( ) pn x( )

pn x( ) a0 a1 x( ) 1( ) a2 x( ) 2( ) … an x( ) n( )
+ + + +=

aj
Δjpn 0( )

j!
-------------------   for   j 0 1 2 … n, , , ,= =

pn x( ) x q0 x( ) r0

a0

pn x( ) r0 xq0 x( )+=
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Summary

2. We divide  by , to obtain a quotient and a remainder  which turns out
to be the constant term . Then,

and by substitution we obtain

3. We divide  by , to obtain a quotient and a remainder  which turns out
to be the constant term , and thus

and by substitution we obtain

and in general,

where

• The antidifference of a factorial polynomial is analogous to integration in elementary calculus.

It is denoted as , and it is computed from

• Antidifferences are very useful in finding sums of series.

• The definite sum of  for the interval  is

• In analogy with the fundamental theorem of integral calculus which states that

q0 x( ) x 1–( ) q1 x( ) r1

a1

q0 x( ) r1 x 1–( )q1 x( )+=

pn x( ) r0 x r1 x 1–( )q1 x( )+[ ]+ r0 r1 x( ) 1( ) x x 1–( )q1 x( )+ += =

q1 x( ) x 2–( ) q2 x( ) r2

a2

q1 x( ) r2 x 2–( )q2 x( )+=

pn x( ) r0 r1 x( ) 1( ) x x 1–( ) r2 x 2–( )q2 x( )+[ ]+ +=

r0 r1 x( ) 1( )+ r2 x( ) 2( ) x x 1–( ) x 2–( )q2 x( )+ +=

pn x( ) r0 r1 x( ) 1( )+ r2 x( ) 2( ) … rn 1– x( ) n 1–( ) rn x( ) n( )
+ + + +=

rj aj
Δjpn 0( )

j!
-------------------= =

Δ 1– pn x( )

Δ 1– x( ) n( ) x( ) n 1+( )

n 1+( )
--------------------=

pn x( ) a x a n 1–( )h+≤ ≤

pn x( )
x α=

α n 1–( )h+

∑ pn α( ) pn α h+( ) pn α 2h+( ) … pn α n 1–( )h+[ ]+ + + +=

f x( ) xd
a

b

∫ f b( ) f a( )–=
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we have the fundamental theorem of sum calculus which states that

• One important application of finite differences is interpolation.

• Newton’s Divided Difference Interpolation Method uses the formula

where , , and  are the first, second, and third divided differ-
ences respectively. This method has the advantage that the values  need not
be equally spaced, or taken in consecutive order.

• Lagrange’s Interpolation Method uses the formula

and, like Newton’s divided difference method, has the advantage that the values
 need not be equally spaced or taken in consecutive order.

• The Gregory−Newton Forward Interpolation method uses the formula

where  is the first value of the data set, , , and are the first, second, and third
forward differences respectively. The variable  is the difference between an unknown point 
and a known point  divided by the interval , that is,

This formula is valid only when the values  are equally spaced with interval .
It is used to interpolate values near the smaller values of , that is, the values near the begin-
ning of the given data set, hence the name forward interpolation.

pn x( )
x α=

α n 1–( )h+

∑ Δ 1– pn x( )
α

α nh+=

f x( ) f x0( ) x x0–( ) f x0 x1,( ) x x0–( ) x x1–( ) f x0 x1 x2, ,( )+ +=

 x x0–( ) x x1–( ) x x2–( ) f x0 x1 x2 x3, , ,( )+

f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

x0 x1 x2 … xn, , , ,

f x( )
x x1–( ) x x2–( )… x xn–( )

x0 x1–( ) x0 x2–( )… x0 xn–( )
------------------------------------------------------------------------f x0( )

x x0–( ) x x2–( )… x xn–( )
x1 x0–( ) x1 x2–( )… x1 xn–( )

------------------------------------------------------------------------f x1( )+=

 
x x0–( ) x x1–( )… x xn 1––( )

xn x0–( ) xn x2–( )… xn xn 1––( )
------------------------------------------------------------------------------f xn( )+  

x0 x1 x2 … xn, , , ,

f x( ) f0 rΔf0
r r 1–( )

2!
------------------Δ2f0

r r 1–( ) r 2–( )
3!

----------------------------------Δ3f0 …+ + + +=

f0 Δf0 Δ2f0 Δ3f0

r x
x1 h

r
x x1–( )

h
-------------------=

x0 x1 x2 … xn, , , , h

x
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Summary

• The Gregory−Newton Backward Interpolation method uses the formula

where  is the first value of the data set, , , and  are the first, second and third
backward differences, and

This formula is valid only when the values  are equally spaced with interval .
It is used to interpolate values near the end of the data set, that is, the larger values of . Back-
ward interpolation is an expression to indicate that we use the differences in a backward
sequence, that is, the last entries on the columns where the differences appear.

• If the increments in  values are small, we can use the Excel VLOOKUP function to perform
interpolation.

• We can perform interpolation to verify our results with the MATLAB functions
interp1(x,y,xi), interp1(x,y,xi,’method’) where method allows us to specify nearest (nearest
neighbor interpolation), linear (linear interpolation, the default interpolation), spline (cubic
spline interpolation which does also extrapolation), cubic (cubic interpolation which requires
equidistant values of ), and interp2(x,y,z,xi,yi) which is similar to interp1(x,y,xi) but per-
forms two dimensional interpolation;

f x( ) f0 rΔf 1–
r r 1+( )

2!
------------------Δ2f 2–

r r 1+( ) r 2+( )
3!

-----------------------------------Δ3f 3– …+ + + +=

f0 Δf 1– Δ2f 2– Δ3f 3–

r
x x1–( )

h
-------------------=

x0 x1 x2 … xn, , , , h

x

x

x



Chapter 7  Finite Differences and Interpolation

7−44 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

7.10 Exercises

1. Express the given polynomial  below as a factorial polynomial , calculate the leading
differences, and then construct the difference table with .

2. Use the data of the table below and the appropriate (forward or backward) Gregory−Newton
formula, to compute:

a.

b.

3. Use the data of the table below and Newton’s divided difference formula to compute:

a.

b.

x 50 51 52 53 54 55 56

7.071 7.141 7.211 7.280 7.348 7.416 7.483

x 1.1 1.2 1.5 1.7 1.8 2.0

y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011

f x( ) p x( )
h 1=

f x( ) x5 2x4 4x3+– x– 6+=

50.2

55.9

x

f 1.3( )

f 1.95( )
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Solutions to End−of−Chapter Exercises

7.11 Solutions to End−of−Chapter Exercises
1.

The highest power of the given polynomial  is , we must evaluate the remainders
 and ; then, we will use (7.28), repeated below, to determine . 

We can compute the remainders by long division but, for convenience, we will use the MAT-
LAB deconv(p,q) function which divides the polynomial p by q.

The MATLAB script is as follows:

px=[1  −2   4  0  −1  6]; % Coefficients of given polynomial
d0=[1  0]; % Coefficients of first divisor, i.e, x
[q0,r0]=deconv(px,d0) % Computation of first quotient and remainder
d1=[1  −1]; % Coefficients of second divisor, i.e, x−1
[q1,r1]=deconv(q0,d1) % Computation of second quotient and remainder
d2=[1  −2]; % Coefficients of third divisor, i.e, x−2
[q2,r2]=deconv(q1,d2) % Computation of third quotient and remainder
d3=[1  −3]; % Coefficients of fourth divisor, i.e, x−3
[q3,r3]=deconv(q2,d3) % Computation of fourth quotient and remainder
d4=[1  −4]; % Coefficients of fifth divisor, i.e, x−4
[q4,r4]=deconv(q3,d4) % Computation of fifth quotient and remainder
d5=[1  −5]; % Coefficients of sixth (last) divisor, i.e, x−5
[q5,r5]=deconv(q4,d5) % Computation of sixth (last) quotient and remainder

q0 =
     1    -2     4     0    -1

r0 =
     0     0     0     0     0     6

q1 =
     1    -1     3     3
r1 =
     0     0     0     0     2

q2 =
     1     1     5

r2 =

     0     0     0    13

f x( ) x5 2x4 4x3+– x– 6+=

f x( ) 5
r0 r1 r2 r3 r4, , , , r5 pn x( )

pn x( ) r0 r1 x( ) 1( )+ r2 x( ) 2( ) … rn 1– x( ) n 1–( ) rn x( ) n( )
+ + + +=
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q3 =
     1     4

r3 =
     0     0    17

q4 =
     1

r4 =
     0     8

q5 =
     0

r5 =
     1

Therefore, with reference to (7.28), the factorial polynomial is

We will verify that  above is the same polynomial as the given  by expansion of the
factorials using (7.12), i.e.,

with the MATLAB collect(‘s_expr’) function. 

syms x; px=collect((x*(x−1)*(x−2)*(x−3)*(x-4)+(8*x*(x−1)*(x−2)*(x-3))+(17*x*(x−1)*(x−2))+...

(13*x*(x−1))+2*x+6))

px =
 
x^5-2*x^4+4*x^3-x+6

We observe that this is the same algebraic polynomial as .

We will now compute the leading entries for the difference table using (7.30), i.e,

 and  above

We enter these values in the appropriate spaces as shown on the table below.

pn x( ) 6 2 x( ) 1( ) 13 x( ) 2( ) 17 x( ) 3( ) 8 x( ) 4( ) x( ) 5( )+ + + + +=

pn x( ) fn x( )

x( ) n( ) x x 1–( ) x 2–( )… x n– 1+( )=

f x( )

Δjpn 0( ) j!rj= pn x( )

Δ0p 0( ) 0! 6⋅ 6= = Δ1p 0( ) 1! 2⋅ 2= = Δ2p 0( ) 2! 13⋅ 26= =

Δ3p 0( ) 3! 17⋅ 102= = Δ4p 0( ) 4! 8⋅ 192= = Δ5p 0( ) 5! 1⋅ 120= =

Δ6p 0( ) 6! 0⋅ 0= =
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We obtain the remaining set of values by crisscross addition as shown on the table below.

2.

a. We will use the differences in a forward sequence, that is, the first entries on the columns
where the differences appear. This is because the value of  should be in the interval

. We enter the given  and  values in a difference table; then, we compute
the first, second, and third differences. These are not divided differences and therefore, we
simply subtract the second value of  from the first, the third from the second, and so
on, as shown below.

6
2

26
102

192
120

0

6
2

8 26
28 102

36 128 192
156 294 120

192 422 312 0
578 606 120

770 1028 432
1606 1038

2376 2066
3672

6048

x 50 51 52 53 54 55 56

7.071 7.141 7.211 7.280 7.348 7.416 7.483

x p x( ) Δ Δ2 Δ3 Δ4 Δ5 Δ6

x p x( ) Δ Δ2 Δ3 Δ4 Δ5 Δ6

x

50.2
50 x 51≤ ≤ x f x( )

f x( )
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and with these values, using (7.54), we obtain

The spreadsheet below shows the layout and computations for Part (a).

Check with MATLAB:

x =[50  51  52  53  54  55  56];
fx=[7.071  7.141  7.211  7.280  7.348  7.416  7.483];
spline_interp=interp1(x,fx,[50.2]','spline'); fprintf('\n');...
fprintf('spline interpolation yields f(50.2) = \n'); disp(spline_interp)

spline interpolation yields f(50.2) = 
    7.0849

1st Difference 2nd Difference 3rd Difference

x
50 7.071

0.070
51 7.141 0.000

0.070 -0.001
52 7.211 -0.001

0.069 0.000
53 7.280 -0.001

0.068 0.001
54 7.348 0.000

0.068 -0.001
55 7.416 -0.001

0.067
56 7.483

f x( ) f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

f0 f 50( ) 7.071= =

h x1 x0– 51 50– 1= = =

r
x x1–

h
-------------- 50.2 50.0–

1
--------------------------- 0.20= = =

f 50.2( ) 7.071 0.20( ) 7.071( )⋅ 0.20( ) 0.20 1–( )⋅
2!

--------------------------------------------+ +=

 0.20( ) 0.20 1–( ) 0.20 2–( )⋅
3!

-------------------------------------------------------------------- 0.001( )⋅ 7.085=+
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b. Since the value of  is very close to the last value in the given range, we will use the
backward interpolation formula

 

Gregory-Newton Forward Interpolation Method for Exercise 7.2(a)

See expressions (7.54) and (7.55)

Interpolate f(x) at x= 50.2

x f(x) Δ f Δ2f Δ3f Δ4f Δ5f Δ6f
50.0 7.071

0.070
51.0 7.141 0.000

0.070 -0.001
52.0 7.211 -0.001 0.001

0.069 0.000 0.000
53.0 7.280 -0.001 0.001 -0.003

0.068 0.001 -0.003
54.0 7.348 0.000 -0.002

0.068 -0.001
55.0 7.416 -0.001

0.067
56.0 7.483

h= A10-A8= 1.00 r= (D5-A8)/C22= 0.2

f(50.2)= round(B8+F22*C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3),3)
= 7.085

50 7.071
51 7.141
52 7.211
53 7.280
54 7.348
55 7.416
56 7.483

7.00

7.10

7.20

7.30

7.40

7.50

50 51 52 53 54 55 56

55.9

f x( ) f0 rΔf 1–
r r 1+( )

2!
------------------Δ2f 2–

r r 1+( ) r 2+( )
3!

-----------------------------------Δ3f 3– …+ + + +=
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where  is the first value of the data set, , , and  are the first, second and
third backward differences, and

We arbitrarily choose  as our starting point since  lies between  and
. Then,

and

Now, by (7.58) we have:

Check with MATLAB:

x =[50  51  52  53  54  55  56];
fx=[7.071  7.141  7.211  7.280  7.348  7.416  7.483];
spline_interp=interp1(x,fx,[55.9]','spline'); fprintf('\n');...
fprintf('spline interpolation yields f(55.9) = \n'); disp(spline_interp)

spline interpolation yields f(55.9) = 
    7.4764

3.

a. The first divided differences are: 

The second divided differences are: 

x 1.1 1.2 1.5 1.7 1.8 2.0

y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011

f0 Δf 1– Δ2f 2– Δ3f 3–

r
x x1–( )

h
-------------------=

f0 7.483= f 55.9( ) f 55( )

f 56( )
h 56 55– 1= =

r x x1–( ) h⁄ 55.9 56.0–( ) 1⁄ 0.1–= = =

f 55.9( ) 7.483 0.1–( ) 0.070( ) 0.1–( ) 0.1– 1+( )
2!

------------------------------------------ 0.000( )

0.1–( ) 0.1– 1+( ) 0.1– 2+( )
3!

-------------------------------------------------------------------- 0.001–( ) 7.476=

+ +

+

=

1.219 1.112–
1.2 1.1–

--------------------------------- 1.070= 1.636 1.219–
1.5 1.2–

--------------------------------- 1.390= 2.054 1.636–
1.7 1.5–

--------------------------------- 2.090=

2.323 2.054–
1.8 1.7–

--------------------------------- 2.690= 3.011 2.323–
2.0 1.8–

--------------------------------- 3.440=

1.390 1.070–
1.5 1.1–

--------------------------------- 0.800= 2.090 1.390–
1.7 1.2–

--------------------------------- 1.400=

2.690 2.090–
1.8 1.5–

--------------------------------- 2.000= 3.440 2.690–
2.0 1.7–

--------------------------------- 2.500=
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and the third divided differences are:

With these values, we construct the difference table below.

To find . We start with  and for  in (7.49), we use . Then,

b.To find  we start with  and for  in (7.49), we use . Then,

The spreadsheet below verifies our calculated values.

1st Divided 
Difference

2nd Divided 
Difference

3rd Divided 
Difference

x
1.1 1.112

1.070
1.2 1.219 0.800

1.390 1.000
1.5 1.636 1.400

2.090 1.000
1.7 2.054 2.000

2.690 1.000
1.8 2.323 2.500

3.440
2.0 3.011

1.400 0.800–
1.7 1.1–

--------------------------------- 1.000= 2.000 1.400–
1.8 1.2–

--------------------------------- 1.000= 2.500 2.000–
2.0 1.5–

--------------------------------- 1.000=

f x( ) f x0 x1,( ) f x0 x1 x2, ,( ) f x0 x1 x2 x3, , ,( )

f 1.3( ) x0 1.1= x x 1.3=

f x( ) f x0( ) x x0–( ) f x0 x1,( ) x x0–( ) x x1–( ) f x0 x1 x2, ,( )+ +=

 x x0–( ) x x1–( ) x x2–( ) f x0 x1 x2 x3, , ,( )+

f 1.3( ) 1.112 1.3 1.1–( ) 1.07( ) 1.3 1.1–( ) 1.3 1.2–( ) 1.4( ) 1.3 1.1–( ) 1.3 1.2–( ) 1.3 1.5–( ) 1( )+ + +=

1.112 0.214 0.028 0.004–+ +=

1.350=

f 1.95( ) x0 2.0= x x 1.95=

f x( ) f x0( ) x x0–( ) f x0 x1,( ) x x0–( ) x x1–( ) f x0 x1 x2, ,( )+ +=

 x x0–( ) x x1–( ) x x2–( ) f x0 x1 x2 x3, , ,( )+

f 1.95( ) 3.011 1.95 2–( ) 3.44( ) 1.95 2–( ) 1.95 1.8–( ) 2.5( ) 1.95 2–( ) 1.95 1.8–( ) 1.95 1.7–( ) 1( )+ + +=

3.011 0.172– 0.019– 0.002–=

2.818=
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Check with MATLAB:

x=[ 1.1       1.2       1.5      1.7       1.8       2.0];
fx=[ 1.112  1.219  1.636  2.054  2.323  3.011];
spline_interp=interp1(x,fx,[1.3]','spline'); fprintf('\n');...
fprintf('spline interpolation value of f(1.3): \n\n'); disp(spline_interp)
spline interpolation value of f(1.3): 

    1.3380

spline_interp=interp1(x,fx,[1.95]','spline'); fprintf('\n');...
fprintf('spline interpolation value of f(1.95): \n\n'); disp(spline_interp)
spline interpolation value of f(1.95):

     2.8184

1st divided 2nd divided 3rd divided
difference difference difference

x f(x) f(x0, x1) f(x0, x1, x2) f(x0,x1,x2,x3)
1.1 1.112

1.070
1.2 1.219 0.800

1.390 1.000
1.5 1.636 1.400

2.090 1.000
1.7 2.054 2.000

2.690 1.000
1.8 2.323 2.500

3.440
2.0 3.011

1.1 1.112
1.2 1.219
1.5 1.636
1.7 2.054
1.8 2.323

2 3.011

1.00

1.50

2.00

2.50

3.00

3.50

1.0 1.3 1.5 1.8 2.0

x

f(x
)
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Chapter 8

Linear and Parabolic Regression

his chapter is an introduction to regression and procedures for finding the best curve to fit
a set of data. We will discuss linear and parabolic regression, and regression with power
series approximations. We will illustrate their application with several examples.

8.1 Curve Fitting
Curve fitting is the process of finding equations to approximate straight lines and curves that best
fit given sets of data. For example, for the data of Figure 8.1, we can use the equation of a straight
line, that is,

(8.1)

Figure 8.1. Straight line approximation.

For Figure 8.2, we can use the equation for the quadratic or parabolic curve of the form

(8.2)

Figure 8.2. Parabolic line approximation

In finding the best line, we normally assume that the data, shown by the small circles in Figures
8.1 and 8.2, represent the independent variable , and our task is to find the dependent variable

. This process is called regression.

T

y mx b+=

y

x

y ax2 bx c+ +=

y

x

x
y
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Regression can be linear (straight line) or curved (quadratic, cubic, etc.) and it is not restricted to
engineering applications. Investment corporations use regression analysis to compare a portfolio’s
past performance versus index figures. Financial analysts in large corporations use regression to
forecast future costs, and the Census Bureau use it for population forecasting.

Obviously, we can find more than one straight line or curve to fit a set of given data, but we inter-
ested in finding the most suitable.

Let the distance of data point  from the line be denoted as , the distance of data point 
from the same line as , and so on. The best fitting straight line or curve has the property that

(8.3)

and it is referred to as the least-squares curve. Thus, a straight line that satisfies (8.3) is called a least
squares line. If it is a parabola, we call it a least-squares parabola. 

8.2 Linear Regression
We perform linear regression with the method of least squares. With this method, we compute the
coefficients  (slope) and  (y-intercept) of the straight line equation

(8.4)

such that the sum of the squares of the errors will be minimum. We derive the values of  and ,
that will make the equation of the straight line to best fit the observed data, as follows:

Let  and  be two related variables, and assume that corresponding to the values
, we have observed the values . Now, let us suppose that we have

plotted the values of  versus the corresponding values of , and we have observed that the
points  approximate a straight line. We denote the straight
line equations passing through these points as

(8.5)

In (8.5), the slope  and y-intercept  are the same in all equations since we have assumed that
all points lie close to one straight line. However, we need to determine the values of the unknowns

 and  from all  equations; we will not obtain valid values for all points if we solve just two

x1 d1 x2

d2

d1
2 d2

2 … d3
2+ + + minimum=

m b

y mx b+=

m b

x y
x1 x2 x3 … xn, , , , y1 y2 y3 … yn, , , ,

y x
x1 y1,( ) x2 y2,( ) x3 y3,( ) … xn yn,( ), , , ,

y1 mx1 b+=

y2 mx2 b+=

y3 mx3 b+=

…
yn mxn b+=

m b

m b n
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equations with two unknowns. *

The error (difference) between the observed value , and the value that lies on the straight line,
is . This difference could be positive or negative, depending on the position of the
observed value, and the value at the point on the straight line. Likewise, the error between the
observed value  and the value that lies on the straight line is  and so on. The
straight line that we choose must be a straight line such that the distances between the observed
values, and the corresponding values on the straight line, will be minimum. This will be achieved
if we use the magnitudes (absolute values) of the distances; if we were to combine positive and
negative values, some may cancel each other and give us an erroneous sum of the distances.
Accordingly, we find the sum of the squared distances between observed points and the points on
the straight line. For this reason, this method is referred to as the method of least squares.

Let the sum of the squares of the errors be 

(8.6)

Since  is a function of two variables  and , to minimize (8.6) we must equate to

zero its two partial derivatives with respect to  and . Then, 

(8.7)

and

(8.8)

The second derivatives of (8.7) and (8.8) are positive and thus  will have its minimum

value.

Collecting like terms, and simplifying (8.7) and (8.8) we obtain

* A linear system of independent equations that has more equations than unknowns is said to be overdetermined and no
exact solution exists. On the contrary, a system that has more unknowns than equations is said to be underdetermined and
these systems have infinite solutions.

y1

y1 mx1 b+( )–

y2 y2 mx2 b+( )–

squares∑ y1 mx1 b+( )–[ ]2 y2 mx2 b+( )–[ ]2 …

yn mxn b+( )–[ ]2

+ +

+

=

squares∑ m b

m b

m∂
∂ squares∑ 2x1 y1 mx1 b+( )–[ ]– 2x2 y2 mx2 b+( )–[ ] …––=

2xn yn mxn b+( )–[ ]– 0=

b∂
∂ squares∑ 2 y1 mx1 b+( )–[ ]– 2 y2 mx2 b+( )–[ ] …––=

2 yn mxn b+( )–[ ]– 0=

squares∑
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(8.9)

where 

We can solve the equations of (8.9) simultaneously by Cramer’s rule, or with Excel, or with MAT-
LAB using matrices.

With Cramer’s rule,  and  are computed from 

(8.10)

where

(8.11)

Example 8.1  

In a typical resistor, the resistance  in  (denoted as  in the equations above) increases with
an increase in temperature  in  (denoted as ). The temperature increments and the
observed resistance values are shown in Table 8-1. Compute the straight line equation that best
fits the observed data.

Solution:

There are  sets of data and thus . For convenience, we use the spreadsheet of Figure 8.3
where we enter the given values and we perform the computations using spreadsheet formulas.

TABLE 8.1 Data for Example 8.1 - Resistance versus Temperature

T 
0 10 20 30 40 50 60 70 80 90 100

R 27.6 31.0 34.0 37 40 42.6 45.5 48.3 51.1 54 56.7

Σx2( )m Σx( )b+ Σxy=

Σx( )m nb+ Σy=

Σx sum of the numbers x=

Σy sum of the numbers y=

Σxy sum of the numbers of the product xy=

Σx2 sum of the numbers x squared=

n number of data x=

m b

m
D1
Δ

------= b
D2
Δ

------=

Δ Σx2 Σx
Σx n

= D1
Σxy Σx
Σy n

= D2
Σx2 Σxy
Σx Σy

=

R Ω y
T °C x

C°( ) x

Ω( ) y

11 n 11=
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Figure 8.3. Spreadsheet for Example 8.1

Accordingly, we enter the  (temperature) values in Column A, and  (the measured resistance
corresponding to each temperature value) in Column B. Columns C and D show the  and 
products. Then, we compute the sums so they can be used with (8.10) and (8.11). All work is
shown on the spreadsheet of Figure 8.3. The values of  and  are shown in cells I20 and I24
respectively. Thus, the straight line equation that best fits the given data is

(8.12)

We can use Excel’s Add Trendline feature to produce quick answers to regression problems. We
will illustrate the procedure with the following example.

Spreadsheet for Example 8.1
x (0C) y(Ω ) x2 xy

0 27.6 0 0
10 31.0 100 310
20 34.0 400 680
30 37.0 900 1110
40 40.0 1600 1600
50 42.6 2500 2130
60 45.5 3600 2730
70 48.3 4900 3381
80 51.1 6400 4088
90 54.0 8100 4860

100 56.7 10000 5670
550 467.8 38500 26559

Σ x2 Σ x 38500 550
= = 121000

Σ x n 550 11
m=D1/Δ= 0.288

Σ xy Σ x 26559 550
= = 34859

Σ y n 467.8 11
b=D2/Δ= 28.123

Σ x2 Σ xy 38500 26559
= = 3402850

Σ x Σ y 550 467.8

Resistance versus Temperature

20.0

30.0

40.0

50.0

60.0

0 20 40 60 80 100

Temperature

R
es

is
ta

nc
e

x y
x 2 xy

m b

y mx b+ 0.288x 28.123+= =
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Example 8.2  
Repeat Example 8.1 using Excel’s Add Trendline feature.

Solution:

We first enter the given data in columns A and B as shown on the spreadsheet of Figure 8.4. 

Figure 8.4. Plot of the straight line for Example 8.2

To produce the plot of Figure 8.4, we perform the following steps:

1. We click on the Chart Wizard icon. The displayed chart types appear on the Standard Types
tab. We click on XY (Scatter) Type. On the Chart sub-types options, we click on the top (scat-
ter) sub-type. Then, we click on Next>Next> Next>Finish, and we observe that the plot
appears next to the data. We click on the Series 1 block inside the Chart box, and we press the
Delete key to delete it.

2. To change the plot area from gray to white, we choose Plot Area from the taskbar below the
main taskbar, we click on the small (with the hand) box, on the Patterns tab we click on the
white box (below the selected gray box), and we click on OK. We observe now that the plot
area is white. Next, we click anywhere on the perimeter of the Chart area, and observe six
square handles (small black squares) around it. We click on Chart on the main taskbar, and on
the Gridlines tab. Under the Value (Y) axis, we click on the Major gridlines box to deselect it.

3. We click on the Titles tab, and on the Chart title box, we type Straight line for Example 8.2, on
the Value X-axis, we type Temperature (degrees Celsius), and on the Value Y-axis, we type Resis-
tance (Ohms). We click anywhere on the x-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the maximum value from 150 to 100, and we
click OK. We click anywhere on the y-axis to select it, and we click on the small (with the
hand) box. We click on the Scale tab, we change the minimum value from 0 to 20, we change
the Major Unit to 10, and we click on OK. 

x (0C) y(Ω )

0 27.6
10 31.0
20 34.0
30 37.0
40 40.0
50 42.6
60 45.5
70 48.3
80 51.1
90 54.0

100 56.7

Straight line for Example 8.2

20

30

40

50

60

0 20 40 60 80 100

Temperature (degrees Celsius)

R
es

is
ta

nc
e 

(O
hm

s)
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4. To make the plot more presentable, we click anywhere on the perimeter of the Chart area, and
we observe the six handles around it. We place the cursor near the center handle of the upper
side of the graph, and when the two-directional arrow appears, we move it upwards by moving
the mouse in that direction. We can also stretch (or shrink) the height of the Chart area by
placing the cursor near the center handle of the lower side of the graph, and move it down-
wards with the mouse. Similarly, we can stretch or shrink the width of the plot to the left or to
the right, by placing the cursor near the center handle of the left or right side of the Chart
area.

5. We click anywhere on the perimeter of the Chart area to select it, and we click on Chart above
the main taskbar. On the pull-down menu, we click on Add Trendline. On the Type tab, we
click on the first (Linear), and we click on OK. We now observe that the points on the plot
have been connected by a straight line.

We can also use Excel to compute and display the equation of the straight line. This feature will
be illustrated in Example 8.4. The Data Analysis Toolpack in Excel includes the Regression Analysis
tool which performs linear regression using the least squares method. It provides a wealth of infor-
mation for statisticians, and contains several terms used in probability and statistics.

8.3 Parabolic Regression
We find the least-squares parabola that fits a set of sample points with

(8.13)

where the coefficients  are found from

(8.14)

where  = number of data points.

Example 8.3  
Find the least−squares parabola for the data shown in Table 8.2.

y ax2 b c+ +=

a b and c, ,

           Σx2( )a Σx( )b nc+ + Σy=

    Σx3( )a Σx2( )b Σx( )c+ + Σxy=

  Σx4( )a Σx3( )b Σx2( )c+ + Σx2y=

n
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Solution:

We construct the spreadsheet of Figure 8.5, and from the data of Columns A and B, we compute
the values shown in Columns C through G. The sum values are shown in Row 18, and from these
we form the coefficients of the unknown .

 
Figure 8.5. Spreadsheet for Example 8.3

By substitution into (8.14),

(8.15)

We solve the equations of (8.15) with matrix inversion and multiplication, as shown in Figure 8.6.
The procedure was presented in Chapter 4.

TABLE 8.2  Data for Example 8.3

x 1.2 1.5 1.8 2.6 3.1 4.3 4.9 5.3

y 4.5 5.1 5.8 6.7 7.0 7.3 7.6 7.4

x 5.7 6.4 7.1 7.6 8.6 9.2 9.8

y 7.2 6.9 6.6 5.1 4.5 3.4 2.7

a b and c, ,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A B C D E F G
x y x2 x3 x4 xy x2y
1.2 4.5 1.44 1.73 2.07 5.40 6.48
1.5 5.1 2.25 3.38 5.06 7.65 11.48
1.8 5.8 3.24 5.83 10.50 10.44 18.79
2.6 6.7 6.76 17.58 45.70 17.42 45.29
3.1 7.0 9.61 29.79 92.35 21.70 67.27
4.3 7.3 18.49 79.51 341.88 31.39 134.98
4.9 7.6 24.01 117.65 576.48 37.24 182.48
5.3 7.4 28.09 148.88 789.05 39.22 207.87
5.7 7.2 32.49 185.19 1055.60 41.04 233.93
6.4 6.9 40.96 262.14 1677.72 44.16 282.62
7.1 6.6 50.41 357.91 2541.17 46.86 332.71
7.6 5.1 57.76 438.98 3336.22 38.76 294.58
8.6 4.5 73.96 636.06 5470.08 38.70 332.82
9.2 3.4 84.64 778.69 7163.93 31.28 287.78
9.8 2.7 96.04 941.19 9223.68 26.46 259.31

Σx= Σy= Σx2= Σx3= Σx4= Σxy= Σx2y=
79.1 87.8 530.15 4004.50 32331.49 437.72 2698.37

                530.15a 79.1b 15c+ + 87.8=

       4004.50a 530.15b 79.1c+ + 437.72=

32331.49a 4004.50b 530.15c+ + 2698.37=
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Figure 8.6. Spreadsheet for the solution of the equations of (8.15)

Therefore, the least−squares parabola is

The plot for this parabola is shown in Figure 8.7.

 
Figure 8.7. Parabola for Example 8.3

Example 8.4  
The voltages (volts) shown on Table 8.3 were applied across the terminal of a non−linear device
and the current ma (milliamps) values were observed and recorded. Use Excel’s Add Trendline
feature to derive a polynomial that best approximates the given data.

Solution:

We enter the given data on the spreadsheet of Figure 8.8 where, for brevity, only a partial list of

1
2
3
4
5
6
7
8
9

A B C D E F G
Matrix Inversion and Matrix Multiplication for Example 8.3

530.15 79.10 15.00 Σy= 87.80
A= 4004.50 530.15 79.10 Σxy= 437.72

32331.49 4004.50 530.15 Σx2y= 2698.37

0.032 -0.016 0.002 a= -0.20
A-1= -0.385 0.181 -0.016 b= 1.94

0.979 -0.385 0.032 c= 2.78

y 0.20x2– 1.94x 2.78+ +=

x y
0.0 2.780
0.1 2.972
0.2 3.160
0.3 3.344
0.4 3.524
0.5 3.700
0.6 3.872
0.7 4.040
0.8 4.204
0.9 4.364
1.0 4.520
1.1 4.672
1.2 4.820
1.3 4.964
1.4 5.104
1.5 5.240

y = −0.20x2+1.94x+2.78

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9 10

x

y
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the given data is shown. However, to obtain the plot, we need to enter all data in Columns A and
B.

Figure 8.8. Plot for the data of Example 8.4

Following the steps of Example 8.2, we create the plot shown next to the data. Here, the smooth
curve was chosen from the Add trendline feature, but we clicked on the polynomial order 3 on the
Add trendline Type tab. On the Options tab, we clicked on Display equation on chart, we clicked on

Display R squared value on chart, and on OK. The quantity  is a measure of the goodness of fit
for a straight line or, as in this example, for parabolic regression. This is the Pearson correlation coef-
ficient ; it is discussed in probability and statistics textbooks.* 

TABLE 8.3  Data for Example 8.4

Experimental Data

Volts 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

ma 0.00 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28 0.34

Volts 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

ma 0.42 0.50 0.60 0.72 0.85 1.00 1.18 1.39 1.63 1.91

* It is also discussed in Mathematics for Business, Science, and Technology, ISBN 0-9709511-0-8.

Volts Amps

0.00 0.00
0.25 0.01
0.50 0.03
0.75 0.05
1.00 0.08
1.25 0.11
1.50 0.14
1.75 0.18
2.00 0.23
2.25 0.28
2.50 0.34
2.75 0.42

y = 0.0182x3 - 0.0403x2 + 0.1275x - 0.0177
R2 = 0.9997

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0 1 2 3 4 5

R 2

R
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The correlation coefficient can vary from 0 to 1. When , there is no relationship between

the dependent  and independent  variables. When , there is a nearly perfect relation-
ship between these variables. Thus, the result of Example 8.4 indicates that there is a strong rela-
tionship between the variables  and , that is, there is a nearly perfect fit between the cubic
polynomial and the experimental data.

With MATLAB, regression is performed with the polyfit(x,y,n) command, where x and y are the
coordinates of the data points, and n is the degree of the polynomial. Thus, if , MATLAB
computes the best straight line approximation, that is, linear regression, and returns the coeffi-
cients  and . If , it computes the best quadratic polynomial approximation and returns
the coefficients of this polynomial. Likewise, if , it computes the best cubic polynomial
approximation, and so on.

Let  denote the polynomial (linear, quadratic, cubic, or higher order) approximation that is
computed with the MATLAB polyfit(x,y,n) function. Suppose we want to evaluate the polyno-
mial  at one or more points. We can use the polyval(p,x) function to evaluate the polynomial. If
x is a scalar, MATLAB returns the value of the polynomial at point x. If x is a row vector, the
polynomial is evaluated for all values of the vector x.

Example 8.5  

Repeat Example 8.1 using the MATLAB’s polyfit(x,y,n) function. Use  to compute the
best straight line approximation. Plot resistance  versus temperature  in the range

 . Use also the polyval(p,x) command to evaluate the best line approximation p
in the  range in ten degrees increments, and compute the percent error (difference
between the given values and the polynomial values).

Solution:

The following MATLAB script will do the computations and plot the data.

% This is the script for Example 8.5
%
T= [  0    10    20  30    40    50      60     70      80     90  100]; % x−axis data
R=[27.6   31   34   37   40   42.6   45.5   48.3   51.1   54   56.7]; % y−axis data
axis([−10  110  20  60]); % Establishes desired x and y axes limits
plot(T,R,'*b'); % Display experimental (given) points with asterisk

% and smoothed data with blue line
grid; title('R (Ohms) vs T (deg Celsius, n=1'); xlabel('T'); ylabel('R');
hold % Hold current plot so we can add other data
p=polyfit(T,R,1); % Fits a first degree polynomial (straight line since n =1) and returns 

% the coefficients m and b of the straight line equation y = mx + b

R 2 0≈

y x R 2 1≈

x y

n 1=

m b n 2=

n 3=

p

p

n 1=

R T
10– T 110≤ ≤ °C

0 T 100≤ ≤
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a=0: 10: 100; % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial

% Display the coefficients m and b
fprintf('\n') % Insert line
disp('Coefficients m and b are:'); fprintf('\n'); disp(p);
format bank % Two decimal place display will be sufficient
disp('Smoothed R values evaluated from straight line are:'); 
R_smoothed=polyval(p,T) % Compute and display the values of the fitted

% polynomial at same points as given 
% (experimental) values of R

R_exper = R % Display the experimental values of R for comparison
% The statement below computes the percent error between  
% the fitted polynomial and the experimental data

disp('% Error at points of given values is:')
% The percent error is computed with the following statement

error=(R_smoothed−R_exper).*100./R_exper
format short % Return to default format

The plot for the data of this example is shown in Figure 8.9. 

Figure 8.9. Plot for Example 8.5

MATLAB also displays the following data:

Coefficients m and b are:
    0.2881   28.1227

Smoothed R values evaluated from straight line are:

R_smoothed =

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60
R (Ohms) vs T (deg Celsius, n=1

T

R
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  Columns 1 through 5 
    28.12  31.00  33.88  36.77  39.65

  Columns 6 through 10 
    42.53  45.41  48.29  51.17  54.05

  Column 11 
    56.93

R_exper =
  Columns 1 through 5 
    27.60  31.00  34.00  37.00  40.00

  Columns 6 through 10 
    42.60  45.50  48.30  51.10  54.00

  Column 11 
         56.70

% Error at points of given values is:

error =

  Columns 1 through 5 
    1.89   0.01   -0.34  -0.63   -0.88

  Columns 6 through 10 
    -0.17  -0.20  -0.02   0.14   0.09

  Column 11 
    0.41

We can make the displayed data more presentable by displaying the values in four columns. The
following MATLAB script will do that and will display the error in absolute values.

T= [0  10  20  30  40  50  60  70  80  90  100]; % x−axis data
R=[27.6  31.0  34.0  37.0  40.0  42.6  45.5  48.3  51.1  54.0  56.7]; % y−axis data
p=polyfit(T,R,1); R_smoothed=polyval(p,T); R_exper = R;
error=(R_smoothed−R_exper).*100./R_exper;
y=zeros(11,4); % Construct an 11 x 4 matrix of zeros
y(:,1)=T'; % 1st column of matrix
y(:,2)=R_exper'; % 2nd column of matrix
y(:,3)=R_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(' \n'); % Insert line
fprintf('Temp \t Exper R\t Smoothed R \t |Error| \n')
fprintf(' \n'); % Insert line
fprintf('%3.0f\t %5.4f\t %5.4f\t %5.4f\n',y')
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fprintf(' \n'); % Insert line

When this script is executed, MATLAB displays the following where the error is in percent.

Temp  Exper R Smoothed R |Error| 

  0  27.6000  28.1227  1.8939
 10  31.0000  31.0036  0.0117
 20  34.0000  33.8845  0.3396
 30  37.0000  36.7655  0.6339
 40  40.0000  39.6464  0.8841
 50  42.6000  42.5273  0.1707
 60  45.5000  45.4082  0.2018
 70  48.3000  48.2891  0.0226
 80  51.1000  51.1700  0.1370
 90  54.0000  54.0509  0.0943
100  56.7000  56.9318  0.4089

8.4 Regression with Power Series Approximations
In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the deriva-
tives  with finite differences . The following example illustrates the procedure.

Example 8.6  
The voltages (volts) shown in Table 8.4, were applied across the terminal of a non−linear device,
and the current ma (milliamps) values were observed and recorded. Use the power series method
to derive a polynomial that best approximates the given data.

Solution:

We begin by plotting the given data and we draw a smooth curve as shown in spreadsheet of Fig-
ure 8.10. 

TABLE 8.4  Data for Example 8.6

Experimental Data

Volts 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

ma 0.00 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28 0.34

Volts 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

ma 0.42 0.50 0.60 0.72 0.85 1.00 1.18 1.39 1.63 1.91

di dv⁄ Δi Δv⁄
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Figure 8.10. Spreadsheet for Example 8.6

Using the plot of Figure 8.10 we read the voltmeter reading and the corresponding smoothed ma
readings and enter the values in Table 8.5.

Next, we compute  for 
To facilitate the computations, we enter these values in the spreadsheet of Figure 8.11. In cell E4
we enter the formula =(B5-B4)/(A5-A4) and we copy it down to E5:E23.

TABLE 8.5 Data for the first derivative

Smoothed Data for Computation of Δi / Δv
Volts 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

ma −0.02 0.01 0.04 0.06 0.09 0.11 0.14 0.18 0.22 0.27 0.33

Volts 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

ma 0.41 0.49 0.60 0.72 0.85 1.01 1.20 1.40 1.63 1.89

Experimental
volts ma

0.00 0.00
0.25 0.01
0.50 0.03
0.75 0.05
1.00 0.08
1.25 0.11
1.50 0.14
1.75 0.18
2.00 0.23
2.25 0.28
2.50 0.34
2.75 0.42
3.00 0.50
3.25 0.60
3.50 0.72

3.75 0.85 From this plot, i | v =0 = i(0) = −0.02
4.00 1.00
4.25 1.18
4.50 1.39
4.75 1.63
5.00 1.91

Smoothed Experimental Data

-0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 1 2 3 4 5 6

v

m
a

Δi Δv⁄ i 1 2 …20, ,=
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Figure 8.11. Spreadsheet for computation of  in Example 8.6

Next, we plot the computed values of  versus  and again we smooth the data as shown in
the spreadsheet of Figure 8.12. The smoothed values of the plot of Figure 8.12 are shown in Figure

8.13, and from these we compute . Finally, we plot  versus volts and again we
smooth the data as shown in Figure 8.14.

Following the same procedure we can find higher order derivatives. However, for this example we
will consider only the first three terms of the polynomial whose coefficients i,  and

, all three evaluated at  and are read from the plots. Therefore, the polynomial that
best fits the given data is

(8.16)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E
Smoothed Computed

Volts ma Δi / Δv

0.00 -0.02 Δi1 / Δv1= (0.01-(-0.02))/(0.25-0.00)= 0.12
0.25 0.01 Δi2 / Δv2= (0.04-(0.01))/(0.25-0.00)= 0.12
0.50 0.04 … … 0.08
0.75 0.06 … … 0.12
1.00 0.09 … … 0.08
1.25 0.11 … … 0.12
1.50 0.14 … … 0.16
1.75 0.18 … … 0.16
2.00 0.22 … … 0.20
2.25 0.27 … … 0.24
2.50 0.33 … … 0.32
2.75 0.41 … … 0.32
3.00 0.49 … … 0.44
3.25 0.60 … … 0.48
3.50 0.72 … … 0.52
3.75 0.85 … … 0.64
4.00 1.01 … … 0.76
4.25 1.20 … … 0.80
4.50 1.40 … … 0.92
4.75 1.63 Δi20 / Δv20= (1.89-(1.63))/(0.25-0.00)= 1.04
5.00 1.89

Δi Δv⁄

Δi Δv⁄ v

Δ2i Δ2v⁄ Δ2i Δ2v⁄

Δi Δv⁄

Δi2 Δv2⁄ v 0=

i v( ) i 0( ) i ′ 0( ) 1
2!
-----i ′′ 0( ) …+ + + 0.02– 0.12v 0.5 0.08–( )v2+ += =

0.04v2– 0.12v 0.02–+=
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Figure 8.12. Plot to obtain smoothed data for  in Example 8.6

Example 8.7  

Repeat Example 8.4 using the MATLAB polyfit(x,y,n) function. Use  to compute the best
cubic polynomial approximation.

Solution:

With MATLAB, higher degree polynomial regression is also performed with the polyfit(x,y,n)
function, where . In this example we will use  as we did with Excel. The MATLAB
script below computes the smoothed line and produces the plot shown on Figure 8.15.

Computed
Volts Δ i / Δv Δ i / Δv

0.00 0.12 -0.02
0.25 0.12 0.01
0.50 0.08 0.04
0.75 0.12 0.06
1.00 0.08 0.09
1.25 0.12 0.11
1.50 0.16 0.14
1.75 0.16 0.18
2.00 0.20 0.22
2.25 0.24 0.27
2.50 0.32 0.33
2.75 0.32 0.41
3.00 0.44 0.49
3.25 0.48 From this plot, (Δi / Δv) | v=0 = i'(0) = 0.12 0.60
3.50 0.52 0.72
3.75 0.64 0.85
4.00 0.76 1.01
4.25 0.80 1.20
4.50 0.92 1.40
4.75 1.04 1.63
5.00 1.89

Smoothed Δ i / Δv 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5

volts

Δi Δv⁄

n 3=

n 2≥ n 3=
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Figure 8.13. Spreadsheet for computation of  in Example 8.6

v=[0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3....
     3.25 3.5 3.75 4 4.25 4.5 4.75 5]; % x−axis data
ma=[0 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28....
        0.34 0.42 0.50 0.60 0.72 0.85 1.00 1.18  1.39 1.63 1.91]; % y−axis data
axis([−1 6 −1  2]); % Establishes desired x and y axes limits
plot(v,ma,'+r'); grid % Indicate data points with + and straight line in red 
%
hold % hold current plot so we can add other data
disp('Polynomial coefficients in descending order are: ')
%
p=polyfit(v,ma,3) % Fits a third degree polynomial to

% the data and returns the coefficients
% of the polynomial (cubic equation for
% this example since n=3)

a=0:0.25:5; % Define range to plot the polynomial
q=polyval(p,a);% Calculate p at each value of a
% continued on the next page

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E
Smoothed Computed

Volts Δi/Δv Δi2 / Δv2

0.00 0.12 Δi21 / Δv2
1= (0.11-0.12)/(0.25-0.00)= -0.04

0.25 0.11 Δi22 / Δv2
2= (0.10-011)/(0.25-0.00)= -0.04

0.50 0.10 … … 0.00
0.75 0.10 … … 0.04
1.00 0.11 … … 0.04
1.25 0.12 … … 0.08
1.50 0.14 … … 0.12
1.75 0.17 … … 0.12
2.00 0.20 … … 0.16
2.25 0.24 … … 0.20
2.50 0.29 … … 0.24
2.75 0.35 … … 0.24
3.00 0.41 … … 0.28
3.25 0.48 … … 0.32
3.50 0.56 … … 0.32
3.75 0.64 … … 0.36
4.00 0.73 … … 0.36
4.25 0.82 … … 0.40
4.50 0.92 … … 0.44
4.75 1.03 Δi220 / Δv2

20= (1.03-0.92)/(0.25-0.00)= 0.44
5.00

Δi2 Δv2⁄
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Figure 8.14. Plot to obtain smoothed data of in Example 8.6

% 
plot(a,q); title('milliamps vs volts, n=3');...
xlabel('v'); ylabel('ma') % Plot the polynomial
% Display actual, smoothed and % error values
ma_smooth=polyval(p,v); % Calculate the values of the fitted polynomial
ma_exper = ma;
% The following statement computes the percent error between the 
%  smoothed polynomial and the experimental (given) data
error=(ma_smooth−ma_exper).*100./(ma_exper+eps);
%
y=zeros(21,4); % Construct a 21 x 4 matrix of zeros
y(:,1)=v'; % 1st column of matrix
y(:,2)=ma_exper'; % 2nd column of matrix
y(:,3)=ma_smooth'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(' \n'); % Insert line
% continued on the next page

Computed
Volts Δ i2 / Δv2

0.00 -0.04 0.12
0.25 -0.04 0.11
0.50 0.00 0.10
0.75 0.04 0.10
1.00 0.04 0.11
1.25 0.08 0.12
1.50 0.12 0.14
1.75 0.12 0.17
2.00 0.16 0.20
2.25 0.20 0.24
2.50 0.24 0.29
2.75 0.24 0.35
3.00 0.28 0.41
3.25 0.32 0.48
3.50 0.32 0.56
3.75 0.36 0.64

4.00 0.36 From this plot, (Δi2 / Δv2) | v=0 = i''(0) = −0.08 0.73
4.25 0.40 0.82
4.50 0.44 0.92

Smoothed Δ i2 / Δv2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

v

Δi2 Δv2⁄
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Figure 8.15. Plot for Example 8.7

fprintf('volts \t Exper ma\t Smoothed ma \t |%%Error| \n'); 
fprintf(' \n');
fprintf('%3.2f\t %7.5f\t %7.5f\t %7.5f\n',y')
fprintf(' \n');

MATLAB computes and displays the following data.

Polynomial coefficients in descending order are: 
p =
    0.0182   -0.0403    0.1275   -0.0177

volts  Exper ma Smoothed ma  |%Error| 
 
0.00   0.00000  -0.01766   7955257388080461.00000
0.25   0.01000   0.01197   19.74402
0.50   0.03000   0.03828   27.61614
0.75   0.05000   0.06298   25.95052
1.00   0.08000   0.08775    9.69226
1.25   0.11000   0.11433    3.93513
1.50   0.14000   0.14441    3.14852
1.75   0.18000   0.17970    0.16677
2.00   0.23000   0.22191    3.51632
2.25   0.28000   0.27275    2.58785
2.50   0.34000   0.33393    1.78451
2.75   0.42000   0.40716    3.05797
3.00   0.50000   0.49413    1.17324
3.25   0.60000   0.59657    0.57123

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2
milliamps vs volts, n=3

v

m
a
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3.50   0.72000   0.71618    0.53040
3.75   0.85000   0.85467    0.54911
4.00   1.00000   1.01374    1.37399
4.25   1.18000   1.19511    1.28020
4.50   1.39000   1.40048    0.75362
4.75   1.63000   1.63155    0.09538
5.00   1.91000   1.89005    1.04436

We will conclude this chapter with one more example to illustrate the uses of the MATLAB
polyfit(x,y,n) and polyval(p,x) functions.

Example 8.8  
Use MATLAB to 

a. plot the function
(8.17)

in the interval  radians.

b. compute 

c. plot  versus  for these values and use the MATLAB polyfit(x,y,n) and polyval(p,x) func-
tions to find a suitable polynomial that best fits the  and  data.

Solution:

a. The fplot function below plots . We added eps to avoid division by zero.

fplot('sin(x)./(x+eps)',[0   16   −0.5   1]); grid;...
title('(sinx)/x curve for x > 0')

The plot for the function of (8.17) is shown in Figure 8.16.

b. We use the script below to evaluate  at the specified points.

x=0:2:16; y=sin(x)./(x+eps)
p7=polyfit(x,y,7);  %  of x and y with fifth, seventh,
p9=polyfit(x,y,9); %  and ninth degree polynomials
% continued on the next page

y xsin x⁄=

0 x 16≤ ≤

y 0( ) y 2( ) y 4( ) y 6( ) y 8( ) y 10( ) y 12( ) y 14( ) y 16( ), , , , , , , ,

y x
x y

y xsin x⁄=

y
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Figure 8.16. Plot for Example 8.8

c. The script for finding a suitable polynomial is listed below. 

x=[0  2  4  6  8  10  12  14  16];
y=[1  0.4546  −0.1892  −0.0466  0.1237  −0.0544  −0.0447  0.0708  −0.0180];
p5=polyfit(x,y,5);  %  Fits the polynomial to the data
x_span=0: 0.1: 16;  %  Specifies values for x−axis
p5_pol=polyval(p5, x_span); % Compute the polynomials for this range of x values.
p7_pol=polyval(p7, x_span);  p9_pol=polyval(p9, x_span);
plot(x_span,p5_pol,'−−', x_span,p7_pol,'−.', x_span,p9_pol,'−',x,y,'*');
% The following two statements establish coordinates for three legends
% in x and y directions to indicate degree of polynomials
x_ref=[2 5.3]; y_ref=[1.3,1.3];
hold on;
% The following are line legends for each curve
plot(x_ref,y_ref,'−−',x_ref,y_ref−0.2,'−.',x_ref,y_ref−0.4,'−'); 
% The following are text legends for each curve
text(5.5,1.3, '5th degree polynomial');
text(5.5,1.1, '7th degree polynomial');
text(5.5,0.9, '9th degree polynomial'); grid;
hold off
format short e  % Exponential short format
disp('The coefficients of 5th order polynomial in descending order are:')
p5_coef=polyfit(x,y,5)
disp('The coefficients of 7th order polynomial in descending order are:')
p7_coef=polyfit(x,y,7)
disp('The coefficients of 9th order polynomial in descending order are:')
p9_coef=polyfit(x,y,9)
format short  % We could just type format only since it is the default

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

1
(sinx)/x curve for x > 0
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The 5th, 7th, and 9th order polynomials are shown in Figure 8.17.

Figure 8.17. Polynomials for Example 8.8

The coefficients of the 5th, 7th, and 9th order polynomials are shown below.

The coefficients of 5th order polynomial in descending order are:

p5_coef =
  6.5865e-006      -1.4318e-004      -1.5825e-003  

  6.0067e-002      -4.6529e-001       1.0293e+000

The coefficients of 7th order polynomial in descending order are:

p7_coef =
  Columns 1 through 6 

  2.6483e-006   -1.6672e-004    4.1644e-003 
 -5.2092e-002    3.3560e-001   -9.9165e-001
  Columns 7 through 8 
  7.2508e-001    9.9965e-001

The coefficients of 9th order polynomial in descending order are:

p9_coef =
   Columns 1 through 6 

  -1.0444e-008    1.1923e-006    -4.8340e-005
   9.5032e-004   -9.7650e-003     4.9437e-002

  Columns 7 through 10 
   -8.4572e-002  -1.0057e-001     0     1.0000e+000
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-0.4
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8.5 Summary
• Curve fitting is the process of finding equations to approximate straight lines and curves that

best fit given sets of data.

• Regression is the process of finding the dependent variable  from some data of the independent
variable . Regression can be linear (straight line) or curved (quadratic, cubic, etc.)

• The best fitting straight line or curve has the property that  and it
is referred to as the least−squares curve. A straight line that satisfies this property is called a least
squares line. If it is a parabola, we call it a least−squares parabola.

• We perform linear regression with the method of least squares. With this method, we compute
the coefficients  (slope) and  (y-intercept) of the straight line equation  such
that the sum of the squares of the errors will be minimum. The values of  and  can be found
from the relations

where

, 

, 

The values of  and  are computed from

where

• We find the least−squares parabola that fits a set of sample points with  where
the coefficients  are found from

where  = number of data points.

y
x

d1
2 d2

2 … d3
2+ + + minimum=

m b y mx b+=
m b

Σx2( )m Σx( )b+ Σxy=

Σx( )m nb+ Σy=

Σx sum of the numbers x= Σy sum of the numbers y=

Σxy sum of the numbers of the product xy= Σx2 sum of the numbers x squared=

n number of data x=

m b

m
D1
Δ

------= b
D2
Δ

------=

Δ Σx2 Σx
Σx n

= D1
Σxy Σx
Σy n

= D2
Σx2 Σxy
Σx Σy

=

y ax2 b c+ +=

a b and c, ,

           Σx2( )a Σx( )b nc+ + Σy=

    Σx3( )a Σx2( )b Σx( )c+ + Σxy=

  Σx4( )a Σx3( )b Σx2( )c+ + Σx2y=

n
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Summary

• With MATLAB, regression is performed with the polyfit(x,y,n) command, where x and y are
the coordinates of the data points, and n is the degree of the polynomial. Thus, if ,
MATLAB computes the best straight line approximation, that is, linear regression, and returns
the coefficients  and . If , it computes the best quadratic polynomial approximation
and returns the coefficients of this polynomial. Likewise, if , it computes the best cubic
polynomial approximation, and so on.

• In cases where the observed data deviate significantly from the points of a straight line, we can
draw a smooth curve and compute the coefficients of a power series by approximating the
derivatives  with finite differences .

n 1=

m b n 2=

n 3=

dy dx⁄ Δy Δx⁄
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8.6 Exercises
1. Consider the system of equations below derived from some experimental data.

Using the relations (8.10) and (8.11), find the values of  and  that best fit this system of
equations.

2. In a non−linear device, measurements yielded the following sets of values:

Use the procedure of Example 8.1 to compute the straight line equation that best fits the given
data.

3. Repeat Exercise 2 above using Excel’s Trendline feature.

4. Repeat Exercise 2 above using the MATLAB’s polyfit(x,y,n) and polyval(p,x) functions.

5. A sales manager wishes to forecast sales for the next three years for a company that has been in
business for the past 15 years. The sales during these years are shown on the next page.

millivolts 100 120 140 160 180 200

milliamps 0.45 0.55 0.60 0.70 0.80 0.85

2x y+ 1–=

x 3y– 4–=

x 4y+ 3=

3x 2y– 6–=

x– 2y+ 3=

x 3y+ 2=

x y
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Exercises

Using Excel’s Trendline feature, choose an appropriate polynomial to smooth the given data
and using the polynomial found, compute the sales for the next three years. You may round
the sales to the nearest thousand.

6. Repeat Exercise 5 above using the MATLAB polyfit(x,y,n) and polyval(p,x) functions.

Year Sales

1 $9,149,548

2 13,048,745

3 19,147,687

4 28,873,127

5 39,163,784

6 54,545,369

7 72,456,782

8 89,547,216

9 112,642,574

10 130,456,321

11 148,678,983

12 176,453,837

13 207,547,632

14 206,147,352

15 204,456,987
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8.7 Solutions to End−of−Chapter Exercises
1. We construct the spreadsheet below by entering the given values and computing the values

from the formulas given.

Thus,  and 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J
Spreadsheet for Exercise 8.1

a b c a2 ab b2 ac bc

2 1 -1 4 2 1 -2 -1
1 -3 -4 1 -3 9 -4 12
1 4 3 1 4 16 3 12
3 -2 -6 9 -6 4 -18 12

-1 2 3 1 -2 4 -3 6
1 3 2 1 3 9 2 6

Σ 7 5 -3 17 -2 43 -22 47

Σa2 Σab 17 -2
Δ = = 727

Σab Σb2 -2 43
x=D1/Δ= -1.172

Σac Σab -22 -2
D1 = = -852

Σbc Σb2 47 43
y=D2/Δ= 1.039

Σa2 Σac 17 -22
D2 = = 755

Σab Σbc -2 47

x 1.172–= y 1.039=
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Solutions to End−of−Chapter Exercises

2. We construct the spreadsheet below by entering the given values and computing the values
from the given formulas.

Thus, 

Spreadsheet for Exercise 8.2

x (mV) y(mA) x2 xy

100 0.45 10000 45
120 0.55 14400 66
140 0.60 19600 84
160 0.70 25600 112
180 0.80 32400 144
200 0.85 40000 170
900 3.95 142000 621

Σ x2 Σ x 142000 900
= = 42000

Σ x n 900 6
m=D1/Δ= 0.004

Σ xy Σ x 621 900
= = 171

Σ y n 4.0 6
b=D2/Δ= 0.0476

Σ x2 Σ xy 142000 621
= = 2000

Σ x Σ y 900 4.0

Milliamps versus Millivolts

0.40

0.60

0.80

1.00

100 120 140 160 180 200

Millivolts

M
illi

am
ps

y mx b+ 0.004x 0.0476+= =
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3. Following the procedure of Example 8.2, we obtain the trendline shown below.

4.

mv= [100    120    140    160    180    200]; % x-axis data
ma=[0.45   0.55   0.60   0.70   0.80   0.85]; % y-axis data
axis([100  200  0  1]); % Establishes desired x and y axes limits
plot(mv,ma,'*b'); % Display experimental (given) points with

% asterisk and smoothed data with blue line
grid; title('ma (milliamps) vs mv (millivolts, n=1'); xlabel('mv'); ylabel('ma');
hold % Hold current plot so we can add other data
p=polyfit(mv,ma,1); % Fits a first degree polynomial (straight line since n =1) and returns 

% the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 200; % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial

% Display the coefficients m and b
fprintf('\n') % Insert line

Trendline for Exercise 8.3

x (mV) y(mA) x2 xy

100 0.45 10000 45
120 0.55 14400 66
140 0.60 19600 84
160 0.70 25600 112
180 0.80 32400 144
200 0.85 40000 170
900 3.95 142000 621

Σ x2 Σ x 142000 900
= = 42000

Σ x n 900 6
m=D1/Δ= 0.004

Σ xy Σ x 621 900
= = 171

Σ y n 4.0 6
b=D2/Δ= 0.0476

Σ x2 Σ xy 142000 621
= = 2000

Σ x Σ y 900 4.0

Milliamps versus Millivolts

0.40

0.60

0.80

1.00

100 120 140 160 180 200

Millivolts
M
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Solutions to End−of−Chapter Exercises

disp('Coefficients m and b are:'); fprintf('\n'); disp(p);
format bank % Two decimal place display will be sufficient
ma_smoothed=polyval(p,mv); % Compute the values of the fitted polynomial at

%  same points as given (experimental) values of ma
ma_exper = ma; % Display the experimental values of ma for comparison

% The statement below computes the percent error between  
% the fitted polynomial and the experimental data
% disp('% Error at points of given values is:');
% The percent error is computed with the following statement

error=(ma_smoothed-ma_exper).*100./ma_exper;
format short % Return to default format
y=zeros(6,4); % Construct an 6 x 4 matrix of zeros
y(:,1)=mv'; % 1st column of matrix
y(:,2)=ma_exper'; % 2nd column of matrix
y(:,3)=ma_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(' \n'); % Insert line
fprintf('mv \t Exper ma\t Smoothed ma \t |Error| percent \n')
fprintf(' \n'); % Insert line
fprintf('%3.0f\t %5.4f\t   %5.4f\t     %5.4f\n',y')
fprintf(' \n'); % Insert line

Coefficients m and b are:

    0.0041    0.0476

mv  Exper ma Smoothed ma  |Error| percent 

100  0.4500    0.4548       1.0582
120  0.5500    0.5362       2.5108
140  0.6000    0.6176       2.9365
160  0.7000    0.6990       0.1361
180  0.8000    0.7805       2.4405
200  0.8500    0.8619       1.4006
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0

0.1
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5. Following the procedure of Example 8.4, we choose Polynomial 4 and we obtain the trendline
shown below.

The sales for the next 3 years are from the equation above produced by Excel.

These results indicate that non-linear interpolation is, in most cases, unreliable. We will
compare these values with the results of Exercise 6.

6.
year= [1  2  3  4  5  6  7  8  9  10  11  12  13  14  15]; % x-axis data
sales=[9149548  13048745  19147687  28873127  39163784  ...

           54545369  72456782  89547216  112642574  130456321  ...
           148678983  176453837  207547632  206147352 204456987]; % y-axis data

plot(year,sales,'*b'); % Display experimental (given) points with
% asterisk and smoothed data with blue line

     hold % Hold current plot so we can add other data
grid; title('Yearly Sales vs Years, n=4'); xlabel('Years'); ylabel('Yearly Sales');
p=polyfit(year,sales,4); % Fits a first degree polynomial (n=4) and returns 

% the coefficients of the polynomial
a=linspace(0, 15, 15); % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial

% Display coefficients ofpolynomial
fprintf('\n') % Insert line
disp('Coefficients are:'); fprintf('\n'); disp(p);

1 9149548
2 13048745
3 19147687
4 28873127
5 39163784
6 54545369
7 72456782
8 89547216
9 112642574

10 130456321
11 148678983
12 176453837
13 207547632
14 206147352

y = -17797x4 + 436354x3 - 2E+06x2 + 
1E+07x - 2E+06

R2 = 0.9966

8000000

58000000

108000000

158000000

208000000

258000000

0 5 10 15 20

y16 17797x4– 436354x3 2 106x2×– 107x 2 106×–+ + x 16=
266961792= =

y17 17797x4– 436354x3 2 106x2×– 107x 2 106×–+ + x 17=
247383965= =

y18 17797x4– 436354x3 2 106x2×– 107x 2 106×–+ + x 18=
206558656= =
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sales_smoothed=polyval(p,year); % Compute the values of the fitted polynomial at
%  same points as given (experimental) values of ma

sales_exper = sales; % Display the experimental values of ma for comparison
% The statement below computes the percent error between  
% the fitted polynomial and the experimental data
% The percent error is computed with the following statement
error=(sales_smoothed-sales_exper).*100./sales_exper;
y=zeros(15,4); % Construct an 15 x 4 matrix of zeros
y(:,1)=year'; % 1st column of matrix
y(:,2)=sales_exper'; % 2nd column of matrix
y(:,3)=sales_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(' \n');
fprintf('year\t Exper sales\t Smoothed sales \t |Error| percent \n')
fprintf(' \n');
fprintf('%2.0f\t    %9.0f\t    %9.0f\t     %5.2f\n',y')
fprintf(' \n');

Coefficients are:

  1.0e+007 *

   -0.0018    0.0436   -0.2386    1.1641   -0.2415

year Exper sales Smoothed sales  |Error| percent 

 1      9149548      7258461     20.67
 2     13048745     14529217     11.35
 3     19147687     21374599     11.63
 4     28873127     29344934      1.63

0 5 10 15
-0.5

0

0.5

1

1.5

2

2.5
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 5     39163784     39563426      1.02
 6     54545369     52726163      3.34
 7     72456782     69102111      4.63
 8     89547216     88533118      1.13
 9    112642574    110433913      1.96
10    130456321    133792104      2.56
11    148678983    157168183      5.71
12    176453837    178695519      1.27
13    207547632    196080363      5.53
14    206147352    206601848      0.22
15    204456987    207111986      1.30

From the coefficients produced by MATLAB, shown on the previous page, we form the poly-
nomial

and from it we find the values of  (the yearly sales) as follows:

x=16; y16=−1.8*10^4*x^4+4.36*10^5*x^3−2.386*10^6*x^2+1.1641*10^7*x−2.415*10^6;
x=17; y17=−1.8*10^4*x^4+4.36*10^5*x^3−2.386*10^6*x^2+1.1641*10^7*x−2.415*10^6;
x=18; y18=−1.8*10^4*x^4+4.36*10^5*x^3−2.386*10^6*x^2+1.1641*10^7*x−2.415*10^6;

y16, y17, y18

y16 =

  1.7923e+008

y17 =

  1.4462e+008

y18 =

  8.7243e+007

These values vary significantly from those of Exercise 5. As stated above, non-linear interpola-
tion especially for polynomials of fourth degree and higher give inaccurate results. We should
remember that the equations produced by both Excel and MATLAB represent the equations
that best fit the experimental values. For extrapolation, linear regression gives the best approx-
imations.

y 1.8 104x4×– 4.36 105x3× 2.386 106× x2– 1.1641 107x 2.415 106×–×+ +=

y



Numerical Analysis Using MATLAB® and Excel®, Third Edition 9−1
Copyright © Orchard Publications

Chapter 9

Solution of Differential Equations by Numerical Methods

his chapter is an introduction to several methods that can be used to obtain approximate
solutions of differential equations. Such approximations are necessary when no exact solu-
tion can be found. The Taylor, Runge−Kutta, Adams’, and Milne’s methods are discussed. 

9.1 Taylor Series Method

We recall from Chapter 6 that the Taylor series expansion about point  is

(9.1)

Now, if  is a value close to , we can find the approximate value  of  by using the
first  terms in the Taylor expansion of  about . Letting  in (9.1), we
obtain:

(9.2)

Obviously, to minimize the error  we need to keep  sufficiently small. 

For another value , close to , we repeat the procedure with ; then,

(9.3)

In general,

(9.4)

Example 9.1  
Use the Taylor series method to obtain a solution of 

(9.5)

correct to four decimal places for values , , , , , and
 with the initial condition .

T
a

yn f x( )= f a( ) f' a( ) x a–( ) f'' a( )
2!

------------ x a–( )2 … f n( ) a( )
n!

----------------- x a–( )n
+ + + +=

x1 a> a y1 f x1( )

k 1+ f x1( ) x a= h1 x a–=

y1 y0 y'0h1
1
2!
-----y''0h1

2 1
3!
-----y'''0h1

3 1
4!
-----y0

4( )h1
4 …+ + + + +=

f x1( ) y1– h1

x2 x1> x1 h2 x2 x1–=

y2 y1 y'1h2
1
2!
-----y''1h2

2 1
3!
-----y'''1h2

3 1
4!
-----y1

4( )h2
4 …+ + + + +=

yi 1+ yi y'i hi 1+
1
2!
-----y''i hi 1+

2 1
3!
-----y'''i hi 1+

3 1
4!
-----yi

4( ) hi 1+
4 …+ + + + +=

y' xy–=

x0 0.0= x1 0.1= x2 0.2= x3 0.3= x4 0.4=

x5 0.5= y 0( ) 1=
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Solution:

For this example,

and by substitution into (9.4),

(9.6)

for and .

The first through the fourth derivatives of (9.5) are:

(9.7)

We use the subscript  to express them as

(9.8)

where  represents , , , , and .

Using the values of the coefficients of  in (9.8), we construct the spreadsheet of Figure 9.1. 

Figure 9.1. Spreadsheet for Example 9.1

h x1 x0– 0.1 0.0– 0.1= = =

yi 1+ yi 0.1y'i 0.005y''i 0.000167y'''i 0.000004yi
4( )+ + + +=

i 0 1 2 3  , , , ,= 4

y' xy–=

y'' xy'– y– x xy–( )– y– x2 1–( )y= = =

y''' x2 1–( )y' 2xy+ x2 1–( ) xy–( )2xy x3– 3x+( )y= = =

y 4( ) x3– 3x+( ) xy–( ) 3x2– 3+( )y+ x4 6x2– 3+( )y= =

i

y'i xiyi–=

y''i xi
2 1–( )yi=

y'''i xi
3– 3xi+( )yi=

yi
4( ) xi

4 6xi
2– 3+( )yi=

xi x0 0.0= x1 0.1= x2 0.2= x3 0.3= x4 0.4=

yi

1
2
3
4
5
6
7
8
9

10

A B C D E F G H
Differential Equation is y' = −xy 
Numerical solution by Taylor method follows

xi xi
2 xi

3 xi
4 -xi xi

2-1 -xi
3+3xi xi

4-6xi
2+3

0.0 0.00 0.0000 0.0000 0.0 -1.00 0.000 3.0000
0.1 0.01 0.0010 0.0001 -0.1 -0.99 0.299 2.9401
0.2 0.04 0.0080 0.0016 -0.2 -0.96 0.592 2.7616
0.3 0.09 0.0270 0.0081 -0.3 -0.91 0.873 2.4681
0.4 0.16 0.0640 0.0256 -0.4 -0.84 1.136 2.0656
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Taylor Series Method

The values in E6:E10, F6:F10, G6:G10, and H6:H10 of the spreadsheet of Figure 9.1, are now
substituted into (9.8), and we obtain the following relations:

(9.9)

(9.10)

(9.11)

(9.12)

By substitution of (9.9) through (9.12) into (9.6), and using the given initial condition ,
we obtain:

y'0 x0 y0– 0y0– 0= = =

y'1 x1 y1– 0.1y1–= =

y'2 x2 y2– 0.2y1–= =

y'3 x3 y3– 0.3y1–= =

y'4 x4 y4– 0.4y1–= =

y''0 x0
2 1–( ) y0 y0–= =

y''1 x1
2 1–( ) y1 0.99– y1= =

y''2 x2
2 1–( ) y2 0.96– y2= =

y''3 x3
2 1–( ) y3 0.91– y3= =

y''4 x4
2 1–( ) y4 0.84– y1= =

y'''0 x0
3– 3x0+( ) y0 0= =

y'''1 x1
3– 3x1+( ) y1 0.299y1= =

y'''2 x2
3– 3x2+( ) y2 0.592y2= =

y'''3 x3
3– 3x3+( ) y3 0.873y3= =

y'''4 x4
3– 3x4+( ) y4 1.136y4= =

y0
4( ) x0

4 6x0
2– 3+( ) y0 3y0= =

y1
4( ) x1

4 6x1
2– 3+( ) y1 2.9401y1= =

y2
4( ) x2

4 6x2
2– 3+( ) y2 2.7616y2= =

y3
4( ) x3

4 6x3
2– 3+( ) y3 2.4681y3= =

y4
4( ) x4

4 6x4
2– 3+( ) y4 2.0656y4= =

y0 1=
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(9.13)

Similarly,

(9.14)

(9.15)

(9.16)

(9.17)

The differential equation  of this example can be solved analytically as follows:

and with the initial condition  when ,

or

(9.18)

y1 y0 0.1y'0 0.005y''0 0.000167y'''0 0.000004y0
4( )+ + + +=

1 0.1 0( ) 0.005 1–( ) 0.00167 0( ) 0.000004 3( )+ + + +=

1 0.005– 0.000012+=

0.99501=

y2 y1 0.1y'1 0.005y''1 0.000167y'''1 0.000004y1
4( )+ + + +=

1 0.01– 0.00495– 0.00005 0.00001+ +( )y1=

0.98511 0.99501( )=

0.980194=

y3 y2 0.1y'2 0.005y''2 0.000167y'''2 0.000004y2
4( )+ + + +=

1 0.02– 0.0048– 0.0001 0.00001+ +( )y2=

0.97531 0.980194( )=

0.955993=

y4 y3 0.1y'3 0.005y''3 0.000167y'''3 0.000004y3
4( )+ + + +=

1 0.03– 0.00455– 0.00015 0.00001+ +( )y3=

0.9656 0.955993( )=

0.923107=

y5 y4 0.1y'4 0.005y''4 0.000167y'''4 0.000004y4
4( )+ + + +=

1 0.04– 0.0042– 0.00019 0.00001+ +( )y4=

0.95600 0.923107( )=

0.88249=

dy
dx
------ xy–=

dy
y

------ xdx–= dy
y

------∫ x xd∫–= yln 1
2
---x2– C+=

y 1= x 0=

1ln 1
2
--- 0( )– C+= C 0= yln 1

2
---x2–=

y e x 2⁄–
=
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For  (9.18) yields

and we observe that this value is in close agreement with the value of (9.17).

We can verify the analytical solution of Example 9.1 with MATLAB’s dsolve(s) function using
the following script:

syms x y z
z=dsolve('Dy=−x*y','y(0)=1','x')

z =
exp(-1/2*x^2)

The procedure used in this example, can be extended to apply to a second order differential
equation

(9.19)

In this case, we need to apply the additional formula

(9.20)

9.2 Runge−Kutta Method
The Runge−Kutta method is the most widely used method of solving differential equations with
numerical methods. It differs from the Taylor series method in that we use values of the first
derivative of  at several points instead of the values of successive derivatives at a single
point.

For a Runge−Kutta method of order 2, the following formulas are applicable.

(9.21)

When higher accuracy is desired, we can use order 3 or order 4. The applicable formulas are as
follows:

x5 0.5=

y e 0.125– 0.8825= =

y'' f x y y', ,( )=

y'i 1+ y'i y''i h 1
2!
-----y'''i h2 1

3!
-----yi

4( ) h3 …+ + + +=

f x y,( )

k1 hf xn yn,( )=

k2 hf xn h+ yn h+,( )=

yn 1+ yn
1
2
--- k1 k2+( )+=

 For Runge-Kutta Method of Order 2
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(9.22)

(9.23)

Example 9.2  

Compute the approximate value of  at  from the solution  of the differential equa-
tion

(9.24)

given the initial condition . Use order 2, 3, and 4 Runge−Kutta methods with .

Solution:

a. For order 2, we use (9.21). Since we are given that , we begin with , and
. Then,

and

(9.25)

l1 hf xn yn,( ) k1= =

l2 hf xn
h
2
---+ yn

l1
2
----+,⎝ ⎠

⎛ ⎞=

l3 hf xn h+ yn 2l2 l1–+,( )=

yn 1+ yn
1
6
--- l1 4l2 l3+ +( )+=

For Runge-Kutta Method of Order 3

m1 hf xn yn,( ) l1 k1= = =

m2 hf xn
h
2
---+ yn

m1
2

-------+,⎝ ⎠
⎛ ⎞ l2= =

m3 hf xn
h
2
---+ yn

m2
2

-------+,⎝ ⎠
⎛ ⎞=

m4 hf xn h+ yn m3+,( )=

yn 1+ yn
1
6
--- m1 2m2 2m3 m4+ + +( )+=

 For Runge-Kutta Method of Order 4

y x 0.2= y x( )

y' x y2+=

y 0( ) 1= h 0.2=

y 0( ) 1= x 0=

y 1=

k1 hf xn yn,( ) 0.2 0 12+( ) 0.2= = =

k2 hf xn h+ yn h+,( ) 0.2 0 0.2 1 0.22+( )+ +[ ] 0.328= = =

y1 y0
1
2
--- k1 k2+( )+ 1 1

2
--- 0.2 0.328+( )+ 1.264= = =
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b. For order 3, we use (9.22). Then,

(9.26)

and 

(9.27)

c. For order 4, we use (9.23). Then,

(9.28)

and 

(9.29)

The Runge−Kutta method can also be used for second order differential equations of the form 

(9.30)

For second order differential equations, the pair of 3rd−order formulas* are:

* Third and fourth order formulas can also be used, but these will not be discussed in this text. They can be found in differ-
ential equations and advanced mathematics texts.

l1 hf xn yn,( ) k1 0.2= = =

l2 hf xn
h
2
---+ yn

l1
2
----+,⎝ ⎠

⎛ ⎞ 0.2 0 1
2
--- 0.2⋅+⎝ ⎠

⎛ ⎞ 1 1
2
--- 0.2⋅+⎝ ⎠

⎛ ⎞ 2
+ 0.262= ==

l3 hf xn h+ yn 2l2 l1–+,( ) 0.2 0 0.2+( ) 1 2 0.262 0.2–×+( )2+[ ] 0.391= = =

y1 y0
1
6
--- l1 4l2 l3+ +( )+ 1 1

6
--- 0.2 4 0.262 0.391+×+( )+ 1.273= = =

m1 hf xn yn,( ) l1 k1 0.2= = = =

m2 hf xn
h
2
---+ yn

m1
2

-------+,⎝ ⎠
⎛ ⎞ l2 0.262= = =

m3 hf xn
h
2
---+ yn

m2
2

-------+,⎝ ⎠
⎛ ⎞ 0.2 0 0.2

2
------- 1 0.262

2
-------------+⎝ ⎠

⎛ ⎞ 2
+ + 0.276= = =

m4 hf xn h+ yn m3+,( ) 0.2 0 0.2 1 0.276+( )2+ +[ ] 0.366= = =

y1 y0
1
6
--- m1 2m2 2m3 m4+ + +( )+=

1 1
6
--- 0.2 2 0.262 2 0.276 0.366+×+×+( )+ 1.274==

y'' f x y y', ,( )=
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(9.31)

Example 9.3  
Given the 2nd order non−linear differential equation

(9.32)

with the initial conditions , , compute the approximate values of  and  at
. Use .

Solution:

We are given the values of , ,  and we are seeking the values of  and 
at . We will use .

We rewrite the given equation as

(9.33)

and using (9.31) we obtain:

l1 hy'n=

l'1 hf xn yn y'n, ,( ) =

l2 h y'n
l'1
2
-----+⎝ ⎠

⎛ ⎞=

l'2 hf xn
h
2
--- yn

l1
2
---- y'n,+,

l'1
2
-----+ +⎝ ⎠

⎛ ⎞=

l3 h y'n 2l'2 l'1–+( )=

l'3 hf xn h yn 2l2 l1– y'n,+, 2l'2 l'1–+ +( )=

yn 1+ yn
1
6
--- l1 4l2 l3+ +( )+=

y'n 1+ y'n
1
6
--- l'1 4l'2 l'3+ +( )+=

 For Runge-Kutta Method of Order 3
 2nd Order Differential Equation

y'' 2y3– 0=

y 0( ) 1= y' 0( ) 1–= y y'
x 0.2= h 0.2=

x0 0= y0 0= y'0 1–= y1 y'1
x1 0.2= h x1 x0– 0.2= =

y'' 2y3 0 x⋅ 2y3+= =
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(9.34)

By substitution into the last two formulas of (9.31), we obtain:

(9.35)

MATLAB has two functions for computing numerical solutions of Ordinary Differential Equa-
tions (ODE). The first, ode23, uses second and third−order Runge−Kutta methods. The sec-
ond, ode45, uses fourth and fifth−order Runge−Kutta methods. Both have the same syntax;
therefore, we will use the ode23 function in our subsequent discussion. 

The syntax for ode23 is ode23(‘f’,tspan,y0). The first argument, f, in single quotation marks, is
the name of the user defined MATLAB function. The second, tspan, defines the desired time
span of the interval over which we want to evaluate the function . The third argu-
ment, y0, represents the initial condition or boundary point that is needed to determine a
unique solution. This function produces two outputs, a set of  values and the corresponding set
of  values that represent points of the function .

Example 9.4  
Use the MATLAB ode23 function to find the analytical solution of the second order nonlinear
equation

(9.36)

l1 hy'0 0.2 1–( ) 0.2–= = =

l'1 hf x0 y0 y'0, ,( ) 0.2 0 2 13× 0+ +( ) 0.4= = =

l2 h y'0
l'1
2
-----+⎝ ⎠

⎛ ⎞ 0.2 1– 0.4
2

-------+⎝ ⎠
⎛ ⎞ 0.16–= = =

l'2 hf x0
h
2
--- y0

l1
2
---- y'0,+,

l'1
2
-----+ +⎝ ⎠

⎛ ⎞ 0.2 0 2 1 0.2–
2

----------+⎝ ⎠
⎛ ⎞ 3

0+ += =

0.2 2 1 0.1–( )3[ ] 0.2 1.458( )= 0.2916==

l3 h y'0 2l'2 l'1–+( ) 0.2 1– 2 0.2916 0.4–×+( ) 0.1634–= = =

l'3 hf x0 h y0 2l2 l1– y'0,+, 2l'2 l'1–+ +( )=

0.2 0 2 1 2 0.16–( ) 0.2–( )–+[ ]3 0+ +{ }=

0.2 2 1 0.32– 0.2+( )3[ ] 0.2 2 0.88( )3[ ] 0.2726= ==

y1 y0
1
6
--- l1 4l2 l3+ +( )+ 1 1

6
--- 0.2– 4 0.16( ) 0.1634–+( )+ 0.8328= = =

y'1 y'0
1
6
--- l'1 4l'2 l'3+ +( )+ 1–

1
6
--- 0.4 4 0.2916( ) 0.2726+ +( )+ 0.6935–= = =

y f x( )=

x
y y f x( )=

y'' 2y3– 0=
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with the initial conditions  and . Then, plot the numerical solution using the
function ode23 for the tspan interval . Compare values with those of Example 9.3, at
points  and .

Solution:

If we attempt to find the analytical solution with the following MATLAB script

syms x y
y=dsolve('D2y=2*y^3,y(0)=1,Dy(0)=−1','x')

MATLAB displays the following message:

Warning: Explicit solution could not be found.

This warning indicates that MATLAB could not find a closed−form solution for this non−linear
differential equation. This is because, in general, non−linear differential equations cannot be
solved analytically, although few methods are available for special cases. These can be found in
differential equations textbooks.

The numerical solution for this non−linear differential equation is obtained and plotted with the
following script, by first writing a user defined m−file which we denote as fex9_4. The script is
shown below. 

function d2y=fex9_4(x,y);
d2y=[y(2);2*y(1)^3]; % Output must be a column

This file is saved as fex9_4. Next, we write and execute the script below to obtain the plots for 

and .

tspan=[0 1]; % Interval over which we want to evaluate y=f(x)
y0=[1;−1]; % Given initial conditions
[x,y]=ode23('fex9_4', tspan, y0); % Use 2nd and 3rd Order Runge−Kutta
% Plot numeric values with the statements below
plot(x, y(:,1), '+r−', x, y(:,2), 'Ob−−')
title('Numerical Solution for Differential Equation of Example 9.4'),...
xlabel('x'), ylabel('y (upper curve), yprime (lower curve)'), grid

The plots for  and  are shown in Figure 9.2. We observe that the values at points  and
, compare favorably with those that we found in Example 9.3.

y 0( ) 1= y' 0( ) 1–=

0 x 1≤ ≤
y 0.2( ) y' 0.2( )

y

y ′

y y' y 0.2( )
y' 0.2( )
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Runge−Kutta Method

Figure 9.2. Plot for Example 9.4

Example 9.5  
Use MATLAB to find the analytical solution of

(9.37)

with the initial conditions  and . Then, compute and plot the numerical
solution using the command ode23 along with points of the analytical solution, to verify the
accuracy of the numerical solution.

Solution:

The analytical solution of (9.37) with the given initial conditions is found with MATLAB as fol-
lows:

syms x y 
y=dsolve('x^2*D2y−x*Dy−3*y=x^2*log(x), Dy(1)=0, y(1)=−1', 'x')

y =
1/9*(−3*x^3*log(x)−2*x^3−7)/x
y=simple(y)

y =
(−1/3*log(x)−2/9)*x^2−7/9/x

pretty(y)
                                   2
               (- 1/3 log(x) - 2/9) x  - 7/9 1/x

and therefore, the analytical solution of (9.37) is

x2y'' x– y' 3y– x2 xln=

y 1( ) 1–= y' 1( ) 0=
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(9.38)

Next, we create and save a user defined m−file, fex9_5.

function d2y=fex9_5(x,y); % Produces the derivatives of Example 9.5
% x^2*y''−x*y'−3*y=x^2*log(x) where y''=2nd der, y'=1st der, logx=lnx
%
% we let y(1) = y and y(2)=y', then y(1)'=y(2)
%
% and y(2)'=y(2)/x^2+3*y(1)/x^2+log(x)
%
d2y=[y(2); y(2)/x+3*y(1)/x^2+log(x)]; % output must be a column

The following MATLAB script computes and plots the numerical solution values for the interval
 and compares these with the actual values obtained from the analytical solutions.

tspan=[1 4]; % Interval over which we want to evaluate y=f(x)
y0=[−1;0]; % Given initial conditions
[x,y]=ode23('fex9_5', tspan, y0); % Use 2nd and 3rd Order Runge−Kutta
anal_y=((−1./3).*log(x)−2./9).*x.^2−7./(9.*x); % This is the...
% analytic solution of the 2nd order differential equation of (9.38)
anal_yprime=((−2./3).*log(x)−7./9).*x+7./(9.*x.^2); % This is the first derivative of (9.38)
% Plot numeric and analytic values with the statements below
plot(x, y(:,1), '+', x, anal_y, '−', x, y(:,2), 'O', x, anal_yprime, '−'),...
title('Numeric and Analytic Solutions of Differential Equation of Example 9.5'),...
xlabel('x'), ylabel('y (line with +), yprime (line with O)'), grid

The numeric and analytical solutions are shown in Figure 9.3. 

Figure 9.3. Plot for Example 9.5

y 1
3
--- xln– 2

9
---–⎝ ⎠

⎛ ⎞ x2 7
9x
------–=

1 x 4≤ ≤
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Adams’ Method

9.3 Adams’ Method

In this method, the step from  to  is performed by a formula expressed in terms of differ-

ences of .

Adams’ method uses the formula

(9.39)

where

and so on.

Obviously, to form a table of differences, it is necessary to have several (4 or more) approximate
values of  in addition to the given initial condition . These values can be found by
other methods such as the Taylor series or Runge−Kutta methods.

Example 9.6  
Given the differential equation

(9.40)
with the initial condition ,

compute the approximate values of y for  by the third−order
Runge−Kutta method. Then, find the value of  corresponding to  correct to three dec-
imal places using Adams’ method.

Solution:

The spreadsheet of Figure 9.4 shows the results of the computations of 
using the third−order Runge−Kutta method as in Example 9.2.

yn yn 1+

f x y,( )

yn 1+ yn h fn
1
2
---Δfn

5
12
------Δ2fn

3
8
---Δ3fn …+ + + ++=

h xn 1+ xn–=

fn xn yn,( )=

Δfn fn fn 1––=

Δ2fn Δfn Δfn 1––=

y x( ) y 0( )

y' 2y x+=

y 0( ) 1=

x 0.1 0.2 0.3 0.4  and  0.5 , , ,=

y x 0.6=

y1 y2 y3 y4,, , ,  and  y5
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Figure 9.4. Spreadsheet for Example 9.6

1
23
4
5
6
7
8
9

10
1112
1314
15
16
1718
19
20
2122
2324
25
26
2728
29
30
3132
3334
35
36
3738
39
40
4142
4344
45
46
4748
49
50
5152
53

A B C D E F
Differential Equation y' = x + 2y
Numerical solution by Runga-Kutte method follows

h= x(1)-x(0)= 0.1000 x0= 0.0
x(0)= (given) 0.0000 x1= 0.1
y(0)= Initial condition (given) 1.0000 x2= 0.2

x3= 0.3
x4= 0.4

L(1)= h*f(xn,yn) h*(0+2*1)= 0.2000 x5= 0.5
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.2250
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.2600

y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 1.2267

h= x(2)-x(1)= 0.1000
x(0.1)= Next value x(0) + h 0.1000

y(1)= From previous computation 1.2267

L(1)= h*f(xn,yn) h*(0.1+2*1.2267)= 0.2553
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.2859
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.3286

y(2)= y(1) +(L(1) + 4*L(2) + L(3))/6 1.5146

h= x(2)-x(1)= 0.1000
x(0.2)= Next value x(0) + 2*h 0.2000

y(2)= From previous computation 1.5146

L(1)= h*f(xn,yn) h*(0.2+2*1.5146)= 0.3229
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.3602
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.4124

y(3)= y(2) +(L(1) + 4*L(2) + L(3))/6 1.8773

h= x(3)-x(2)= 0.1000
x(0.3)= Next value x(0) + 3*h 0.3000

y(3)= From previous computation 1.8773

L(1)= h*f(xn,yn) h*(0.3+2*1.8773)= 0.4055
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.4510
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.5148

y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6 2.3313

h= x(4)-x(3)= 0.1000
x(0.4)= Next value x(0) + 4*h 0.4000

y(4)= From previous computation 2.3313

L(1)= h*f(xn,yn) h*(0.3+2*1.8773)= 0.5063
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.5619
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.6398

y(5)= y(2) +(L(1) + 4*L(2) + L(3))/6 2.8969
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Milne’s Method

Next, we compute the following values to be used in Adams’ formula of (9.39). These are shown
below.

and by substitution into (7.39)

(9.41)

As with the other methods, Adams’ method can also be applied to second order differential
equations of the form  with initial conditions  and .

9.4  Milne’s Method

Milne’s method also requires prior knowledge of several values of . It uses the predictor−cor-
rector pair

(9.42)

and

(9.43)

The corrector formula of (9.43) serves as a check for the value 

(9.44)

If  and  in (9.42) and (9.43) respectively, do not differ considerably, we accept 

as the best approximation. If they differ significantly, we must reduce the interval .

xn yn fn=xn+2yn Δfn Δ2fn Δ3fn

0.0 1.0000 2.0000
0.5534

0.1 1.2267 2.5534 0.1224
0.6758 0.0272

0.2 1.5146 3.2292 0.1496
0.8254 0.0330

0.3 1.8773 4.0546 0.1826
1.0080 0.0406

0.4 2.3313 5.0626 0.2232
1.2312

0.5 2.8969 6.2938

y6 2.8969 0.1 6.2638 1
2
--- 1.2312( ) 5

12
------ 0.2232( ) 3

8
--- 0.0406( )+ + ++ 3.599= =

y'' f x y y', ,( )= y x0( ) y0= y' x0( ) y'0=

y

yn 1+ yn 3–
4
3
---h 2fn fn 1–– 2fn 2–+[ ]+=

Yn 1+ yn 1–
1
3
---h fn 1+ 4fn fn 1–+ +[ ]+=

yn 1+ f xn 1+ yn 1+,( )=

yn 1+ Yn 1+ Yn 1+

h
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Example 9.7  

Use Milne’s method to find the value of y corresponding to  for the differential equation 

(9.45)
with the initial condition .

Solution:

This is the same differential equation as in Example 9.6 where we found the following values:

and using the predictor formula we find

(9.46)

Before we use the corrector formula of (9.43), we must find the value of ; this is found from

where , and from Example 9.5 . Then,

and

(9.47)

We see from (9.46) and (9.47) that the predictor−corrector pair is in very close agreement.

Milne’s method can also be extended to second order differential equations of the form
 with initial conditions  and .

TABLE 9.1  Table for Example 9.7

n xn yn fn=xn+2yn

2 0.2 1.5146 3.2292

3 0.3 1.8773 4.0546

4 0.4 2.3313 5.0626

5 0.5 2.8969 6.2938

x 0.6=

y' 2y x+=

y 0( ) 1=

y6 y2
4
3
--- 0.1( ) 2f5 f4– 2f3+[ ]+=

1.5146 4
3
--- 0.1 2 6.2938 5.0626– 2 4.0546×+×( )×+ 3.599==

f6

f6 x6 2y6+=

x6 0.6= y6 3.599=

f6 x6 2y6+ 0.6 2 3.599×+ 7.7984= = =

Y6 y4
1
3
---0.1 f6 4f5 f4+ +( )+=

2.3313 1
3
--- 0.1 7.7984 4 6.2938 5.0626+×+( )×+ 3.599==

y'' f x y y', ,( )= y x0( ) y0= y' x0( ) y'0=
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Summary

9.5 Summary
• The Taylor series method uses values of successive derivatives at a single point. We can use

this series method to obtain approximate solutions of differential equations with the relation 

provided that  is sufficiently small such as .

• The Taylor series method can also be extended to apply to a second order differential equa-
tion

using the relation

• The Runge−Kutta method uses values of the first derivative of  at several points. it is
the most widely used method of solving differential equations using numerical methods. 

• For a Runge−Kutta method of order 2 we use the relations

provided that  is sufficiently small such as .

• For a Runge−Kutta method of order 3 we use the relations

• For a Runge−Kutta method of order 4 we use the relations

• The Runge−Kutta method can also be used for second order differential equations of the
form 

yi 1+ yi y'i hi 1+
1
2!
-----y''i hi 1+

2 1
3!
-----y'''i hi 1+

3 1
4!
-----yi

4( ) hi 1+
4 …+ + + + +=

h h 0.1=

y'' f x y y', ,( )=

y'i 1+ y'i y''i h 1
2!
-----y'''i h2 1

3!
-----yi

4( ) h3 …+ + + +=

f x y,( )

k1 hf xn yn,( )= k2 hf xn h+ yn h+,( )= yn 1+ yn
1
2
--- k1 k2+( )+=

h h 0.1=

l1 hf xn yn,( ) k1= = l2 hf xn
h
2
---+ yn

l1
2
----+,⎝ ⎠

⎛ ⎞= l3 hf xn h+ yn 2l2 l1–+,( )=

yn 1+ yn
1
6
--- l1 4l2 l3+ +( )+=

m1 hf xn yn,( ) l1 k1= = = m2 hf xn
h
2
---+ yn

m1
2

-------+,⎝ ⎠
⎛ ⎞ l2= =

m3 hf xn
h
2
---+ yn

m2
2

-------+,⎝ ⎠
⎛ ⎞= m4 hf xn h+ yn m3+,( )=

yn 1+ yn
1
6
--- m1 2m2 2m3 m4+ + +( )+=
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• For second order differential equations, the pair of 3rd−order relations are:

Third and fourth order formulas can also be used but they were not be discussed in this text.
They can be found in differential equations texts.

• MATLAB has two functions for computing numerical solutions of Ordinary Differential Equa-
tions (ODE). The first, ode23, uses second and third−order Runge−Kutta methods. The sec-
ond, ode45, uses fourth and fifth−order Runge−Kutta methods. Both have the same syntax.  

• The syntax for ode23 is ode23(‘f’,tspan,y0). The first argument, f, in single quotation marks,
is the name of the user defined MATLAB function. The second, tspan, defines the desired
time span of the interval over which we want to evaluate the function . The third
argument, y0, represents the initial condition or boundary point that is needed to determine a
unique solution. This function produces two outputs, a set of  values and the corresponding
set of  values that represent points of the function .

• Adams’ method provides the transition from  to  and the step is performed by a for-

mula expressed in terms of differences of . This method uses the formula

where

and so on. To use this method, it is necessary to have several (4 or more) approximate values of
 in addition to the given initial condition . These values can be found by other meth-

ods such as the Taylor series or Runge−Kutta methods.

y'' f x y y', ,( )=

l1 hy'n= l'1 hf xn yn y'n, ,( ) =

l2 h y'n
l'1
2
-----+⎝ ⎠

⎛ ⎞= l'2 hf xn
h
2
--- yn

l1
2
---- y'n,+,

l'1
2
-----+ +⎝ ⎠

⎛ ⎞=

l3 h y'n 2l'2 l'1–+( )= l'3 hf xn h yn 2l2 l1– y'n,+, 2l'2 l'1–+ +( )=

yn 1+ yn
1
6
--- l1 4l2 l3+ +( )+= y'n 1+ y'n

1
6
--- l'1 4l'2 l'3+ +( )+=

y f x( )=

x
y y f x( )=

yn yn 1+

f x y,( )

yn 1+ yn h fn
1
2
---Δfn

5
12
------Δ2fn

3
8
---Δ3fn …+ + + ++=

h xn 1+ xn–=

fn xn yn,( )=

Δfn fn fn 1––=

Δ2fn Δfn Δfn 1––=

y x( ) y 0( )
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Summary

• Milne’s method also requires prior knowledge of several values of . It uses the predictor−cor-
rector pair

and

where  is the predictor formula and  is the corrector formula. The corrector for-
mula serves as a check for the value 

If  and  do not differ considerably, we accept  as the best approximation. If

they differ significantly, we must reduce the interval .

Milne’s method can also be extended to second order differential equations of the form
 with initial conditions  and . The procedure for this

method was not discussed. It can be found in differential equations texts.

y

yn 1+ yn 3–
4
3
---h 2fn fn 1–– 2fn 2–+[ ]+=

Yn 1+ yn 1–
1
3
---h fn 1+ 4fn fn 1–+ +[ ]+=

yn 1+ Yn 1+

yn 1+ f xn 1+ yn 1+,( )=

yn 1+ Yn 1+ Yn 1+

h

y'' f x y y', ,( )= y x0( ) y0= y' x0( ) y'0=
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9.6 Exercises
1. Use the MATLAB ode23 function to verify the analytical solution of Example 9.1.

2. Construct a spreadsheet for the numerical solutions of Example 9.2.

3. Use MATLAB to find the analytical solution of

with the initial condition . Then, compute and plot the numerical solution using
the MATLAB function ode23 along with points of the analytical solution to verify the accu-
racy of the numerical solution for the interval . 

4. Use MATLAB to plot the numerical solution of the non−linear differential equation

with the initial condition  using the command ode23 for the interval . 

5. Given the differential equation

with the initial condition  and  find the values of  corresponding to the
values of  and  correct to four decimal places using the third−order Runge−
Kutta method. It is suggested that a spreadsheet is used to do all computations.

6. Given the differential equation

compute the approximate values of  and  at  and  given that ,
, and  correct to four decimal places, using the third−order Runge−Kutta

method. It is suggested that a spreadsheet is used to do all computations.

y' f x( ) 3x2= =

y 2( ) 0.5=

2 x 4≤ ≤

y' y3– 0.2 xsin+=

y 0( ) 0.707= 0 x 10≤ ≤

y' x2 y–=

y 0( ) 1= x0 0.0= y

x0 0.1+ x0 0.2+

y'' y'+ xy=

y y' x0 0.1+ x0 0.2+ y 0( ) 1=

y' 0( ) 1–= x0 0.0=
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Solutions to End−of−Chapter Exercises

9.7 Solutions to End−of−Chapter Exercises
1.

We write and save the following function file:

function dy = func_exer9_1(x,y)
dy = −x*y;

Next, we write and execute the MATLAB script below.

tspan=[0 3]; % Interval over which we want to evaluate y=f(x)
y0=[1;−1]; % Given initial conditions
[x,y]=ode23('func_exer9_1', tspan, y0); % Use 2nd and 3rd Order Runge−Kutta
% Plot numeric values with the statements below
plot(x, y(:,1), '+r−', x, y(:,2), 'Ob−−')
title('Numeric Solution of Differential Equation of Exercise 9.1'),...
xlabel('x'), ylabel('y (upper curve), yprime (lower curve)'), grid

The plot below shows the function  and its derivative .y f x( )= dy dx⁄
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2.

3.
The analytical solution is found with 

syms x y
y=dsolve('Dy=3*x^2,y(2)=0.5','x')

and MATLAB displays

y =
x^3-15/2

Next, we write and save the following statements as function file fexer9_3

function Dy=fexer9_3(x,y);
Dy=3*x^2;

The MATLAB script for the numerical solution is as follows:

tspan=[2 4]; % Interval over which we want to evaluate y=f(x)
y0=7.5; % Initial condition: Since y=x^3−15/2 and y(2) = 0.5, it follows that y(0) = 7.5
[x,y]=ode23('fexer9_3', tspan, y0); % Use 2nd and 3rd Order Runge−Kutta

% Plot numeric values with the statements below
plot(x, y, '+r−')
title('Numeric Solution of Differential Equation of Exercise 9.3'),...
xlabel('x'), ylabel('y'), grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

A B C D
Differential Equation y' = x + y2

Numerical solution by Runga-Kutte method follows

h= (given) 0.2000
x(0)= (given) 0.0000
y(0)= Initial condition (given) 1.0000

k(1)= h*f(xn,yn) h*(0+1^2)= 0.2000
k(2)= h*f(xn+h,yn+h) h*(0+0.2+(1+0.2)^2)= 0.3280
y(1)= y(0)+0.5(k(1)+k(2)) y(0)+0.5*(D11+D12) 1.2640

L(1)= h*f(xn,yn) h*(0+1^2)= 0.2000
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+(1+0.5*L(1)^2)]= 0.2620
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+(1+2*L(2)-L(1))^2]= 0.3906
y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 1.2731

m(1)= h*f(xn,yn) h*(0+1^2)= 0.2000
m(2)= h*f(xn+0.5*h,yn+0.5*m(1)) h*[(0+0.5*h)+(1+0.5*m(1))^2]= 0.2620
m(3)= h*f(xn+0.5*h,yn+0.5*m(2)) h*[(0+0.5*h)+(1+0.5*m(2))^2]= 0.2758
m(4)= h*f(xn+h,yn+m(3)) h*[(0+h)+(1+m(3))^2]= 0.3655
y(1)= y(0) +(1/6)*(m(1) + 2*m(2)+2*m(3) + m(4)) 1.2735
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Solutions to End−of−Chapter Exercises

4.

We write and save the following statements as function file fexer4

function Dy=fexer4(x,y);
Dy=−y^3+0.2*sin(x);

The MATLAB script and the plot for the numerical solution are as follows:

tspan=[0 10]; x0=[0.707];
[x,num_x]=ode23('fexer4',tspan,x0); plot(x,num_x,'+', x,num_x, '−'),...
title('Numeric solution of non−linear differential equation dy/dx=−x^3+0.2sinx'),...
xlabel('x'), ylabel('y=f(x)'), grid

5. The spreadsheet is shown on the following two pages.
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continued on next page

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A B C D E F
Differential Equation is y' = x2 - y
Numerical solution by Runga-Kutte method follows

h= x(1)-x(0)= 0.1000 x0= 0.0
x(0)= (given) 0.0000 x1= 0.1
y(0)= Initial condition (given) 1.0000 x2= 0.2

L(1)= h*f(xn,yn) h*(0-1)= -0.1000
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)^2-(1+0.5*L(1))]= -0.0948
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)^2-(1+2*L(2)-L(1))]= -0.0901

y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.9052

h= x(2)-x(1)= 0.1000
x(0.1)= Next value x(0) + h 0.1000

y(1)= From previous computation 0.9052

L(1)= h*f(xn,yn) h*(0.1^2-0.9052)= -0.0895
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)^2-(0.9052+0.5*L(1))]= -0.0838
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0.1+h)^2-(0.9052+2*L(2)-L(1))]= -0.0787

y(2)= y(1) +(L(1) + 4*L(2) + L(3))/6 0.8213

h= x(2)-x(1)= 0.1000
x(0.2)= Next value x(0) + 2*h 0.2000

y(2)= From previous computation 0.8213

L(1)= h*f(xn,yn) h*(0.2+2*1.5146)= 0.1843
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.2077
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.2405

y(3)= y(2) +(L(1) + 4*L(2) + L(3))/6 1.0305

h= x(3)-x(2)= -0.2000
x(0.3)= Next value x(0) + 3*h -0.6000

y(3)= From previous computation 1.0305

L(1)= h*f(xn,yn) h*(0.3+2*1.8773)= -0.2922
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= -0.2138
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= -0.1981

y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6 0.8063
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Solutions to End−of−Chapter Exercises

6.

continued on next page

44
45
46
47
48
49
50
51
52
53

A B C D E F

h= x(4)-x(3)= 0.0000
x(0.4)= Next value x(0) + 4*h 0.0000

y(3)= From previous computation 0.8063

L(1)= h*f(xn,yn) h*(0.3+2*1.8773)= 0.0000
L(2)= h*f(xn+0.5*h,yn+0.5*L(1)) h*[(0+0.5*h)+2*(1+0.5*L(1))]= 0.0000
L(3)= h*f(xn+h,yn+2*L(2)-L(1)) h*[(0+h)+2*(1+2*L(2)-L(1))]= 0.0000

y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6 0.8063

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C
Differential Equation is y''+y'=xy or y''=xy-y'
Numerical solution by Runga-Kutte method follows

h= x(1)-x(0)= 0.1000
x(0)= Initial condition (given) 0.0000
y(0)= Initial condition (given) 1.0000
y'(0)= Initial condition (given) -1.0000

L(1)= h*y'(0)= -0.1000
L'(1)= h*f(x(0), y(0), y'(0))= 0.1000
L(2)= h*(y'(0) + 0.5*L'(1))= -0.0950
L'(2)= h*f(x(0) + 0.5*h, y(0) + 0.5*L(1), y'(0) + 0.5*L(1))= 0.0998
L(3)= h*(y'(0) + 2*L'(2) - L'(1))= -0.0901
L'(3)= h*f(x(0) + h, y(0) + 2*L(2) - L(1), y'(0) + 2*L'(2) - L'(1))= 0.0992

y(1)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.9050
y'(1)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6= -0.9003

h= x(1)-x(0)= 0.1000
x(0.1)= Next value x(0) + h 0.1000

y(1)= From previous computation 0.9050
y'(1)= From previous computation -0.9003
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A B C
L(1)= h*y'(1)= -0.0900
L'(1)= h*f(x(1), y(1), y'(1))= 0.0991
L(2)= h*(y'(1) + 0.5*L'(1))= -0.0851
L'(2)= h*f(x(1) + 0.5*h, y(1) + 0.5*L(1), y'(1) + 0.5*L'(1))= 0.0980
L(3)= h*(y'(1) + 2*L'(2) - L'(1))= -0.0803
L'(3)= h*f(x(1) + h, y(1) + 2*L(2) - L(1), y'(1) + 2*L'(2) - L'(1))= 0.0968

y(2)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.8199
y'(2)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6= -0.8023

h= x(2)-x(1)= 0.1000
x(0.2)= Next value x(0) + 2*h 0.2000

y(2)= From previous computation 0.8199
y'(2)= From previous computation -0.8023

L(1)= h*y'(0)= -0.0802
L'(1)= h*f(x(0), y(0), y'(0))= 0.0966
L(2)= h*(y'(0) + 0.5*L'(1))= -0.0754
L'(2)= h*f(x(0) + 0.5*h, y(0) + 0.5*L(1), y'(0) + 0.5*L(1))= 0.0949
L(3)= h*(y'(0) + 2*L'(2) - L'(1))= -0.0709
L'(3)= h*f(x(0) + h, y(0) + 2*L(2) - L(1), y'0 + 2*L'(2) - L'(1))= 0.0934

y(3)= y(0) +(L(1) + 4*L(2) + L(3))/6 0.7444
y'(3)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6= -0.7074
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Chapter 10

Integration by Numerical Methods

his chapter is an introduction to numerical methods for integrating functions which are very
difficult or impossible to integrate using analytical means. We will discuss the trapezoidal
rule that computes a function  with a set of linear functions, and Simpson’s rule that

computes a function  with a set of quadratic functions. 

10.1 The Trapezoidal Rule

Consider the function  for the interval , shown in Figure 10.1. 

Figure 10.1. Integration by the trapezoidal rule

To evaluate the definite integral , we divide the interval  into  subintervals

each of length . Then, the number of points between  and  is

. Therefore, the integral from a to b is the sum
of the integrals from  to , from  to , and so on, and finally from  to . The total area
is

The integral over the first subinterval, can now be approximated by the area of the trapezoid

T f x( )
f x( )

y f x( )= a x b≤ ≤

x

 a b

...........

 
0

f x( )

x1 x2 xn 1–

y0 y1 y2 yn 1– yn

P0
P1

P2

Pn 1–

Pn

f x( ) xd
a

b

∫ a x b≤ ≤ n

Δx b a–
n

-----------= x0 a= xn b=

x1 a Δx+= x2 a 2Δx+= … xn 1– a n 1–( )Δx+=, , ,

a x1 x1 x2 xn 1– b

f x( ) xd
a

b

∫ f x( ) xd
a

x1

∫ f x( ) xd
x1

x2

∫ … f x( ) xd
xn 1–

b

∫+ + + f x( ) xd
xk 1–

xk

∫
k 1=

n

∑= =
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 that is equal to  plus the area of the trapezoid  that is equal to

, and so on. Then, the trapezoidal approximation becomes

or

(10.1)

Example 10.1  

Using the trapezoidal rule with , estimate the value of the definite integral 

(10.2)

Compare with the exact value, and compute the percent error.

Solution:

The exact value of this integral is 

(10.3)

For the trapezoidal rule approximation we have

Then,

aP0P1x1
1
2
--- y0 y1+( )Δx x1P1P2x2

1
2
--- y1 y2+( )Δx

T 1
2
--- y0 y1+( )Δx 1

2
--- y1 y2+( )Δx … 1

2
--- yn 1– yn+( )Δx+ + +=

T 1
2
---y0 y1 y2 … yn 1–

1
2
---yn+ + + + +⎝ ⎠

⎛ ⎞Δx=

Trapezoidal Rule

n 4=

x2 xd
1

2

∫

x2 xd
1

2

∫ x3

3
-----

1

2
8
3
--- 1

3
---– 7

3
--- 2.33333= = = =

x0 a 1= =

xn b 2= =

n 4=

Δx b a–
n

----------- 2 1–
4

------------ 1
4
---= = =

y f x( ) x2= =
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The Trapezoidal Rule

and by substitution into (10.1),

(10.4)

From (10.3) and (10.4), we find that the percent error is

(10.5)

The MATLAB function trapz(x,y,n) where y is the integral with respect to x, approximates the
integral of a function  using the trapezoidal rule, and n (optional) performs integration
along dimension .

Example 10.2  
Use the MATLAB function trapz(x,y) to approximate the value of the integral

(10.6)

and by comparison with the exact value, compute the percent error when  and 

Solution:

The exact value is found from

For the approximation using the trapezoidal rule, we let  represent the row vector with ,

x0 a 1= =            y0 f x0( ) 12 16
16
------= = =

x1 a Δx+ 5
4
---= =   y1 f x1( ) 5

4
---⎝ ⎠
⎛ ⎞ 2 25

16
------= = =

x2 a 2Δx+ 6
4
---= = y2 f x2( ) 6

4
---⎝ ⎠

⎛ ⎞ 2 36
16
------= = =

x3 a 3Δx+ 7
4
---= = y3 f x3( ) 7

4
---⎝ ⎠

⎛ ⎞ 2 49
16
------= = =

x4 b 2= =            y4 f x4( ) 8
4
---⎝ ⎠

⎛ ⎞ 2 64
16
------= = =

T 1
2
--- 16

16
------× 25

16
------ 36

16
------ 49

16
------ 1

2
--- 64

16
------×+ + + +⎝ ⎠

⎛ ⎞ 1
4
---× 150

16
--------- 1

4
---× 75

32
------ 2.34375= == =

% Error 2.34375 2.33333–
2.33333

--------------------------------------------- 100× 0.45 %= =

y f x( )=

n

1
x
--- xd

1

2

∫

n 5= n 10=

1
x
--- xd

1

2

∫ xln 1
2 2ln 1ln– 0.6931 0.0000– 0.6931= = = =

x5 n 5=
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and  the vector with , that is,  and  respectively. The corre-
sponding values of  are denoted as  and , and the areas under the curve as  and

 respectively. We use the following MATLAB script.

x5=linspace(1,2,5); x10=linspace(1,2,10);
y5=1./x5; y10=1./x10;
area5=trapz(x5,y5), area10=trapz(x10,y10)

area5 =
    0.6970

area10 =
    0.6939

The percent error when  is used is

and the percent error when  is used is

Example 10.3  
The integral 

(10.7)

where  is a dummy variable of integration, is called the error function*  and it is used extensively
in communications theory. Use the MATLAB trapz(x,y) function to find the area under this
integral with  when the upper limit of integration is .

Solution:

We use the same procedure as in the previous example. The MATLAB script for this example is

t=linspace(0,2,10); y=exp(−t.^2); area=trapz(t,y)

MATLAB displays the following result.

* The formal definition of the error function is 

x10 n 10= Δx 1 5⁄= Δx 1 10⁄=

y y5 y10 area5

area10

Δx 1 5⁄=

% Error 0.6970 0.6931–
0.6931

--------------------------------------- 100× 0.56 %= =

Δx 1 10⁄=

% Error 0.6939 0.6931–
0.6931

--------------------------------------- 100× 0.12 %= =

f t( ) e τ2– τd
0

t

∫=

τ

erf u( ) 2
π

------- e τ2– τd
0

u

∫=

n 10= t 2=
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The Trapezoidal Rule

area =
    0.8818

Example 10.4  

The  (current−voltage) relation of a non−linear electrical device is given by

(10.8)
where .

By any means, find

a. The instantaneous power 

b. The energy dissipated in this device from  to 

Solution:

a. The instantaneous power is

(10.9)

b. The energy is the integral of the instantaneous power, that is,

(10.10)

An analytical solution of the last integral is possible using integration by parts, but it is not
easy. We can try the MATLAB int(f,a,b) function where f is a symbolic expression, and a and
b are the lower and upper limits of integration respectively.

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB
returns the following message when integration is attempted with the symbolic expression of
(10.10).

t=sym('t');
s=int(0.1*sin(3*t)*(exp(0.2*sin(3*t))−1),0,10)

When this script is executed, MATLAB displays the following message.

Warning: Explicit integral could not be found.

Next, we will find and sketch the power and energy by the trapezoidal rule using the MAT-
LAB trapz(x,y) function. For this example, we choose , so that . The
MATLAB script below will compute and plot the power. 

t=linspace(0,10,100);
v=sin(3.*t); i=0.1.*(exp(0.2.*v)−1); p=v.*i;

i v–

i t( ) 0.1 e0.2v t( ) 1–( )=

v t( ) 3tsin=

p t( )

W t0 t1,( ) t0 0= t1 10 s.=

p t( ) v t( )i t( ) 0.1 3t e0.2 3tsin 1–( )sin= =

W t0 t1,( ) p t( ) td
t0

t1

∫ 0.1 3t e0.2 3tsin 1–( ) tdsin
0

10 s

∫= =

n 100= Δx 1 100⁄=
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plot(t,p); grid; title('Power vs Time'); xlabel('seconds'); ylabel('watts')

The power varies in a uniform fashion as shown by the plot of Figure 10.2.

Figure 10.2. Plot for the power variation in Example 10.4

The plot of Figure 10.2 shows that the power is uniform for all time, and thus we expect the
energy to be constant. 

The MATLAB script below computes and plots the energy.

energy=trapz(t,p), plot(t,energy, '+'); grid; title('Energy vs Time');...
xlabel('seconds'); ylabel('joules')

energy =
    0.1013

Thus, the value of the energy is 0.1013 joule. The energy is shown in Figure 10.3.

10.2 Simpson’s Rule
The trapezoidal and Simpson’s rules are special cases of the Newton−Cote rules which use higher
degree functions for numerical integration.

Let the curve of Figure 10.4 be represented by the parabola

(10.11)

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025
Power vs Time

seconds

w
at

ts

y αx2 βx γ+ +=
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Simpson’s Rule

Figure 10.3. Plot for the energy of Example 10.4

 
Figure 10.4. Simpson’s rule of integration

The area under this curve for the interval  is

(10.12)

The curve passes through the three points , , and . Then, by (10.11) we
have:
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--------- βx2
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3
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2
-------- γh αh3
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---------– βh2

2
-------- γh–+⎝ ⎠
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3
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---h 2αh3 6γ+( )=

h– y0,( ) 0 y1,( ) h y2,( )
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(10.13)

We can now evaluate the coefficients  and express (10.12) in terms of , ,  and .
This is done with the following procedure.

By substitution of (b) of (10.13) into (a) and (c) and rearranging we obtain

(10.14)

(10.15)

Addition of (10.14) with (10.15) yields

(10.16)

and by substitution into (10.12) we obtain

(10.17)

or

(10.18)

Now, we can apply (10.18) to successive segments of any curve  in the interval 
as shown on the curve of Figure 10.5.

Figure 10.5. Simpson’s rule of integration by successive segments

From Figure 10.5, we observe that each segment of width  of the curve can be approximated by
a parabola through its ends and its midpoint. Thus, the area under segment  is 

y0 αh2 βh– γ           (a)+=

y1 γ                              (b)=

y2 αh2 βh γ           (c)+ +=

α β γ, , h y0 y1 y2

αh2 βh– y0 y1–=

αh2 βh+ y2 y1–=

2αh2 y0 2y1– y2+=

Area h–
h 1

3
---h 2αh3 6γ+( ) 1

3
---h y0 2y1– y2+( ) 6y1+[ ]= =

Area h–
h 1

3
---h y0 4y1 y2+ +( )=

y f x( )= a x b≤ ≤

a b

h

A B
C

yn 1–y4y3y2y1y0 yn

2h
AB
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Simpson’s Rule

(10.19)

Likewise, the area under segment  is 

(10.20)

and so on. When the areas under each segment are added, we obtain

(10.21)

Since each segment has width , to apply Simpson’s rule of numerical integration, the number  of
subdivisions must be even. This restriction does not apply to the trapezoidal rule of numerical inte-
gration. The value of  for (10.21) is found from

(10.22)

Example 10.5  

Using Simpson’s rule with 4 subdivisions , compute the approximate value of 

(10.23)

Solution:

This is the same integral as that of Example 10.2 where we found that the analytical value of this
definite integral is . We can also find the analytical value with MATLAB’s int(f,a,b)
function where f is a symbolic expression, and a and b are the lower and upper limits of integra-
tion respectively. For this example,

syms x
Area=int(1/x,1,2)

Area =
log(2)

We recall that log(x) in MATLAB is the natural logarithm.

To use Simpson’s rule, for convenience, we construct the following table using the spreadsheet of
Figure 10.6.

Area AB
1
3
---h y0 4y1 y2+ +( )=

BC

Area BC
1
3
---h y2 4y3 y4+ +( )=

Area 1
3
---h y0 4y1 2y2+ + 4y3 2y4 … 2yn 2– 4yn 1– yn+ + + + + +( )=

 Simpson′s Rule of Numerical Integration

2h n

h

h b a–
n

-----------    n even= =

n 4=( )

1
x
--- xd

1

2

∫

0.6931=ln
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Figure 10.6. Spreadsheet for numerical integration of (10.23)

By comparison of the numerical with the exact value, we observe that the error is very small when
Simpson’s method is applied.

MATLAB has two quadrature functions for performing numerical integration, the quad and
quad8. The description of these can be seen by typing help quad or help quad8. Both of these
functions use adaptive quadrature methods; this means that these methods can handle irregularities
such as singularities. When such irregularities occur, MATLAB displays a warning message but
still provides an answer.

The quad function uses an adaptive form of Simpson’s rule, while the quad8 function uses the
so−called Newton−Cotes 8−panel rule. The quad8 function detects and handles irregularities more
efficiently.

Both functions have the same syntax, that is, q=quad(‘f’,a,b,tol), and integrate to a relative error

tol which we must specify. If tol is omitted, it is understood to be the standard tolerance of .
The string ‘f’ is the name of a user defined function, and a and b are the lower and upper limits of
integration respectively.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E
Example 10.5
∫ (1/x)dx evaluated from a = 1 to b = 2 with n = 4
Numerical integration by Simpson's method follows
Given a= 1

b= 2
n= 4

Then,  h = (b-a)/n = 0.2500
Multiplier Products

x0=a= 1.00000
y0=1/x0= 1.00000 1 1.00000
x1=a+h= 1.25000
y1=1/x1= 0.80000 4 3.20000

x2=a+2h= 1.50000
y2=1/x2= 0.66667 2 1.33333

x3=a+3h= 1.75000
y3=1/x3= 0.57143 4 2.28571

x4=b= 2.00000
y4=1/x4= 0.50000 1 0.50000

Sum of Products = 8.31905
Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 0.69325

10 3–
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Simpson’s Rule

Example 10.6  
Given the definite integral

(10.24)

a. Use MATLAB’s symbolic int function to obtain the value of this integral

b. Obtain the value of this integral with the q=quad(‘f’,a,b) function

c. Obtain the value of this integral with the q=quad(‘f’,a,b,tol) function where 

d. Obtain the value of this integral with the q=quad8(‘f’,a,b) function

e. Obtain the value of this integral with the q=quad8(‘f’,a,b,tol) function where 

Solution:

a.
syms x; y=int(exp(−x^2),0,2)  % Define symbolic variable x and integrate 

y =
1/2*erf(2)*pi^(1/2)
pretty(y)

                            1/2
                   1/2 erf(2) pi

erf is an acronym for the error function and we can obtain its definition with help erf

b. First, we need to create and save a function m−file. We name it errorfcn1.m as shown below.
We will use format long to display the values with 15 digits.

function y = errorfcn1(x)
y = exp(−x.^2);

With this file saved as errorfcn1.m, we write and execute the following MATLAB script.

format long
y_std=quad('errorfcn1',0,2)

We obtain the answer in standard tolerance form as

y_std =
       0.88211275610253

c. With the specified tolerance, the script and the answer are as follows:

y_tol=quad('errorfcn1',0,2,10^−10)

y_tol =
      0.88208139076242

y f x( )= e x2– xd
0

2

∫=

tol 10 10–=

tol 10 10–=
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d. With the standard tolerance,

y_std8=quad8('errorfcn1',0,2)

y_std8 =
     0.88208139076194

e. With the specified tolerance,

y_tol8=quad8('errorfcn1',0,2,10^−10)

y_tol8 =
     0.88208139076242

We observe that with the  tolerance, both quad and quad8 produce the same result.

Example 10.7  
Using the quad and quad8 functions with standard tolerance, evaluate the integral

(10.25)

at  and . Use the fprintf function to display first the analytical
values, then, the numerical values produced by the quad and quad8 functions for each set of
data. 

Solution:

Evaluating the given integral, we obtain

(10.26)

where  and  are non−negative values. Substitution of the values of the given values of  and 
will be included in the MATLAB script below.

The sqrt function in a built−in function and therefore, we need not write a user defined m−file.
We will include the input function in the script. The script is then saved as Example_10_7.

% This script displays the approximations obtained with the quad and quad8 functions
% with the analytical results for the integration of the square root of x over the 
% interval (a,b) where a and b are non−negative.
% 
fprintf(' \n'); % Insert line
a=input('Enter first point  "a" (non−negative): ');
b=input('Enter second point "b" (non−negative): ');

10 10–

y f x( ) x xd
a

b

∫= =

a b,( ) 0.2 0.8,( ) 1.4 2.3,( ),=( ),   (3,8)

y x1 2⁄ xd
a

b

∫ x3 2⁄

3 2⁄
----------

a

b
2
3
--- b3 2⁄ a3 2⁄–( )= = =

a b a b
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k=2/3.*(b.^(1.5)−a.^(1.5));
kq=quad('sqrt',a,b);
kq8=quad8('sqrt',a,b);
fprintf(' \n');... % Insert line
fprintf(' Analytical: %f \n Numerical quad, quad8: %f  %f \n',k,kq,kq8);...
fprintf(' \n'); fprintf(' \n') % Insert two lines

Now, we execute this saved file by typing its name, that is,

Example_10_7

Enter first point  "a" (non-negative): 0.2
Enter second point "b" (non-negative): 0.8

Analytical: 0.417399 

Numerical quad, quad8: 0.417396  0.417399 

Example_10_7

Enter first point  "a" (non-negative): 1.4
Enter second point "b" (non-negative): 2.3

Analytical: 1.221080 

Numerical quad, quad8: 1.221080  1.221080 

Example_10_7

Enter first point  "a" (non-negative): 3
Enter second point "b" (non-negative): 8

Analytical: 11.620843 

Numerical quad, quad8: 11.620825  11.620843
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10.3 Summary

• We can evaluate a definite integral  with the trapezoidal approximation

by dividing interval  into  subintervals each of length . The number  of

subdivisions can be even or odd.

• The MATLAB function trapz(x,y,n) where y is the integral with respect to x, approximates
the integral of a function  using the trapezoidal rule, and n (optional) performs inte-
gration along dimension .

• We can perform numerical integration with the MATLAB function int(f,a,b) function where f
is a symbolic expression, and a and b are the lower and upper limits of integration respectively.

• We can evaluate a definite integral  with Simpson’s rule of numerical integration

using the expression

where the number  of subdivisions must be even. 

• The trapezoidal and Simpson’s rules are special cases of the Newton−Cote rules which use
higher degree functions for numerical integration.

• MATLAB has two quadrature functions for performing numerical integration, the quad and
quad8. Both of these functions use adaptive quadrature methods. The quad function uses an
adaptive form of Simpson’s rule, while the quad8 function uses the so−called Newton−Cotes 8−
panel rule. The quad8 function detects and handles irregularities more efficiently. Both func-
tions have the same syntax, that is, q=quad(‘f’,a,b,tol), and integrate to a relative error tol

which we must specify. If tol is omitted, it is understood to be the standard tolerance of .
The string ‘f’ is the name of a user defined function, and a and b are the lower and upper limits
of integration respectively.

f x( ) xd
a

b

∫

T 1
2
---y0 y1 y2 … yn 1–

1
2
---yn+ + + + +⎝ ⎠

⎛ ⎞Δx=

a x b≤ ≤ n Δx b a–
n

-----------= n

y f x( )=

n

f x( ) xd
a

b

∫

Area 1
3
---h y0 4y1 2y2+ + 4y3 2y4 … 2yn 2– 4yn 1– yn+ + + + + +( )=

n

10 3–
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Exercises

10.4 Exercises
1. Use the trapezoidal approximation to compute the values the following definite integrals and

compare your results with the analytical values. Verify your answers with the MATLAB
trapz(x,y,n) function.

a.     

b.     

c.     

d.     

2. Use Simpson’s rule to approximate the following definite integrals and compare your results
with the analytical values. Verify your answers with the MATLAB quad(‘f’,a,b) function.

a.     

b.     

c.     

x xd
0

2

∫ n 4=

x3 xd
0

2

∫ n 4=

x4 xd
0

2

∫ n 4=

1
x2
----- xd

1

2

∫ n 4=

x2 xd
0

2

∫ n 4=

x xdsin
0

π

∫ n 4=

1
x2 1+
-------------- xd

0

1

∫ n 4=
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10.5 Solution to End−of−Chapter Exercises
1.

a. The exact value is 

For the trapezoidal rule approximation we have

x=linspace(0,2,4); y=x; area=trapz(x,y)

area =
     2

b. The exact value is 

For the trapezoidal rule approximation we have

T 1
2
---y0 y1 y2 … yn 1–

1
2
---yn+ + + + +⎝ ⎠

⎛ ⎞Δx=

x xd
0

2

∫ x2

2
-----

0

2

2= =

x0 a 0= =

xn b 2= =

n 4=

Δx b a–
n

----------- 2 0–
4

------------ 1
2
---= = =

y f x( ) x= =

x0 a 0= =            y0 f x0( ) 0= =

x1 a Δx+ 1
2
---= =   y1 f x1( ) 1

2
---= =

x2 a 2Δx+ 1= = y2 f x2( ) 1= =

x3 a 3Δx+ 3
2
---= = y3 f x3( ) 3

2
---= =

x4 b 2= =            y4 f x4( ) 2= =

T 1
2
--- 0× 1

2
--- 1 3

2
--- 1

2
--- 2×+ + + +⎝ ⎠

⎛ ⎞ 1
2
---× 4 1

2
---× 2== =

x3 xd
0

2

∫ x4

4
-----

0

2

4= =
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x=linspace(0,2,4); y=x.^3; area=trapz(x,y)

area =
    4.4444

The deviations from the exact value are due to the small number of divisions  we chose.

c. The exact value is 

For the trapezoidal rule approximation we have

x0 a 0= =

xn b 2= =

n 4=

Δx b a–
n

----------- 2 0–
4

------------ 1
2
---= = =

y f x( ) x3= =

x0 a 0= =            y0 f x0( ) 0= =

x1 a Δx+ 1
2
---= =   y1 f x1( ) 1

8
---= =

x2 a 2Δx+ 1= = y2 f x2( ) 1= =

x3 a 3Δx+ 3
2
---= = y3 f x3( ) 27

8
------= =

x4 b 2= =            y4 f x4( ) 8= =

T 1
2
--- 0× 1

8
--- 1 27

8
------ 1

2
--- 8×+ + + +⎝ ⎠

⎛ ⎞ 1
2
---× 5 7

2
---+⎝ ⎠

⎛ ⎞ 1
2
---× 4.25== =

n

x4 xd
0

2

∫ x5

5
-----

0

2
32
5

------ 6.4= = =

x0 a 0= =

xn b 2= =

n 4=

Δx b a–
n

----------- 2 0–
4

------------ 1
2
---= = =

y f x( ) x4= =
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x=linspace(0,2,4); y=x.^4; area=trapz(x,y)

area =
    7.5720

d. The exact value is 

For the trapezoidal rule approximation we have

x0 a 0= =            y0 f x0( ) 0= =

x1 a Δx+ 1
2
---= =   y1 f x1( ) 1

16
------= =

x2 a 2Δx+ 1= = y2 f x2( ) 1= =

x3 a 3Δx+ 3
2
---= = y3 f x3( ) 81

8
------= =

x4 b 2= =            y4 f x4( ) 16= =

T 1
2
--- 0× 1

16
------ 1 81

16
------ 1

2
--- 16×+ + + +⎝ ⎠

⎛ ⎞ 1
2
---× 9 41

8
------+⎝ ⎠

⎛ ⎞ 1
2
---× 7.0625== =

1
x2
----- xd

1

2

∫ 1
x
---–

1

2 1
2
---= =

x0 a 1= =

xn b 2= =

n 4=

Δx b a–
n

----------- 2 1–
4

------------ 1
4
---= = =

y f x( ) 1 x2⁄= =

x0 a 1= =            y0 f x0( ) 1= =

x1 a Δx+ 5
4
---= =   y1 f x1( ) 16

25
------= =

x2 a 2Δx+ 3
2
---= = y2 f x2( ) 4

9
---= =

x3 a 3Δx+ 7
4
---= = y3 f x3( ) 16

49
------= =

x4 b 2= =            y4 f x4( ) 1
4
---= =

T 1
2
--- 1× 16

25
------ 4

9
--- 16

49
------ 1

2
--- 1

4
---×+ + + +⎝ ⎠

⎛ ⎞ 1
4
---× 3905

1918
------------⎝ ⎠
⎛ ⎞ 1

4
---× 0.5090== =
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Solution to End−of−Chapter Exercises

x=linspace(1,2,4); y=1./x.^2; area=trapz(x,y)

area =
    0.5158

2.

a. The exact value is 

To use Simpson’s rule we construct the following table using a spreadsheet.

We create and save a function m−file. We name it exer_10_2_a.m as shown below.

function y = exer_10_2_a(x)
y = x.^2;

We write and execute the following MATLAB script:

y_std=quad('exer_10_2_a',0,2)

y_std =
    2.6667

Area 1
3
---h y0 4y1 2y2+ + 4y3 2y4 … 2yn 2– 4yn 1– yn+ + + + + +( )=

x2 xd
0

2

∫ x3

3
-----

0

2
8
3
--- 2.6667= = =

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E
Exercise 10.2.a
∫ x 2 dx evaluated from a = 0 to b = 2 with n = 4
Numerical integration by Simpson's method follows
Given a= 0

b= 2
n= 4

Then,  h = (b-a)/n = 0.5000
Multiplier Products

x0=a= 0.00000
y0=x0

2= 0.00000 1 0.0000
x1=a+h= 0.50000
y1=x1

2= 0.25000 4 1.0000
x2=a+2h= 1.00000

y2=x2
2= 1.00000 2 2.0000

x3=a+3h= 1.50000
y3=x3

2= 2.25000 4 9.0000
x4=b= 2.00000

y4=x4
2= 4.00000 1 4.0000

Sum of Products = 16.0000
Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 2.6667
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b. The exact value is 

To use Simpson’s rule we construct the following table using a spreadsheet.

We create and save a function m−file. We name it exer_10_2_b.m as shown below.

function y = exer_10_2_b(x)
y = sin(x);

We write and execute the following MATLAB script:

y_std=quad('exer_10_2_b',0,pi)

y_std =
    2.0000

c. The exact value is 

To use Simpson’s rule we construct the following table using a spreadsheet.

x xdsin
0

π

∫ xcos– 0
π 1– 1–( )– 2= = =

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E
Exercise 10.2.b
∫ sinxdx evaluated from a = 0 to b = π  with n = 4
Numerical integration by Simpson's method follows
Given a= 0

b= 3.14159
n= 4

Then,  h = (b-a)/n = 0.7854
Multiplier Products

x0=a= 0.00000
y0=sinx0= 0.00000 1 0.0000
x1=a+h= 0.78540

y1=sinx1= 0.70711 4 2.8284
x2=a+2h= 1.57080
y2=sinx2= 1.00000 2 2.0000
x3=a+3h= 2.35619
y3=sinx3= 0.70711 4 2.8284

x4=b= 3.14159
y4=sinx4= 0.00000 1 0.0000

Sum of Products = 7.6569
Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 2.0046

1
x2 1+
-------------- xd

0

1

∫ x1–tan 0

1 π
4
--- 0.7854= = =
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We create and save a function m−file. We name it exer_10_2_c.m as shown below.

function y = exer_10_2_c(x)
y = 1./(x.^2+1);

We write and execute the following MATLAB script:

y_std=quad('exer_10_2_c',0,1)

y_std =
    0.7854

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E
Exercise 10.2.c
∫ (1/(x 2 +1))dx evaluated from a = 0 to b = 1 with n = 4
Numerical integration by Simpson's method follows
Given a= 0

b= 1
n= 4

Then,  h = (b-a)/n = 0.2500
Multiplier Products

x0=a= 0.00000
y0=1/(x0

2+1)= 1.00000 1 1.0000
x1=a+h= 0.25000

y1=1/(x1
2+1)= 0.94118 4 3.7647

x2=a+2h= 0.50000
y2=1/(x2

2+1)= 0.80000 2 1.6000
x3=a+3h= 0.75000

y3=1/(x3
2+1)= 0.64000 4 2.5600
x4=b= 1.00000

y4=1/(x4
2+1)= 0.50000 1 0.5000

Sum of Products = 9.4247
Area = (h/3)*(Sum of Products) = (1/12)*8.31905 = 0.7854
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Chapter 11

Difference Equations

his chapter is an introduction to difference equations based on finite differences. The dis-
cussion is limited to linear difference equations with constant coefficients. The Fibonacci
numbers are defined, and a practical example in electric circuit theory is given at the end

of this chapter.

11.1 Introduction

In mathematics, a recurrence relation is an equation which defines a sequence recursively: each
term of the sequence is defined as a function of the preceding terms. A difference equation is a
specific type of recurrence relation, and this type is discussed in this chapter. Difference equa-
tions as used with discrete type systems, are discussed in Appendix A.

11.2 Definition, Solutions, and Applications
The difference equations discussed in this chapter, are used in numerous applications such as
engineering, mathematics, physics, and other sciences. 

The general form of a linear, constant coefficient difference equation has the form

(11.1)

where  represents a constant coefficient and  is an operator similar to the  operator in
ordinary differential equations. The  operator increases the argument of a function by one
interval , and  is a positive integer that denotes the order of the difference equation.

In terms of the interval , the difference operator  is 

(11.2)

The interval  is usually unity, i.e., , and the subscript  is normally omitted. Thus,
(11.2) is written as

(11.3)

If, in (11.3), we increase the argument of  by another unit, we obtain the second order operator

, that is,

T

arE
r ar 1– E r 1– …+ + a1E a0+ +( )y φ x( )=

ak E D

E
h r

h E

Ef xk( ) f xk h+( ) f xk h+( )= =

h h 1= k

Ef x( ) f x 1+( ) fx 1+= =

f

E 2
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(11.4)

and in general,
(11.5)

As with ordinary differential equations, the right side of (11.3) is a linear combination of terms

such as , , and , where  is a non−zero constant and  is a non−negative integer.
Moreover, if, in (11.1), , the equation is referred to as a homogeneous difference equation,
and if , it is a non−homogeneous difference equation.

If, in (11.1), we let , we obtain the second order difference equation

(11.6)

and if the right side is zero, it reduces to

(11.7)

If  and  are any two solutions of (11.7), the linear combination  is
also a solution. Also, if the Casorati determinant, analogous to the Wronskian determinant in ordi-
nary differential equations, is non−zero, that is, if

(11.8)

then, any other solution of (11.7) can be expressed as 

(11.9)

where  and  are constants.

For the non−homogeneous difference equation

(11.10)

where , if  is any solution of (11.10), then the complete solution is

(11.11)

As with ordinary differential equations, we first find the solution of the homogeneous difference
equation; then, we add the particular solution  to it to obtain the total solution. We find

 by the Method of Undetermined Coefficients.

E 2f x( ) E Ef x( )[ ] Ef x 1+( ) f x 2+( ) fx 2+= = = =

E rf x( ) f x r+( ) fx r+= =

kx kxcos xn k n
ϕ x( ) 0=

ϕ x( ) 0≠

r 2=

a2E 2 a1E a0+ +( )y φ x( )=

a2E 2 a1E a0+ +( )y 0=

y1 x( ) y2 x( ) k1y1 x( ) k2y1 x( )+

C y1 x( ) y2 x( ),[ ]
y1 x( ) y2 x( )

Ey1 x( ) Ey2 x( )
= 0≠

y3 x( ) k1y1 x( ) k2y2 x( )+=

k1 k2

a2E 2 a1E a0+ +( )y φ x( )=

ϕ x( ) 0≠ Y x( )

y k1y1 x( ) k2y2 x( ) Y x( )+ +=

Y x( )
Y x( )
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We have assumed that the coefficients  in (11.10) are constants; then, in analogy with the

solution of the differential equation of the form , for the homogeneous difference equa-
tion we assume a solution of the form

(11.12)

By substitution into (11.7), and recalling that , we obtain

(11.13)

and this is the characteristic equation of a second order difference equation.

As with algebraic quadratic equations, the roots of (11.13) can be real and unequal, real and

equal, or complex conjugates depending on whether the discriminant  is positive, zero,
or negative. These cases are summarized in Table 11.1. 

Example 11.1  
Find the solution of the difference equation 

(11.14)

with initial conditions  and . Then, compute .

Solution:

The characteristic equation of (11.14) is

TABLE 11.1  Roots of the characteristic equation in difference equations

Characteristic equation   of 

Roots  and Discriminant General Solution

Real and Unequal

Real and Equal

Complex Conjugates
 

ai

y keax
=

y M x
=

Ef x( ) f x 1+( )=

a2M x 2+ a1M x 1+ a0M x
+ + 0=

a1
2 4a2a0–

a2 M 2 a1 M a0+ + 0= a2E 2 a1E a0+ +( )y 0=

M1 M2

M1 M2≠
a1

2 4a2a0– 0> y k1M1
x k2M2

x
+=

k1  and  k2  cons tstan

M1 M2=
a1

2 4a2a0– 0= y k1M1
x k2xM2

x
+=

k1  and  k2  cons tstan

M1 α jβ+=

M2 α j– β=

a1
2 4a2a0 0<– y rx C1 θx C2 θxsin+cos( )=

r α2 β2+= θ β
α
---

1–
tan=

E 2 6– E 8+( )y 0=

y0 y 0( ) 3= = y1 y 1( ) 2= = y5 y 5( )=
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(11.15)

and its roots are  and . Therefore, with reference to Table 11.1, we obtain the
solution

(11.16)

To make use of the first initial condition, we let . Then, (11.16) becomes

or
(11.17)

For the second initial condition, we let . Then, (11.16) becomes

or
(11.18)

Simultaneous solution of (11.17) and (11.18) yields  and . Thus, the solution is

(11.19)
For , we obtain

Example 11.2  
Find the solution of the difference equation

(11.20)

Solution:

The characteristic equation of (11.20) is

(11.21)

and its roots are  and . From Table 11.1, 

and . Therefore, the solution is

M 2 6– M 8+ 0=

M1 2= M2 4=

yx y x( ) k12 x k24 x
+= =

x 0=

y0 3 k120 k24 0+= =

k1 k2+ 3=

x 1=

y1 2 k12 1 k24 1+= =

2k1 4k2+ 2=

k1 5= k2 2–=

yx 5 2x⋅ 2 4 x⋅–=

x 5=

y5 5 25⋅ 2 45⋅– 5 32× 2 1024×– 1888–= = =

E 2 2E 4+ +( ) y 0=

M 2 2M 4+ + 0=

M1 1– j 3+= M2 1– j– 3= r 1–( )2 3( )
2

+ 2= =

θ 3 1–( )⁄( )
1–

tan 2π 3⁄= =
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(11.22)

The constants  and  can be evaluated from the initial conditions.

For non−homogeneous difference equations of the form of (11.10), we combine the particular
solution with the solution of the homogeneous equation shown in (11.11). For the particular
solution, we start with a linear combination of all the terms of the right side, that is, , and
we apply the operator . If any of the terms in the initial choice duplicates a term in the solution
of the homogeneous equation, this choice must be multiplied by  until there is no duplication
of terms.

Table 11.2 shows the form of the particular solution for different terms of .

Example 11.3  
Find the solution of the difference equation

(11.23)
Solution:

The characteristic equation of (11.23) is

(11.24)

TABLE 11.2  Form of the particular solution for a non−homogeneous difference equation

Non−homogeneous difference equation

Form of Particular Solution 
α (constant) A (constant)

 (k = positive integer)

  

 or 

 or 

y 2 x C1
2π
3

------x C2
2π
3

------xsin+cos⎝ ⎠
⎛ ⎞=

C1 C2

φ x( )
E

x

φ x( )

a2E 2 a1E a0+ +( )y φ x( )=

φ x( ) Y x( )

αxk Akxk Ak 1– xk 1– … A1x A0+ + + +

αkx Akx

α mxcos α msin x A1 mx A2 mxsin+cos

αxklx mxcos αxklx msin x Akxk Ak 1– xk 1– … A1x A0+ + + +( ) lx mxcos

  + Bkxk Bk 1– xk 1– … B1x B0+ + + +( ) lx msin x

E 2 5– E 6+( ) y x 2 x
+=

M 2 5– M 6+ 0=
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and its roots are  and . From Table 11.1, the solution  of the homogeneous
difference equation is

(11.25)

For the particular solution we refer Table 11.2. For the first term  of the right side of (11.23), we

use the term , or . For the second term , we obtain  or , and thus, the
particular solution has the form

(11.26)

But the term  in (11.26), is also a term in (11.25). Therefore, to eliminate the duplication,

we multiply the term  by . Thus, the correct form of the particular solution is

(11.27)

To evaluate the constants , , and , we substitute (11.27) into (11.23). Then, 

(11.28)

Using the law of exponents , simplifying, and equating like terms, we obtain

(11.29)

Relation (11.29) will be true if 

or 

By substitution into (11.28), we obtain the particular solution

(11.30)

Therefore, the total solution is the sum of (11.25) and (11.30), that is,

(11.31)

M1 2= M2 3= YH

YH k12 x k23x
+=

x

A1x A0+ Ax B+ 2x A2 x C2 x

YP Ax B C2x
+ +=

C2 x

C2 x x

YP Ax B Cx2x
+ +=

A B C

A x 2+( ) B C x 2+( ) 2 x 2+⋅+ +[ ] 5 A x 1+( ) B C x 1+( ) 2 x 1+⋅+ +[ ]–

6 Ax B Cx2 x
+ +[ ]+ x 2 x

+=

W m n+ W m W n×=

2Ax 3A– 2B+( ) 2C2 x
–+ x 2 x

+=

2A 1= 3A– 2B+ 0= 2C– 1=

A 0.5= B 0.75= C 0.5–=

YP 0.5x 0.75 0.5– x2 x
+=

ytotal YH YP+ k12 x k23 x 0.5x 0.75 0.5– x2 x
+ + += =
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Fibonacci Numbers

11.3 Fibonacci Numbers
The Fibonacci numbers are solutions of the difference equation

(11.32)

that is, in a series of numbers, each number after the second, is the sum of the two preceding
numbers.

Example 11.4  

Given that  and , compute the first 12 Fibonacci numbers.

Solution:

For  and so on, we obtain the Fibonacci numbers

We will conclude this chapter with an application to electric circuit analysis.

Example 11.5  

For the electric network of Figure 11.1, derive an expression for the voltage  at each point 

where , given that the voltage  at point  is known.

.
Figure 11.1. Electric network for Example 11.5

Solution:

We need to derive a difference equation that relates the unknown voltage  to the known

voltage . We start by drawing part of the circuit as shown in Figure 11.2, and we denote the
voltages and currents as indicated.

yx 2+ yx 1+ yx+=

y0 0= y1 1=

x 0 1 2 3, , ,=

1 2 3 5 8 13 21 34 55 89 144 233 …, , , , , , , , , , , ,

Vx Px

x 0 1 2 … n, , , ,= V0 P0

+−

R RRRRR

2R2R2R2R2R2R

+

−

+

−

+

−

+

−

+

−

+

−

+

−

P0
Pn 3–P1 P2 P3 Pn

Pn 2– Pn 1–

V0

Vn 3–V1 V2 V3
VnVn 2– Vn 1–

Vx

V0
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Figure 11.2. Part of the circuit of Figure 11.1

By application of Kirchoff’s Current Law (KCL) at node  of Figure 11.2, we obtain

(11.33)

and after simplification,

Of course, the term  cannot be zero. Therefore, we must have

(11.34)

Relation (11.34) is valid for all points except  and * as shown in Figure 11.1; therefore, we
must find the current relations at these two points.

Also, by application of Kirchoff’s current law (KCL) at node  of Figure 11.1, we obtain

and after simplification, 
(11.35)

Likewise, at node  of Figure 11.1, we obtain

Observing that , and simplifying, we obtain

(11.36)

* The voltages at nodes  and  are  and  respectively.

RR

2R2R2R
+

−

+

−

+

−
Vx 1+

Vx 2+Vx

Px Px 2+Px 1+

Px 1+

Vx 1+ Vx–

R
--------------------------

Vx 1+

2R
-------------

Vx 1+ Vx 2+–

R
---------------------------------+ + 0=

2
R
---- Vx 2+ 2.5– Vx 1+ Vx+( ) 0=

2 R⁄

Vx 2+ 2.5– Vx 1+ Vx+ 0=

P1 Pn 1–

P0 Pn V0 Vn

P1

V1 V0–

R
-------------------

V1
2R
-------

V1 V2–

R
-------------------+ + 0=

V2 2.5V1– V0+ 0=

Pn 1–

Vn 1– Vn 2––

R
---------------------------------

Vn 1–

2R
-------------

Vn 1– Vn–

R
--------------------------+ + 0=

Vn 0=

2.5Vn 1– Vn 2–– 0=
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Fibonacci Numbers

Relation (11.35) is a difference equation of the form

where . Its characteristic equation is 

(11.37)

The roots of the characteristic equation of (11.37) are  and . Thus, the solu-
tion is

(11.38)

The constant coefficients  and  in (11.38), are found by substitution of this relation into
(11.35) and (11.36). Thus, from (11.37) and (11.38), we obtain

or

or
(11.39)

Likewise, from (11.38) and (11.36) we obtain

or

or

or 

(11.40)

Simultaneous solution of (11.39) and (11.40) yields

(11.41)

E 2 2.5E– 1+( ) y 0=

y Vx=

M 2 2.5M– 1+ 0=

M1 0.5= M2 2=

y Vx k1 0.5( )x k2 2( )x+= =

k1 k2

k1 0.5( )2 k2 2( )2 2.5 k1 0.5( )1 k2 2( )1+( )– V0+ + 0=

0.25k1 4k2 1.25k1– 5k2– V0+ + 0=

k1 k2+ V0=

2.5 k1
1
2
---⎝ ⎠

⎛ ⎞ n 1–
k2 2( )n 1–

+⎝ ⎠
⎛ ⎞ k1

1
2
---⎝ ⎠

⎛ ⎞ n 2–
k2 2( )n 2–

–– 0=

2.5k1

2n 1–
------------- 2.5k2 2( )n 1– k1

2n 2–
-----------– k2 2( )n 2–

–+ 0=

2 2.5( )k1

2 n
---------------------

2.5k2 2( )n

2
------------------------ 4k1

2 n
--------–

k2 2( )n

4
----------------–+ 0=

k1

2 n
------ k2 2( ) n

+ 0=

k1
2 2n

2 2n 1–
-----------------V0= k2

1–

2 2n 1–
-----------------V0=
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Finally, substitution of (11.41) into (11.38) yields a solution of the difference equation in terms of
, that is,

or

(11.42)

We observe that when ,

and when ,

V0

y Vx
2 2n

22n 1–
-----------------V0

1
2
---⎝ ⎠

⎛ ⎞ x 1–

2 2n 1–
-----------------V0 2( )x+= =

y Vx
2 2n

2x
-------- 2x

–
⎝ ⎠
⎜ ⎟
⎛ ⎞ V0

22n 1–
-----------------= =

x 0=

y Vx
22n

1
-------- 1–⎝ ⎠
⎛ ⎞ V0

2 2n 1–
----------------- V0= = =

x n=

y Vx
22n

2n
-------- 2n–
⎝ ⎠
⎜ ⎟
⎛ ⎞ V0

22n 1–
----------------- 2n 2n–( )

V0

22n 1–
----------------- 0= = = =
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Summary

11.4 Summary
• The general form of a linear, constant coefficient difference equation has the form

where  represents a constant coefficient and  is an operator similar to the  operator in
ordinary differential equations. As with ordinary differential equations, the right side is a lin-

ear combination of terms such as , , and , where  is a non−zero constant and  is
a non−negative integer. If , the equation is referred to as a homogeneous difference
equation, and if , it is a non−homogeneous difference equation.

• The difference operator  is 

The interval  is usually unity, i.e., , and the subscript  is normally omitted. Thus,
(11.3) is written as

and in general,

• If  and  are any two solutions of a homogeneous difference equation, the linear
combination , where  and  are constants, is also a solution.

• If the Casorati determinant, analogous to the Wronskian determinant in ordinary differential
equations, is non−zero, that is, if

then, any other solution of the homogeneous difference equation can be expressed as 

• For the non−homogeneous difference equation

where , if  is any solution of (11.11), then the complete solution is

arE
r ar 1– E r 1– …+ + a1E a0+ +( )y φ x( )=

ak E D

kx kxcos xn k n
ϕ x( ) 0=

ϕ x( ) 0≠

E
Ef xk( ) f xk h+( ) f xk h+( )= =

h h 1= k

Ef x( ) f x 1+( ) fx 1+= =

E rf x( ) f x r+( ) fx r+= =

y1 x( ) y2 x( )

k1y1 x( ) k2y1 x( )+ k1 k2

C y1 x( ) y2 x( ),[ ]
y1 x( ) y2 x( )

Ey1 x( ) Ey2 x( )
= 0≠

y3 x( ) k1y1 x( ) k2y2 x( )+=

a2E 2 a1E a0+ +( )y φ x( )=

ϕ x( ) 0≠ Y x( )

y k1y1 x( ) k2y2 x( ) Y x( )+ +=
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As with ordinary differential equations, we first find the solution of the homogeneous differ-
ence equation; then, we add the particular solution  to it to obtain the total solution. We
find  by the Method of Undetermined Coefficients.

• In analogy with the solution of the differential equation of the form , for the homoge-
neous difference equation, we assume a solution of the form

• Since , the characteristic equation of a second order difference equation is 

and as with algebraic quadratic equations, the roots can be real and unequal, real and equal, or

complex conjugates depending on whether the discriminant  is positive, zero, or neg-
ative. These cases are summarized in Table 11.1.

• For non−homogeneous difference equations we combine the particular solution with the solu-
tion of the homogeneous equation. For the particular solution, we start with a linear combina-
tion of all the terms of the right side, that is, , and we apply the operator . If any of the
terms in the initial choice duplicates a term in the solution of the homogeneous equation, this
choice must be multiplied by  until there is no duplication of terms. The form of the particu-
lar solution for different terms of  is shown in Table 11.2.

• The Fibonacci numbers are solutions of the difference equation

that is, in a series of numbers, each number after the second, is the sum of the two preceding
numbers.

Y x( )
Y x( )

y keax
=

y M x
=

Ef x( ) f x 1+( )=

a2M x 2+ a1M x 1+ a0M x
+ + 0=

a1
2 4a2a0–

φ x( ) E

x
φ x( )

yx 2+ yx 1+ yx+=
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Exercises

11.5 Exercises
Find the total solution of the following difference equations.

1.  

2.  

3.  

4.  

E 2 7E 12+ +( )y 0=

E 2 2E 2+ +( )y 0=

E 2 E– 6–( )y x 3x
+=

E 2 1+( )y xsin=
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11.6 Solutions to End−of−Chapter Exercises
1.

The characteristic equation is

and its roots are  and . Therefore, with reference to Table 11.1, we obtain
the solution

  (1)

The constants  and  can be evaluated from the initial conditions. Since they were not
given, let us assume that  and .

To make use of the first initial condition, we let . Then, (1) becomes

or
  (2)

For the second initial condition, we let . Then, (1) becomes

or
  (3)

Simultaneous solution of (2) and (3) yields  and . Thus, the solution is

2.

The characteristic equation is

and its roots are  and . From Table 11.1,  and

. Therefore, the solution is

E 2 7E 12+ +( )y 0=

M 2 7M 12+ + 0=

M1 3–= M2 4–=

yx y x( ) k1 3–( )x k2 4–( ) x
+= =

k1 k2

y0 y 0( ) 1= = y1 y 1( ) 2= =

x 0=

y0 1 k1 3–( )0 k2 4–( ) 0+= =

k1 k2+ 1=

x 1=

y1 2 k1 3–( ) 1 k2 4–( ) 1+= =

3– k1 4k2– 2=

k1 6= k2 5–=

yx y x( ) 6 3–( )x× 5– 4–( ) x×= =

E 2 2E 2+ +( )y 0=

M 2 2M 2+ + 0=

M1 1– j+= M2 1– j–= r 1–( )2 1( )2+ 2= =

θ 1 1–( )⁄1–tan π– 4⁄= =

y 2
x

C1 π– 4⁄( )x C2 π– 4⁄( )xsin+cos( )=
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Solutions to End−of−Chapter Exercises

The constants  and  can be evaluated from the initial conditions. For this exercise, they
were not given.

3.

The characteristic equation is

and its roots are  and 

From Table 11.1, the solution  of the homogeneous difference equation is

 (1)

For the particular solution we refer Table 11.2. For the first term  of the right side of the

given equation we use the term , or . For the second term , we obtain 

or , and thus, the particular solution has the form

But the term  is also a term in the given equation. Therefore, to eliminate the duplica-

tion, we multiply the term  by . Thus, the correct form of the particular solution is

  (2)

To evaluate the constants , , and , we substitute the last expression above into the given
equation. Then, 

Using the law of exponents , simplifying, and equating like terms, we

obtain

This relation will be true if 

or 

C1 C2

E 2 E– 6–( )y x 3x
+=

M 2 M– 6– 0=

M1 2–= M2 3=

YH

YH k1 2–( ) x k23x
+=

x

A1x A0+ Ax B+ 3x A3 x

C3 x

YP Ax B C3x
+ +=

C3 x

C3 x x

YP Ax B Cx3x
+ +=

A B C

A x 2+( ) B C x 2+( ) 3 x 2+⋅+ +[ ] A x 1+( ) B C x 1+( ) 3 x 1+⋅+ +[ ]–

6– Ax B Cx3 x
+ +[ ] x 3 x

+=

W m n+ W m W n×=

6– Ax A 6– B( ) 15C3 x
+ + x 3 x

+=

6A– 1= A 6– B 0= 15C 1=

A 1– 6⁄= B 1 36⁄= C 1 15⁄=
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By substitution into (2), we obtain the particular solution

  (3)

Therefore, the total solution is the sum of (1) and (3), that is,

4.

  (1)
The characteristic equation is

and its roots are  and 

From Table 11.1,  and . Therefore, the homogeneous part
of the solution is

  (2)

For the particular solution we refer Table 11.2 where we find that the solution has the form
, and for this exercise

Since the cosine and sine terms appear in the complimentary solution, we multiply the terms of
the particular solution by  and we obtain

  (3)

To evaluate the constants , , and , we substitute the last expression above into (1) and
we obtain

Using the trig identities

expanding, rearranging, equating like terms, and combining the complimentary and particular
solutions we obtain

YP 1– 6⁄( )x 1 36⁄ 1 15⁄( )x2 x
+ +=

ytotal YH YP+ k1 2–( ) x k23 x 1– 6⁄( )x 1 36⁄ 1 15⁄( )x2 x
+ + + += =

E 2 1+( )y xsin=

M 2 1+ 0=

M1 j= M2 j–=

r 1( )2 1= = θ 1 0⁄1–tan π 2⁄= =

YH C1 π 2⁄( )x C2 π 2⁄( )xsin+cos=

A1 mx A2 mxsin+cos

YP A xcos B xsin+=

x

YP Ax xcos Bx xsin+=

A B C

A x 2+( ) x 2+( ) B x 2+( ) x 2+( ) Ax xcos Bx xsin+ +sin+cos xsin=

a b+( )cos b basinsin–acoscos=

a b+( )sin b b acossin–acossin=

y C1
π
2
---x C2

π
2
---x x x 2–( )sin+sin

2 1 2cos+( )
------------------------------------------+sin+cos=
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Chapter 12

Partial Fraction Expansion

his chapter is an introduction to partial fraction expansion methods. In elementary algebra
we learned how to combine fractions over a common denominator. Partial fraction expan-
sion is the reverse process and splits a rational expression into a sum of fractions having

simpler denominators.

12.1 Partial Fraction Expansion
The partial fraction expansion method is used extensively in integration and in finding the
inverses of the Laplace, Fourier, and Z transforms. This method allows us to decompose a ratio-
nal polynomial into smaller rational polynomials with simpler denominators, from which we can
easily recognize their integrals or inverse transformations. In the subsequent discussion we will
discuss the partial fraction expansion method and we will illustrate with several examples. We
will also use the MATLAB residue(r,p,k) function which returns the residues (coefficients) r of a
partial fraction expansion, the poles p and the direct terms k. There are no direct terms if the
highest power of the numerator is less than that of the denominator.

Let

(12.1)

where  and  are polynomials and thus (12.1) can be expressed as

(12.2)

The coefficients  and  for  are real numbers and, for the present discus-
sion, we have assumed that the highest power of  is less than the highest power of , i.e.,

. In this case,  is a proper rational function. If ,  is an improper rational function.

It is very convenient to make the coefficient  of  in (12.2) unity; to do this, we rewrite it as

(12.3)

T

F s( ) N s( )
D s( )
-----------=

N s( ) D s( )

F s( ) N s( )
D s( )
-----------

bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2– … a1s a0+ + + + +
--------------------------------------------------------------------------------------------------------------------= =

ak bk k 0  1  2  …  n, , , ,=

N s( ) D s( )
m n< F s( ) m n≥ F s( )

an sn

F s( ) N s( )
D s( )
-----------

1
an
----- bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +( )

sn an 1–

an
-----------sn 1– an 2–

an
-----------sn 2– …

a1
an
-----s

a0
an
-----+ + + + +

-------------------------------------------------------------------------------------------------------------------------------= =
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The roots of the numerator are called the zeros of , and are found by letting  in
(12.3). The roots of the denominator are called the poles of  and are found by letting

.

The zeros and poles of (12.3) can be real and distinct, or repeated, or complex conjugates, or
combinations of real and complex conjugates. However, in most engineering applications we are
interested in the nature of the poles. We will consider the nature of the poles for each case.

Case I:  Distinct Poles

If all the poles  of  are distinct (different from each another), we can factor
the denominator of  in the form

(12.4)

where  is distinct from all other poles. Then, the partial fraction expansion method allows us to
express (12.4) as

(12.5)

where  are the residues of . 

To evaluate the residue , we multiply both sides of (12.5) by ; then, we let , that
is,

(12.6)

Example 12.1  

Use partial fraction expansion to simplify  of (12.7) below.

(12.7)

Solution:

(12.8)

F s( ) N s( ) 0=

F s( )
D s( ) 0=

p1  p2  p3  …  pn, , , , F s( )

F s( )

F s( ) N s( )
s p1–( ) s p2–( ) s p3–( ) … s pn–( )⋅ ⋅ ⋅ ⋅

--------------------------------------------------------------------------------------------------=

pk

F s( )
r1

s p1–( )
------------------

r2
s p2–( )

------------------
r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + + +=

r1  r2  r3  …  rn, , , , F s( )

rk s pk–( ) s pk→

rk s pk–( )F s( )
s pk→
lim s pk–( )F s( )

s pk=
= =

F1 s( )

F1 s( ) 3s 2+
s2 3s 2+ +
--------------------------=

F1 s( ) 3s 2+
s2 3s 2+ +
-------------------------- 3s 2+

s 1+( ) s 2+( )
---------------------------------

r1
s 1+( )

----------------
r2

s 2+( )
----------------+= = =

r1 s 1+( )F s( )
s 1–→
lim 3s 2+

s 2+( )
----------------

s 1–=

1–= = =
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Partial Fraction Expansion

Therefore, by substitution into (12.8), we obtain

(12.9)

We can us the MATLAB residue(r,p,k) function to verify our answers with the following script:

Ns = [3, 2]; Ds = [1, 3, 2]; [r, p, k] = residue(Ns, Ds)

r =
     4
    -1
p =
    -2
    -1
k =
     []

where we have denoted Ns and Ds as two vectors that contain the numerator and denominator
coefficients of . MATLAB displays the r, p, and k vectors; these represent the residues,
poles, and direct terms respectively. The first value of the vector r is associated with the first value
of the vector p, the second value of r is associated with the second value of p, and so on. The vec-
tor k is referred to as the direct term, and it is always empty (has no value) whenever  is a
proper rational function. For this example, we observe that the highest power of the denominator
is  whereas the highest power of the numerator is s and therefore, the direct term k is empty.

Example 12.2  

Use partial fraction expansion to simplify  of (12.10) below.

(12.10)

Solution:

First, we will use the MATLAB function factor(s) to express the denominator polynomial of
 in factored form.* This function returns an expression that contains the prime factors of a

polynomial. However, this function is used with symbolic expressions. These expressions are

* Of course, we can use the roots(p) function. The factor(s) function is a good alternative.

r2 s 2+( )F s( )
s 2–→
lim 3s 2+

s 1+( )
----------------

s 2–=

4= = =

F1 s( ) 3s 2+
s2 3s 2+ +
-------------------------- 1–

s 1+( )
---------------- 4

s 2+( )
----------------+= =

F1 s( )

F s( )

s2

F2 s( )

F2 s( ) 3s2 2s 5+ +

s3 12s+ 2 44s 48+ +
-------------------------------------------------=

F2 s( )
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explained below.

The functions, like roots(p), which we have used before, are display numeric expressions, that is,
they produce numerical results. Symbolic expressions, on the other hand, can manipulate mathe-
matical expressions without using actual numbers. Some examples of symbolic expressions are
given below.

MATLAB contains the so-called Symbolic Math Toolbox. This is a collection of tools (functions)
which are used in solving symbolic expressions; they are discussed in detail in MATLAB User’s
Manual. For the present, our interest is in using the factor(s) to express the denominator of
(12.10) as a product of simple factors.

Before using symbolic expressions, we must create a symbolic variable , , ,  etc. This is done
with the sym function. For example, s = sym (‘s’) creates the symbolic variable . Alternately,
we can use the syms function to define one or more symbolic variables with a single statement.
For example,

syms  x  y  z  a1  k2

defines the symbolic variables , , ,  and .

Returning to Example 12.2 and using MATLAB we have:

syms s; den=s^3+12*s^2+44*s+48; factor(den)

ans =
(s+4)*(s+2)*(s+6)

and thus,

Next, we find the residues , , and . These are

Therefore,

x2sin e αt– y d 2

dt2
------- 3t3 4t 2– 5t 8+ +( )= u 1

x
--- xd∫=

x y s t
s

x y z a1 k2

F2 s( ) 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 3s2 2s 5+ +

s 2+( ) s 4+( ) s 6+( )
--------------------------------------------------

r1
s 2+( )

----------------
r2

s 4+( )
----------------

r3
s 6+( )

----------------+ += = =

r1 r2 r3

r1
3s2 2s 5+ +
s 4+( ) s 6+( )

---------------------------------
s 2–=

9
8
---= = r2

3s2 2s 5+ +
s 2+( ) s 6+( )

---------------------------------
s 4–=

= 37
4
------–= r3

3s2 2s 5+ +
s 2+( ) s 4+( )

---------------------------------
s 6–=

= 89
8

------=

F2 s( ) 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 9 8⁄

s 2+( )
---------------- 37 4⁄–

s 4+( )
---------------- 89 8⁄

s 6+( )
----------------+ += =
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Partial Fraction Expansion

Case II:  Complex Poles

Quite often, the poles of a proper rational function  are complex, and since complex poles
occur in complex conjugate pairs, the number of complex poles is even. Thus if  is a complex

pole, then its complex conjugate  is also a pole. The partial fraction expansion method can
also be used in this case, as illustrated by the following example.

Example 12.3  

Use partial fraction expansion to simplify  of (12.11) below.

(12.11)

Solution:

As a first step, we express the denominator in factored form to identify the poles of . Using
the MATLAB script

syms s; factor(s^3 + 5*s^2 + 12*s + 8)

we obtain

ans =
(s+1)*(s^2+4*s+8)

Since the factor(s) function did not factor the quadratic term*, we will use the roots(p) function
to find its roots by treating it as a polynomial.

p=[1  4  8]; roots_p=roots(p)

roots_p =
  -2.0000+2.0000i
  -2.0000-2.0000i

Then,

(12.12)

and the residues are

*  For some undocumented reason, the factor(s) function does not seem to work with complex numbers.

F s( )
pk

pk∗

F3 s( )

F3 s( ) s 3+

s3 5s+ 2 12s 8+ +
-------------------------------------------=

F3 s( )

F3 s( ) s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- s 3+

s 1+( ) s 2 j2+ +( ) s 2 j2–+( )
------------------------------------------------------------------------= =

s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------

r1
s 1+( )

----------------
r2

s 2 j2+ +( )
---------------------------

r3
s 2 j– 2+( )

-------------------------+ +==
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Of course, the last evaluation was not necessary since  or

and this is always true since complex roots occur in conjugate pairs. Then, by substitution into
(12.12), we obtain

(12.13)

We can express (12.13) in a different form if we want to eliminate the complex presentation.
This is done by combining the last two terms on the right side of (12.13) to form a single term and
now is written as

(12.14)

Case III:  Multiple (Repeated) Poles

In this case,  has simple poles but one of the poles, say , has a multiplicity . Then,

(12.15)

and denoting the  residues corresponding to multiple pole  as , the partial
fraction expansion of (12.15) can be expressed as

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2
s 3+

s 1+( ) s 2 j– 2+( )
------------------------------------------

s 2– j2–=

1 j2–
1– j2–( ) j4–( )

------------------------------------ 1 j2–
8– j4+

------------------= = =

1 j2–( )
8– j4+( )

----------------------- 8– j4–( )
8– j4–( )

----------------------- 16– j12+
80

------------------------ 1
5
---– j 3

20
------+= ==

r3
s 3+

s 1+( ) s 2 j2+ +( )
--------------------------------------------

s 2– j2+=

1 j2–
1– j2+( ) j4( )

---------------------------------- 1 j2–
8– j4–

------------------= = =

1 j2–( )
8– j4–( )

----------------------- 8– j4+( )
8– j4+( )

----------------------- 16–( ) j– 12
80

------------------------- 1
5
---– j 3

20
------–= ==

r3 r2∗=

r3
1
5
---– j 3

20
------+⎝ ⎠

⎛ ⎞ * 1
5
---– j 3

20
------–= =

F3 s( ) 2 5⁄
s 2+( )

---------------- 1 5⁄– j3 20⁄+
s 2 j2+ +( )

----------------------------------- 1 5⁄– j3 20⁄–
s 2 j– 2+( )

-----------------------------------+ +=

F3 s( ) 2 5⁄
s 2+( )

---------------- 1
5
--- 2s 1+( )

s2 4s 8+ +( )
-------------------------------⋅–=

F s( ) p1 m

F s( ) N s( )

s p1–( )m s p2–( )… s pn 1––( ) s pn–( )
--------------------------------------------------------------------------------------------=

m p1 r11  r12  … r1m, ,
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Partial Fraction Expansion

(12.16)

For the simple poles  we proceed as before, that is,

To find the first residue  of the repeated pole, we multiply both sides of (12.16) by .
Then,

(12.17)

Next, taking the limit as  on both sides of (12.17), we obtain

(12.18)

or

(12.19)

and thus (12.19) yields the residue of the first repeated pole.

To find the second residue  of the second repeated pole , we first differentiate the relation of
(12.18) with respect to ; then, we let , that is,

(12.20)

To find the third residue  of the repeated pole , we differentiate (12.18) twice with respect
to ; then, we let , that is,

(12.21)

F s( )
r11

s p1–( )m
----------------------

r12

s p1–( )m 1–
----------------------------

r13

s p1–( )m 2–
---------------------------- …

r1m
s p1–( )

------------------+ + + +=

 
r2

s p2–( )
------------------

r3
s p3–( )

------------------
rn

s pn–( )
------------------+ + +

p1  p2  … pn, ,

rk s pk–( )F s( )
s pk→
lim s pk–( )F s( )

s pk=
= =

r11 s p1–( )m

s p1–( )mF s( ) r11 s p1–( )r12 s p1–( )2r13 … s p1–( )m 1– r1m+ + + +=

 s p1–( )m r2
s p2–( )

------------------
r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + +⎝ ⎠
⎛ ⎞+

s p1→

s p1–( )mF s( )
s p1→
lim

r11 s p1–( )r12 s p1–( )2r13 … s p1–( )m 1– r1m+ + +[ ]
s p1→
lim+=

 s p1–( )m r2
s p2–( )

------------------
r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + +⎝ ⎠
⎛ ⎞

s p1→
lim+

r11 s p1–( )mF s( )
s p1→
lim=

r12 p1

s s p1→

r12
d
ds
-----

s p1→
lim s p1–( )mF s( )[ ]=

r13 p1

s s p1→

r13
d 2

ds2
--------

s p1→
lim s p1–( )mF s( )[ ]=
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This process is continued until all residues of the repeated poles have been found.

In general, for repeated poles the residue  can be derived from the relation

(12.22)

whose  derivative of both sides is

(12.23)

or

(12.24)

Example 12.4  

Use partial fraction expansion to simplify  of (12.25) below.

(12.25)

Solution:

We observe that there is a pole of multiplicity  at  and thus, (12.25) in partial fraction
expansion form is

(12.26)

The residues are

Then, by substitution into (12.26),

r1k

s p1–( )mF s( ) r11 r12 s p1–( ) r13 s p1–( )2 …+ + +=

m 1–( )th

k 1–( )!r1k
d k 1–

dsk 1–
-------------- s p1–( )mF s( )[ ]

s p1→
lim=

r1k
1

k 1–( )!
------------------

s p1→
lim d k 1–

dsk 1–
-------------- s p1–( )mF s( )[ ]=

F4 s( )

F4 s( ) s 3+

s 2+( ) s 1+( )2
-----------------------------------=

2 s 1–=

F4 s( ) s 3+

s 2+( ) s 1+( )2
-----------------------------------

r1
s 2+( )

----------------
r21

s 1+( )2
------------------

r22
s 1+( )

----------------+ += =

r1
s 3+

s 1+( )2
------------------

s 2–=

1= =

r21
s 3+
s 2+( )

----------------
s 1–=

2= =

r22
d
ds
----- s 3+

s 2+
-----------⎝ ⎠

⎛ ⎞

s 1–=

s 2+( ) s 3+( )–

s 2+( )2
---------------------------------------

s 1–=

1–= = =

F4 s( ) s 3+

s 2+( ) s 1+( )2
----------------------------------- 1

s 2+( )
---------------- 2

s 1+( )2
------------------ 1–

s 1+( )
----------------+ += =



Numerical Analysis Using MATLAB® and Excel®, Third Edition 12−9
Copyright © Orchard Publications

Partial Fraction Expansion

Instead of differentiation, the residue  could be found by substitution of the already known

values of  and  into (12.26), and letting *, that is, 

or  from which  as before. 

To check our answers with MATLAB, we will use the expand(s) function. Like the factor(s)
function, expand(s) is used with symbolic expressions. Its description can be displayed with the
help expand command. 

Check with MATLAB:

syms s % Create symbolic variable s
expand((s + 1)^2) % Express it as a polynomial 

ans =
s^2+2*s+1

Ns = [1  3]; % Coefficients of the numerator N(s) 
d1 = [1  2  1]; % Coefficients of (s + 1)^2 = s^2 + 2*s + 1 term in D(s)
d2 = [0  1  2]; % Coefficients of (s + 2) term in D(s)
Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express denominator D(s) as polynomial
[r,p,k]=residue(Ns,Ds)

r =
    1.0000
   -1.0000
    2.0000
p =
   -2.0000
   -1.0000
   -1.0000
k =
     []

Example 12.5       

Use partial fraction expansion to simplify  of (12.27) below.

*We must remember that (2.45) is an identity, and as such, it is true for any value of s.

r22

r1 r21 s 0=

s 3+

s 1+( )2 s 2+( )
-----------------------------------

s 0=

1
s 2+( )

----------------
s 0=

2
s 1+( )2

------------------
s 0=

r22
s 1+( )

----------------
s 0=

+ +=

3 2⁄ 1 2⁄ 2 r22+ += r22 1–=

F5 s( )



Chapter 12  Partial Fraction Expansion

12−10 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

(12.27)

Solution:

We observe that there is a pole of multiplicity 3 at , and a pole of multiplicity  at .
Then, in partial fraction expansion form

(12.28)

We find the residue  by evaluating  at as 

(12.29)

The residue  is found by first taking the first derivative of , and evaluating it at .
Thus,

(12.30)

The residue  is found by taking the second derivative of  and evaluating it at .
Then,

(12.31)

Similarly, the residue  if found by evaluating  at , and the residue  is found by
first taking the first derivative of  and evaluating it at . Therefore,

F5 s( ) s2 3+ s 1+
s 1+( )3 s 2+( )2

--------------------------------------=

s 1–= 2 s 2–=

F5 s( )
r11

s 1+( )3
------------------

r12

s 1+( )2
------------------

r13
s 1+( )

----------------
r21

s 2+( )2
------------------

r22
s 2+( )

----------------+ + + +=

r11 F5 s( ) s 1–=

r11
s2 3+ s 1+

s 2+( )2
--------------------------

s 1–=

1–= =

r12 F5 s( ) s 1–=

r12
d
ds
----- s2 3+ s 1+

s 2+( )2
--------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

s 1–=

=

s 2+( )2 2s 3+( ) 2 s 2+( ) s2 3+ s 1+( )–

s 2+( )4
----------------------------------------------------------------------------------------------

s 1–=

s 4+

s 2+( )3
------------------= 3==

r13 F5 s( ) s 1–=

r13
1
2!
----- d 2

ds2
-------- s2 3+ s 1+

s 2+( )2
--------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

s 1–=

1
2
--- d

ds
----- d

ds
----- s2 3+ s 1+

s 2+( )2
--------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

s 1–=

= =

1
2
--- d

ds
----- s 4+

s 2+( )3
------------------⎝ ⎠

⎛ ⎞

s 1–=

1
2
--- s 2+( )3 3 s 2+( )2 s 4+( )–

s 2+( )6
----------------------------------------------------------------==

1
2
--- s 2 3s– 12–+

s 2+( )4
-----------------------------------⎝ ⎠

⎛ ⎞

s 1–=

s– 5–

s 2+( )4
------------------

s 1–=

4–= ==

r21 F5 s( ) s 2–= r22

F5 s( ) s 2–=
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Partial Fraction Expansion

By substitution of these residues into (12.28), we obtain  in partial fraction expansion as

 (12.32)

We will now verify the values of these residues with MATLAB. Before we do this, we introduce
the collect(s) function that we can use to multiply two or more symbolic expressions to obtain
the result in a polynomial form. Its description can be displayed with the help collect command.
We must remember that the conv(p,q) function is used with numeric expressions, i.e., polyno-
mial coefficients only.

The MATLAB script for this example is as follows.

syms s; % We must first define the variable s in symbolic form
% The function "collect" below multiplies (s+1)^3 by (s+2)^2

Ds=collect(((s+1)^3)*((s+2)^2))

Ds =
s^5+7*s^4+19*s^3+25*s^2+16*s+4

% We now use this result to express the denominator D(s) as a
% polynomial so we can use its coefficients with the "residue" function
% 
Ns=[1 3 1]; Ds=[1 7 19 25 16 4]; [r,p,k]=residue(Ns,Ds)

r =
    4.0000
    1.0000
   -4.0000
    3.0000
   -1.0000

r21
s2 3+ s 1+

s 1+( )3
--------------------------

s 2–=

1= =

r22
d
ds
----- s2 3+ s 1+

s 1+( )3
--------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

s 2–=

=

s 1+( )3 2s 3+( ) 3 s 1+( )2 s2 3+ s 1+( )–

s 1+( )6
---------------------------------------------------------------------------------------------------

s 2–=

=

r22
s 1+( ) 2s 3+( ) 3 s2 3+ s 1+( )–

s 1+( )4
-----------------------------------------------------------------------------

s 2–=

s2– 4s–

s 1+( )4
--------------------

s 2–=

4= = =

F5 s( )

F5 s( ) 1–

s 1+( )3
------------------ 3

s 1+( )2
------------------ 4–

s 1+( )
---------------- 1

s 2+( )2
------------------ 4

s 2+( )
----------------+ + + +=
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p =
   -2.0000
   -2.0000
   -1.0000
   -1.0000
   -1.0000
k =
     []

Case for m ≥ n

Our discussion thus far, was based on the condition that  is a proper rational function, that
is, the highest power  of the numerator is less than the highest power  of the denominator,
i.e., . If ,  is an improper rational function, and before we apply the partial frac-
tion expansion, we must divide the numeraror  by the denominator  to obtain an
expression of the form

(12.33)

so that .

Example 12.6  

Express  of (12.34) below in partial expansion form.

(12.34)

Solution:

In (12.34),  and thus we need to express  in the form of (12.33). By long division,

(12.35)

Check with MATLAB:

Ns = [1  2  2]; Ds = [1  1]; [r, p, k] = residue(Ns, Ds)

r =
     1
p =
    -1
k =
     1     1

F s( )
m n

m n< m n≥ F s( )
N s( ) D s( )

F s( ) k0 k1s k2s2 … km n– sm n– N s( )
D s( )
-----------+ + + + +=

m n<

F6 s( )

F6 s( ) s2 2s 2+ +
s 1+

--------------------------=

m n> F6 s( )

F6 s( ) s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- s 1+ += =
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Alternate Method of Partial Fraction Expansion

The direct terms  are the coefficients of the  term and the constant in (2.54).

12.2 Alternate Method of Partial Fraction Expansion

The partial fraction expansion method can also be performed by the equating the numerators proce-
dure thereby making the denominators of both sides the same, and then equating the numerators.
We assume that the degree on the numerator  is less than the degree of the denominator. If
not, we first perform a long division and then work with the quotient and the remainder as
before. 

We also assume that the denominator  can be expressed as a product of real linear and qua-
dratic factors. If these assumptions prevail, we let  be a linear factor of  and we suppose

that  is the highest power of  that divides . Then, we can express  as

(12.36)

Next, let be a quadratic factor of  and suppose that  is the highest
power of this factor that divides . Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions as shown below.

(12.37)

2. We repeat Step 1 for each of the distinct linear and quadratic factors of .

3. We set the given  equal to the sum of these partial fractions.

4. We multiply each term of the right side by the appropriate factor to make the denominators of
both sides equal. 

5. We arrange the terms of both sides in decreasing powers of .

6. We equate the coefficients of corresponding powers of s.

7. We solve the resulting equations for the residues.

Example 12.7  

Express  of (12.38) below as a sum of partial fractions using the equating the numerators
procedure.

k 1    1[ ]= s

N s( )

D s( )
s a– D s( )

s a–( )m s a– D s( ) F s( )

F s( ) N s( )
D s( )
-----------

r1
s a–
-----------

r2

s a–( )2
------------------ …

rm

s a–( )m
-------------------+ += =

s2 αs β+ + D s( ) s2 αs β+ +( )n

F s( )

r1s k1+

s2 αs β+ +
---------------------------

r2s k2+

s2 αs β+ +( )
2

---------------------------------- …
rns kn+

s2 αs β+ +( )
n

----------------------------------+ + +

D s( )

F s( )

s

F7 s( )
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(12.38)

Solution:

By Steps 1 through 3 above,

(12.39)

By Step 4,

(12.40)

and by Steps 5, 6, and 7,

(12.41)

Relation (12.41) is an identity in ; therefore, the coefficients of each power of  on the left and
right sides are equal. Accordingly, by equating like powers of , we obtain

(12.42)

Subtracting the second equation from the fourth in (12.42), we obtain

(12.43)

and by substitution into the first equation of (12.42), we obtain

(12.44)

Next, substitution of (12.43) and (12.44) into the third equation of (12.42), yields

 (12.45)

and using the fourth equation of (12.42, we obtain:

(12.46)

Therefore  in partial fraction expansion form becomes

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
-------------------------------------=

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
-------------------------------------

r1s A+

s2 1+( )
------------------

r21

s 1–( )2
------------------

r22
s 1–( )

----------------+ += =

2s– 4+ r1s A+( ) s 1–( )2 r21 s2 1+( ) r22 s 1–( ) s2 1+( )+ +=

2s– 4+ r1 r22+( )s3 2r1– A r22 r21+–+( )s2+=

 r1 2A– r22+( )+ s A r22– r21+( )+

s s
s

0 r1 r22+=

0 2r1– A r22 r21+–+=

2– r1 2A– r22+=

4 A r22– r21+=

4 2r1  or  r1 2= =

0 2 r22  or  r22+ 2–= =

2– 2 2A– 2  or  A– 1= =

4 1 2 r21  or  r21+ + 1= =

F7 s( )

F7 s( ) 2s– 4+

s2 1+( ) s 1–( )2
------------------------------------- 2s 1+

s2 1+( )
------------------ 1

s 1–( )2
------------------ 2

s 1–( )
----------------–+= =
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Alternate Method of Partial Fraction Expansion

Example 12.8  

Use the equating the numerators procedure to obtain the partial fraction expansion of  in
(12.47) below.

(12.47)

Solution:

This is the same rational function as that of Example 12.3, where we found that the denominator
can be expressed in factored form of a linear and a quadratic factor, that is,

(12.48)

and in partial fraction expansion form,

(12.49)

As in Example 12.3, we first find the residue of the linear factor as

(12.50)

To compute  and , we use the equating the numerators procedure and we obtain

(12.51)

Since  is already known, we only need two equations in  and . Equating the coefficient of

 on the left side, which is zero, with the coefficients of  on the right side of (12.51), we obtain

(12.52)

With , (12.52) yields . To find the third residue , we equate the constant

terms of (12.51), that is, , and with , we obtain . Then, by substi-
tution into (12.49), we obtain

as before. The remaining steps are the same as in Example 12.3.

We will conclude the partial fraction expansion topic with a few more examples, using the resi-
due(r,p,k) function.

F8 s( )

F8 s( ) s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=

F7 s( ) s 3+

s 1+( ) s2 4s 8+ +( )
------------------------------------------------=

F7 s( ) s 3+
s 1+( ) s2 4s 8+ +( )

------------------------------------------------
r1

s 1+
-----------

r2s r3+

s2 4s 8+ +
--------------------------+= =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2 r3

s 3+( ) r1 s2 4s 8+ +( ) r2s r3+( ) s 1+( )+=

r1 r2 r3

s2 s2

0 r1= r2+

r1 2 5⁄= r2 2 5⁄–= r3

3 8r1 r3+= r1 2 5⁄= r3 1 5⁄–=

F7 s( ) 2 5⁄
s 2+( )

---------------- 1
5
---–

2s 1+( )
s2 4s 8+ +( )

-------------------------------=
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Example 12.9  
Use the residue(r,p,k) function to compute the poles and residues of the function

(12.53)

Solution:

Let  and  be the poles (the denominator roots) and  and  be the residues. Then, 
can be written as

(12.54)

The MATLAB script for this example is as follows:

num=[0 8 2]; %  The semicolon suppress the display of the row vector typed
%  and zero is typed to make the numerator have same number 
%  of elements as the denominator; not necessary, but recommended

den=[1 3 2]; [r,p,k]=residue(num,den)

r =
    14
    -6
p =
    -2
    -1
k =
     []

Therefore,  in partial fraction expansion form is written as

(12.55)

Example 12.10  

Use the residue(r,p,k) function to compute the poles and residues of  in (12.56) below.

(12.56)

Solution:

Let , , and  be the poles (the denominator roots) and , ,and  be the residues of
. Then, it can be written as

F9 s( ) 8s 2+

s2 3s 2+ +
--------------------------=

p1 p2 r1 r2 F9 s( )

F9 s( )
r1

s p1+
--------------

r2

s p2+
--------------+=

F9 s( )

F9 s( )
r1

s p1+
--------------

r2

s p2+
--------------+ 14

s 2+
----------- 6–

s 1+
-----------+= =

F10 s( )

F10 s( ) s 3+

s 1+( ) s2 4s 8+ +( )
------------------------------------------------=

p1 p2 p3 r1 r2 r3

F10 s( )
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Alternate Method of Partial Fraction Expansion

(12.57)

The poles and the residues can be found with the statement [r,p,k]=residue(num, den). Before
we use this statement, we need to express the denominator as a polynomial. We will use the func-
tion conv(a,b) to multiply the two factors of the denominator of (12.56).

We recall that we can write two or more statements on one line if we separate them by commas
or semicolons. We also recall that commas will display the results, whereas semicolons will sup-
press the display. Then,

a=[1 1]; b=[1 4 8];  c=conv(a,b);   c,  num=[1,3]; den=c;  
[r,p,k]=residue(num,den)

c =
     1     5    12     8
r =
  -0.2000- 0.1500i
  -0.2000+ 0.1500i
   0.4000         
p =
  -2.0000+ 2.0000i
  -2.0000- 2.0000i
  -1.0000         
k =
     []

Therefore,  in partial fraction expansion form is

(12.58)

By repeated use of the deconv(num,den) function, we can reduce a rational polynomial to sim-
ple terms of a polynomial, where the last term is a rational polynomial whose order of the numer-
ator is less than that of the denominator as illustrated by the following example.

Example 12.11  
Use the deconv(num,den) function to express the following rational polynomial as a polynomial
with four terms.

(12.59)

F10 s( )
r1

s p1+
--------------

r2
s p2+
--------------

r3
s p3+
--------------+ +=

F10 s( )

F10 s( )
r1

s p1+
--------------

r2

s p2+
--------------

r3

s p3+
--------------+ + 0.2– 0.15j–

s 2 2j–+
------------------------------ 0.2– 0.15j+

s 2 2j+ +
------------------------------ 0.4

s 1+
-----------+ += =

f1 x( ) x3 2x2 1+ +
0.5x 1–

-----------------------------=
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Solution:

num=[1  2  0  1]; den=[0  0  0.5  −1]; [q,r]=deconv(num,den)

q =
     2     8    16
r =
     0     0     0    17

Therefore,  can now be written as

(12.60)

It is important to remember that the function roots(p) is used with polynomials only. If we want
to find the zeros of any function, such as the function  defined as

(12.61)

we must use the function fzero(‘function’,x0), where function is a pre−defined string, and x0 is a
required initial value. We can approximate this value by first plotting  to find out where it
crosses the −axis. This is discussed in Chapter 1, Page 1−27.

f1 x( )

f1 x( ) 2x2 8x 16 17
0.5x 1–
-------------------+ + +=

f2 x( )

f2 x( ) 3x3 7x2 9+ +

12x6 2x4 13x2 25+ + +( )
-------------------------------------------------------------- 0.5x5 6.3x2 4.35+ +

23x6 16x3 7.5x+ +( )
---------------------------------------------------- 1

4.11x 2.75+
------------------------------+ +=

f2 x( )

x
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12.3 Summary
• The function

where the coefficients  and  for  are real numbers, is a proper rational
function if the highest power of the numerator  is less than the highest power of of the
denominator , i.e., . If ,  is an improper rational function.

• Partial fraction expansion applies only to proper rational functions. If  is an improper
rational function we divide the numeraror  by the denominator  to obtain an expres-
sion of the form

so that .

• If the function

is a proper rational function where  is a non−zero integer other than unity, we rewrite this
function as

to make  unity.

• The roots of the numerator are called the zeros of , and are found by letting ,
and the roots of the denominator are called the poles of  and are found by letting

.

• The zeros and poles can be real and distinct, or repeated, or complex conjugates, or combina-
tions of real and complex conjugates. In most engineering applications we are interested in the
nature of the poles. 

• If all the poles  of  are distinct we can factor the denominator of 
in the form

F s( ) N s( )
D s( )
-----------

bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2– … a1s a0+ + + + +
--------------------------------------------------------------------------------------------------------------------= =

ak bk k 0  1  2  …  n, , , ,=

N s( )
D s( ) m n< m n≥ F s( )

F s( )
N s( ) D s( )

F s( ) k0 k1s k2s2 … km n– sm n– N s( )
D s( )
-----------+ + + + +=

m n<

F s( ) N s( )
D s( )
-----------

bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2– … a1s a0+ + + + +
--------------------------------------------------------------------------------------------------------------------= =

an

F s( ) N s( )
D s( )
-----------

1
an
----- bmsm bm 1– sm 1– bm 2– sm 2– … b1s b0+ + + + +( )

sn an 1–

an
-----------sn 1– an 2–

an
-----------sn 2– …

a1
an
-----s

a0
an
-----+ + + + +

-------------------------------------------------------------------------------------------------------------------------------= =

an

F s( ) N s( ) 0=

F s( )
D s( ) 0=

p1  p2  p3  …  pn, , , , F s( ) F s( )
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where  is distinct from all other poles. Then, the partial fraction expansion method allows
us to write the above expression as 

where  are the residues of . To evaluate the residue , we multiply both
sides of (12.5) by ; then, we let , that is,

• We can use the MATLAB residue(r,p,k) function to verify our answers. This function returns
the residues, their associated poles, and a direct term. For proper rational functions there is no
direct term.

• The partial fraction expansion can also be used if the poles are complex. Since complex poles
occur in conjugate pairs, if  is a complex pole, then its complex conjugate  is also a pole.

• If a rational function  has simple poles but one of the poles, say , has a multiplicity ,
the function is expressed as

 

and denoting the  residues corresponding to multiple pole  as , the partial
fraction expansion can be expressed as

• If a rational function  has simple poles but one of the poles, say , has a multiplicity ,
for the simple poles we use the same procedure as for distinct poles. The first residue of a
repeated pole is found from

The second repeated pole is found from

F s( ) N s( )
s p1–( ) s p2–( ) s p3–( ) … s pn–( )⋅ ⋅ ⋅ ⋅

--------------------------------------------------------------------------------------------------=

pk

F s( )
r1

s p1–( )
------------------

r2
s p2–( )

------------------
r3

s p3–( )
------------------ …

rn
s pn–( )

------------------+ + + +=

r1  r2  r3  …  rn, , , , F s( ) rk

s pk–( ) s pk→

rk s pk–( )F s( )
s pk→
lim s pk–( )F s( )

s pk=
= =

pk pk∗

F s( ) p1 m

F s( ) N s( )

s p1–( )m s p2–( )… s pn 1––( ) s pn–( )
--------------------------------------------------------------------------------------------=

m p1 r11  r12  … r1m, ,

F s( )
r11

s p1–( )m
----------------------

r12

s p1–( )m 1–
----------------------------

r13

s p1–( )m 2–
---------------------------- …

r1m
s p1–( )

------------------+ + + +=

 
r2

s p2–( )
------------------

r3
s p3–( )

------------------
rn

s pn–( )
------------------+ + +

F s( ) p1 m

r11 s p1–( )mF s( )
s p1→
lim=
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Summary

the third from 

and this process is continued until all residues of the repeated poles have been found.

• With the alternate method of partial fraction expansion we use the equating the numerators
procedure thereby making the denominators of both sides the same, and then equating the
numerators. We assume that the denominator  can be expressed as a product of real lin-
ear and quadratic factors.

r12
d
ds
-----

s p1→
lim s p1–( )mF s( )[ ]=

r13
d 2

ds2
--------

s p1→
lim s p1–( )mF s( )[ ]=

D s( )
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12.4 Exercises
Perform partial fraction expansion for the following. Use MATLAB to simplify and to verify your
results.

1.

2. 

3. 

4.

5. 

6. 

7. 

8. 

1
1 s2–
-----------

1
s2 4s 5–+
-------------------------

s
s2 2– s 3–
-----------------------

5s 3–

s2 2– s 3–
-----------------------

s2

s2 2s 1+ +
--------------------------

1
s s 1+( )2
---------------------

1
s 1+( ) s2 1+( )

-----------------------------------

1
s s2 s 1+ +( )
------------------------------
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Solutions to End−of−Chapter Exercises

12.5 Solutions to End−of−Chapter Exercises
1.

   

Then,

Ns = [0,  0, −1]; Ds = [1, 0, −1]; [r, p, k] = residue(Ns, Ds)

r =
    0.5000
   -0.5000
p =
    -1
     1
k =
     []

2. 

Then,

format rat; Ns = [0,  0, 1]; Ds = [1, 4, −5]; [r, p, k] = residue(Ns, Ds)

r =
    -1/6     
     1/6     
p =
     -5      
      1      
k =
     []

1
1 s2–
----------- 1–

s2 1–
------------- 1–

s 1+( ) s 1–( )
---------------------------------

r1
s 1+
-----------

r2
s 1–
-----------+= = =

r1
1–

s 1+
-----------

s 1=

1– 2⁄= = r2
1–

s 1–
-----------

s 1–=

1 2⁄= =

1–

s2 1–
------------- 1 2⁄

s 1+
-----------– 1 2⁄

s 1–
-----------+=

1
s2 4s 5–+
------------------------- 1

s 1–( ) s 5+( )
---------------------------------

r1
s 1–
-----------

r2
s 5+
-----------+= =

r1
1

s 5+
-----------

s 1=

1 6⁄= = r2
1

s 1–
-----------

s 5–=

1– 6⁄= =

1
s2 4s 5–+
------------------------- 1 6⁄

s 1–
----------- 1 6⁄

s 5+
-----------–=
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3. 

Then,

format rat; Ns = [0,  1, 0]; Ds = [1, −2, −3]; [r, p, k] = residue(Ns, Ds)

r =
     3/4     
     1/4     
p =
      3      
     -1      
k =
     []

4.

Then,

Ns = [0,  5, −3]; Ds = [1, −2, −3]; [r, p, k] = residue(Ns, Ds)

r =
      3      
      2      
p =
      3      
     -1      
k =
     []

s
s2 2– s 3–
----------------------- s

s 1+( ) s 3–( )
---------------------------------

r1
s 1+
-----------

r2
s 3–
-----------+= =

r1
s

s 3–
-----------

s 1–=

1 4⁄= = r2
s

s 1+
-----------

s 3=

3 4⁄= =

s
s2 2– s 3–
----------------------- 1 4⁄

s 1+
----------- 3 4⁄

s 3–
-----------+=

5s 3–

s2 2– s 3–
----------------------- 5s 3–

s 1+( ) s 3–( )
---------------------------------

r1
s 1+
-----------

r2
s 3–
-----------+= =

r1
5s 3–
s 3–

--------------
s 1–=

2= = r2
5s 3–
s 1+
--------------

s 3=

3= =

5s 3–

s2 2– s 3–
----------------------- 2

s 1+
----------- 3

s 3–
-----------+=
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5.
This is an improper rational function, and before we apply the partial fraction expansion, we
must divide the numeraror  by the denominator  to obtain an expression of the form

We could perform long division but we will use the MATLAB deconv(num,den) function to
express the following rational polynomial as a polynomial with four terms.

num=[1  0  0 ]; den=[1  2  1]; [q,r]=deconv(num,den)

q =
      1      
r =
      0           -2           -1      

and thus 

Then,

Ns = [1, 0, 0]; Ds = [1, 2, 1]; [r, p, k] = residue(Ns, Ds)

r =
     -2      
      1      
p =
     -1      
     -1      
k =
      1

6.

N s( ) D s( )

F s( ) k0 k1s k2s2 … km n– sm n– N s( )
D s( )
-----------+ + + + +=

s2

s2 2s 1+ +
-------------------------- 1 2– s 1–

s2 2s 1+ +
--------------------------+ 1 2s 1+

s 1+( )2
------------------– 1

r1

s 1+( )2
------------------

r2
s 1+( )

----------------+–= = =

2– s 1–

s 1+( )2
------------------

r1

s 1+( )2
------------------

r2
s 1+( )

----------------+= 2– s 1– r1 r2 s 1+( )+=

r2 2–= r1 r2+ 1–= r1 1=

s2

s2 2s 1+ +
-------------------------- 1 2– s 1–

s2 2s 1+ +
--------------------------+ 1 1

s 1+( )2
------------------ 2–

s 1+( )
----------------+ += =

1
s s 1+( )2
---------------------

r1
s
----

r21

s 1+( )2
------------------

r22
s 1+( )

----------------+ +=
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Then,

syms s; expand(s*(s+1)^2)

ans =
  s^3+2*s^2+s

Ns = [0, 0, 0, 1]; Ds = [1, 2, 1, 0]; [r, p, k] = residue(Ns, Ds)

r =
     -1      
     -1      
      1      
p =
     -1      
     -1      
      0      
k =
     []

7.

Equating numerators and like terms we obtain

syms r1  r2  r3
eq1=r1+r2−0
eq2=r2+r3−0
eq3=r1+r3−1
S=solve(eq1, eq2, eq3)
eq1 =
 r1+r2

eq2 =

r1
1

s 1+
-----------

s 0=

1= = r21
1
s
---

s 1–=

1–= = r22
d
ds
----- 1

s
---⎝ ⎠

⎛ ⎞

s 1–=

1
s2
----–

s 1–=

1–= = =

1
s s 1+( )2
--------------------- 1

s
--- 1–

s 1+( )2
------------------ 1–

s 1+( )
----------------+ +=

1
s 1+( ) s2 1+( )

-----------------------------------
r1

s 1+
-----------

r2s r3+

s2 1+
-----------------+

r1 s2 1+( )

s 1+( ) s2 1+( )
-----------------------------------

r2s r3+( ) s 1+( )

s 1+( ) s2 1+( )
---------------------------------------+= =

1 r1s2 r1+ r2s2 r2s r3+ + s r3++=

r1 r2+ 0= r2 r3+ 0= r1 r3+ 1=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 12−27
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

 r2+r3

eq3 =
 r1+r3-1

S = 
    r1: [1x1 sym]
    r2: [1x1 sym]
    r3: [1x1 sym]

S.r1
ans =
 1/2

S.r2
ans =
-1/2

S.r3
ans =
1/2

The statement S=solve(eq1, eq2, eq3, ...eqN) returns the solutions in the structure S whose
named fields hold hold the solution for each variable. Thus, , , and

. Then,

syms s; expand((s+1)*(s^2+1))

ans =
  s^3+s+s^2+1

Ns = [0, 0, 0, 1]; Ds = [1, 1, 1, 1]; [r, p, k] = residue(Ns, Ds)

r =
     1/2                   
    -1/4 - 1/4i    
    -1/4 + 1/4i    
p =
     -1                    
    -1/6004799503160662 + 1i      
    -1/6004799503160662 - 1i      
k =
     []

r1 1 2⁄= r2 1– 2⁄=

r3 1 2⁄=

1
s 1+( ) s2 1+( )

----------------------------------- 1 2⁄
s 1+
----------- 1 2⁄–( )s 1 2⁄+

s2 1+
-------------------------------------+=
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These values are inconsistent with those we’ve found. The MATLAB help residue com-
mand displays the following:

Warning: Numerically, the partial fraction expansion of a ratio of 
polynomials represents an ill-posed problem.  If the denominator 
polynomial, A(s), is near a polynomial with multiple roots, then 
small changes in the data, including roundoff errors, can make arbi-
trarily large changes in the resulting poles and residues. Problem 
formulations making use of state-space or zero-pole representations 
are preferable.

8.

Equating numerators and like terms we obtain

By inspection, , , and . Then,

syms s; expand(s*(s^2+s+1))

ans =
  s^3+s^2+s

Ns = [0, 0, 0, 1]; Ds = [1, 1, 1, 0]; [r, p, k] = residue(Ns, Ds)

r =
    -1/2   +  390/1351i 
    -1/2   -  390/1351i 
      1                    
p =
    -1/2 + 1170/1351i 
    -1/2 - 1170/1351i 

      0                    
k =
     []

As in Exercise 7, these values are inconsistent with those we’ve found.

1
s s2 s 1+ +( )
------------------------------

r1
s
----

r2s r3+

s2 s 1+ +
----------------------+

r1 s2 s 1+ +( )

s s2 s 1+ +( )
--------------------------------

r2s r3+( )s

s s2 s 1+ +( )
------------------------------+= =

1 r1s2 r1s r1+ + r2s2 r3+ s+=

r1 r2+ 0= r2 r3+ 0= r1 1=

r1 1= r2 1–= r3 1=

1
s 1+( ) s2 1+( )

----------------------------------- 1
s
--- s– 3+

s2 s 1+ +
----------------------+=
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Chapter 13

The Gamma and Beta Functions and Distributions

his chapter is an introduction to the gamma and beta functions and their distributions used
with many applications in science and engineering. They are also used in probability, and in
the computation of certain integrals.   

13.1 The Gamma Function

The gamma function, denoted as , is also known as generalized factorial function. It is defined as

(13.1)

and this improper*  integral converges (approaches a limit) for all .

We will derive the basic properties of the gamma function and its relation to the well known fac-
torial function

(13.2)

We will evaluate the integral of (13.1) by performing integration by parts using the relation

(13.3)

Letting 

(13.4)
we obtain

(13.5)

Then, with (13.3), we write (13.1) as

* Improper integrals are two types and these are:

a.  where the limits of integration  or  or both are infinite

b.  where  becomes infinite at a value  between the lower and upper limits of integration inclusive.

T

Γ n( )

Γ n( ) xn 1– e x– xd
0

∞

∫=

n 0>

f x( ) xd
a

b

∫ a b

f x( ) xd
a

b

∫ f x( ) x

n! n n 1–( ) n 2–( )…3 2 1⋅ ⋅=

u vd∫ uv v ud∫–=

u e x–    and   dv xn 1–==

du e x–– dx   and   v xn

n
-----==
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(13.6)

With the condition that , the first term on the right side of (13.6) vanishes at the lower limit,
that is, for . It also vanishes at the upper limit as . This can be proved with L’ Hôpi-
tal’s rule*  by differentiating both numerator and denominator  times, where .Then, 

(13.7)

Therefore, (13.6) reduces to

(13.8)

and with (13.1) we have

(13.9)

By comparing the two integrals of (13.9), we observe that

(13.10)

or

(13.11)

* Quite often, the ratio of two functions, such as , for some value of , say , results in the indeterminate form

. To work around this problem, we consider the limit , and we wish to find this limit, if it exists. L’Hôpi-

tal’s rule states that if , and if the limit  as  approaches  exists, then,

Γ n( ) xne x–

n
-------------

x 0=

∞
1
n
--- xne x– xd

0

∞

∫+=

n 0>
x 0= x ∞→

m m n≥

f x( )
g x( )
----------- x a

f a( )
g a( )
---------- 0

0
---= f x( )

g x( )
-----------

x a→
lim

f a( ) g a( ) 0= = d
dx
------f x( ) d

dx
------g x( )⁄ x a

f x( )
g x( )
-----------

x a→
lim d

dx
------f x( ) d

dx
------g x( )⁄⎝ ⎠

⎛ ⎞
x a→
lim=

xne x–

n
-------------

x ∞→
lim xn

nex
--------

x ∞→
lim xm

m

d

d xn

xm

m

d

d nex
-------------------

x ∞→
lim xm 1–

m 1–

d

d nxn 1–

xm 1–

m 1–

d

d ne
x

------------------------------------
x ∞→
lim …= = = =

n n 1–( ) n 2–( )… n m– 1+( )xn m–

nex
-------------------------------------------------------------------------------------

x ∞→
lim=

n 1–( ) n 2–( )… n m– 1+( )

xm n– e
x

--------------------------------------------------------------------
x ∞→
lim 0==

Γ n( ) 1
n
--- xne x– xd

0

∞

∫=

Γ n( ) xn 1– e x– xd
0

∞

∫
1
n
--- xne x– xd

0

∞

∫= =

Γ n( ) Γ n 1+( )
n

---------------------=

nΓ n( ) Γ n 1+( )=
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The Gamma Function

It is convenient to use (13.10) for , and (13.11) for .

From (13.10), we see that  becomes infinite as .

For , (13.1) yields

(13.12)

Thus, we have derived the important relation,

(13.13)

From the recurring relation of (13.11), we obtain

(13.14)

and in general

(13.15)

The formula of (13.15) is a very useful relation; it establishes the relationship between the 
function and the factorial .

We must remember that, whereas the factorial  is defined only for zero (recall that )
and positive integer values, the gamma function exists (is continuous) everywhere except at 
and negative integer numbers, that is, , and so on. For instance, when , we can
find  in terms of , but if we substitute the numbers  and so on in
(13.11), we obtain values which are not consistent with the definition of the  function, as
defined in that relation.

Stated in other words, the  function is defined for all positive integers and positive fractional val-
ues, and for all negative fractional, but not negative integer values.

We can use MATLAB’s gamma(n) function to plot  versus . This is done with the script
below which produces the plot shown in Figure 13.1.

n=−4: 0.05: 4; g=gamma(n); plot(n,g); axis([−4  4  −6  6]); grid;
title('The Gamma Function'); xlabel('n'); ylabel('Gamma(n)')

Figure 13.1 shows the plot of the function  versus . 

n 0< n 0>

Γ n( ) n 0→

n 1=

Γ 1( ) e x– xd
0

∞

∫ e x–
0

∞
– 1= = =

Γ 1( ) 1=

Γ 2( ) 1 Γ⋅ 1( ) 1= =

Γ 3( ) 2 Γ⋅ 2( ) 2 1⋅ 2!= = =

Γ 4( ) 3 Γ⋅ 3( ) 3 2⋅ 3!= = =

Γ n 1+( ) n!   for n 1 2 3 …, , ,= =

Γ n( )
n!

n! 0! 1=

0
1 2 3–,–,– n 0.5–=

Γ 0.5–( ) Γ 0.5( ) 0 1 2 3–,–,–,
Γ n( )

Γ n( )

Γ n( ) n

Γ n( ) n
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Figure 13.1. Plot of the gamma function

Numerical values of  for , can be found in math tables, but we can use (13.10) or
(13.11) to compute values outside this range. Of course, we can use MATLAB to find any valid
values of . 

Example 13.1  
Compute:

a.     b.    c.  
Solution:

a. From (13.11)

Then,

and from math tables

Therefore,

b. From (13.10)

Then,

-4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6
The Gamma Function

n

G
am

m
a(

n)

Γ n( ) 1 n 2≤ ≤

n

Γ 3.6( ) Γ 0.5( ) Γ 0.5–( )

Γ n 1+( ) nΓ n( )=

Γ 3.6( ) 2.6Γ 2.6( ) 2.6( ) 1.6( )Γ 1.6( )= =

Γ 1.6( ) 0.8953=

Γ 3.6( ) 2.6( ) 1.6( ) 0.8953( ) 3.717= =

Γ n( ) Γ n 1+( )
n

---------------------=

Γ 0.5( ) Γ 0.5 1+( )
0.5

------------------------- Γ 1.5( )
0.5

----------------= =
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The Gamma Function

and from math tables 

Therefore, 

c. From (13.10)

Then,

and using the result of (b), 

We can verify these answers with MATLAB as follows:

a=gamma(3.6), b=gamma(0.5), c=gamma(−0.5)

a =
    3.7170
b =
    1.7725
c =
   -3.5449

Excel does not have a function which evaluates  directly. It does, however, have the GAM-
MALN(x) function. Therefore, we can use the EXP(GAMMALN(n)) function to evaluate  at
some positive value of . But because it first computes the natural log, it does not produce an
answer if  is negative as shown in Figure 13.2.

Figure 13.2. Using Excel to find 

Γ 1.5( ) 0.8862=

Γ 0.5( ) 2( ) 0.8862( ) 1.772= =

Γ n( ) Γ n 1+( )
n

---------------------=

Γ 0.5–( ) Γ 0.5– 1+( )
0.5–

------------------------------ Γ 0.5( )
0.5–

---------------- 2Γ 0.5( )–= = =

Γ 0.5–( ) 2– Γ 0.5( )= 2–( ) 1.772( ) 3.544–= =

Γ n( )
Γ n( )

n
n

exp(gammaln(x))=
x gammaln(x) gamma(x)

3.6 1.3129 3.7170

0.5 0.5724 1.7725

-0.5 #NUM! #NUM!

Γ n( )
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Example 13.2  

Prove that when  is a positive integer, the relation

(13.16)

is true.

Proof:

From (13.11),
(13.17)

Then,
(13.18)

Next, replacing n with  on the left side of (13.18), we obtain

(13.19)

Substitution of (13.19) into (13.18) yields

(13.20)

By  repeated substitutions, we obtain

(13.21)

and since , we have

(13.22)
or 

(13.23)

Example 13.3  

Use the definition of the  function to compute the exact value of 

Solution:

From (13.1),

(13.24)

Then,

(13.25)

n

Γ n( ) n 1–( )!=

Γ n 1+( ) nΓ n( )=

Γ n( ) n 1–( )Γ n 1–( )=

n 1–

Γ n 1–( ) n 2–( )Γ n 2–( )=

Γ n( ) n 1–( ) n 2–( )Γ n 2–( )=

n

Γ n( ) n 1–( ) n 2–( ) n 3–( )…1Γ 1( )=

Γ 1( ) 1=

Γ n( ) n 1–( ) n 2–( ) n 3–( )…1=

Γ n( ) n 1–( )!=

Γ n( ) Γ 1 2⁄( )

Γ n( ) xn 1– e x– xd
0

∞

∫=

Γ 1
2
---⎝ ⎠

⎛ ⎞ x0.5 1– e x– xd
0

∞

∫ x 0.5– e x– xd
0

∞

∫= =
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Letting

we obtain

or

By substitution of the last three relations into (13.25), we obtain

(13.26)

Next, we define  as a function of both  and , that is, we let

(13.27)

(13.28)

Multiplication of (13.27) by (13.28) yields

(13.29)

Now, we convert (13.29) to polar coordinates by making the substitution

(13.30)

and by recalling that:

1. the total area of a region is found by either one of the double integrals

(13.31)

2. from differential calculus

(13.32)

Then,

(13.33)

We observe that as , 

x y2=

dx
dy
------ 2y=

dx 2ydy=

Γ 1
2
---⎝ ⎠

⎛ ⎞ y2 0.5–( )e y2– 2ydy
0

∞

∫ 2 y 1– ye y2– dy
0

∞

∫ 2 e y2– dy
0

∞

∫= = =

Γ 1 2⁄( ) x y

Γ 1
2
---⎝ ⎠

⎛ ⎞ 2 e x2– dx
0

∞

∫=

Γ 1
2
---⎝ ⎠

⎛ ⎞ 2 e y2– dy
0

∞

∫=

Γ 1
2
---⎝ ⎠

⎛ ⎞ 2
4 e x2– dx e y2– dy

0

∞

∫
0

∞

∫ 4 e x2 y2+( )– xd yd
0

∞

∫
0

∞

∫= =

ρ2 x2 y2+=

A xd yd∫∫ r rd θd∫∫= =

d
du
------eu2

eu2 d
du
------u2 2ueu2

= =

ρe ρ2– ρd
ρ1

ρ2

∫ 1
2
---– e ρ2–=

x ∞   and   y ∞→→
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(13.34)

Substitution of (13.30), (13.33) and (13.34) into (13.29) yields

and thus, we have obtained the exact value

(13.35)

Example 13.4  
Compute:

a.     b  .    c.  
Solution:

Using the relations

we obtain:

a. for ,

b. for ,

c. for ,

Other interesting relations involving the  function are:

(13.36)

(13.37)

ρ ∞   and   θ π 2⁄    →→

Γ 1
2
---⎝ ⎠

⎛ ⎞ 2
2– e ρ2–

ρ 0=

∞

⎝ ⎠
⎛ ⎞ θd

0

π 2⁄

∫ 2– 0 1–( ) θd
0

π 2⁄

∫ 2 θd
0

π 2⁄

∫ 2θ 0
π 2⁄ π= = = = =

Γ 1
2
---⎝ ⎠

⎛ ⎞ π=

Γ 0.5–( ) Γ 1.5–( ) Γ 2.5–( )

Γ n( ) Γ n 1+( )
n

----------------------   and   Γ 0.5( ) π==

n 0.5–=

Γ 0.5–( ) Γ 0.5( )
0.5–

----------------- π
0.5–

---------- 2 π–= = =

n 1.5–=

Γ 1.5–( ) Γ 1.5– 1+( )
1.5–

------------------------------- Γ 0.5–( )
1.5–

-------------------- 2 π–
1.5–

-------------- 4
3
--- π= = = =

n 2.5–=

Γ 2.5–( ) Γ 2.5– 1+( )
2.5–

------------------------------- Γ 1.5–( )
2.5–

--------------------

4
3
--- π

2.5–
----------- 8

15
------– π= = = =

Γ n( )

Γ n( )Γ 1 n–( ) π
nπsin

--------------=    

for   0 n 1< <

22n 1– Γ n( )Γ n 1
2
---+⎝ ⎠

⎛ ⎞ πΓ 2n( )=

for any n negative integer≠
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(13.38)

Relation (13.38) is referred to as Stirling’s asymptotic series for the  function. If  is a positive
integer, the factorial  can be approximated as

(13.39)

Example 13.5  
Use (13.36) to prove that

Proof:

or

Therefore,

Example 13.6  
Compute the product

Solution:

Using (13.36), we obtain

or

Γ n 1+( ) n!=

2πnnne n– 1 1
12n
--------- 1

288n2
-------------- 139

51840n3
-------------------- 571

2488320n4
--------------------------–– …+ + +

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Γ n( ) n
n!

n! 2πnnne n–≈

Γ 1
2
---⎝ ⎠

⎛ ⎞ π=

Γ 1
2
---⎝ ⎠

⎛ ⎞Γ 1 1
2
---–⎝ ⎠

⎛ ⎞ Γ 1
2
---⎝ ⎠

⎛ ⎞Γ 1
2
---⎝ ⎠

⎛ ⎞ π
π
2
---sin

-----------= =

Γ 1
2
---⎝ ⎠

⎛ ⎞ 2
π=

Γ 1
2
---⎝ ⎠

⎛ ⎞ π=

Γ 1
3
---⎝ ⎠

⎛ ⎞Γ 2
3
---⎝ ⎠

⎛ ⎞

Γ 1
3
---⎝ ⎠

⎛ ⎞Γ 1 1
3
---–⎝ ⎠

⎛ ⎞ π
π
3
---sin

-----------=
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Example 13.7  
Use (13.37) to find

Solution:

Example 13.8  

Use (13.39) to compute 

Solution:

We use MATLAB as a calculator, that is, we type and execute the expression

sqrt(2*pi*50)*50^50*exp(−50)

ans =
  3.0363e+064

This is an approximation. To find the exact value, we use the relation  and the
MATLAB gamma(n) function. Then,

gamma(50+1)

ans =
  3.0414e+064

We can check this answer with the Excel FACT(n) function, that is,

=FACT(50) and Excel displays 3.04141E+64 

Γ 1
3
---⎝ ⎠

⎛ ⎞Γ 2
3
---⎝ ⎠

⎛ ⎞ π
3 2⁄

-------------- 2π
3

------- 2 3π
3

-------------= = =

Γ 3
2
---⎝ ⎠

⎛ ⎞

23 1– Γ 3
2
---⎝ ⎠

⎛ ⎞Γ 3
2
--- 1

2
---+⎝ ⎠

⎛ ⎞ πΓ 2 3
2
---⋅⎝ ⎠

⎛ ⎞=

22Γ 3
2
---⎝ ⎠

⎛ ⎞Γ 2( ) πΓ 3( )=

Γ 3
2
---⎝ ⎠

⎛ ⎞ πΓ 3( )
4Γ 2( )

------------------- 2! π
4 1⋅
------------ π

2
------= = =

50!

50! 2π 50× 50×
50

e 50–×≈

Γ n 1+( ) n!=
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The  function is very useful in integrating some improper integrals. Some examples follow.

Example 13.9  

Using the definition of the  function, evaluate the integrals

a.     b.  

Solution:

By definition,

Then,
a.

b.
Let ; then, , and by substitution,

Example 13.10  

A negatively charged particle is  meters apart from the positively charged side of an electric
field. It is initially at rest, and then moves towards the positively charged side with a force
inversely proportional to its distance from it. Assuming that the particle moves towards the cen-
ter of the positively charged side, considered to be the center of attraction , derive an expres-
sion for the time required the negatively charged particle to reach  in terms of the distance 
and its mass .

Solution:

Let the center of attraction  be the point zero on the −axis, as indicated in Figure 13.3. 

Γ n( )

Γ n( )

x4e x– xd
0

∞

∫ x5e 2x– xd
0

∞

∫

xn 1– e x– xd
0

∞

∫ Γ n( )=

x4e x– xd
0

∞

∫ Γ 5( ) 4! 24= = =

2x y= dx dy 2⁄=

x5e 2x– xd
0

∞

∫
y
2
---⎝ ⎠

⎛ ⎞ 5
e y– yd

2
------

0

∞

∫
1
26
----- y5e y– yd

0

∞

∫= =

Γ 6( )
64

----------- 5!
64
------ 120

64
--------- 15

8
------= = ==

α

0
0 α

m

0 x
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Figure 13.3. Sketch for Example 13.10

By Newton’s law, 

(13.40)

where

 = mass of particle

 = distance (varies with time)

 = positive constant of proportionality and the minus (−) sign indicates that the distance 
decreases as time  increases.

At , the particle is assumed to be located on the −axis at point , and moves towards
the origin at . Let the velocity of the particle be . Then,

(13.41)

and

(13.42)

Substitution of (13.42) into (13.40) yields

(13.43)

or

(13.44)

Integrating both sides of (13.44), we obtain

(13.45)

where  represents the constants of integration of both sides, and it is evaluated from the initial
condition that  when . Then, 

α
0

movement of particle
x

mdx2

dt2
-------- k

x
---–=

m

x

k x
t

t 0= x x α=

x 0= v

dx
dt
------ v=

dx2

dt2
-------- dv

dt
------ dv

dx
------dx

dt
------ vdv

dx
------= = =

mvdv
dx
------ k

x
---–=

mvdv k
x
--- dx( )–=

mv2

2
---------- k xln C+–=

C
v 0= x α=
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(13.46)
and by substitution into (13.45),

(13.47)

Solving for  and taking the square root of both sides we obtain

(13.48)

Since  decreases as  increases, we choose the negative sign, that is,

(13.49)

Solving (13.49) for  we obtain

(13.50)

We are interested in the time required for the particle to reach the origin . We denote this
time as ; it is found from the relation below, noting that the integration on the right side is
with respect to the distance x where at , , and at , . Then, 

(13.51)

To simplify (13.51), we let 

(13.52)

or

(13.53)
Also, since

the lower and upper limits of integration in (13.51), are being replaced with  and  respec-
tively. Therefore, we express (13.51) as

C k αln=

mv2

2
---------- k αln k xln– k α

x
---ln= =

v2

v dx
dt
------ 2k

m
------ α

x
---ln±= =

x t

dx
dt
------ 2k

m
------ α

x
---ln–=

dt

dt m
2k
------– dx

α x⁄( )ln
-------------------------=

0
T

t 0= x α= τ t= x 0=

T τd
0

t

∫ m
2k
------– dx

α x⁄( )ln
-------------------------

α

0

∫= =

y α
x
---⎝ ⎠

⎛ ⎞  then  e y,ln α
x
---= =

x αe y–  and  dx, αe y– dy–= =

α
x
---⎝ ⎠

⎛ ⎞ln
x α→
lim 0  and  α

x
---⎝ ⎠

⎛ ⎞ln
x 0→
lim ∞==

0 ∞
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Finally, using the definition of the  function, we obtain

(13.54)

Example 13.11  
Evaluate the integrals

(13.55)

Solution:

From the definition of the  function, 

(13.56)

Also,

(13.57)

For  and , multiplication of (13.56) by (13.57) yields

(13.58)

where  and  are dummy variables of integration. Next, letting  and , we obtain
 and . Then, with these substitutions, relation (13.58) it written as

(13.59)

Next, we convert (13.59) to polar coordinates by letting  and     Then,

T m
2k
------– αe y– dy–

y
---------------------

0

∞

∫ α m
2k
------ y 1 2⁄– e y– dy

0

∞

∫= =

Γ n( )

T αΓ 1
2
---⎝ ⎠

⎛ ⎞ m
2k
------ α π m

2k
------ α πm

2k
--------= = =

θncos θd
0

π 2⁄

∫    and   θnsin θd
0

π 2⁄

∫

Γ n( )

Γ n( ) xn 1– e x– xd
0

∞

∫=

Γ m( ) xm 1– e x– xd
0

∞

∫=

m 0> n 0>

Γ m( )Γ n( ) um 1– e u– ud
0

∞

∫ vn 1– e v– vd
0

∞

∫=

u v u x2= v y2=

du 2xdx= dv 2ydy=

Γ m( )Γ n( ) x2 m 1–( )
2xe x2– xd

0

∞

∫ y2 n 1–( )
2ye y2– yd

0

∞

∫ 4 x2m 2– xe x2– xd
0

∞

∫ y2n 2– ye y2– yd
0

∞

∫= =

4 x2m 1– y2n 1– e x2 y2+( )– xd yd
0

∞

∫
0

∞

∫=

x ρ θcos= y ρ θsin=
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(13.60)

To simplify (13.60), we let ; then,  and thus relation (13.60) is written as

(13.61)

Rearranging (13.61) we obtain

(13.62)

and this expression can be simplified by replacing  with , that is, , and

 with , that is, . Then, we obtain the special case of (13.62) as

(13.63)

If, in (13.62), we replace  with  and  with , we obtain the integral of the 
function as 

(13.64)

We observe that (13.63) and (13.64) are equal since  and  can be interchanged. Therefore,

(13.65)

Γ m( )Γ n( ) 4 ρ θcos( )2m 1– ρ θsin( )
2n 1–

e ρ2– ρ ρd θd
0

∞

∫
0

π 2⁄

∫=

2 θ2m 1–cos θ2n 1–sin⋅ θd ρ2m 2n 2–+ e
ρ2–

2ρ ρd
0

∞

∫
0

π 2⁄

∫=

ρ2 w= dw 2ρdρ=

Γ m( )Γ n( ) 2 θ2m 1–cos θ2n 1–sin⋅ θd wm n 1–+ e
w–

wd
0

∞

∫
0

π 2⁄

∫=

2 θ2m 1–cos θ2n 1–sin⋅ θ Γ m n+( )⋅d
0

π 2⁄

∫=

θ2m 1–cos θ2n 1–sin⋅ θd
0

π 2⁄

∫ Γ m( )Γ n( )
2Γ m n+( )
--------------------------=

2m 1– n m n 1+( )
2

-----------------=

2n 1– 0 n 1
2
---=

θncos θd
0

π 2⁄

∫
Γ n 1+

2
------------⎝ ⎠

⎛ ⎞Γ 1
2
---⎝ ⎠

⎛ ⎞

2Γ n 1+
2

------------ 1
2
---+⎝ ⎠

⎛ ⎞
-------------------------------------------

Γ n 1+
2

------------⎝ ⎠
⎛ ⎞

Γ n
2
--- 1+⎝ ⎠

⎛ ⎞
------------------------- π

2
-------= =

2m 1– 0 2n 1– m θnsin

θmsin θd
0

π 2⁄

∫
Γ 1

2
---⎝ ⎠

⎛ ⎞Γ m 1+
2

--------------⎝ ⎠
⎛ ⎞

2Γ 1
2
--- m 1+

2
--------------+⎝ ⎠

⎛ ⎞
----------------------------------------------

Γ m 1+
2

--------------⎝ ⎠
⎛ ⎞

Γ m
2
---- 1+⎝ ⎠

⎛ ⎞
--------------------------- π

2
-------= =

m n

θncos θd
0

π 2⁄

∫ θnsin θd
0

π 2⁄

∫
Γ n 1+

2
------------⎝ ⎠

⎛ ⎞

Γ n
2
--- 1+⎝ ⎠

⎛ ⎞
----------------------- π

2
-------        n 1–>= =
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The relations of (13.65) are known as Wallis’s formulas.

13.2 The Gamma Distribution

One of the most common probability distributions*  is the gamma distribution which is defined as

(13.66)

A detailed discussion of this probability distribution is beyond the scope of this book; it will suffice
to say that it is used in reliability and queuing theory. When  is a positive integer, it is referred to
as Erlang distribution. Figure 13.4 shows the probability density function (pdf) of the gamma distri-
bution for  and .

Figure 13.4. The pdf for the gamma distribution.

We can evaluate the gamma distribution with the Excel GAMMADIST function whose syntax is

GAMMADIST(x,alpha,beta,cumulative)

where:

x = value at which the distribution is to be evaluated

alpha = the parameter  in (13.66)

beta = the parameter  in (13.66)

* Several probability distributions are presented in Mathematics for Business, Science, and Technology, ISBN 0−9709511−
0−8.

f x n β, ,( ) xn 1– e x β⁄–

βnΓ n( )
-------------------------=    x 0   n β 0>,,>

n

n 3= β 2=

x n β Γ(n) β^n f(x)
0.0 3.0 2.0 2.0 8.0 0.0000
0.2 0.0023
0.4 0.0082
0.6 0.0167
0.8 0.0268
1.0 0.0379
1.2 0.0494
1.4 0.0608
1.6 0.0719
1.8 0.0823
2.0 0.0920
2.2 0.1007
2.4 0.1084

Probability Density Function
of the gamma distribution

for n = 3 and β = 2

0.00
0.05
0.10
0.15
0.20

0 2 4 6 8 10 12

x

f(x
)

n

β
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cumulative = a TRUE / FALSE logical value; if TRUE, GAMMADIST returns the cumulative
distribution function (cdf), and if FALSE, it returns the probability density function*  (pdf).

Example 13.12  

Use Excel’s GAMMADIST function to evaluate , that is, the pdf of the gamma distribution if:

a. , , and 

b. , , and 

Solution:

Since we are interested in the probability density function (pdf) values, we specify the FALSE
condition. Then,

a.
=GAMMADIST(4,3,2,FALSE) returns 0.1353

b.
=GAMMADIST(7,3,2,FALSE) returns 0.0925

We observe that these values are consistent with the plot of Figure 13.4.

13.3 The Beta Function

The beta function, denoted as , is defined as

(13.67)

where  and .

Example 13.13  
Prove that

(13.68)
Proof:

Let ; then, . We observe that as ,  and as , . There-
fore,

* Several probability density functions are also presented on the text mentioned on the footnote of the previous page.

f x( )

x 4= n 3= β 2=

x 7= n 3= β 2=

B m n,( )

B m n,( ) xm 1– 1 x–( )n 1– xd
0

1

∫=

m 0> n 0>

B m n,( ) B n m,( )=

x 1 y–= dx dy–= x 0→ y 1→ x 1→ y 0→
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and thus (13.68) is proved.

Example 13.14  
Prove that

(13.69)

Proof:

We let ; then, . We observe that as ,  and as ,
. Then,

(13.70)

Example 13.15  
Prove that

(13.71)

Proof:

The proof is evident from (13.62) and (13.70).

The  function is also useful in evaluating certain integrals as illustrated by the following
examples.

B m n,( ) xm 1– 1 x–( )n 1– xd
0

1

∫ 1 y–( )m 1– 1 1 y–( )–[ ]n 1– yd
1

0

∫–= =

1 y–( )m 1– yn 1– yd
0

1

∫ yn 1– 1 y–( )m 1– yd
0

1

∫ B n m,( )= ==

B m n,( ) 2 θ2m 1–cos θ2n 1–sin⋅ θd
0

π 2⁄

∫=

x θ2sin= dx 2 θ θdθcossin= x 0→ θ 0→ x 1→
θ π 2⁄→

B m n,( ) xm 1– 1 x–( )n 1– xd
0

1

∫=

2 θ2sin( ) θ2cos( )
m 1–

θ θ θdcossinn 1–

0

π 2⁄

∫=

2 θ2m 1–sin( ) θ2m 1–cos( ) θd
0

π 2⁄

∫=

B m n,( ) Γ m( )Γ n( )
Γ m n+( )
-------------------------=

B m n,( )
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Example 13.16  
Evaluate the integral

(13.72)

Solution:

By definition

and thus for this example,

Using (13.71) we obtain

(13.73)

We can also use MATLAB’s beta(m,n) function. For this example,

format rat; % display answer in rational format
z=beta(5,4)

z =
     1/280 

Excel does not have a function that computes the  function directly. However, we can
use (13.71) for its computation as shown in Figure 13.5.

Figure 13.5. Computation of the beta function with Excel.

Example 13.17  
Evaluate the integral

(13.74)

x4 1 x–( )3 xd
0

1

∫

B m n,( ) xm 1– 1 x–( )n 1– xd
0

1

∫=

x4 1 x–( )3 xd
0

1

∫ B 5 4,( )=

B 5 4,( ) Γ 5( )Γ 4( )
Γ 9( )

------------------------ 4!3!
8!

---------- 24 6×
40320
--------------- 144

40320
--------------- 1

280
---------= = = = =

B m n,( )

p g
Γ(m) Γ(n) Γ(m+n) Beta(m,n)=

exp(gammaln(m)) exp(gammaln(n)) exp(gammaln(m+n)) Γ(m) x Γ(n) / Γ(m+n)
m= 5

24.00 6.00 40320.00 1/280
n= 4

x2

2 x–
---------------- xd

0

2

∫
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Solution:

Let ; then , and . We observe that as , , and as ,
. Then, (13.74) becomes 

(13.75)

where

(13.76)

Then, from (13.74), (13.75) and (13.76) we obtain

(13.77)

13.4 The Beta Distribution
The beta distribution is defined as

(13.78)

A plot of the beta probability density function (pdf) for  and , is shown in Figure
13.6.

As with the gamma probability distribution, a detailed discussion of the beta probability distribu-
tion is beyond the scope of this book; it will suffice to say that it is used in computing variations in
percentages of samples such as the percentage of the time in a day people spent at work, driving
habits, eating times and places, etc.

Using (13.71) we can express the beta distribution as

(13.79)

x 2v= x2 4v2= dx 2dv= x 0→ v 0→ x 2→
v 1→

4v2

2 2v–
-------------------2 vd

0

1

∫
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------- v2

1 v–
---------------- vd

0
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vd
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2 x–
---------------- xd

0

2

∫ 4 2 2! π⋅ ⋅
15 π 8⁄

-------------------------------- 64 2
15

-------------= =

f x m n, ,( ) xm 1– 1 x–( )n 1–

B m n,( )
---------------------------------------=    x 0 1<   m n 0>,,<

m 3= n 2=

f x m n, ,( ) Γ m n+( )
Γ m( )Γ n( )
------------------------- xm 1– 1 x–( )n 1–        x 0 1<   m n 0>,,<⋅=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 13−21
Copyright © Orchard Publications

The Beta Distribution

Figure 13.6. The pdf of the beta distribution

We can evaluate the beta cumulative distribution function (cdf) with Excels’s BETADIST func-
tion whose syntax is

BETADIST(x,alpha,beta,A,B)

where:

x = value between A and B at which the distribution is to be evaluated

alpha = the parameter  in (13.79)

beta = the parameter  in (13.79)

A = the lower bound to the interval of x

B = the upper bound to the interval of x

From the plot of Figure 13.6, we see that when ,  which represents the probabil-
ity density function, is zero. However, the cumulative distribution (the area under the curve) at
this point is  or unity since this is the upper limit of the −range. This value can be verified
by

=BETADIST(1,3,2,0,1) which returns 1.0000

x m n Γ(m) Γ(n) Γ(m+n) x(m-1) (1-x)(n-1) f(x,m,n)
0.00 3.0 2.0 2.0 1.0 24.0 0.0000 1.0000 0.0000
0.02 0.0004 0.9800 0.0047
0.04 0.0016 0.9600 0.0184
0.06 0.0036 0.9400 0.0406
0.08 0.0064 0.9200 0.0707
0.10 0.0100 0.9000 0.1080
0.12 0.0144 0.8800 0.1521
0.14 0.0196 0.8600 0.2023
0.16 0.0256 0.8400 0.2580
0.18 0.0324 0.8200 0.3188
0.20 0.0400 0.8000 0.3840
0.22 0.0484 0.7800 0.4530
0.24 0.0576 0.7600 0.5253
0.26 0.0676 0.7400 0.6003
0.28 0.0784 0.7200 0.6774
0.30 0.0900 0.7000 0.7560
0.32 0.1024 0.6800 0.8356
0.34 0.1156 0.6600 0.9156

Probability Density Function
of the Beta Distribution

for m = 3 and n = 2
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13.5 Summary

• The gamma function, denoted as , is also known as generalized factorial function. It is
defined as

• It is convenient to use the relation 

for  and the relation

for .

• The  function is defined for all positive integers and positive fractional values, and for all
negative fractional, but not negative integer values.

• The  function and the factorial  are related as

• We can use MATLAB’s gamma(n) function to obtain values of .

• We can use the EXP(GAMMALN(n)) function to evaluate  at some positive value of .

• To evaluate  when  is a positive integer, we can use the relation

• Other useful relations are shown below. 

• The relation 

is referred to as Stirling’s asymptotic series for the  function. If  is a positive integer, the

Γ n( )

Γ n( ) xn 1– e x– xd
0

∞

∫=

Γ n( ) Γ n 1+( )
n

---------------------=

n 0<
nΓ n( ) Γ n 1+( )=

n 0>

Γ n( )

Γ n( ) n!

Γ n 1+( ) n!   for n 1 2 3 …, , ,= =

Γ n( )

Γ n( ) n

Γ n( ) n

Γ n( ) n 1–( )!=

Γ 1 2⁄( ) π=

Γ n( )Γ 1 n–( ) π
nπsin

--------------=    

for   0 n 1< <

22n 1– Γ n( ) π πΓ 2n( )=

for any n negative integer≠

Γ n 1+( ) n! 2πnnne n– 1 1
12n
--------- 1

288n2
-------------- 139

51840n3
-------------------- 571

2488320n4
--------------------------–– …+ + +

⎩ ⎭
⎨ ⎬
⎧ ⎫

= =

Γ n( ) n
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Summary

factorial  can be approximated as

• The  function is very useful in integrating some improper integrals. 

• The relations 

are known as Wallis’s formulas.

• The gamma distribution which is defined as

• The beta function,  where  and  is defined as

• The beta function  and gamma function  are related by

.

• The beta  function is also useful in evaluating certain integrals.

•  We can use MATLAB’s beta(m,n) function to evaluate the beta  function.

• The beta distribution is defined as

n!

n! 2πnnne n–≈

Γ n( )

θncos θd
0

π 2⁄

∫ θnsin θd
0

π 2⁄

∫
Γ n 1+

2
------------⎝ ⎠

⎛ ⎞

Γ n
2
--- 1+⎝ ⎠

⎛ ⎞
----------------------- π

2
-------        n 1–>= =

f x n β, ,( ) xn 1– e x β⁄–

βnΓ n( )
-------------------------=    x 0   n β 0>,,>

B m n,( ) m 0> n 0>

B m n,( ) xm 1– 1 x–( )n 1– xd
0

1

∫=

B m n,( ) Γ n( )

B m n,( ) Γ m( )Γ n( )
Γ m n+( )
-------------------------=

B m n,( )

B m n,( )

f x m n, ,( ) xm 1– 1 x–( )n 1–

B m n,( )
---------------------------------------=    x 0 1<   m n 0>,,<
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13.6 Exercises

1. Given that  and , compute

Verify your answer with MATLAB and Excel

2. Given that  and , compute 

Verify your answer with MATLAB and Excel

3. Evaluate the following integrals

a.  

b.  

c.  

d.  

e.  

m 2.5= n 1.25–=

Γ m n+( )
Γ m( )Γ n( )
-------------------------

m 10= n 8= B m n,( )

e x3– xd
0

∞

∫

xe x3– xd
0

∞

∫

xd

1 x4–
------------------

0

1

∫

θtan θd
0

π 2⁄

∫

xd

3x x2–
---------------------

0

3

∫
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Solutions to End−of−Chapter Exercises

13.7 Solutions to End−of−Chapter Exercises
1.

By repeated use of the relations  for  and  for ,

we obtain

  (1)

There are no exact values for  and ; therefore, we obtain their approximate
values from tables, where we find that  and . Then, by
substitution into (1) we obtain: 

Check with MATLAB:

m=2.5; n=−1.25; gamma(m+n)/(gamma(m)*gamma(n))

ans =
    0.1739

We cannot check the answer with Excel because it cannot compute negative values.

2.

Check with MATLAB:

beta(10,8)

ans =
  5.1419e-006

nΓ n( ) Γ n 1+( )= n 1> Γ n( ) Γ n 1+( )
n

---------------------= n 1<

Γ m n+( )
Γ m( )Γ n( )
------------------------- Γ 2.5 1.25–( )+( )
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----------------------------------------- Γ 1.25( )
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--------------------------------------- Γ 5 4⁄( )
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---------------------------------------------= = =
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----------------------------------------------------------------------------------==
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------------------⋅
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π 1.2254⋅
----------------------------⋅ 0.1739= =

B m n,( ) Γ m( )Γ n( )
Γ m n+( )
------------------------- Γ 10( ) Γ 8( )⋅

Γ 18( )
------------------------------- 9!( ) 7!( )×

17!
--------------------------= ==

9 8 7 6 5 4 3 2 7 6 5 4 3 2⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
-------------------------------------------------------------------------------------------------------------------------------------------=

7 6 5 4 3 2⋅ ⋅ ⋅ ⋅ ⋅
17 16 15 14 13 12 11 10⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
------------------------------------------------------------------------------- 5040

980179200
--------------------------- 5.1419 10 6–×= ==



Chapter 13  The Gamma and Beta Functions and Distributions

13−26 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

3.
a.

Let , then , , so

 

b.

c.

We let  or . Then,  and thus

  (1)

Also,

or

, 

and by substitution into (1)

d.

From (13.62),

x3 y= x y1 3⁄= dx 1
3
--- y 2– 3⁄( )dy⋅=
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∞

∫ e y– 1
3
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0

∞
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1
3
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---⎝ ⎠

⎛ ⎞= =
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∞
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xd
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Solutions to End−of−Chapter Exercises

Letting  and  we obtain  and .Then,

e.

  (1)

Let , then , . When ,  and
when , , and the integral of (1) becomes

  (2)

Recalling that 

it follows that , , ,  and thus

2m 1– 1 2⁄= 2n 1– 1– 2⁄= m 3 4⁄= n 1 4⁄=

θtan θd
0

π 2⁄
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Chapter 14

Orthogonal Functions and Matrix Factorizations

his chapter is an introduction to orthogonal functions. We begin with orthogonal lines and
functions, orthogonal trajectories, orthogonal vectors, and we conclude with the factoriza-
tion methods LU, Cholesky, QR, and Singular Value Decomposition.

14.1 Orthogonal Functions
Orthogonal functions are those which are perpendicular to each other. Mutually orthogonal sys-
tems of curves and vectors are of particular importance in physical problems. From analytic geom-
etry and elementary calculus we know that two lines are orthogonal if the product of their slopes is
equal to minus one. This is shown in Figure 14.1.

Figure 14.1. Orthogonal lines

Orthogonality applies also to curves. Figure 14.2 shows the angle between two curves  and . 

Figure 14.2. Orthogonal curves

T

slope m1=

slope m2=

x

y m1 m2⋅ 1–=

C1 C2
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By definition, in Figure 14.2, the angle between the curves  and  is the angle  between
their tangent lines  and . If  and  are the slopes of these two lines, then,  and 
are orthogonal if .

Example 14.1  
Prove that every curve of the family 

(14.1)

is orthogonal to every curve of the family

(14.2)

Proof:

At a point  on any curve of (14.1), the slope is

or

(14.3)

On any curve of (14,2) the slope is

or

(14.4)

From (14.3) and (14.4) we see that these two curves are orthogonal since their slopes are negative
reciprocals of each other. The cases where  or  cannot occur because we defined

 and .

Other orthogonal functions are the  and  functions as we’ve learned in Chapter 6.

14.2 Orthogonal Trajectories
Two families of curves with the property that each member of either family cuts every member of
the other family at right angles are said to be orthogonal trajectories of each other. Thus, the curves
of (14.2) are orthogonal trajectories of the curves of (14.1). The two families of these curves are
shown in Figure 14.3.

C1 C2 β

L1 L2 m1 m2 L1 L2

m2 1– m1⁄=

xy a= a 0≠

x2 y2– b= b 0≠

P x y,( )

xdy ydx+ 0=

dy
dx
------ y

x
---–=

2xdx 2ydy– 0=

dy
dx
------ x

y
---=

x 0= y 0=

a 0≠ b 0≠

xcos xsin
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Orthogonal Trajectories

Figure 14.3. Orthogonal trajectories

Example 14.2  
Find the orthogonal trajectories of the family of parabolas 

(14.5)
Solution:

The slope of (14.5) is 

(14.6)

From (14.5),  and thus we rewrite (14.6) as

(14.7)

Therefore, the slope of the orthogonal family we are seeking must be 

(14.8)

or

(14.9)

y cx2= c 0≠

dy
dx
------ 2cx=

c y x2⁄=

dy
dx
------ 2 y

x2
-----x 2y

x
------= =

dy
dx
------ x

2y
------–=

2ydy xdx+ 0=

2 y y x xd∫+d∫ 0=

2 y2

2
----- x2

2
-----+ k cons ttan( )=

x2 2y2+ C cons ttan( )=
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Relation (14.9) represents a family of ellipses and the trajectories are shown in Figure14.4.

Figure 14.4. Orthogonal trajectories for families of parabolas and ellipses.

14.3 Orthogonal Vectors

Let  and  be two vectors of the same length. Their
inner (dot) product is defined as 

(14.10)

Example 14.3  
Given that 

 and 
find the dot product 

Solution:

Definition:Two vectors  and  are said to be orthogonal if their dot product is zero.

Example 14.4  
Test the vectors 

 and 
for orthogonality.

X x1  x2  x3  …  xn[ ]= Y y1  y2  y3  …  yn[ ]=

X Y⋅ x1 y1 x2 y2 x3 y3 … xn yn  (a scalar )+ + + +=

X 1  1  1[ ]= Y 2  1  2[ ]=

X Y⋅

X Y⋅ 1( ) 2( )⋅ 1( ) 1( )⋅ 1( ) 2( )⋅+ + 5= =

X1 X2

X1 1  1  1[ ]= X2 1 2–     1[ ]=
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Orthogonal Vectors

Solution:

Therefore, the vectors  and  are orthogonal to each other.

With any vector  we may associate a unique unit vector  which is obtained by dividing
each component of  by each magnitude  defined as 

where  represents an element of the vector . This process is called normalization.

Example 14.5  
Given that 

compute the unit vector .

Solution:

First, we compute the magnitude . For this example,

To compute the unit vector  we divide each element of  by the magnitude . Thus,

A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If these
vectors are also unit vectors, the basis is called orthonormal basis.

If the column (or row) vectors of a square matrix  are mutually orthogonal unit vectors, the
matrix  is orthogonal and

(14.11)

where  is the transpose of  and  is the identity matrix.

X1 X2⋅ 1( ) 1( )⋅ 1( ) 2–( )⋅ 1( ) 1( )⋅+ + 0= =

X1 X2

X 0≠ U
X X

X x1
2 x2

2 … xn
2+ + +=

xi X

X 2  4  4[ ]=

UX

X

X 22 42 42+ + 6= =

UX X X

UX
2
6
---   46

---   46
--- 1

2
---   23

---   23
---= =

A
A

A AT⋅ I=

AT A I
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Example 14.6  
Given that

find an orthonormal set of eigenvectors*  and verify that the result satisfies (14.11).

Solution:

First, we find the eigenvalues of the matrix  from the relation  where for this
example

from which  and  and as we’ve learned in Chapter 5, with these eigenvalues
we can obtain an infinite number of eigenvectors. To find a  square matrix  such that

we begin with

(14.12)

or

(14.13)

Equating like terms we obtain

From the second equation we obtain  and by substitution into the first we obtain 
or

* It is strongly suggested that the reader reviews the definitions of eigenvalues and eigenvectors in Chapter 5 at this time.

A 1 2⁄ 1 4⁄
1 2⁄ 1 2⁄

=

A det A λI–( ) 0=

det 1 2⁄ 1 4⁄
1 2⁄ 1 2⁄

λ 1 0
0 1

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

0=

det 1 2 λ–⁄ 1 4⁄
1 2⁄ 1 2 λ–⁄

0=

λ2 λ– 3 16⁄+ 0=

λ1 1 4⁄= λ2 3 4⁄=

2 2× Z

Z ZT⋅ I=

z1 z2

z1– z2

z1 z1–

z2 z2

⋅ 1 0
0 1

=

z1
2 z2

2+ z– 1
2 z2

2+

z– 1
2 z2

2+ z1
2 z2

2+

1 0
0 1

=

z1
2 z2

2+ 1= z– 1
2 z2

2+ 0=

z1
2 z2

2= 2z1
2 1=
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The Gram-Schmidt Orthogonalization Procedure

This result indicates that we can choose either  or  for the values of  and

.We choose the value  and then the first (left most) matrix in (14.12) is 

and as a check,

The computations for finding orthonormal sets of eigenvectors for larger size (  or higher)
matrices using the above procedure becomes quite involved. A simpler procedure is the Gram-
Schmidt orthogonalization procedure which is discussed on the next section.

14.4 The Gram-Schmidt Orthogonalization Procedure

Let  be some column vectors. We can find an orthogonal basis  using
the following relations. We must remember that the products in (14.14) below are the inner
(dot) products and if  and  are two vectors of the
same length their dot product is defined as .
Thus in the second equation in (14.14) the dot products on the numerator and denominator must
be found first and the result must be from the dot product of it and 

(14.14)

Also, the unit vectors

z1 z2 1 2±( )⁄= =

1 2⁄ 1 2–( )⁄ z1

z2 1 2⁄

Z 1 2⁄ 1 2⁄

1 2–( )⁄ 1 2⁄
=

1 2⁄ 1 2⁄

1 2–( )⁄ 1 2⁄

1 2⁄ 1 2–( )⁄

1 2⁄ 1 2⁄
⋅ 1 0

0 1
=

3 3×

X1 X2 …Xm, , Y1 Y2 …Ym, ,

X x1  x2  x3  …  xn[ ]= Y y1  y2  y3  …  yn[ ]=

X Y⋅ x1 y1 x2 y2 x3 y3 … xn yn  (a scalar )+ + + +=

Y1

Y1 X1=

Y2 X2
Y1 X2⋅
Y1 Y1⋅
------------------ Y1⋅–=

Y3 X3
Y2 X3⋅
Y2 Y2⋅
------------------ Y2⋅–

Y1 X3⋅
Y1 Y1⋅
------------------ Y1⋅–=

…

Ym Xm
Ym 1– Xm⋅

Ym 1– Ym 1–⋅
--------------------------------- Ym 1–⋅ …––

Y1 Xm⋅
Y1 Y1⋅
------------------- Y1⋅–=
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(14.15)

are mutually orthogonal and form an orthonormal basis.

In our subsequent discussion the column vectors will be denoted as row vectors transposed.

Example 14.7  

Given that , , and , find an orthonormal basis.

Solution:

From (14.14)

and from (14.15)

and denoting the matrix whose elements are the unit vectors as , we have:

We can verify that  with the MATLAB script below.

A=[1/sqrt(3) 1/sqrt(6) −1/sqrt(2); 1/sqrt(3) −2/sqrt(6) 0; 1/sqrt(3) 1/sqrt(6) 1/sqrt(2)];
I=A*A'

Ui
Yi
Yi
--------= i 1 2 … m, , ,=

X1 1  1  1[ ]T= X2 1 2   1–[ ]T= X3 1  2  3[ ]T=

Y1 X1 1  1  1[ ]T= =

Y2 X2
Y1 X2⋅
Y1 Y1⋅
------------------ Y1⋅– 1 2   1–[ ]T 0

3
--- Y1⋅– 1 2   1–[ ]T= = =

Y3 X3
Y2 X3⋅
Y2 Y2⋅
------------------ Y2⋅–

Y1 X3⋅
Y1 Y1⋅
------------------ Y1⋅– 1  2  3[ ]T 0

6
--- Y2⋅–

6
3
--- 1  1  1[ ]T–= =

1  2  3[ ]T 2  2  2[ ]T– 1–   0  1[ ]T==

U1
Y1
Y1
--------- 1 3⁄    1 3   1 3⁄⁄[ ]

T
= =

U2
Y2
Y2
--------- 1 6⁄    2– 6   1 6⁄⁄[ ]

T
= =

U3
Y3
Y3
--------- 1– 2⁄    0   1 2⁄[ ]

T
= =

A

A
1 3⁄ 1 6⁄ 1– 2⁄

1 3⁄    2– 6⁄ 0

1 3⁄ 1 6⁄    1 2⁄

=

A AT⋅ I=
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I =
    1.0000         0    0.0000
         0    1.0000         0
    0.0000         0    1.0000

We can also use the MATLAB function orth(A) to produce an orthonormal basis as shown
below.

B=[1  1  1; 1  −2  1; 1  2  3]; C=orth(B)

C =
   -0.4027    0.0000    0.9153
    0.0000    1.0000    0.0000
   -0.9153    0.0000   -0.4027

We observe that the vectors of the  matrix produced by MATLAB are different from those we
derived with the Gram-Schmidt orthogonalization procedure. The reason for this difference is
that the orthogonalization process is not unique, that is, we may find different values depending
on the process being used. As shown below, the vectors produced by MATLAB also satisfy the

condition .

I=C*C'

I =
    1.0000   -0.0000    0.0000
   -0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

14.5 The LU Factorization
In matrix computations, computers use the so-called matrix factorization methods to decompose
a matrix  into a product of other smaller matrices. The LU factorization method decomposes a
matrix  into a lower triangular matrix  and an upper triangular matrix  so that .
In Chapter 4 we saw how the method of Gaussian elimination proceeds by systematically remov-
ing the unknowns from a system of linear equations. 

Consider the following  lower triangular case.

The unknowns are found from

C

C CT⋅ I=

A
A L U A L U⋅=

3 3×

L11 0 0
L21 L22 0
L31 L32 L33

x1

x2

x3

⋅
b1

b2

b3

=
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(14.16)

provided that . The substitution order in (14.16) is referred to as forward substi-
tution.

For the upper triangular case, the unknowns are written in reverse order. Thus, to solve

(14.17)

we start from the bottom to the top as shown below.

(14.18)

provided that . The substitution order in (14.18) is referred to as backward sub-
stitution.

Example 14.8  
Let us review the example given in Chapter 4 which consists of the following equations.

(14.19)

To find the three unknowns, we begin by multiplying the first equation by  and subtracting it
from the second equation. This removes  from the second equation. Likewise, we multiply the

first equation by  and we subtract it from the third equation. With these two reductions we
obtain

(14.20)

x1 b1 L11⁄=

x2 b2 L21 x1–( ) L22⁄=

x3 b3 L31 x1 L31 x2––( ) L33⁄=

L11 L22 L33⋅ ⋅ 0≠

U11 U12 U13

0 U22 U23

0 0 U33

x1

x2

x3

⋅
b1

b2

b3

=

x3 b3 U33⁄=

x2 b2 U23 x3–( ) U22⁄=

x1 b1 U12 x2 U13 x3––( ) U11⁄=

U11 U22 U33⋅ ⋅ 0≠

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

2–

v1

3 2⁄

2v1 v2– 3v3+ 5=

5v2 4v3+– 18=

2.5v2 5.5– v3 3.5–=
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Next we multiply the second equation of (14.20) by  and we subtract it from the third
equation of (14.20) and we obtain the system of equations below. 

(14.21)

We see that the eliminations have transformed the given square system into an equivalent upper
triangular system that gives the same solution which is obtained as follows:

The elements of the upper triangular matrix  are the coefficients of the unknowns in (14.21).
Thus,

Now, let us use the relations of (14.16) and (14.18) to find the lower and upper triangular matri-
ces of our example where

We want to find  and  such that

(14.22)

where the first matrix on the left side is the lower triangular matrix  and the second is the
upper triangular matrix . The elements of matrix  are the coefficients of , , and  in
(14.20). To find the elements of matrix  we use MATLAB to multiply matrix  by the inverse
of matrix . Thus,

U=[2  −1  3; 0  −5  4; 0  0  −3.5]; A=[2  −1  3; −4  −3  −2; 3  1  −1]; L=A*inv(U)

L =

1 2⁄–

2v1 v2– 3v3+ 5=

5v2 4v3+– 18=

3.5– v3 5.5=

v3 11– 7⁄=

v2 18 4v3–( ) 5–( )⁄ 34 7⁄–= =

v1 5 v2 3v3–+( ) 2⁄ 17 7⁄= =

U

U11 U12 U13

0 U22 U23

0 0 U33

2 1– 3
0 5– 4
0 0 3.5–

=

A
2 1– 3
4– 3– 2–
3 1 1–

=

Lij Uij

L11 0 0
L21 L22 0
L31 L32 L33

U11 U12 U13

0 U22 U23

0 0 U33

⋅ A
2 1– 3
4– 3– 2–
3 1 1–

= =

L
U U v1 v2 v3

L A
U
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      1            0            0      
     -2            1            0      
     3/2         -1/2           1  

Therefore, the matrix  has been decomposed to a lower triangular matrix  and an upper
matrix  as shown below.

Check with MATLAB:

L=[1  0  0;  −2  1  0; 3/2  −1/2  1]; U=[2  −1  3; 0  −5  4; 0  0  −3.5]; A=L*U

A =
      2           -1            3      
     -4           -3           -2      
      3            1           -1

In the example above, we found the elements of the lower triangular matrix  by first computing
the inverse of the upper triangular matrix  and performing the matrix multiplication

 but not . Was this necessary? The answer is no. For a square matrix
where none of the diagonal elements are zero, the lower triangular matrix has the form 

 

and in our example we found that the values of the subdiagonal elements are ,
, and . These values are the multipliers that we’ve used in the elimination

process in succession.

Example 14.9  
Use the MATLAB function [L,U]=lu(A) to decompose the matrix 

A L
U

2 1– 3
4– 3– 2–
3 1 1–

1 0 0
2– 1 0

3 2⁄ 1 2⁄– 1

2 1– 3
0 5– 4
0 0 3.5–

⋅=

L
U

L A U 1–⋅= L U 1– A⋅=

L
1 0 0

L21 1 0
L31 L32 1

=

L21 2–=

L31 3 5⁄= L32 1– 2⁄=

A
2 3– 1
1– 5 2–
3 8– 4

=
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into a lower and an upper triangular.

Solution:

format rat; A=[2  −3   1; −1   5  −2; 3   −8   4]; [L,U]=lu(A)

L =
     2/3           1            1      
    -1/3           1            0      
      1            0            0      
U =
      3           -8            4      

      0           7/3         -2/3     

      0            0           -1

We observe that while the upper triangular matrix  has the proper structure, the lower trian-
gular matrix  lacks structure. When a matrix lacks structure we say that it is permuted. To put

 in the proper structure, let us interchange the first and third rows. Then,

(14.23)

The new matrix  has now the proper structure. Let us now use MATLAB to see if .

L1=[1  0  0; −1/3  1  0; 2/3  1  1]; U=[3  −8   4; 0  7/3  −2/3; 0  0  −1]; A1=L1*U

A1 =
      3           -8            4      

     -1            5           -2      

      2           -3            1

We observe that matrix  is now permuted. To put it in the given form we need to make the
same interchanges in rows as with the lower triangular matrix, that is, we must interchange the
first and third rows.

To find out how MATLAB performs LU factorization, let us invoke the help lu command. Only
part of the display is shown below.

help lu

 LU     LU factorization.
    [L,U] = lu(X) stores an upper triangular matrix in U and a
    "psychologically lower triangular matrix" (i.e. a product

U
L

L

L'
1 0 0

1 3⁄– 1 0
2 3⁄ 1 1

=

L' L' U⋅ A=

A
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    of lower triangular and permutation matrices) in L, so
    that X = L*U. X can be rectangular.
 
    [L,U,P] = lu(X) returns unit lower triangular matrix L, upper
    triangular matrix U, and permutation matrix P so that
    P*X = L*U.

The permutation matrix  is an identity matrix that is permuted so that the rows of this matrix
indicate the interchanges. Consider, for example, the identity matrix

If we interchange the first and third rows of the identity matrix  above, we obtain the permuta-
tion matrix  below. 

(14.24)

and matrix  indicates the same interchanges as with the lower triangular matrix in Example
14.9.

Example 14.10  
Use the MATLAB function [L,U,P]=lu(A) to decompose the matrix 

into a lower and an upper triangular and show that .

Solution:
This is the same matrix as in Example 14.9. Thus,

A=[2  −3   1; −1   5  −2; 3   −8   4]; [L,U,P]=lu(A)

L =
      1            0            0      
    -1/3           1            0      
     2/3           1            1      

P

I
1 0 0
0 1 0
0 0 1

=

I
P

P
0 0 1
0 1 0
1 0 0

=

P

A
2 3– 1
1– 5 2–
3 8– 4

=

P A⋅ L U⋅=
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U =
      3           -8            4      
      0           7/3         -2/3     
      0            0           -1      

P =
      0            0            1      
      0            1            0      
      1            0            0

We observe that the lower triangular matrix has now the proper structure and the  matrix dis-
played by MATLAB is the same as in (14.24). Also,

PA=P*A, LU=L*U

PA =
      3           -8            4      
     -1            5           -2      
      2           -3            1      

LU =
      3           -8            4      
     -1            5           -2      
      2           -3            1

We observe that  with the first and second rows interchanged when compare with
the given matrix .

The MATLAB matrix left division operator  uses the  factorization approach.

The user−defined function ExchRows below, interchanges rows  and j of a vector or matrix
.

% The function ExchRows interchanges rows i and j 
% of a matrix or vector X
%
function X = ExchRows(X,i,j)
%
temp = X(i,:);
X(i,:) = X(j,:);
X(j,:) = temp;
 
% This file is saved as ExchRows.m
% To run this program, define the matrix or vector
% X and the indices i and j in MATLAB's Command Window
% as X=[....], i = {first row # to be interchanged},
% j = {row # to be interchanged with row i}, and  

P

P A⋅ L U⋅=

A

x A\b= L U⋅

i j
X
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% then type ExchRows(X,i,j)at the command prompt.

Example 14.11  
Given that the matrix X is defined as

use the ExchRows.m user−defined function above to interchange rows 1 and 3.

Solution:

At the MATLAB command prompt we enter

X=[−2  5 −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; i = 1; j = 3;
ExchRows(X,i,j)

and MATLAB outputs

X =
     7    -5     3     2
    -3    -6     8     1
    -2     5    -4     9
     4    -9    -8    -1

The user−defined function GaussElimPivot below, performs Gauss elimination with row pivot-
ing. First, let us explain the use of MATLAB’s built-in function max(v) where v is a row or a col-
umn vector, and for matrices is a row vector containing the maximum element from each column.
As an example, let

v=[2 −1  3  −5  7  −9  −12]';  max(v)

ans =
     7

[Amax,m]=max(v)

Amax =
     7
m =
     5

[Amax,m]=max(abs(v))

X

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

=
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Amax =
    12

m =
     7
% This user−defined function file solves A*x=b by
% the Gauss elimination with row pivoting method.
% A is a matrix that contains the coefficients of 
% the system of equations, x is a column vector that
% will display the computed unknown values, and b 
% is a column vector that contains the known values
% on the right hand side.

function x = GaussElimPivot(A,b)
 if size(b,2) > 1; b=b'; 
end

n = length(b); z = zeros(n,1);

%  Set up scale factor array         

for i = 1:n; z(i) = max(abs(A(i,1:n))); 
end

% The statements below exchange rows if required

for k = 1:n−1
    [Amag,m] = max(abs(A(k:n,k))./z(k:n)); 
    m = m + k − 1;
if Amag < eps; error('Matrix is singular');
end

if m ~= k

b = ExchRows(b,k,m);
z = ExchRows(z,k,m);
A = ExchRows(A,k,m); 
end

%  Elimination steps

for i = k+1:n
    if A(i,k) ~= 0 
        alpha = A(i,k)/A(k,k);
        A(i,k+1:n) = A(i,k+1:n) − alpha*A(k,k+1:n)
        b(i) = b(i) − alpha*b(k);
    end
 end
end

%  Back substitution phase

for k = n:−1:1
    b(k) = (b(k) − A(k,k+1:n)*b(k+1:n))/A(k,k);
end
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%  Enter the values of A and b at the MATLAB's 
%  command window and type GaussElimPivot(A,b), x

Example 14.12  
Given that

,   ,   

use the GaussElimPivot user−defined function above to compute the values of the vector x.

Solution:

At the MATLAB command prompt we enter

A=[−2  5  −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; b = [−3  2  8  5]';
GaussElimPivot(A,b), x

and MATLAB outputs the following:

A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
   -2.0000    5.0000   -4.0000    9.0000
    4.0000   -9.0000   -8.0000   -1.0000
A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
   -2.0000    3.5714   -3.1429    9.5714
    4.0000   -9.0000   -8.0000   -1.0000
A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
   -2.0000    3.5714   -3.1429    9.5714
    4.0000   -6.1429   -9.7143   -2.1429
A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
   -2.0000    3.5714    0.9298   10.3860
    4.0000   -6.1429   -9.7143   -2.1429

A

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

= b

3–
2
8
5

= x

x1

x2

x3

x4

=
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A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
   -2.0000    3.5714    0.9298   10.3860
    4.0000   -6.1429  -16.7193   -3.5439
A =
    7.0000   -5.0000    3.0000    2.0000
   -3.0000   -8.1429    9.2857    1.8571
    4.0000   -6.1429  -16.7193   -3.5439
   -2.0000    3.5714    0.9298   10.1889
x =
    0.7451   -1.0980    0.1176   -0.1373

Check with MATLAB’s left division:

x=b\A

x =
    0.7451   -1.0980    0.1176   -0.1373

The user−defined function LUdecomp below, performs LU decomposition, and returns matrix
A as A=L*U and the row permutation vector permut.

function [A,permut] = LUdecomp(A)

% LU decomposition of matrix A; returns A = L*U
% and the row permutation vector permut

n = size(A,1); z = zeros(n,1);
permut = (1:n)';

for i = 1:n; z(i) = max(abs(A(i,1:n))); 
end

% Exchange rows if necessary         

for k = 1:n−1
[Amag,m] = max(abs(A(k:n,k))./z(k:n));
m = m + k − 1;
if Amag < eps
    error('Matrix is singular')
end

if m ~= k
  z = ExchRows(z,k,m);
  A = ExchRows(A,k,m);
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  permut = ExchRows(permut,k,m);
end

% Elimination pass

for i = k+1:n
    if A(i,k)~=0
       alpha = A(i,k)/A(k,k);
       A(i,k+1:n) = A(i,k+1:n) − alpha*A(k,k+1:n);
       A(i,k) = alpha;

    end
  end
end

Example 14.13  
Given that

use the LUdecomp user−defined function above to decompose matrix A and show how the given
rows were permuted.

Solution:

At the MATLAB command prompt we enter

A=[−2  5  −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; 
[A,permut] = LUdecomp(A)

A =
    7.0000   -5.0000    3.0000    2.0000
   -0.4286   -8.1429    9.2857    1.8571
    0.5714    0.7544  -16.7193   -3.5439
   -0.2857   -0.4386   -0.0556   10.1889

permut =
     3
     2
     4
     1

Check:

A

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

=
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[L,U,P]=lu(A)

L =
    1.0000         0         0         0
   -0.0612    1.0000         0         0
    0.0816   -0.1376    1.0000         0
   -0.0408    0.0761    0.0417    1.0000

U =
    7.0000   -5.0000    3.0000    2.0000
         0   -8.4490    9.4694    1.9796
         0         0  -15.6612   -3.4347
         0         0         0   10.2632

P =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

L*U

ans =
    7.0000   -5.0000    3.0000    2.0000
   -0.4286   -8.1429    9.2857    1.8571
    0.5714    0.7544  -16.7193   -3.5439
   -0.2857   -0.4386   -0.0556   10.1889

The user−defined function LUsolPivot listed below, is saved as LUsolPivot.m and will be used
in the user−defined function matInvert that follows.

% In this user−defined function matrix A and column 
% vector b are entered in MATLAB's command window
% and “permut” holds the row permutation data.
%
function x = LUsolPivot(A,b,permut)
%
% The six statements below rearrange vector b and
% stores it in vector x.
%       
if size(b) > 1; b = b';
end
n = size(A,1);
x = b;
for i = 1:n; x(i)= b(permut(i));
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end
%
% The next six statements perform forward and 
% backward substitution
%
for k = 2:n
x(k) = x(k)− A(k,1:k−1)*x(1:k−1);
end
for k = n:−1:1
x(k) = (x(k) − A(k,k+1:n)*x(k+1:n))/A(k,k);
end

The user−defined function matInvert below, inverts matrix A with LU decomposition.
% This user−defined function inverts a matrix A
% defined in MATLAB's command prompt using LU
% decomposition
%
function Ainv = matInvert(A)
%
n = size(A,1); % Assigns the size of A to n.
%
Ainv = eye(n); % Creates identity matrix of size n.
% The statement below performs LU decomposition
% using the user−defined function LUdecomp(A) saved
% previously
%
[A,permut] = LUdecomp(A);
%
% The last three statements solve for each vector
% on the right side, and store results in Ainv 
% replacing the corresponding vector using the
% user−defined function LUsolPivot saved previously.
%
for i = 1:n
   Ainv(:,i) = LUsolPivot(A,Ainv(:,i),permut);
end

Example 14.14  

Invert the matrix  below with the user−defined function matInvert.A
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Solution:

In MATLAB’s command prompt we enter

A=[−2  5  −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; 
Ainv = matInvert(A)

and MATLAB returns

Ainv =
   -0.0201   -0.0783    0.1174   -0.0242
   -0.0013   -0.0719    0.0078   -0.0683
   -0.0208    0.0369    0.0447   -0.0610
    0.0981    0.0389    0.0416    0.0055

Check with MATLAB’s built−in inv(A) function.

inv(A)

ans =
   -0.0201   -0.0783    0.1174   -0.0242
   -0.0013   -0.0719    0.0078   -0.0683
   -0.0208    0.0369    0.0447   -0.0610
    0.0981    0.0389    0.0416    0.0055

14.6 The Cholesky Factorization
A matrix is said to be positive definite if 

(14.25)

for every  and  is symmetric, that is, . Under those conditions, there exists an
upper triangular matrix  with positive diagonal elements such that

(14.26)

Relation (14.26) is referred to as Cholesky factorization. It is a special case of LU factorization
and requires fewer computations than the LU factorization method of the previous section. Let
us invoke the MATLAB help chol command to see how MATLAB performs this factorization.

A

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

=

xT A x⋅ ⋅ 0>

x 0≠ A AT A=

G

GT G⋅ A=
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CHOL   Cholesky factorization.
    CHOL(X) uses only the diagonal and upper triangle of X.
    The lower triangular is assumed to be the (complex conjugate)
    transpose of the upper. If X is positive definite, then
    R = CHOL(X) produces an upper triangular R so that R'*R = X.
    If X is not positive definite, an error message is printed.

    [R,p] = CHOL(X), with two output arguments, never produces an
    error message. If X is positive definite, then p is 0 and R
    is the same as above. But if X is not positive definite,

then p is a positive integer.

We will consider an example using the Cholesky factorization after we review the MATLAB
functions eye(n) and diag(v,k) as defined by MATLAB.

help eye

 EYE Identity matrix.
    EYE(N) is the N-by-N identity matrix.

    EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on
    the diagonal and zeros elsewhere.

    EYE(SIZE(A)) is the same size as A.

    See also ONES, ZEROS, RAND, RANDN.

help diag

   DIAG Diagonal matrices and diagonals of a matrix.
DIAG(V,K) when V is a vector with N components is a square
matrix of order N+ABS(K) with the elements of V on the K-th
diagonal. K = 0 is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal. 

 DIAG(V) is the same as DIAG(V,0) and puts V on the main diagonal.

    DIAG(X,K) when X is a matrix is a column vector formed from
    the elements of the K-th diagonal of X.
 
 DIAG(X) is the main diagonal of X. DIAG(DIAG(X)) is a diagonal
matrix.

    Example
       m = 5;
       diag(-m:m) + diag(ones(2*m,1),1) + diag(ones(2*m,1),-1)
    produces a tridiagonal matrix of order 2*m+1.
 
    See also SPDIAGS, TRIU, TRIL.
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The QR Factorization

Example 14.15  

Use MATLAB to compute the Cholesky factorization of matrix  as defined below.

format bank; B=[−0.25  −0.50  −0.75  −1.00];
A=5*eye(5)+diag(B, −1)+diag(B, 1), G=chol(A), A1=G'*G 

Solution:

Execution of the MATLAB script above displays the following:
A =
   5.00         -0.25             0             0             0
  -0.25          5.00         -0.50             0             0
      0         -0.50          5.00         -0.75             0
      0             0         -0.75          5.00         -1.00
      0             0             0         -1.00          5.00

G =
   2.24         -0.11             0             0             0
      0          2.23         -0.22             0             0
      0             0          2.22         -0.34             0
      0             0             0          2.21         -0.45
      0             0             0             0          2.19
A1 =
   5.00         -0.25             0             0             0
  -0.25          5.00         -0.50             0             0
      0         -0.50          5.00         -0.75             0
      0             0         -0.75          5.00         -1.00
      0             0             0         -1.00          5.00

We observe that , that is, the matrix product  is satisfied.

14.7 The QR Factorization

The QR factorization decomposes a matrix  into the product of an orthonormal matrix and an
upper triangular matrix. The MATLAB function [Q,R]=qr(A) produces an  matrix whose
columns form an orthonormal or unitary* matrix  and an upper triangular matrix  of the
same size as matrix . In other words,  can be factored as 

(14.27)

* An  matrix  is called unitary if  where  is the complex conjugate matrix of .

A

A1 A= GT G⋅ A=

A
n n×

Q R

n n× A A∗( )T A 1–= A∗ A

A A

A QR=
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Then, a system described by  becomes

(14.28)

and multiplying both sides of (14.28) by  we obtain

(14.29)

The MATLAB [Q,R]=qr(A) is described as follows:
help qr

 QR     Orthogonal-triangular decomposition.
  [Q,R] = QR(A) produces an upper triangular matrix R of the same
    dimension as A and a unitary matrix Q so that A = Q*R.
 
  [Q,R,E] = QR(A) produces a permutation matrix E, an upper
    triangular R and a unitary Q so that A*E = Q*R.  The column
    permutation E is chosen so that abs(diag(R)) is decreasing.
 
  [Q,R] = QR(A,0) produces the "economy size" decomposition.
  If A is m-by-n with m > n, then only the first n columns of Q
  are computed.

  Q,R,E] = QR(A,0) produces an "economy size" decomposition in
  which E is a permutation vector, so that Q*R = A(:,E). The col-
umn permutation E is chosen so that abs(diag(R)) is decreasing. 

 
  By itself, QR(A) is the output of LAPACK'S DGEQRF or ZGEQRF rou-

tine. TRIU(QR(A)) is R.

  R = QR(A) returns only R.  Note that R = chol(A'*A).
  [Q,R] = QR(A) returns both Q and R, but Q is often nearly full.
  C,R] = QR(A,B), where B has as many rows as A, returns C = Q'*B.
  R = QR(A,0) and [C,R] = QR(A,B,0) produce economy size results.

  The full version of QR does not return C.
 
  The least squares approximate solution to A*x = b can be found
  with the Q-less QR decomposition and one step of iterative

refinement:

        x = R\(R'\(A'*b))
        r = b - A*x
        e = R\(R'\(A'*r))
        x = x + e;

Ax b=

QRx b=

Q QT⋅ I=

Rx QTb=
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The QR Factorization

Example 14.16  
Given that

 and 

solve  using the MATLAB function [Q,R]=qr(A) and .

Solution:

A=[2  −3   1; −1   5  −2; 3   −8   4]; b=[2  4  5]'; [Q,R]=qr(A), x=R\Q'*b

Q =
         -0.53         -0.62         -0.58
          0.27         -0.77          0.58
         -0.80          0.15          0.58

R =
         -3.74          9.35         -4.28
             0         -3.24          1.54
             0             0          0.58

x =
          4.14
          4.43
          7.00

Check=A\b

Check =
          4.14
          4.43
          7.00

Let us verify that the matrix  is unitary. Of course, since the elements are real numbers, the

complex conjugate of  is also  and thus we only need to show that  or .

Q*Q'

ans =
          1.00          0.00         -0.00
          0.00          1.00         -0.00
         -0.00         -0.00          1.00

A
2 3– 1
1– 5 2–
3 8– 4

= b
2
4
5

=

Ax b= x R\QTb=

Q

Q Q QT Q 1–= Q QT⋅ I=
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QR factorization is normally used to solve overdetermined systems,*  that is, systems with more
equations than unknowns as in applications where we need to find the least square distance in lin-
ear regression. In an overdetermined system, there is no vector  which can satisfy the entire sys-
tem of equations, so we select the vector  which produces the minimum error. MATLAB does
this with either the left division operator ( \ ) or with the non−negative least−squares function
lsqnonneg(A,b). This function returns the vector  that minimizes norm(A*X−b) subject to

 provided that the elements of  and  are real numbers. For example,

A=[2  −3   1; −1   5  −2; 3   −8   4]; b=[2  4  5]'; X=lsqnonneg(A,b)

returns

X =
    4.1429
    4.4286
    7.0000

Underdetermined systems have infinite solutions and MATLAB selects one but no warning mes-
sage is displayed.

As we’ve learned in Chapter 4, the MATLAB function inv(A) produces the inverse of the square
matrix  and an error message is displayed if  is not a square matrix. The function pinv(A) dis-
plays the pseudoobtaininverse of a  (non−square) matrix . Of course, if  is square, then
pinv(A)=inv(A).

14.8 Singular Value Decomposition

The Singular Value Decomposition (SVD) method decomposes a matrix  into a diagonal matrix
, of the same dimension as  and with nonnegative diagonal elements in decreasing order, and

unitary matrices  and  so that

(14.30)

The matrices , , and , decomposed from a given matrix , can be found with the MATLAB
function [U, S, V]=svd(A).

Example 14.17  
Decompose the matrix

* We defined overdetermined and underdetermined systems in Chapter 8

X
X

X
X 0≥ A b

A A
m n× A A

A
S A

U V

A U S VT⋅ ⋅=

U S V A
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Singular Value Decomposition

into two unitary matrices and a diagonal matrix with non−negative elements.

Solution:

We will use the MATLAB [U, S, V]=svd(A) function.

A=[2  −3   1; −1   5  −2; 3   −8   4]; [U,S,V]=svd(A)

U =
   -0.3150   -0.8050   -0.5028
    0.4731   -0.5924    0.6521
   -0.8228   -0.0325    0.5675

S =
   11.4605         0         0
         0    1.1782         0
         0         0    0.5184
V =
   -0.3116   -0.9463    0.0863
    0.8632   -0.2440    0.4420
   -0.3972    0.2122    0.8929

As expected, the diagonal elements of the triangular  matrix are non−negative and in decreas-
ing values. We also verify that the matrices  and  are unitary as shown below.
 U*U'

ans =

    1.0000   -0.0000   -0.0000
   -0.0000    1.0000    0.0000
   -0.0000    0.0000    1.0000

V*V'

ans =
    1.0000   -0.0000    0.0000
   -0.0000    1.0000   -0.0000
    0.0000   -0.0000    1.0000

A
2 3– 1
1– 5 2–
3 8– 4

=

S
U V
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14.9 Summary
• Orthogonal functions are those which are perpendicular to each other. 

• Two families of curves with the property that each member of either family cuts every member
of the other family at right angles are said to be orthogonal trajectories of each other. 

• The inner (dot) product of two vectors  and  is
a scalar defined as 

• If the dot product of two vectors  and  is zero, these vector are said to be orthogonal to
each other.

• The magnitude of a vector , denoted as , is defined as . A unique
unit vector  is obtained by dividing each component of  by the magnitude  and this pro-
cess is referred to as normalization.

• A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If
these vectors are also unit vectors, the basis is called orthonormal basis.

• If the column (or row) vectors of a square matrix  are mutually orthogonal unit vectors, the

matrix  is said to be orthogonal and  where  is the transpose of  and  is the
identity matrix.

• We can find an orthonormal set of eigenvectors in a  matrix easily from the eigenvalues
but the computations for finding orthonormal sets of eigenvectors for larger size (  or
higher) matrices using the above procedure becomes quite involved. A simpler procedure is
the Gram−Schmidt orthogonalization procedure which we will discuss on the next section.

• The LU factorization method decomposes a matrix  into a lower triangular matrix  and an
upper triangular matrix  so that . The MATLAB function [L,U]=lu(A) decomposes
the matrix  into a lower triangular matrix  and an upper triangular matrix .

• A matrix is said to be positive definite if  for every  and  is symmetric, that

is, . Under those conditions, there exists an upper triangular matrix  with positive

diagonal elements such that . This process is referred to as the Cholesky factoriza-
tion.

• The QR factorization decomposes a matrix  into the product of an orthonormal matrix and
an upper triangular matrix. The MATLAB function [Q,R]=qr(A) produces an  matrix
whose columns form an orthonormal or unitary matrix  and an upper triangular matrix  of
the same size as matrix .

X x1  x2  x3  …  xn[ ]= Y y1  y2  y3  …  yn[ ]=

X Y⋅ x1 y1 x2 y2 x3 y3 … xn yn+ + + +=

X1 X2

X X X x1
2 x2

2 … xn
2+ + +=

U X X

A

A A AT⋅ I= AT A I

2 2×
3 3×

A L
U A L U⋅=

A L U

xT A x⋅ ⋅ 0> x 0≠ A

AT A= G

GT G⋅ A=

A
n n×

Q R
A
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Summary

• The Singular Value Decomposition (SVD) method decomposes a matrix  into a diagonal
matrix , of the same dimension as  and with nonnegative diagonal elements in decreasing

order, and unitary matrices  and  so that . The matrices , , and ,
decomposed from a given matrix , can be found with the MATLAB function [U, S,
V]=svd(A).

A
S A

U V A U S VT⋅ ⋅= U S V
A
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14.10 Exercises

1. Show that the curve  and the curve  where  and  are constants,
are orthogonal to each other.

2. Find the orthogonal trajectories of the curves of the family 

3. Given the vectors  and , use the Gram−Schmidt orthogonal-
ization procedure to find two vectors  and  to form an orthonormal basis.

4. Use MATLAB to find another set of an orthonormal basis with the vectors given in Exercise 3.

5. Use the Gaussian elimination method as in Example 14.8 to decompose the system of equa-
tions

into an upper triangular matrix  and a lower triangular matrix . Verify your answers with
MATLAB.

6. Using the MATLAB functions eye(n) and diag(v,k) to define and display the matrix  shown
below.

Then, use the MATLAB Cholesky factorization function to obtain the matrix  and verify

that .

7. Use the appropriate MATLAB function to decompose the system of equations 

 and 

into an upper triangular matrix  of the same dimension as  and a unitary matrix  so that
. Use a suitable function to verify your results.

x2 3y2+ k1= 3y k2x3= k1 k2

2x2 y2+ kx=

X1 2   1–[ ]T= X2 1   3–[ ]T=

Y1 Y2

x1 2x2 3x3+ + 14=

2x– 1 3x2 2x3+ + 10=

5x1 8– x2 6x3+ 7=

U L

A

A

4.00 0.80– 0 0
0.80– 4.00 1.00– 0
0 1.00– 4.00 1.20–
0 0 1.20– 4.00

=

G

GT G⋅ A=

A
1 0 1–
0 1 2
2– 3– 4

= b
3
5
9

=

R A Q
Q R⋅ A=
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Exercises

8. Use the appropriate MATLAB function to decompose the matrix  given as 

into a diagonal matrix  of the same dimension as  and with non−negative diagonal ele-

ments in decreasing order and unitary matrices  and  so that .

A

A
1 0 1–
0 1 2
2– 3– 4

=

S A

U V U S VT⋅ ⋅ A=



Chapter 14  Orthogonal Functions and Matrix Factorizations

14−34 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

14.11 Solutions to End−of−Chapter Exercises
1.

  (1)

  (2)

Implicit differentiation of (1) yields

or

  (3)

Differentiation of (2) yields

  (4)

From (2), 

and by substitution into (4) we obtain

  (5)

We observe that (5) is the negative reciprocal of (3) and thus the given curves are orthogonal
to each other.

2.

  (1)

Implicit differentiation of (1) yields

and solving for ,

  (2)

From (1),

x2 3y2+ k1=

3y k2x3=

2x 6ydy
dx
------+ 0=

dy
dx
------ 1

3
--- x

y
---⋅–=

dy
dx
------

3k2x2

3
-------------- k2x2= =

k2
3y
x3
------=

dy
dx
------ 3y

x3
------ x2⋅ 3 y

x
---= =

2x2 y2+ kx=

d
dx
------ 2x2( ) d

dx
------ y2+

d
dx
------ kx( )=

4x 2ydy
dx
------+ k=

dy dx⁄
dy
dx
------ k 4x–

2y
---------------=
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Solutions to End−of−Chapter Exercises

  (3)

and by substitution into (2)

  (4)

Now, we need to find the curves whose slopes are given by the negative reciprocal of (4), that
is, we need to find the family of the curves of 

  (5)

We rewrite (5) as

  (6)

and we let . Then,  and by substitution into (6)

Division of both sides of the above by  yields

Collecting like terms and simplifying we obtain

Separating the variables we obtain

or

and by integrating these terms we find

By substitution of  we obtain

k 2x2 y2+
x

--------------------=

dy
dx
------

2x2 y2+
x

-------------------- 4x–

2y
--------------------------------- 2x2– y2+

2xy
-------------------------= =

dy
dx
------ 2xy

2x2 y2–
--------------------=

2x2 y2–( )dy 2xydx=

y ux= dy udx xdu+=

2x2 u2x2–( ) udx xdu+( ) 2x2udx=

x2

2 u2–( ) udx xdu+( ) 2udx=

x 2 u2–( )du u3dx=

dx
x

------ 2 u2–( )
u3

-------------------du 2
u3
-----du du

u
------–= =

dx
x

------ du
u

------+
2
u3
-----du=

xln uln+ 1–

u2
------ C+=

u y x⁄=
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and thus the family of curves orthogonal to the given family is

3.
From (14.14)

and from (14.15)

and denoting the matrix whose elements are the unit vectors as , we have:

We verify that  as shown below.

4.

A=[2  −1; 1  −3]; B=orth(A)

B =
   -0.5257   -0.8507
   -0.8507    0.5257

I=B*B'

xln y
x
---ln Cln+ + x y

x
--- C⋅ ⋅⎝ ⎠

⎛ ⎞ln Cyln x2–

y2
--------= = =

x2 y2 Cyln–=

Y1 X1 2   1–[ ]T= =

Y2 X2
Y1 X2⋅
Y1 Y1⋅
------------------ Y1⋅– 1   3–[ ]T 2   1–[ ]T 1   3–[ ]T⋅

2   1–[ ]T 2   1–[ ]T⋅
------------------------------------------------ 2   1–[ ]T⋅–= =

1   3–[ ]T 2 3+[ ]
4 1+[ ]

----------------- 2   1–[ ]T⋅– 1   3–[ ]T 5
5
--- 2   1–[ ]T⋅–= ==

1   3–[ ]T 2   1–[ ]T– 1–    2[ ]T==

U1
Y1
Y1
--------- 2 5⁄    1– 5⁄[ ]

T
= =

U2
Y2
Y2
--------- 1– 5   ⁄    2– 5⁄[ ]

T
= =

A

A 2 5⁄ 1– 5⁄

1– 5⁄    2– 5⁄
=

A AT⋅ I=

2 5⁄ 1– 5⁄

1– 5⁄    2– 5⁄

2 5⁄ 1– 5⁄

1– 5⁄    2– 5⁄
⋅ 4 5⁄ 1 5⁄+ 2– 5⁄ 2 5⁄+

2– 5⁄ 2 5⁄+ 1 5⁄ 4 5⁄+
1 0
0 1

= =
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I =
    1.0000   -0.0000
   -0.0000    1.0000

5.

  (1)

Multiplying the first equation of (1) by  and subtracting it from the second in (1) we obtain
the second equation in (2) and thus  is eliminated. Likewise, we multiply the first equation
by  and we subtract it from the third in (1). Then,

  (2)

Next, we multiply the second equation in (2) by  and we subtract it from the third in
(2). Then, after simplification 

 (3)

Thus,

The multipliers that we’ve used are , , and . These are the elements , , and
 respectively. Therefore, the lower triangular matrix is

The elements of the upper triangular matrix are the coefficients of the unknowns in (3) and
thus

x1 2x2 3x3+ + 14=

2x– 1 3x2 2x3+ + 10=

5x1 8– x2 6x3+ 7=

2–

x1

5

x1 2x2 3x3+ + 14=

7x2 8x3+ 38=

18– x2 9– x3 63–=

18 7⁄–

x1 2x2 3x3+ + 14=

7x2 8x3+ 38=

81 7⁄( )x3 243 7⁄=

x3 243 81⁄ 3= =

x2 38 8x3–( ) 7⁄ 2= =

x1 14 3x3 2x2––( ) 1= =

2– 5 18– 7⁄ L21 L31

L32

L
1 0 0
2– 1 0

5 18 7⁄– 1

=

U
1 2 3
0 7 8
0 0 81 7⁄

=
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Now, we use MATLAB to verify that  

L=[1  0  0; −2  1  0; 5  −18/7  1]; U=[1  2  3; 0  7  8; 0  0  81/7]; A=L*U

A =
      1            2            3      
     -2            3            2      
      5           -8            6

6.
format bank; B=[−0.8  −1.0  −1.2];
A=4*eye(4)+diag(B, −1)+diag(B, 1), G=chol(A), A1=G'*G

A =
          4.00         -0.80             0             0
         -0.80          4.00         -1.00             0
             0         -1.00          4.00         -1.20
             0             0         -1.20          4.00

G =
          2.00         -0.40             0             0
             0          1.96         -0.51             0
             0             0          1.93         -0.62
             0             0             0          1.90
A1 =

          4.00         -0.80             0             0
         -0.80          4.00         -1.00             0
             0         -1.00          4.00         -1.20
             0             0         -1.20          4.00

7.

A=[1  0  −1; 0  1  2; −2  -3  4]; b=[3  5  9]';
[Q,R]=qr(A), QQT=Q*Q', x=R\Q'*b, Check=A\b

Q =
   -0.4472    0.7171    0.5345
         0   -0.5976    0.8018
    0.8944    0.3586    0.2673

R =
   -2.2361   -2.6833    4.0249
         0   -1.6733   -0.4781
         0         0    2.1381

L U⋅ A=
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QQT =
    1.0000    0.0000    0.0000
    0.0000    1.0000    0.0000
    0.0000    0.0000    1.0000

x =
    6.7500
   -2.5000
    3.7500

Check =
    6.7500
   -2.5000
    3.7500

8.

A=[1  0  −1; 0  1  2; −2  −3  4];
[U,S,V]=svd(A), UUT=U*U', VVT=V*V'

U =
   -0.2093   -0.2076   -0.9556
    0.1977    0.9480   -0.2493
    0.9577   -0.2410   -0.1574

S =
    5.5985         0         0
         0    2.0413         0
         0         0    0.7000

V =
   -0.3795    0.1345   -0.9154
   -0.4779    0.8187    0.3184
    0.7922    0.5583   -0.2464

UUT =
    1.0000    0.0000    0.0000
    0.0000    1.0000    0.0000
    0.0000    0.0000    1.0000

VVT =
    1.0000    0.0000   -0.0000
    0.0000    1.0000   -0.0000
   -0.0000   -0.0000    1.0000
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Chapter 15

Bessel, Legendre, and Chebyshev Functions

his chapter is an introduction to some very interesting functions. These are special func-
tions that find wide applications in science and engineering. They are solutions of differen-
tial equations with variable coefficients and, under certain conditions, satisfy the orthogo-

nality principle.

15.1 The Bessel Function

The Bessel functions, denoted as , are used in engineering, acoustics, aeronautics, thermody-
namics, theory of elasticity and others. For instance, in the electrical engineering field, they are
used in frequency modulation, transmission lines, and telephone equations.

Bessel functions are solutions of the differential equation

(15.1)

where  can be any number, positive or negative integer, fractional, or even a complex number.
Then, the form of the general solution of (15.1) depends on the value of .

Differential equations with variable coefficients, such as (15.1), cannot be solved in terms of
familiar functions as those which we encountered in ordinary differential equations with constant
coefficients. The usual procedure is to derive solutions in the form of infinite series, and the most
common are the Method of Frobenius and the Method of Picard. It is beyond the scope of this book
to derive the infinite series which are approximations to the solutions of these differential equa-
tions; these are discussed in advanced mathematics textbooks. Therefore, we will accept the solu-
tions without proof.

Applying the method of Frobenius to (15.1), we obtain the infinite power series

(15.2)

This series is referred to as Bessel function of order  where  is any positive real number or zero. If
in (15.2), we replace  with , we obtain the relation

T

Jn x( )

x2

x2

2

d

d y x xd
dy x2 n2–( )y+ + 0=

n
n

Jn x( ) 1–( )k

k 0=

∞

∑
x
2
---⎝ ⎠

⎛ ⎞ n 2k+ 1
k! Γ n k 1+ +( )⋅
----------------------------------------⋅ ⋅     n 0≥=

n n
n n–

  

   

   



Chapter 15  Bessel, Legendre, and Chebyshev Functions

15−2 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

(15.3)

and the function  is referred to as the Bessel function of negative order .

For the special case where  is a positive integer or zero,

(15.4)
and (15.2) reduces to

(15.5)

or

(15.6)

For  and , (15.6) reduces to the following series:

(15.7)

(15.8)

(15.9)

We observe from (15.7) through (15.9), that when  is zero or even,  is an even function of
, and odd when  is odd.

If we differentiate the series of  in (15.7), and compare with the series of  in (15.8), we
see that

(15.10)

Also, if we multiply the series for  by  and differentiate it, we will find that

J n– x( ) 1–( )k

k 0=

∞

∑
x
2
---⎝ ⎠

⎛ ⎞ n– 2k+ 1
k! Γ n– k 1+ +( )⋅
--------------------------------------------⋅ ⋅     =

J n– x( ) n

n

Γ n k 1+ +( ) n k+( )!=

Jn x( ) 1–( )k

k 0=

∞

∑
x
2
---⎝ ⎠

⎛ ⎞ n 2k+ 1
k! n k+( )!⋅
----------------------------⋅ ⋅     n 0 1 2 …, , ,= =

Jn x( ) xn

2n n!⋅
-------------- 1 x2

22 1! n 1+( )⋅ ⋅
------------------------------------– x4

24 2! n 1+( ) n 2+( )⋅ ⋅
------------------------------------------------------

x6

26 3! n 1+( ) n 2+( ) n 3+( )⋅ ⋅
-----------------------------------------------------------------------– …

+

+

⎩

⎭

⎨

⎬

⎧

⎫

=

n 0 1,= 2

J0 x( ) 1 x2

22 1!( )2⋅
----------------------– x4

24 2!( )2⋅
---------------------- x6

26 3!( )2⋅
---------------------- x8

28 4!( )2⋅
---------------------- …–+–+=

J1 x( ) x
2
--- x3

23 1! 2!⋅ ⋅
------------------------– x5

25 2! 3!⋅ ⋅
------------------------ x7

27 3! 4!⋅ ⋅
------------------------ x9

29 4! 5!⋅ ⋅
------------------------ …–+–+=

J2 x( ) x2

22 2!⋅
-------------- x4

24 1! 3!⋅ ⋅
------------------------– x6

26 2! 4!⋅ ⋅
------------------------ x8

28 3! 5!⋅ ⋅
------------------------ x10

210 4! 6!⋅ ⋅
-------------------------- …–+–+=

n Jn x( )

x n

J0 x( ) J1 x( )

xd
d J0 x( ) J1 x( )–=

J1 x( ) x
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(15.11)

Example 15.1  
Compute, correct to four decimal places, the values of 

a.     b.     c.  

Solution:

a.
From (15.7),

or from math tables, 

b.
From (15.8), 

or from math tables, 

c.
From (15.9),

or from math tables, .

We can use the MATLAB besselj(n,x) function or the Excel BESSELJ(x,n) function for the
above computations. With MATLAB, we obtain

besselj(0,2), besselj(1,3), besselj(2,1)

ans =
    0.2239
ans =
    0.3391
ans =
    0.1149

xd
d xJ1 x( ){ } xJ0 x( )=

J0 2( ) J1 3( ) J2 1( )

J0 2( ) 1 4
4
---– 16

64
------ 64

64 36×
------------------– 256

256 576×
------------------------+ + 1

4
--- 1

36
------– 1

576
---------+ 43

192
--------- 0.2240= = = =

J0 2( ) 0.2239=

J1 3( ) 3
2
--- 27

16
------– 243

384
--------- 2187

18432
---------------– 19683

1474560
---------------------+ + 0.3400= =

J1 3( ) 0.3391=

J2 1( ) 1
8
--- 1

96
------– 1

1536
------------ 1

184320
------------------– 1

17694720
------------------------+ + 0.1152= =

J2 1( ) 0.1149=
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and with Excel, 

The MATLAB script below plots , , and .

x = 0.00: 0.05: 10.00; v = besselj(0,x); w = besselj(1,x); z = besselj(2,x);
plot(x,v,x,w,x,z); grid; title('Bessel Functions of the First Kind'); xlabel('x'); ylabel('Jn(x)');
text(0.95, 0.85, 'J0(x)'); text(2.20, 0.60, 'J1(x)'); text(4.25, 0.35, 'J2(x)')

The plots for ,  and  are shown in Figure 15.1.* 

Figure 15.1. Plots of ,  and  using MATLAB

We can also use Excel to plot these series as shown in Figure 15.2. 

The definition of a Bessel function of the first kind will be explained shortly.

The −axis crossings in the plot of Figures 15.1 and 15.2 show the first few roots of the ,
, and  series. However, all  are infinite series and thus, it is a very difficult and

tedious task to compute all roots of these series. Fortunately, tables of some of the roots of 
and  are shown in math tables.

* In Frequency Modulation (FM),  is denoted as  and it is called modulation index. The functions , , 
and so on, represent the carrier, first sideband, second sideband etc. respectively.

besselj(2,0)= 0.2239 besselj(3,1)= 0.3391 besselj(1,2)= 0.1149

J0 x( ) J1 x( ) J2 x( )

J0 x( ) J1 x( ) J2 x( )

x β J0 β( ) J1 β( ) J2 β( )

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1
Bessel Functions of the First Kind

x

Jn
(x

)

J0(x)

J1(x)

J2(x)

J0 x( ) J1 x( ) J2 x( )

x J0 x( )

J1 x( ) J2 x( ) Jn x( )

J0 x( )

J1 x( )
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Figure 15.2. Plots of ,  and  using Excel

The equations  and  exhibit some interesting characteristics. The most note-
worthy are:

1. They have no complex roots

2. Each has an infinite number of distinct real roots

3. Between two consecutive roots of one of these equations lies one and only one root of the
other equation, that is, the roots of these equations separate each other. This is observed on
Table 15.1 which shows the first  positive roots of these equations, and the differences
between consecutive roots. For instance, we observe that the first root  of  lies
between the roots  and  of .

4. As the roots become larger and larger, the difference between consecutive roots approaches
the value of π, that is,  and , are almost periodic with period almost . In other
words, these series behave like the  and  functions.

If  is half of an odd integer, such as , , , and so on, then  can be expressed in a
finite form of sines and cosines. Consider, for example, the so−called half−order Bessel functions

 and . If we let  in (15.2), we obtain

(15.12)

Plot of Bessel Function Jn(x) for n = 0, 1 and 2

x J0(x) J1(x) J2(x)

0.00 1.0000 0.0000 0.0000
0.05 0.9994 0.0250 0.0003
0.10 0.9975 0.0499 0.0012
0.15 0.9944 0.0748 0.0028
0.20 0.9900 0.0995 0.0050
0.25 0.9844 0.1240 0.0078
0.30 0.9776 0.1483 0.0112
0.35 0.9696 0.1723 0.0152
0.40 0.9604 0.1960 0.0197
0.45 0.9500 0.2194 0.0249
0.50 0.9385 0.2423 0.0306
0.55 0.9258 0.2647 0.0369
0.60 0.9120 0.2867 0.0437
0.65 0.8971 0.3081 0.0510
0.70 0.8812 0.3290 0.0588
0.75 0.8642 0.3492 0.0671

Bessel Functions of the First Kind

-0.5

0.0

0.5

1.0

0 2 4 6 8 10

x

J n
(x

)

J0(x)

J1(x)

J2(x)

J0 x( ) J1 x( ) J2 x( )

J0 x( ) 0= J1 x( ) 0=

5
3.8317 J1 x( )

2.4048 5.5201 J0 x( )

J0 x( ) J1 x( ) 2π

xcos xsin

n 1 2⁄ 3 2⁄ 5 2⁄ Jn x( )

J1 2⁄ x( ) J 1 2⁄–( ) x( ) n 1 2⁄=

J1 2⁄ x( ) 2
πx
------ xsin=
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Likewise, if we let  in (15.3), we obtain

(15.13)

Example 15.2  
Compute, correct to four decimal places, the values of

a.        b.  

Solution:

a.  Using (15.12), 

b.  Using (15.13).

Check with MATLAB:

besselj(0.5,pi/4), besselj(−0.5,pi/4)

TABLE 15.1  The first few roots of and  

Roots Differences Roots Differences
2.4048 3.8317

3.1153 3.1839
5.5201 7.0156

3.1336 3.1579
8.6537 10.1735

3.1378 3.1502
11.7915 13.3237

3.1394 3.1469
14.9309 16.4706

J0 x( ) J1 x( )

J0 x( ) 0= J1 x( ) 0=

… …

… …

n 1 2⁄=

J 1 2⁄–( ) x( ) 2
πx
------ xcos=

J1 2⁄
π
4
---⎝ ⎠

⎛ ⎞ J 1 2⁄–( )
π
4
---⎝ ⎠

⎛ ⎞

J1 2⁄
π
4
---⎝ ⎠

⎛ ⎞ 2
π π 4⁄( )
------------------ π 4⁄( )sin 1

π
--- 8 2

2
-------⋅ 4

2π
------ 2

π
--- 0.6366= = = = =

J 1 2⁄–( )
π
4
---⎝ ⎠

⎛ ⎞ 2
π π 4⁄( )
------------------ π 4⁄( )cos 1

π
--- 8 2

2
-------⋅ 2

π
--- 0.6366= = = =
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ans =
    0.6366
ans =
    0.6366

The Bessel functions which we have discussed thus far, are referred to as Bessel functions of the first
kind. Other Bessel functions, denoted as  and referred to as Bessel functions of the second
kind, or Weber functions, or Neumann functions. These are additional solutions of the Bessel’s equa-
tion, and will be explained in the next paragraph. Also, certain differential equations resemble
the Bessel equation, and thus their solutions are called Modified Bessel functions, or Hankel func-
tions.

As mentioned earlier, a Bessel function  for , can be obtained by replacing  with 
in (15.2). If  is an integer, we will prove that

(15.14)

Proof:

From (15.3),

(15.15)

Now, we recall from Chapter 13, that the numbers  yield infinite values in ;
then, the first summation in the above relation is zero for . Also, if we let

 in the second summation, after simplification and comparison with (15.5), we see that 

and thus (15.14) has been proved.

Yn x( )

J n– x( ) n 0> n n–

n

J n– x( ) 1–( )nJn x( )=

for  n 1 2 3 …, , ,=

J n– x( ) 1–( )k x 2⁄( ) n– 2k+⋅
k! Γ n– k 1+ +( )⋅

-------------------------------------------------
k 0=

∞

∑     =

1–( )k x 2⁄( ) n– 2k+⋅
k! Γ n– k 1+ +( )⋅

-------------------------------------------------
k 0=

n 1–

∑= 1–( )k x 2⁄( ) n– 2k+⋅
k! Γ n– k 1+ +( )⋅

-------------------------------------------------
k n=

∞

∑+

n 0 1– 2– …, , ,= Γ n( )
k 0 1 2 … n 1–, , , ,=

k n m+=

1–( )n m+ x 2⁄( ) n– 2n 2m+ +⋅
n m+( )! Γ m 1+( )⋅

--------------------------------------------------------------------
m 0=

∞

∑

                    1–( )n x
2
---⎝ ⎠

⎛ ⎞ n 2m+ 1–( )m

Γ n m 1+ +( )! m!⋅
---------------------------------------------

m 0=

∞

∑ 1–( )nJn x( )==
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It is shown in advanced mathematics textbooks that, if  is not an integer,  and  are
linearly independent; for this case, the general solution of the Bessel equation is

(15.16)

For  and so on, the functions  and  are not linearly independent as we
have seen in (15.14); therefore, (15.16) is not the general solution, that is, for this case, these two
series produce only one solution, and for this reason, the Bessel functions of the second kind are
introduced to obtain the general solution. 

The following example illustrates the fact that when  is not an integer or zero, relation (15.16) is
the general solution.

Example 15.3  

Find the general solution of Bessel’s equation of order .

Solution:

By the substitution  in (15.1), we obtain

(15.17)

We will show that the general solution of (15.17) is

(15.18)

By substitution of (15.12) and (15.13) into (15.18), we obtain

(15.19)

and letting  and , (15.19) can be written as

(15.20)

Since the two terms on the right side of (15.20) are linearly independent,  represents the general
solution of (15.17).

n Jn x( ) J n– x( )

y AJn x( ) BJ n– x( )+=

n 0 1 2 3 …, , , ,≠

n 1 2 3 …, , ,= Jn x( ) J n– x( )

n

1 2⁄

n 1 2⁄=

x2

x2

2

d

d y x xd
dy x2 1

4
---–⎝ ⎠

⎛ ⎞ y+ + 0=

y AJ1 2⁄ x( ) BJ 1 2⁄– x( )+=

y A 2
πx
------ xsin B 2

πx
------ xcos+=

C1 A 2 π⁄= C2 B 2 π⁄=

y C1
xsin

x
---------- C2

xcos
x

-----------+=

y
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The Bessel functions of the second kind, third kind, and others, can be evaluated at specified val-
ues either with MATLAB or Excel. The descriptions, syntax, and examples for each can be found
by invoking help bessel for MATLAB, and help for Excel.

One very important property of the Bessel’s functions is that within certain limits, they constitute
an orthogonal system.* For instance, if  and  are distinct roots of ,  and

, then,

(15.21)

and we say that  and  are orthogonal in the interval . They are also orthog-
onal with the variable .

The function

(15.22)

is referred to as the generating function for Bessel functions of the first kind of integer order. Using this
function, we can obtain several interesting properties for integer values of . Some of these are
given below without proof. More detailed discussion and proofs can be found in advanced mathe-
matics textbooks.

(15.23)

(15.24)

where the subscript  denotes that the first relation is valid for even values of , whereas 
in the second, indicates that the second relation is valid for odd values of . Also,

(15.25)

* Two functions constitute an orthogonal system, when the average of their cross product is zero within some specified limits. 

a b J0 x( ) 0= J0 a( ) 0=

J0 b( ) 0=

xJ0 ax( )J0 bx( ) xd
0

1

∫ 0=

J0 ax( ) J0 bx( ) 0 x 1≤ ≤

x

e
x
2
--- t 1

t
---–⎝ ⎠

⎛ ⎞

Jn x( )tn

n ∞–=

∞

∑=

n

Jn
2 x( )

n ∞–=

∞

∑ 1=

x φsin( )cos J0 x( ) 2 J2k x( ) 2kφcos
k 1=

∞

∑+=

x φsin( )sin 2 J2k 1– x( ) 2k 1–( )sin φ
k 1=

∞

∑=

2k k 2k 1–

k

nφcos x φsin( )cos⋅ φd
0

π

∫
πJn x( )  n even=

0          n odd=⎩
⎨
⎧

=

nsin φ x φsin( )sin⋅ φd
0

π

∫
0            n even=

πJn x( )  n odd=⎩
⎨
⎧

=
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and

(15.26)

Relations (15.23) through (15.26) appear in frequency modulation. For example, the average
power is shown to be

and with (15.23), it reduces to

15.2 Legendre Functions
Another second−order differential equation with variable coefficients is the equation

(15.27)

known as Legendre’s equation. Here,  is a constant, and if it is zero or a positive integer, then
(15.27) has polynomial solutions of special interest.

Applying the method of Frobenius, as in the Bessel equation, we obtain two independent solu-
tions  and  as follows.

(15.28)

(15.29)

where  and  are constants. We observe that  is an even function of , while  is an odd
function. Then, the general solution of (15.27) is  or

(15.30)

and this series is absolutely convergent*  for .

Jn x( ) 1
π
--- nφ x φsin–( ) φdcos

0

π

∫=

Pave
1
2
---AC

2 Jn
2 β( )

n ∞–=

∞

∑=

Pave
1
2
---AC

2=

1 x2–( )d
2 y

dx2
--------- 2xdy

dx
------– n n 1+( )y+ 0=

n

y1 y2

y1 a0 1 n n 1+( )
2!

--------------------x2– n 2–( )n n 1+( ) n 3+( )
4!

-------------------------------------------------------x4 …–+=

y2 a1 x n 1–( ) n 2+( )
3!

----------------------------------x3–
n 3–( ) n 1–( ) n 2+( ) n 4+( )

5!
---------------------------------------------------------------------x5 …–+=

a0 a1 y1 x y2

y y1 y2+=

y a0 1 n n 1+( )
2!

--------------------x2– n 2–( )n n 1+( ) n 3+( )
4!

-------------------------------------------------------x4 …–+

a1 x n 1–( ) n 2+( )
3!

----------------------------------x3– n 3–( ) n 1–( ) n 2+( ) n 4+( )
5!

---------------------------------------------------------------------x5 …–++

=

x 1>
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The parameter  is usually a positive integer. If  is zero, or an even positive integer, the first
term on the right side of (15.30) contains only a finite number of terms; if it is odd, the second
term contains only a finite number of terms. Therefore, whenever  is zero or a positive integer;
the general solution of Legendre’s equation contains a polynomial solution which is denoted as

, and an infinite series solution which is denoted as .

The Legendre polynomials are defined as

(15.31)

(15.32)

and these are also referred to as surface zonal harmonics. The infinite series solution  is
referred to as Legendre functions of the second kind. These become infinite as  and their
applications to science and engineering problems are very limited. Accordingly, they will not be
discussed in this text.

The even and odd functions of (15.31) and (15.32) can be combined to a single relation as

(15.33)

From (15.33), or (15.31) and (15.32), we obtain the following first 6 Legendre polynomials.

* Assume that the infinite series  converges, i.e., reaches a limit. If, when we replace the

terms of this series by their absolute value, we find that the resulting series  also

converges, this series is said to be absolutely convergent. 

un x0( )
n 1=

∞

∑ u1 x0( ) u2 x0( ) …+ +=

un x0( )
n 1=

∞

∑ u1 x0( ) u2 x0( ) …+ +=

n n

n

Pn x( ) Qn x( )

Pn x( ) 1–( )n 2⁄ 1 3 5 … n 1–( )⋅ ⋅ ⋅ ⋅
2 4 6 … n⋅ ⋅ ⋅ ⋅

-------------------------------------------------⋅ 1 n n 1+( )
2!

--------------------x2– …+=

for  n 0  or  n even integer= =

Pn x( ) 1–( ) n 1–( ) 2⁄ 1 3 5 … n⋅ ⋅ ⋅ ⋅
2 4 6 … n 1–( )⋅ ⋅ ⋅ ⋅
-------------------------------------------------⋅ x n 1–( ) n 2+( )

3!
----------------------------------x3– …+=

for  n odd integer=

Qn x( )

x 1±→

Pn x( ) 1–( )k 2n 2k–( )!⋅

2nk! n k–( )! n 2k–( )!
----------------------------------------------------xn 2k–

k 0=

N

∑=

where N n
2
---  for  n even  and  N n 1–( )

2
----------------  for  n odd= = = =
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(15.34)

The relation

(15.35)

is known as Rodrigues’ formula, and offers another method of expressing the Legendre polynomials.
We prove (15.35) as follows.

From the binomial theorem,

(15.36)

and differentiation of (15.36) with respect to   times yields

(15.37)

Now, by comparison with (15.33), we recognize (15.37) as  and thus (15.35) is
proved. 

Another important identity involving Legendre polynomials, is the generating function for Legendre
polynomials which is defined as

(15.38)

We will illustrate the use of the Legendre polynomials with the following example.

Example 15.4  

Find the potential difference (voltage)  at a point  developed by a nearby dipole*  in terms of
the distance between the point  and the dipole, and the angle which point  makes with the
center of the dipole.

* A dipole is a pair of electric charges or magnetic poles, of equal magnitude but of opposite sign or polarity, separated by a
small distance. Alternately, a dipole is an antenna, usually fed from the center, consisting of two equal rods extending out-
ward in a straight line.

P0 x( ) 1=                               P1 x( ) x=

P2 x( ) 1
2
--- 3x2 1–( )=               P3 x( ) 1

2
--- 5x3 3x–( )=

P4 x( ) 1
8
--- 35x4 30x2– 3+( )= P5 x( ) 1

8
--- 63x5 70x3– 15x+( )=

Pn x( ) 1

2n n!⋅
--------------- d n

dxn
--------- x2 1–( )

n
⋅=

x2 1–( )
n 1–( )k n!⋅

k! n k–( )!⋅
----------------------------x2n 2k–

k 0=

n

∑=

x n

d n

dxn
-------- x2 1–( )

n 1–( )k n!⋅
k! n k–( )!
------------------------ 2n 2k–( )!

n 2k–( )!
-------------------------⋅ xn 2k–

k 0=

N

∑=

2n n! Pn x( )⋅ ⋅

1

1 2xt– t2+
-------------------------------- P0 x( ) P1 x( )t P2 x( )t2 … Pn x( )tn+ + + + Pn x( )tn

n 0=

∞

∑= =

v P
P P
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Solution:

Let the charges  and  of the dipole be a distance 2d apart with the origin 0 as the midpoint as
shown in Figure 15.3.

 
Figure 15.3. Figure for Example 15.4

Let the potential at point  be . From electromagnetic field textbooks we find that

(15.39)

where  is the permittivity*  of the vacuum. For simplicity, we will denote the quantity 
as k and thus we rewrite (15.39) as

(15.40)

Next, we need to express  and  in terms or d and r. By the law of cosines,

(15.41)
and

(15.42)

Dividing both sides of (15.42) by , we obtain

(15.43)

or

* Permittivity is a measure of the ability of a material to resist the formation of an electric field within it. 

q q–

0 q−q d d

r1 r2

r

θ

P

P VP

VP
q

4πε0
------------ 1

r2
---- 1

r1
----–⎝ ⎠

⎛ ⎞=

ε0 1 4πε0( )⁄

VP kq 1
r2
---- 1

r1
----–⎝ ⎠

⎛ ⎞ kq r2
1– r1

1––( )= =

r1 r2

r1 d 2 r2 2– dr 180° θ–( )cos+ d 2 r2 2dr θcos+ += =

r2 d 2 r2 2– dr θcos+=

r

r2
r
---- d 2

r2
------ 1 2d θcos

r
------------------–+=
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(15.44)

In all practical applications, the point  is sufficiently far from the origin; thus, we assume that
. Now, we want to relate the terms inside the parentheses of (15.44), to a Legendre polyno-

mial. We do this by expressing these terms in the form of the generating function of (15.38).

We let , and ; then, by substitution into (15.44) we obtain

(15.45)

We recall that (15.45) holds only if  and . This requirement is satisfied since x and y,
as defined, are both less than unity.

To find a similar expression for , we simply replace  with  in (15.45), and thus

(15.46)

By substitution of (15.45) and (15.46) into (15.40), we obtain

(15.47)

Since , and , we can express (15.47) as

(15.48)

However, if  is even in (15.48), , and therefore, all even powers vanish.
But when  is odd, and the odd powers in (15.48) are duplicated. Then,

(15.49)

and for , (15.49) can be approximated as

* (15.50)

r2
1– 1

r
--- d 2

r2
------ 1 2d θcos

r
------------------–+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 2⁄–

=
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The term  is the magnitude of the so−called dipole moment. It is a vector directed from the
negative charge towards the positive charge. It is denoted with the letter , that is,

(15.51)

The relation of (15.50) can, of course, be derived without the use of Legendre polynomials as fol-
lows:

For , the distances , r, and  can be approximated by parallel lines as shown in Figure
15.4. Then, the negative and positive charges look like a single point charge, and using (15.40)
we obtain

(15.52)

We observe that (15.52) is the same as (15.50).
 

Figure 15.4. Derivation of the voltage developed by a dipole

Another interesting relation that can be used to find the Legendre polynomial series of a function
 for , is

(15.53)

* Here, we have used the identity . This will be seen shortly in (15.57) when we discuss the trigonometric

form of the Legendre polynomials.
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θ
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r2 r1– 2d θcos=
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Then, a function  can be expanded as

(15.54)

The example below illustrates how this relation is being used.

Example 15.5  
Compute the Legendre polynomial series representing the waveform of Figure 15.5.

 

Figure 15.5. Waveform for Example 15.5

Solution:

We will first compute the coefficients  from (15.53); then, we will substitute these into (15.54).
We will also use (15.34) for the polynomials of .

For this example,
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∞
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and so on. Therefore, using (15.54) and (15.34) we obtain

(15.55)

We observe that the waveform of  is an odd function and, as we found above, its expansion
contains only odd Legendre polynomials.

In many applications, the algebraic form of the Legendre polynomials is usually the most useful.
However, there are times when we want to express the polynomials in terms trigonometric func-
tions, as we did in Example 15.4. Also, the trigonometric forms are most convenient with the
cylindrical and spherical coordinate systems. It is shown in advanced mathematics textbooks that

(15.56)

From (15.56) we obtain the first 6 Legendre polynomials in trigonometric form listed below.

(15.57)

The Legendre polynomials in algebraic form, satisfy the orthogonality principle when  as
indicated by the following integral.
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(15.58)

Similarly, the Legendre polynomials in trigonometric form satisfy the orthogonality principle when
 as indicated by the following integral.

(15.59)

We must remember that all the Legendre polynomials we have discussed thus far are referred to as
surface zonal harmonics, and math tables include values of these as computed from Rodrigues’ for-
mula of (15.35).

There is another class of Legendre functions which are solutions of the differential equation

(15.60)

and this is referred to as the associated Legendre differential equation. We observe that if ,
(15.60) reduces to (15.27).

The general solution of (15.60) is

(15.61)

where  and  are arbitrary constants. The functions  and  are referred to as asso-
ciated Legendre functions of the first and second kind respectively. These are evaluated from

(15.62)

and 

(15.63)

Relations (15.62) and (15.63) are also known as spherical harmonics.

We will restrict our subsequent discussion to the associated Legendre functions of the first kind,
that is, the polynomials .
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At present, Excel does not have any functions related to Legendre polynomials. MATLAB pro-
vides the legendre(n,x) function that computes the associated Legendre functions of the first
kind of degree , and order  evaluated for each element of .

Example 15.6  
Find the following associated Legendre functions and evaluate as indicated.

a.     b.     c.  

Solution:

For this example, we use the relation (15.62), that is,

and the appropriate relations of (15.34). For this example,

a.

For  in (15.62), we obtain

As stated above, the MATLAB legendre(n,x) function computes the associated Legendre
functions of the first kind of degree  and order  evaluated for each element
of . Here,  and thus MATLAB will return a matrix whose rows correspond to the val-
ues of , , and , for the first, second, and third rows respectively. 

Check with MATLAB:

disp('The values for m = 0, m = 1 and m = 2 are:'); legendre(2,0.5)

The values for m = 0, m = 1 and m = 2 are:

n m 0 1 2 … n, , , ,= x

P2
1 x( )

x 0.5=
P3

2 x( )
x 0.5–=

P2
3 x( )

x 0.25=
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m x( ) 1–( )m 1 x2–( )

m 2⁄ d m

dxm
---------Pn x( )⋅=
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1 x( )

x 0.5=
1–( )1 1 x2–( )

1 2⁄ d
dx
------P2 x( )

x 0.5=

1 x2–( )–
1 2⁄ d

dx
------ 3x2 1–

2
-----------------⎝ ⎠
⎛ ⎞

x 0.5=

= =

1 x2–( )–
1 2⁄

3x( ) 1.2990–==

m 0=

P2
1 x( )

x 0.5=

3x2 1–
2

-----------------⎝ ⎠
⎛ ⎞

x 0.5=

0.125–= =

n m 0 1 2 … n, , , ,=

x n 2=

m 0= m 1= m 2=
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ans =
-0.1250
-1.2990
 2.2500

or more elegantly,

m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,0.5);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m  Legendre 
 0  -0.1250 
 1  -1.2990 
 2   2.2500 

b.

Here, , and thus MATLAB will display a matrix whose rows correspond to the values of
, , , and , for the first, second, third and fourth rows respectively.

Check with MATLAB:

m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,−0.5);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m  Legendre 
 0   0.4375 
 1  -0.3248 
 2  -5.6250 
 3  -9.7428 

c.

and since the third derivative of  is zero, it follows that .

In general, if , then .
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Laguerre Polynomials

15.3 Laguerre Polynomials
Another class of polynomials that satisfy the orthogonality principle, are the Laguerre polynomials

; these are solutions of the differential equation

(15.64)

These polynomials are computed with the Rodrigues’ formula

(15.65)

The orthogonality principle for these polynomials states that

(15.66)

Example 15.7  
Compute the Laguerre polynomials 

a.     b.    c.    d.  

Solution:

Using Rodrigues’s formula of (15.65), we obtain

(15.67)

The differentiation of the last two polynomials in (15.67) was performed with MATLAB as fol-
lows:

syms x y z
y=x^2*exp(−x); z=diff(y,2);% Differentiate y twice with respect to x

Ln x( )

x
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2

d
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∞

∫ 0=
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0

d

d x0e x–( ) exe x– e0 1= = = =

L1 x( ) ex

xd
d xe x–( ) ex e x– xe x––( ) 1 x–= = =

L2 x( ) ex

x2

2

d

d x2e x–( ) exe x– 2 4x– x2+( ) 2 4x– x2+= = =

L3 x( ) ex

x3

3

d

d x3e x–( ) 6 18x– 9x2 x3–+= =
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L2x=exp(x)*z; simplify(L2x)

ans =
2-4*x+x^2

syms x y z w ; y=x^3*exp(−x); z=diff(y,2);% Differentiate y twice
% we cannot differentiate three times at once
w=diff(z);% Differentiate one more time
L3x=exp(x)*w; simplify(L3x)

ans =
6-18*x+9*x^2-x^3

15.4 Chebyshev Polynomials
The Chebyshev polynomials are solutions of the differential equations

(15.68)

and

(15.69)

The solutions of (15.68) are referred to as Chebyshev polynomials of the first kind and are denoted as
.* The solutions of (15.69) are the Chebyshev polynomials of the second kind; these are

denoted as . Both kinds comprise a set of orthogonal functions.
We will restrict our discussion to the polynomials. We will plot some of these later in this
section.

Two interesting properties of the polynomials are: 

1. They exhibit equiripple amplitute characteristics over the range , that is, within this
range, they oscillate with the same ripple. This property is the basis for the Chebyshev approx-
imation in the design of Chebyshev type electric filters. 

2. For  they increase or decrease more rapidly than any other polynomial of order .

* Some books use the notation  for these polynomials. However, another class of orthogonal functions known as

Genenbauer or Ultraspherical functions use the notation  and for this reason, we will avoid notation  for
the Chebyshev polynomials.

1 x2–( )d
2 y

dx2
--------- xdy

dx
------– n2y+ 0=

1 x2–( )d
2 y

dx2
--------- 3xdy

dx
------– n n 2+( )y+ 0=

y Tn x( )=

Ck x( )

Cn
a( ) x( ) Ck x( )

y Un x( )=

Tn x( )

Tn x( )

1– x 1≤ ≤
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These polynomials are tabulated in reference books which contain mathematical functions. A
good reference is the Handbook of Mathematical Functions, Dover Publications. They can also be
derived from the following relations.

(15.70)

(15.71)

Using (15.70) or (15.71), we can express  as polynomials in powers of . Some are shown in
Table 15.2.

To show that the relation of (15.70) can be expressed as a polynomial, we let

(15.72)
and

(15.73)

Next, in (15.73), we replace  with  and we obtain

(15.74)

Similarly, replacing  with , we obtain

(15.75)

Now, we add (15.74) with (15.75), and making use of (15.73) and (15.72), we obtain

(15.76)

TABLE 15.2  Chebyshev polynomials expressed in powers of x

n

0 1

1 x

2

3

4

5

6

Tn x( ) n x1–cos( )    for  x 1≤cos=

Tn x( ) h n h x1–cos( )    for  x 1>cos=

Tn x( ) x

Tn x( )

2x2 1–

4x3 3x–

8x4 8x2– 1+

16x5 20x3– 5x+

32x6 48x4– 18x2 1–+

x ycos=

Tn y( ) nycos=

n n 1+

Tn 1+ y( ) n 1+( )ycos ny ycoscos ny ysinsin–= =

n n 1–

Tn 1– y( ) n 1–( )ycos ny ycoscos ny ysinsin+= =

Tn 1+ y( ) Tn 1– y( )+ 2 ny ycoscos 2Tn y( )x 2xTn y( )= = =
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or

Then, we can replace  with  to obtain

(15.77)

The polynomials in Table 15.2, can now be verified by using a combination of the above relations.
Thus, for , (15.73) yields

(15.78)

For , from (15.73) and (15.72), we obtain

(15.79)

To derive the algebraic expressions corresponding to  and so on, we use the recurrence
formula of (15.77). For instance, when , 

(15.80)
and when ,

(15.81)

Alternately, we can prove the first 3 entries of Table 15.2 with (15.70) by letting .
Thus, for ,

For ,

and for , 

or

Relation (15.71) can be derived from (15.70) as follows:

We recall that

Tn 1+ y( ) 2xTn y( ) Tn 1– y( )–=

y x

Tn 1+ x( ) 2xTn x( ) Tn 1– x( )–=

Recurrence Relation

n 0=

T0 y( ) T0 x( ) 1= =

n 1=

T1 y( ) T1 x( ) x= =

n 2 3 4, ,=

n 2=

T2 x( ) 2xT1 x( ) T0 x( )– 2x2 1–= =

n 3=

T3 x( ) 2xT2 x( ) T1 x( )– 4x3 2x– x– 4x3 3x–= = =

y x1–cos=

n 0=

T0 x( ) 0 x1–cos⋅( )cos 0 y⋅( )cos= = 1=

n 1=

T1 x( ) 1 x1–cos⋅( )cos 1 y⋅( )cos ycos= = = x=

n 2=

T2 x( ) 2 x1–cos⋅( )cos 2 y⋅( )cos 2ycos= = 2 y2cos 1–= =

2 x1–cos( )
2

cos 1– 2 x1–cos( )cos
x

x1–cos( )cos
x

⋅ 1–== ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

T2 x( ) 2x2 1–=
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(15.82)

and

(15.83)

Then,
(15.84)

and when ,
* (15.85)

By substitution into (15.70), making use of (15.85), and that , we obtain

and this is the same as (15.71).

We can also use MATLAB to convert (15.70) and (15.71) to polynomials. For example, if ,

syms x; 
expand(cos(3*acos(x))), expand(cosh(3*acosh(x)))

ans =
4*x^3-3*x

ans =
4*x^3-3*x

The MATLAB script below plots the  for  through .

% Chebyshev polynomials
%
x=−1.2:0.01:1.2; Tnx0=cos(0*acos(x)); 
Tnx1=cos(1*acos(x)); Tnx2=cos(2*acos(x)); Tnx3=cos(3*acos(x)); Tnx4=cos(4*acos(x)); 
Tnx5=cos(5*acos(x)); Tnx6=cos(6*acos(x));
plot(x, Tnx0, x, Tnx1, x, Tnx2, x, Tnx3, x, Tnx4, x, Tnx5, x, Tnx6);....
axis([−1.2 1.2 −1.5 1.5]); grid; title('Chebyshev Polynomials of the First Kind');
xlabel('x'); ylabel('Tn(x)')
% We could have used the gtext function to label the curves but it is easier with the Figure text 
% tool

* Let ; then , ,  and (15.85) follows.

αcos e jα e j– α+
2

------------------------=

hαcos eα e α–+
2

--------------------=

αcos hjαcos=

x 1>

x1–cos j x1–cosh–=

αcos jαcosh v= = α v1–cos= jα v1–cosh= j v1–cos v1–cosh=

t–( )cosh tcosh=

Tn x( ) n j x1–cosh–( )[ ]cos jn x1–cosh–( )cos jnj x1–cosh( )cosh= = =

           j jn x1–cosh–( )[ ]cosh= n x1–cosh( )cosh=

n 3=

Tn x( ) n 0= n 6=
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Figure 15.6 shows the plot of the Chebyshev polynomials of the first kind  for 
through .

Figure 15.6. Plot of Chebyshev polynomials with MATLAB

As mentioned earlier, Chebyshev polynomials, among other applications, are used in the design of
electric filters.*  The filters are described in terms of rational polynomials that approximate the
behavior of ideal filters. The basic Chebyshev low−pass filter approximation is defined as

(15.86)

where  is the operating radian frequency,  is the cutoff frequency, and  and  are other
parameters that are used to specify the order and type of the electric filter.

For example, if we want to design a second order Chebyshev low−pass filter, we use the Cheby-
shev polynomial

and (15.86) becomes

(15.87)

* For a thorough discussion on the design of analog and digital filters refer to Signals and systems with MATLAB Applica-
tions, Orchard Publications, ISBN 0−9744239−9−8.

Tn x( ) n 0=

n 6=

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
Chebyshev Polynomials of the First Kind

x

T
n(

x)

T0

T1

T2

T3T4 T6

T5

A2 ω( ) α

1 ε2T2
n ω ωC⁄( )+

-------------------------------------------=

ω ωC α ε

T2 x( ) 2x2 1–=

A2 ω( ) α

1 ε2 2 ω ωC⁄( )2 1–[ ]+
------------------------------------------------------=



Numerical Analysis Using MATLAB® and Excel®, Third Edition 15−27
Copyright © Orchard Publications

Summary

15.5 Summary
• Differential equations with variable coefficients cannot be solved in terms of familiar functions

as those which we encountered in ordinary differential equations with constant coefficients.
The usual procedure is to derive solutions in the form of infinite series, and the most common
are the Method of Frobenius and the Method of Picard. 

• Bessel functions are solutions of the differential equation

where  can be any number, positive or negative integer, fractional, or even a complex num-
ber. The general solution depends on the value of .

• The series

where  is any positive real number or zero is referred to as Bessel function of order .

• The series

is referred to as the Bessel function of negative order .

• For  and  the series reduce to

• Two more useful relations are
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• Values of  can be calculated using the appropriate series given above. They also can be
found in math table books, and can also be found with the MATLAB besselj(n,x) function or
the Excel BESSELJ(x,n) function.

• The Bessel functions

 and 

are known as half−order Bessel functions.

• Besides the above functions known as Bessel functions of the first kind, other Bessel functions,
denoted as  and referred to as Bessel functions of the second kind, or Weber functions,
or Neumann functions exist. Also, certain differential equations resemble the Bessel equation,
and thus their solutions are called Modified Bessel functions, or Hankel functions.

• If  is not an integer,  and  are linearly independent; for this case, the general solu-
tion of the Bessel equation is

• If  and  are distinct roots of ,  and , then,

and thus we say that  and  are orthogonal in the interval .

• The differential equation 

where  is a constant, is known as Legendre’s equation.

• The infinite series solution of the Legendre functions, denoted as , is referred to as Leg-
endre functions of the second kind. 

xd
d xJ1 x( ){ } xJ0 x( )=
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πx
------ xsin= J 1 2⁄–( ) x( ) 2
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------ xcos=

Yn x( )

n Jn x( ) J n– x( )

y AJn x( ) BJ n– x( )+=

n 0 1 2 3 …, , , ,≠
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xJ0 ax( )J0 bx( ) xd
0

1

∫ 0=

J0 ax( ) J0 bx( ) 0 x 1≤ ≤
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2 y

dx2
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Summary

• The Legendre polynomials are defined as

and the first 6 Legendre polynomials are

• The relation

is known as Rodrigues’ formula, and offers another method of expressing the Legendre polyno-
mials. 

• The Legendre polynomial series of a function  for , is

and with this relation we can find a polynomial  defined as 

• The trigonometric form of the Legendre polynomials is 

and the first 6 Legendre polynomials in trigonometric form listed below.
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• The Legendre polynomials in algebraic form, satisfy the orthogonality principle when  as
indicated by the integral

• The Legendre polynomials in trigonometric form satisfy the orthogonality principle when
 as indicated by the integral

• The differential equation 

is referred to as the associated Legendre differential equation. The general solution of this
equation is

where  and  are arbitrary constants. The functions  and  are referred to as
associated Legendre functions of the first and second kind respectively. These functions, also
known as spherical harmonics, are evaluated from the relations
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Summary

• The MATLAB legendre(n,x) function computes the associated Legendre functions of the
first kind of degree , and order  evaluated for each element of .

• The solutions of the differential equation

are known as Laguerre polynomials and are denoted as . These polynomials are satisfy
the orthogonality principle. They are computed with the Rodrigues’ formula

• The Chebyshev polynomials are solutions of the differential equations

and

The solutions of the first differential equation are referred to as Chebyshev polynomials of the
first kind and are denoted as . The solutions of the second are the Chebyshev poly-
nomials of the second kind; these are denoted as . Both kinds comprise a set of
orthogonal functions.

• The  polynomials are derived from the relations

These polynomials exhibit equiripple amplitute characteristics over the range , that
is, within this range, they oscillate with the same ripple as shown in Figure 15.6. This property
is the basis for the Chebyshev approximation in the design of Chebyshev type electric filters.
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15.6 Exercises

1. Use the appropriate series of the Bessel functions  to compute the following values using
the first 4 terms of the series and check your answers with MATLAB or Excel.

a.     b.    c.    d. 

2. Use the appropriate Legendre polynomials  or  and Rodrigues’s formulas to com-
pute the following, and check your answers with MATLAB. 

a.     b.     c.  

d.     e.     f.  

3. Compute the Legendre polynomial  representing the waveform  of the figure below.
The first 5 terms of , i.e.,  through  will be sufficient. Then, use MATLAB or
Excel to plot  and compare with .

Jn x( )

J0 3( ) J1 2( ) J1 2⁄ π 6⁄( ) J 1– 2⁄ π 3⁄( )

Pn x( ) Pn
m x( )

P1 x( ) x 0.5=
P2 x( ) x 0.75=

P3 x( ) x 0.25=

P1
2 x( ) x 0.5=

P2
3 x( ) x 0.5–=

P3
2 x( ) x 0.25=

g x( ) f x( )
Pn x( ) P0 x( ) P4 x( )

g x( ) f x( )

x1−1

1

f x( )
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Solutions to End−of−Chapter Exercises

15.7 Solutions to End−of−Chapter Exercises
1.

a.

b.

c.

d.

Check with MATLAB:

besselj(0,3), besselj(1,2), besselj(0.5,pi/6), besselj(−0.5,pi/3)

ans =
   -0.2601

ans =
    0.5767

ans =
    0.5513

ans =
    0.3898

We observe that the first value returned by MATLAB above is significantly different from
that we obtained from the series. This is because our computation was based on the first 4
terms of the series. Had we taken also the fifth term our answer would have been  and
this is much closer to the value obtained with MATLAB.
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2.
We will use the relations of (15.34) and (15.62). They are repeated below for convenience.

a.

b.

c.

d.

We recall that if , then .

e.

This is because . In other words,

f.
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2
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Solutions to End−of−Chapter Exercises

Check with MATLAB:

a.
m=0:1; y=zeros(2,2); y(:,1)=m'; y(:,2)=legendre(1,0.5);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

  m Legendre 
 0  0.5000 
 1 -0.8660

b.
m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,0.75);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m Legendre 
 0  0.3438 
 1 -1.4882 
 2  1.3125

c.
m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,0.25);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m Legendre 
 0 -0.3359 
 1  0.9985 
 2  3.5156 
 3 -13.6160

d.
m=0:1; y=zeros(2,2); y(:,1)=m'; y(:,2)=legendre(1,0.5);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m Legendre 
 0  0.5000 
 1 -0.8660

Here, the legendre(n,x) function computes the associated Legendre functions of degree n
and order m = 0, 1, ..., n, evaluated for each element of x. For this example, , that is,

 and  and the statement m=0:2 is not accepted. For this reason we’ve used
m=0:1.

e.

m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,−0.5);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

As in (d) above  and MATLAB returns

m n>
m 2= n 1=

m n>
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 m Legendre 
 0 -0.1250 
 1  1.2990 
 2  2.2500

f.
m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,0.25);
fprintf('\n'); fprintf('m\t Legendre \n'); fprintf('%2.0f\t %7.4f \n',y')

 m Legendre 
 0  -0.3359 
 1   0.9985 
 2   3.5156 
 3 -13.6160

3.

For this exercise  for  and thus
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Solutions to End−of−Chapter Exercises

and by substitution into

we obtain

or

we note that  and . These values are close to zero. Also,
 and this value is close to unity.

We plot  with the MATLAB script below.

x=0:0.01:1; fx=(15+128.*x+210.*x.^2−105.*x.^4)./256; plot(x,fx); xlabel(‘x’); ylabel(‘f(x)’); grid

f x( ) B0P0 x( ) B1P1 x( ) B2P2 x( ) … BnPn x( )+ + + + BnPn x( )
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∞

∑= =
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4
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2
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16
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1
4
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2
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2
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32
------ 1

8
--- 35x4 30x2– 3+( )⋅–+ +=

1
4
--- x

2
--- 15x2

32
----------- 5

32
------– 105x4

256
--------------– 90x2

256
----------- 9

256
---------–+ + +=

f x( ) 1
256
--------- 15 128x 210x2 105x4–+ +( )=

f 1–( ) 8 256⁄–= f 0( ) 15 256⁄=

f 1( ) 248 256⁄=

f x( )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x
)



Numerical Analysis Using MATLAB® and Excel®, Third Edition 16−1
Copyright © Orchard Publications

Chapter 16

Optimization Methods

his chapter introduces three methods for maximizing or minimizing some function in order
to achieve the optimum solution. These methods are topics discussed in detail in a branch of
mathematics called operations research and it is concerned with financial and engineering

economic problems. Our intent here is to introduce these methods with the basic ideas. We will
discuss linear programming, dynamic programming, and network analysis, and we will illustrate
these with some simple but practical examples.

16.1  Linear Programming

In linear*  programming we seek to maximize or minimize a particular quantity, referred to as the
objective, which is dependent on a finite number of variables. These variables may or may not be
independent of each another, and in most cases are subject to certain conditions or limitations
referred to as constraints.

Example 16.1  

The ABC Semiconductor Corporation produces microprocessors ( ) and memory ( )
chips. The material types,  and , required to manufacture the  and  and the profits
for each are shown in Table 16.1. 

Due to limited supplies of silicon, phosphorus and boron, its product mix at times of high con-
sumer demand, is subject to limited supplies. Thus, ABC Semiconductor can only buy  parts of
Material , and  parts of Material . This corporation needs to know what combination of

 and  will maximize the overall profit.

* A linear program is one in which the variables form a linear combination,i.e., are linearly related. All other programs are
considered non−linear.

TABLE 16.1  Data for Example 16.1

Parts of Material Types

 (1000s)

Semiconductor Material 3 2

Semiconductor Material 5 10

Profit $25.00 per unit $20.00 per 1000

T

μPs RAM
A B μPs RAMs

μPs RAMs

A

B

450
A 1000 B

μPs RAMs
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Solution:

Since with Material  we can produce   and  , and with Material    and
 , the corporation is confronted with the following constraints:

We now can state the problem as

(16.1)

subject to the constraints

(16.2)

Two additional constraints are , , and  and  must be integers.

For this example, there are only two variables,  and ; therefore, a graphical solution is possible.
We will solve this example graphically. 

The  and  intercept corresponding to the above equations is shown in the plot of Figure 16.1
where the cross−hatched area indicates the feasible region.* 

Figure 16.1. Plot of constraint lines for Example 16.1

The equation of the straight line of the maximum profit is referred to as isoprofit line. This line will
pass through one of the three corners denoted as , , and .

* The feasible region is the area which includes all points ( ) satisfying all constrains.

A 3 μPs 2 RAMs B 5 μPs
10 RAMs

3x 2y+ 450≤
5x 10y+ 1000≤

Maximize  z 25 μP 20 RAMs×+×=

3x 2y+ 450≤
5x 10y+ 1000≤

x 0≥ y 0≥ x y

x y

x y

x y,

50

100

10050

150

200

250

150 200 250

 

3x 2y+ 450=

5x 10y+ 1000=

Isoprofit line

x

y

a

b

c

a b c
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Linear Programming

The isoprofit line that we are interested is described by the equation 

(16.3)

We can express this equation in  form, that is,

(16.4)

where  is the −intercept. Therefore, all possible isoprofit lines have the same slope, that is, are
parallel to each another, and the highest isoprofit line passes through point .

The coordinates of point  in Figure 16.1 are found by simultaneous solution of

(16.5)

Using MATLAB for the solution of (16.5) we obtain

syms x y
[x  y]=solve(3*x+2*y−450, 5*x+10*y−1000)

x =
125
y =
75/2

Of course, these values must be integers, so we accept the values , and . Then, by
substitution into (16.1),

(16.6)

and the isoprofit line can be drawn from the equation

(16.7)

by first letting , then, . Then, we obtain the points

and

This is shown as a dotted line on the plot of Figure 16.1.

z 25 μP 20 RAM×+× cons ttan= =

    25x 20y+= C=

y mx b+=

y 25
20
------x– C

20
------+ 1.25x– k+= =

k y
b

b

3x 2y+ 450=

5x 10y+ 1000=

x 125= y 37=

zmax 25 125 20 37×+× $3865= =

25x 20y+ 3865=

x 0= y 0=

x 3865
25

------------ 154.6= =

y 3865
20

------------ 193.25= =
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It was possible to solve this problem graphically because it is relatively simple. In most cases, how-
ever, we cannot obtain the solution by graphical methods and therefore, we must resort to alge-
braic methods such as the simplex method. This and other methods are described in operations
research textbooks.

We can find the optimum solution to this type of problems with Excel’s Solver feature. The proce-
dure is included in the spreadsheet of Figure 16.2

 
Figure 16.2. Spreadsheet for solution of Example 16.1 with Excel’s solver

16.2 Dynamic Programming
Dynamic Programming is based on R. Bellman’s Principle of Optimality which states that:

An optimum policy has the property that whatever the initial state and the initial decisions are,
the remaining decisions must constitute an optimum policy with regard to the state resulting from
the first decision.

Figure 16.3 represents a line graph, where the nodes  through  represent the states, and the
choice of alternative paths when leaving a given state, is called a decision. The alternative paths
are represented by the line segments , , , and so on.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E F
Optimization - Maximum Profit for Example 16.1
1. Enter zeros in B12 and B13 2. In B15 enter =25*B12+20*B13
3. In B17 enter =3*B12+2*B13 and in B18 =5*B12+10*B13
4. From the Tools  drop menu select Solver . Use Add-Ins  if necessary to add it.
5. On the Solver Parameters screen enter the following:
Set Target Cell:  B15
Equal to:  Max
By Changing Cells:  B12:B13
Click on Add and enter Constraints:
B12=Integer, Add B13=Integer, Add B12>=0, Add B13>=0,
Add  B17<=450, Add  B18<=1000, OK , Solve

x(μPs)= 124
y(RAMs)= 38

Maximum Profit= $3,860

Semiconductor Material A= 448
Semiconductor Material B= 1000

Note: Contents of A12:A18 are typed-in for information only

a h

ab ac bd
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Dynamic Programming

Figure 16.3. Line graph for a typical dynamic programming example

We assume that all segments are directed from left to right, and each has a value assigned to it
which we will refer to as the cost. Thus, there is a cost associated with each segment, and it is usu-
ally denoted with the letter . For example, for the path , , , and , the cost is 

(16.8)

The costs for the other possible paths are defined similarly.

For the line graph of Figure 16.3, the objective is to go from state  to state  with minimum cost.
Accordingly, we say that the optimum path policy for this line graph is

(16.9)

Now, let us suppose that the initial state is , and the initial decision has been made to go to state
. Then, the path from  to  must be selected optimally, if the entire path from  to  is to be

optimum (minimum in this case). 

Let the minimum cost from state  to  be denoted as . Then, 

(16.10)

Likewise, if the initial decision is to go from state  to , the path from state  to  must be opti-
mum, that is,

(16.11)

The optimum path policy of (16.9) can now be expressed in terms of (16.10) and (16.11) as

(16.12)

This relation indicates that to obtain the minimum cost we must minimize:

1. The part which is related to the present decision, in this case, costs  and .

a

b

c

d

f

g

h

e

J a c f h

Jah Jac Jcf Jfh+ +=

a h

Jmin min Jac Jcf Jfh+ +( ) Jac Jce Jeh+ +( )
Jab Jbd Jdh+ +( ) Jab Jbg Jgh+ +( )

, ,
,

{
}

=

a
b b h a h

b h gb

gb min Jbd Jdh+( ) Jbg Jgh+( ),{ }=

a c c h

gc min Jcf Jfh+( ) Jce Jeh+( ),{ }=

ga Jmin= min Jab gb+( ) Jac gc+( ),{ }=

Jab Jac
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2. The part which represents the minimum value of all future costs starting with the state which
results from the first decision.

Example 16.2  

Find the minimum cost route from state  to state  for the line graph of Figure 16.4. The line
segments are directed from left to right and the costs are indicated beside each line segment.

Figure 16.4. Line graph for Example 16.2

Solution:

We observe that at states , , , and  have no alternative paths since the lines are directed
from left to right. Therefore, we make the first decision at state . Then,

(16.13)

Next, we make decisions at states  and .

(16.14)

(16.15)

The final decision is at state  and thus

(16.16)

a m

k

h

f

d

e

c

b

ma

5

6

3

4

6

3

69

8

4

5

5

h k d f
e

ge min 3 gh+( ) 5 gk+( ),{ } min 3 5+( ) 5 4+( ),{ } 8= = =

e h m→ →( )

b c

gb min 9 gd+( ) 6 ge+( ),{ } min 9 6+( ) 6 8+( ),{ } 14= = =

b e→( )

gc min 4 ge+( ) 6 gf+( ),{ } min 4 8+( ) 6 8+( ),{ } 12= = =

c e→( )

a

ga min 5 gb+( ) 3 gc+( ),{ } min 5 14+( ) 3 12+( ),{ } 15= = =

a c→( )
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Therefore, the minimum cost is  and it is achieved through path , as shown
in Figure 16.5

Figure 16.5. Line graph showing the minimum cost for Example 16.2

Example 16.3  

On the line graph of Figure 16.6, node  represents an airport in New York City and nodes 
through  several airports throughout Europe and Asia. All flights originate at  and fly east-
ward. A salesman must leave New York City and be in one of the airports , , , or  at the
shortest possible time. The encircled numbers represent waiting times in hours at each airport.
The numbers in squares show the hours he must travel by an automobile to reach his destination,
and the numbers beside the line segments indicated the flight times, also in hours. Which airport
should he choose ( , , , or ) to minimize his total travel time, and in how many hours after
departure from  will he reach his destination?

Figure 16.6. Line graph for Example 16.3

15 a c e h m→ → → →
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Solution:

The hours that the salesman must travel by automobile to reach his destination are

, , , and (16.17)

The first decisions are made at , , and . Then,

(16.18)

(16.19)

(16.20)

The next decisions are made at  and  where we find that

(16.21)

(16.22)

The final decision is made at , where we find

(16.23)

Therefore, the minimum cost (minimum time from departure to arrival at destination) is 
hours and it is achieved through path , as shown in Figure 16.7.

Figure 16.7. Line graph showing the minimum cost for Example 16.3

gH 3= gJ 2= gK 4= gL 3=

D E F

gD 2 min 5 gH+( ) 4 gJ+( ),{ }+ 2 min 5 3+( ) 4 2+( ),{ }+ 2 6+ 8= = = =

D J→

gE 4 min 3 gJ+( ) 4 gK+( ),{ }+ 4 min 3 2+( ) 4 4+( ),{ }+ 4 5+ 9= = = =

E J→

gF 3 min 6 gK+( ) 7 gL+( ),{ }+ 3 min 6 4+( ) 7 3+( ),{ }+ 3 10+ 13= = = =

F K   or   F L→→

B C

gB 4 min 4 gD+( ) 2 gE+( ),{ }+ 4 min 4 8+( ) 2 9+( ),{ }+ 4 11+ 15= = = =

B E→

gC 3 min 7 gE+( ) 5 gF+( ),{ }+ 3 min 7 9+( ) 5 13+( ),{ }+ 3 16+ 19= = = =

C E→

A

gA min 8 gB+( ) 6 gC+( ),{ } min 8 15+( ) 6 19+( ),{ } 23= = =

A B→

23
A B E J→ → →

A

B

D

H
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F

L

E

J

K 4
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Example 16.4  
A start−up, high−technology company, has $4,000,000 to invest in three different products A, B
and C. Investments in each product are assumed to be multiples of $1,000,000 and the company
may allocate all the money to just one product or split it between these three products. The
expected profits are shown in Table 16.2. 

How should the money be allocated so that company will realize the maximum profit?

Solution:

This problem can also be solved with linear programming methods but we will use the so called
tabular form of solution. Let

(16.24)

denote the profits in millions from product , when  units of dollars are invested in it. For sim-
plicity, we express the profits in millions, and we enter these in Table 16.3.

Our objective is to maximize the total profit  that represents the sum of the profits from each
product, subject to the constraint that the amount invested does not exceed four million dollars.
In other words is, we want to

(16.25)

subject to the constraint

TABLE 16.2 Amounts invested and return on investment for each product

Investments Amount Invested

0 $1,000,000 $2,000,000 $3,000,000 $4,000,000

Return on Investment

Product A 0 $2,000,000 $5,000,000 $6,000,000 $7,000,000

Product B 0 $1,000,000 $3,000,000 $6,000,000 $7,000,000

Product C 0 $1,000,000 $4,000,000 $5,000,000 $8,000,000

TABLE 16.3  Modified Table 16.2

x 0 1 2 3 4

0 2 5 6 7

0 1 3 6 7

0 1 4 5 8

pi x( )    i A B C, ,=

i x

p x( )

pA x( )

pB x( )

pC x( )

z

maximize z pA x( ) pB x( ) pC x( )+ +=



Chapter 16  Optimization Methods

16−10 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

(16.26)

where , , and , are the amounts to be invested in products A, B and C respectively.

The computations are done in three stages, one per product. We start by allocating units (mil-
lions) to Product C (Stage C), but since we do not know what units were allocated to the previous
products A and B, we must consider all possibilities.

We let  denote the value of the optimum profit that can be achieved, where the subscript j
indicates the number or stage assigned to the product, i.e., A for Product A, B for Product B, and
C for Product C, and  represents the number of money units. Also, we let  be the decision
that is being made to achieve the optimum value from .

At Stage C, , and , i.e.,  millions assumed to be allocated to Product C. 

The possibilities that we allocate  or  or  or  or  units (millions) to Product C, and the
corresponding returns are, from Table 16.3,

 (16.27)

with decision
(16.28)

that is, the maximum appears in the fourth position since the left most is the zero position.

The next possibility is that one unit was invested in either Product A or Product B, by a previous
decision. In this case, do not have 4 units to invest in Product C; we have three or less.

If we invest the remaining three units in Product C, the optimum value  is found from

(16.29)

with decision
(16.30)

If we have only two units left, and we invest them in Product C, we obtain the maximum from

(16.31)

with decision
(16.32)

With only one unit left to invest, we have

(16.33)

xA xB xC+ + 4≤

xA xB xC

vj u( )

u dj u( )
vj u( )

j C= u 4= 4

0 1 2 3 4

vC 4( ) max pC 0( ) pC 1( ) pC 2( ) pC 3( ) pC 4( ),,,,{ } max 0 1 4 5 8, , , ,{ } 8= = =

dC 4( ) 8=

vC 3( )

vC 3( ) max pC 0( ) pC 1( ) pC 2( ) pC 3( ),,,{ } max 0 1 4 5, , ,{ } 5= = =

dC 3( ) 5=

vC 2( ) max pC 0( ) pC 1( ) pC 2( ),,{ } max 0 1 4, ,{ } 4= = =

dC 2( ) 4=

vC 1( ) max pC 0( ) pC 1( ),{ } max 0 1,{ } 1= = =
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with decision
(16.34)

Finally, with no units left to invest in Product C,

(16.35)

with decision
(16.36)

With these values, we construct Table 16.4.   

Next, we consider Stage B, and since we do not know what units were allocated to Product A
(Stage A), again we must consider all possibilities.

With  and  and , we have

(16.37)

This expression says that if zero units were invested in Product B, it is possible that all four units
were invested in Product C, or if one unit was invested in Product B, it is possible that 3 units were
invested in Product C, and so on. Inserting the appropriate values, we obtain

(16.38)

with decision
(16.39)

since the maximum value is the zero position term.

TABLE 16.4  Optimum profit and decisions made for Stage C

u

0 1 2 3 4

Stage
C

0 1 4 5 8

0 1 2 3 4

Stage
B

Stage
A

dC 1( ) 1=

vC 0( ) max pC 0( ){ } max 0{ } 0= = =

dC 0( ) 0=

vC u( )

dC u( )

vB u( ) … … … … …

dB u( ) … … … … …

vA u( ) … … … … …

dA u( ) … … … … …

j B= u 4 3 2 1, , ,= 0

vB 4( ) max pB 0( ) vC 4 0–( )+ pB 1( ) vC 4 1–( ) pB 2( )
+vC 4 2–( ) pB 3( ) vC 4 3–( ) pB 4( ) vC 4 4–( )+,+,

,+,{
}

=

vB 4( ) max 0 8 1 5 3 4 6 1 7 0+,+,+,+,+{ } 8= =

dB 4( ) 0=
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Using a similar reasoning, we have

(16.40)

or
(16.41)

with decision
(16.42)

Also,
(16.43)

or
(16.44)

with decision
(16.45)

(16.46)
or

(16.47)
with decision

(16.48)

if we consider the zero position term, or 
(16.49)

if we consider the first position term.

Also,
(16.50)

or
(16.51)

with decision
(16.52)

Next, we update the previous table to include the Stage B values. These are shown in Table 16.5.
 

vB 3( ) max pB 0( ) vC 3 0–( )+ pB 1( ) vC 3 1–( ) pB 2( )
+vC 3 2–( ) pB 3( ) vC 3 3–( )+,

,+,{
}

=

vB 3( ) max 0 5 1 4 3 1 6 0+,+,+,+{ } 6= =

dB 3( ) 3=

vB 2( ) max pB 0( ) vC 2 0–( )+ pB 1( ) vC 2 1–( ) pB 2( )+vC 2 2–( ),+,{ }=

vB 2( ) max 0 4 1 1 3 0+,+,+{ }= 4=

dB 2( ) 0=

vB 1( ) max pB 0( ) vC 1 0–( )+ pB 1( ) vC 1 1–( )+,{ }=

vB 1( ) max 0 1 1 0+,+{ } 1= =

dB 1( ) 0=

dB 1( ) 1=

vB 0( ) max pB 0( ) vC 0 0–( )+{ }=

vB 0( ) max 0 0+{ } 0= =

dB 0( ) 0=
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Finally, with  and  * 

(16.53)

or
(16.54)

with decision
(16.55)

We complete the table by entering the values of Stage A in the last two rows as shown in Table
16.6. The only entries are in the last column, and this is always the case since in deriving 
and , all possibilities have been considered.

Table 16.6 indicates that the maximum profit is realized with , that is,  units, and
thus the maximum profit is $9,000,000. 

To determine the investment allocations to achieve this profit, we start with ; this tells
us that we should allocate  units to Product A, and the given table shows that  units
($2,000,000) invested in this product will return $5,000,000.

TABLE 16.5  Updated table to include Stage B values

u

0 1 2 3 4

Stage
C

0 1 4 5 8

0 1 2 3 4

Stage
B

0 1 4 6 8

0 1 0 3 0

Stage
A

* Since this is the first stage, all 4 units can be allocated to the Product A or some of these can be allocated to Products B and
C. Therefore,  considers all possibilities.

vC u( )

dC u( )

vB u( )

dB u( )

vA u( ) … … … … …

dA u( ) … … … … …

j A= u 4=

vA 4( )

vA 4( ) max pA 0( ) vB 4 0–( )+ pA 1( ) vB 4 1–( ) pA 2( )
+vB 4 2–( ) pA 3( ) vB 4 3–( ) pA 4( ) vB 4 4–( )+,+,

,+,{
}

=

vA 4( ) max 0 8 2 6 5 4 6 1 7 0+,+,+,+,+{ } 9= =

dA 4( ) 2=

vA 4( )

dA 4( )

vA 4( ) 9= 9

dA 4( ) 2=

2 2
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We now have two units left to invest in Products B and C. To find out where we should invest
these units, we consider the decision at Stage B. Since two out of the four units have already been
invested, we have , and by reference to the Table 16.6, we see that .
This tells us that we should not invest any units in Product B if only two units are left. The deci-
sion at Stage C yields , and from Table 16.6, . This indicates that
we should invest the remaining two units to Product C where we can obtain a return of
$4,000,000.

In summary, to obtain the maximum profit of $9,000,000, we should allocate:

1. two units to Product A to earn $5,000,000

2. zero units to Product B to earn $0

3. two units to Product C to earn $4,000,000

16.3 Network Analysis
A network, as defined here, is a set of points referred to as nodes and a set of lines referred to as
branches. Thus, Figure 16.8 is a network with  nodes , , ,  and , and  branches ,

, , , , and .

Figure 16.8. A typical network

TABLE 16.6  Updated table to include values for all stages

u

0 1 2 3 4

Stage
C

0 1 4 5 8

0 1 2 3 4

Stage
B

0 1 4 6 8

0 1 0 3 0

Stage
A

9

2

vC u( )

dC u( )

vB u( )

dB u( )

vA u( ) … … … …

dA u( ) … … … …

dB 4 2–( ) dB 2( )= d2 2( ) 0=

dC 4 0– 2–( ) dC 2( )= dC 2( ) 2=

5 A B C D E 6 AB
AC AD BD BE CD

A

C

B

D

E
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Branches can be either directed (or oriented), if they have a direction assigned to them, that is,
one−way, or two−way. If no direction is assigned, they are considered to be two−way. Thus, the
branches  and  in Figure 16.8, are directed but the others are not.

A network is said to be connected, if there is a path (branch) connecting each pair of nodes. Thus,
the network shown in Figure 16.8 is connected.

Figure 16.9. A network which is connected

The network of Figure 16.9 is also connected. However, the network of Figure 16.10 is not con-
nected since the branch  is removed.

Figure 16.10. A network which is not connected

A tree is a connected network which has  branches and  nodes. For example, the network of
Figure 16.11 is a tree network.

Figure 16.11. A tree network

Network analysis is a method that is used to solve minimum span problems. In such problems, we
seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is a
minimum.

Example 16.5  

Figure 16.12 represents a network for a project that requires telephone cable be installed to link 
towns. The towns are the nodes, the branches indicate possible paths, and the numbers beside the
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branches, show the distance (not to scale) between towns in kilometers. Find the minimal span-
ning tree, that is, the least amount of telephone cable required to link each town.

Figure 16.12. Network for Example 16.5

Solution:

For convenience, we redraw the given network with dotted lines as shown in Figure 16.13, and
we arbitrarily choose  as the starting node.

Figure 16.13. Network of Example 16.5 with no connections

We observe that there are  branches associated with node , i.e., , , and . By
inspection, or from the expression

(16.56)

we find that branch  is the shortest. We accept this branch as the first branch of the mini-
mum span tree and we draw a solid line from Node  to Node  as shown in Figure 16.14. 

Figure 16.14. Network of Example 16.5 with first connection
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Next, we consider all branches associated with Nodes  and . We find that the minimum of
these is

(16.57)

and thus,  is connected to the network as shown in Figure 16.15.

 
Figure 16.15. Network of Example 16.5 with the second connection

We continue by considering all branches associated with Nodes ,  and , and we find that the
shortest is 

(16.58)

and we add branch  to the network shown in Figure 16.16. The dotted lines  and  have
been removed since we no longer need to consider branch  and , because Nodes  and 
are already connected; otherwise, we will not have a tree network.

Figure 16.16. Network of Example 16.5 with the third connection

Next, considering all branches associated with Nodes , , and  and we find that the shortest
is

(16.59)

and the network now is connected as shown in Figure 16.17.
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Figure 16.17. Network of Example 16.5 with the fourth connection

Continuing, we obtain

(16.60)

and the network is connected as shown in Figure 16.18

Figure 16.18. Network of Example 16.5 with the fifth connection

The last step is to determine the shortest branch to Node . We find that

(16.61)

and the complete minimum span tree is shown in Figure 16.19.

 
Figure 16.19. Network of Example 16.5 with all connections

Figure 16.19 shows that the minimum distance is  kilometers.
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Summary

16.4 Summary
• Linear programming is a procedure we follow to maximize or minimize a particular quantity,

referred to as the objective, which is dependent on a finite number of variables. These variables
may or may not be independent of each another, and in most cases are subject to certain con-
ditions or limitations referred to as constraints.

• Dynamic Programming is based on R. Bellman’s Principle of Optimality which states that an
optimum policy has the property that whatever the initial state and the initial decisions are,
the remaining decisions must constitute an optimum policy with regard to the state resulting
from the first decision.

• A network, as defined in this chapter, is a set of points referred to as nodes and a set of lines
referred to as branches. 

• A tree is a connected network which has  branches and  nodes.

• Network analysis is a method that is used to solve minimum span problems. In such problems, we
seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is
a minimum.

n n 1+
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16.5 Exercises

1. A large oil distributor can buy Grade A oil which contains  lead for  per barrel from
one oil refinery company. He can also buy Grade B oil which contains  lead for 
per barrel from another oil refinery company. The Environmental Protection Agency (EPA)
requires that all oil sold must not contain more than  lead. How many barrels of each
grade of oil should he buy so that after mixing the two grades can minimize his cost while at
the same time meeting EPA’s requirement? Solve this problem graphically and check your
answers with Excel’s Solver.

2. Use dynamic programming to find the minimum cost route from state  to state  for the line
graph shown below. The line segments are directed from left to right and the costs are indi-
cated beside each line segment.

3. Repeat Example 16.3 for the line graph shown below.
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6

2

6

4

4

5

7

4

7
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Exercises

4. A salesman has  hours available to visit  of his customers. He will earn the commissions
shown on the table below for various visiting times. Compute the optimal allocation of time
that he should spent with his customers so that he will maximize the sum of his commissions.
Consider only integer number of visiting hours, and ignore travel time from customer to cus-
tomer. The third row (zero hours) indicates the commission that he will receive if he just calls
instead of visiting them. 

5. Repeat Example 16.5 for the network shown below.

Visit Time
(Hours)

Customer

1 2 3 4

0 $20 $40 $40 $80

1 $45 $45 $52 $91

2 $65 $57 $62 $95

3 $75 $61 $71 $97

4 $83 $69 $78 $98

4 4

A

C

B

D

E

F

30

20

40

50

70

40

90

50
50



Chapter 16  Optimization Methods

16−22 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

16.6 Solutions to End−of−Chapter Exercises
1.

Let  be the number of barrels of Grade A oil and  be the number of barrels of Grade B oil.
The objective is to minimize  or, for simplicity,

  (1)

We want to minimize (1) because it represents a cost, not a profit.

Each barrel to be sold must not contain more than  lead and since Grade A contains 
and Grade B , we must have

  (2)

The oil of Grade A and Grade B used in each barrel to be sold must be equal to unity. Thus,

  (3)

Moreover,  and  cannot be negative numbers, therefore

  (4)

The problem then can be stated as:

Minimize (1) subject to the constraints of (2), (3), and (4). To determine the feasible region
we plot (2) and (3) where the  and  crossings are found by first setting  and then

. Thus from (2), if ,  and if , .
Likewise, from (3), if , , and if , .

The isoprofit line passes through point  and its coordinates are found by simultaneous solu-

x y
z $25.00x $20.00y+=

z 25x 20y+=

10 % 7 %
15 %

0.07x 0.15y 0.10≤+

x y+ 1=

x y

x 0≥ y 0≥

x y x 0=

y 0= x 0= y 0.10 0.15⁄ 2 3⁄= = y 0= x 0.10 0.07⁄ 10 7⁄= =

x 0= y 1= y 0= x 1=

x

y

1

1

a2 3⁄

1 3⁄

10 7⁄9 7⁄8 7⁄6 7⁄5 7⁄4 7⁄3 7⁄2 7⁄1 7⁄

b

c

x y+ 1=

0.07x 0.15y+ 0.10=

Isoprofit line

b
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tion of (2) and (3). For convenience, we use the following MATLAB script:

syms x y; [x,y]=solve(0.07*x+0.15*y−0.10, x+y−1)

x =
 5/8

y =
 3/8 

Therefore, the distributor should buy Grade A oil at the ratio  and Grade B at the
ratio  and by substitution into (1)

and this represents his cost per barrel. The isoprofit line is 

and the −intercept is found by setting  in the equation above to zero and we find that

Check with Excel’s Solver:

x 5 8⁄=

y 3 8⁄=

z 25 5
8
---× 20 3

8
---×+ 185

8
--------- $23.125= = =

z 25x 20y+ 23.125= =

y x

y intercept– 23.125 20⁄ 1.1563= =

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E F
Optimization - Minimum Cost for Exercise 16.1
1. Enter zeros in B12 and B13 2. In B15 enter =25*B12+20*B13
3. In B17 enter =0.07*B12+0.15*B13 and in B18 =B12+B13
4. From the Tools  drop menu select Solver . Use Add-Ins  if necessary to add it.
5. On the Solver Parameters screen enter the following:
Set Target Cell:  B15
Equal to:  Min
By Changing Cells:  B12:B13
Click on Add and enter Constraints:
B12>=0, Add B13>=0,
Add  B17<=0.10, Add  B18=1, OK , Solve

Grade A= 0.625002
Grade B= 0.374999

Minimum Cost= $23.125

Lead Content= 0.10
Grade A + Grade B= 1.000001

Note: Contents of A12:A18 are typed-in for information only
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2.

Since the segments are directed from left to right, state  is the first node where a decision
must be made and thus

Therefore, the best route from state  to state  passes through state . Next,

and

Finally,

Thus, the best (shortest) path is 

3.

The numbers in circles represent the waiting time at these nodes.

Last stage: , , , and 

k

h

f

d

e

c

b

ma

3

6

3

4

5

5

58

7

5

4

4

e

ge min 3 gh 4 gk+,+{ } min 3 4 4 5+,+{ } 7= = =

e m h

gb min 8 gd 5 ge+,+{ } min 8 5 5 7+,+{ } 12= = =

gc min 4 ge 6 gf+,+{ } min 4 7 6 7+,+{ } 11= = =

ga min 3 gb 5 gc+,+{ } min 3 12 5 11+,+{ } 15= = =

a b e h m→ → → →

A

B

D

H

C

F

L

E

J

K
3

2

2

4

5

1

2 3

4

3

5

1

6

2

6

4

4

5

7

4

7

gH 2= gJ 2= gK 3= gL 4=
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Next stage to the left:

Next to initial stage:

Initial stage:

Therefore, minimum path is from  and the numerical minimum cost is .

4. 

continued on the next page

gD 1 min 6 gH 4 gJ+,+{ }+ 1 6+ 7         from D to J= = =

gE 3 min 4 gJ 5 gK+,+{ }+ 3 6+ 9         from E to J= = =

gF 4 min 7 gK 6 gL+,+{ }+ 4 10+ 14         from F to K or F to L= = =

gB 5 min 2 gD 4 gE+,+{ }+ 5 9+ 14         from B to D= = =

gC 2 min 7 gE 1 gF+,+{ }+ 2 15+ 17         from C to F= = =

gA 0 min 3 gB 5 gC+,+{ }+ 17         from A to B= =

A B D J→ → → 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H
Exercise 16.4 - Solution
A salesman has 4 hours available to visit  of his customers. He will earn the commissions shown on 
the table below for various visiting times. Compute the optimal allocation of time that he should spend 
with his customers so that he will maximize the sum of his commissions. Consider only integer number  
of visiting hours, and ignore travel time from customer to customer. The third row (zero hours) 
indicates the commission that he will receive if he just calls instead of visiting them.

Visit Time Customer
(Hours) 1 2 3 4

0 $20 $40 $40 $80
1 $45 $45 $52 $91
2 $65 $57 $62 $95
3 $75 $61 $71 $97
4 $83 $69 $78 $98

Solution
We will follow the same method as in Example 16.4

It is convenient to rearrange the table as shown below.
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continued on the next page.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

A B C D E F G H I
u

f(x)  \  x 0 1 2 3 4
f1(x) 20 45 65 75 83
f2(x) 40 45 57 61 69
f3(x) 40 52 62 71 78
f4(x) 80 91 95 97 98

m4(4)= max(B26,C26,D26,E26,F26) 98 with d4(4)= 4
m4(3)= max(B26,C26,D26,E26) 97 with d4(3)= 3
m4(2)= max(B26,C26,D26) 95 with d4(2)= 2
m4(1)= max(B26,C26) 91 with d4(1)= 1
m4(1)= max(B26) 80 with d4(0)= 0

The values of m4(u) and d4(u) are entered in the table below.

u
0 1 2 3 4

m4(u) 80 91 95 97 98
d4(u) 0 1 2 3 4
m3(u) 120 132 143 153 162
d3(u) 0 1 1 2 3
m2(u) 160 172 183 193 202
d2(u) 0 0 0 0 0
m1(u) 248
d1(u) 2

Next, we compute the values of m3(u) and d3(u)

m3(4)=max[f3(0)+m4(4-0), f3(1)+m4(4-1), f3(2)+m4(4-2), f3(3)+m4(4-3), f3(4)+m4(4-4)]
MAX(B25+F38,C25+E38,D25+D38,E25+C38,F25+B38) 162 with d3(4)= 3

m3(3)=max[f3(0)+m4(3-0), f3(1)+m4(3-1), f3(2)+m4(3-2), f3(3)+m4(3-3)]
MAX(B25+E38,C25+D38,D25+C38,E25+B38) 153 with d3(3)= 2

m3(2)=max[f3(0)+m4(2-0), f3(1)+m4(2-1), f3(2)+m4(2-2)]
MAX(B25+D38,C25+C38,D25+B38) 143 with d3(2)= 1

m3(1)=max[f3(0)+m4(1-0), f3(1)+m4(1-1)]
MAX(B25+C38,C25+B38) 132 with d3(1)= 1

m3(0)=max[f3(0)+m4(0-0)]
MAX(B25+B38) 120 with d3(0)= 0
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

A B C D E F G H I

These values are now added to the table above, Rows 40 and 41

Similarly, we compute the values of m2(u) and d2(u)

m2(4)=max[f2(0)+m3(4-0), f2(1)+m3(4-1), f2(2)+m3(4-2), f2(3)+m3(4-3), f2(4)+m3(4-4)]
MAX(B24+F40,C24+E40,D24+D40,E24+C40,F25+B40) 202 with d2(4)= 0

m2(3)=max[f2(0)+m3(3-0), f2(1)+m3(3-1), f2(2)+m3(3-2), f2(3)+m3(3-3)]
MAX(B24+E40,C24+D40,D24+C40,E24+B40) 193 with d2(3)= 0

m2(2)=max[f2(0)+m3(2-0), f2(1)+m3(2-1), f2(2)+m3(2-2)]
MAX(B24+D40,C24+C40,D24+B40) 183 with d2(2)= 0

m2(1)=max[f2(0)+m3(1-0), f2(1)+m3(1-1)]
MAX(B24+C40,C24+B40) 172 with d2(1)= 0

m2(0)=max[f2(0)+m3(0-0)]
MAX(B24+B40) 160 with d2(0)= 0

These values are added to the table above, Rows 42 and 43

Stage 1 is the last stage and there is only one state associated with it, u=4, and thus

m1(4)=max[f1(0)+m2(4-0), f1(1)+m2(4-1), f1(2)+m2(4-2), f1(3)+m2(4-3), f1(4)+m2(4-4)]
MAX(B23+F42,C23+E42,D23+D42,E23+C42,F23+B42) 248 with d1(4)= 2

These two values are the last entries into the table in Cells F44 and F45

The table (Rows 36 through 45) indicates that, to achieve the maximum sum of commissions,   
the salesman should spend 2 hours with Customer #1 (d1(4)=2), 0 hours with Customer #2  
(d2(4)=0), and for the remaining 2 hours he should spend 1 hour with Customer #3 and 1
hour with Customer #4.

Check:
Customer #1, 2 hours = $65
Customer #2, 0 hours = $40
Customer #3, 1 hour = $52
Customer #4, 1 hour = $91

Total = $248
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5.

and thus the minimum distance is 

A

C

B

D

E

F

30

20

40

50

70

40

90

50
50

min A B  A C→,→[ ] min 30 20,[ ] 20= = A C→

min A B  C D  C F→,→,→[ ] min 30 50 40, ,[ ] 30= = A B→

min B D  B E  C D  C F→,→,→,→[ ] min 40 50 50 40, , ,[ ] 40= = choose B D→

min B E  D E  D F  C F→,→,→,→[ ] min 50 90 50 40, , ,[ ] 40= =  C F→

min B E  D E  F E→,→,→[ ] min 50 90 70, ,[ ] 50= = B E→

A

C

B

D

E

F

30

20

50

40

40

20 30 40 40 50+ + + + 180 kilometers=
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Appendix A

Difference Equations in Discrete−Time Systems

his appendix is a treatment of linear difference equations with constant coefficients and it is
confined to first− and second−order difference equations and their solution. Higher−order
difference equations of this type and their solution is facilitated with the Z−transform.*

A.1 Recursive Method for Solving Difference Equations

In mathematics, a recursion is an expression, such as a polynomial, each term of which is deter-
mined by application of a formula to preceding terms. The solution of a difference equation is
often obtained by recursive methods. An example of a recursive method is Newton’s method† for
solving non−linear equations. While recursive methods yield a desired result, they do not provide
a closed−form solution. If a closed−form solution is desired, we can solve difference equations
using the Method of Undetermined Coefficients, and this method is similar to the classical
method of solving linear differential equations with constant coefficients. This method is
described in the next section.

A.2 Method of Undetermined Coefficients
A second−order difference equation has the form

(A.1)

where  and  are constants and the right side is some function of . This difference equation
expresses the output  at time  as the linear combination of two previous outputs 
and . The right side of relation (A.1) is referred to as the forcing function. The general
(closed-form) solution of relation (A.1) is the same as that used for solving second−order differen-
tial equations. The three steps are as follows:

1. Obtain the natural response (complementary solution)  in terms of two arbitrary real
constants  and , where  and  are also real constants, that is,

(A.2)

2. Obtain the forced response (particular solution)  in terms of an arbitrary real constant ,

* For an introduction and applications of the Z-transform please refer to Signals and Systems with MATLAB
Computing and Simulink Modeling, Third Edition, ISBN 0-9744239-9-8.

† Newton’s method is discussed in Chapter 2.

T

y n( ) a1y n 1–( ) a2 n 2–( )+ + f n( )=

a1 a2 n
y n( ) n y n 1–( )

y n 2–( )

yC n( )
k1 k2 a1 a2

yC n( ) k1a1
n k2a2

n+=

yP n( ) k3
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that is,
(A.3)

where the right side of (A.3) is chosen with reference to Table A.1.*

3. Add the natural response (complementary solution)  and the forced response (particular
solution)  to obtain the total solution, that is,

(A.4)

4. Solve for  and  in (A.4) using the given initial conditions. It is important to remember
that the constants  and  must be evaluated from the total solution of (A.4), not from the
complementary solution .

It is best to illustrate the Method of Undetermined Coefficients via examples.

Example A.1  
Find the total solution for the second−order difference equation

(A.5)

subject to the initial conditions  and .

* Ordinary differential equations with constant coefficients are discussed in Chapter 5.

TABLE A.1 Forms of the particular solution for different forms of the forcing function
Form of forcing function Form of particular solutiona

a. As in the case with the solutions of ordinary differential equations with con-
stant coefficients, we must remember that if  is the sum of several terms,
the most general form of the particular solution  is the linear combina-
tion of these terms. Also, if a term in  is a duplicate of a term in the com-

plementary solution , we must multiply  by the lowest power of 
that will eliminate the duplication.

Constant  −  a constant

 − a is a constant  −   is constant

 − a and b are constants Expression proportional to 

yP n( ) k3a3
n=

f n( )
yP n( )

yP n( )
yC n( ) yP n( ) n

k

ank k0 k1n k2n2 … kknk+ + + + ki

ab n± b n±

nω( ) or nω( )asinacos k1 nω( )cos k2 nω( )sin+

yC n( )
yP n( )

y n( ) yC n( ) yP n( )+ k1a1
n k2a2

n yP n( )+ += =

k1 k2

k1 k2

yC n( )

y n( ) 5
6
---y n 1–( ) 1

6
---y n 2–( )+– 5 n–= n 0≥

y 2–( ) 25= y 1–( ) 6=
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Solution:

1. We assume that the complementary solution  has the form

(A.6)

The homogeneous equation of (A.5) is

(A.7)

Substitution of  into (A.7) yields

(A.8)

Division of (A.8) by  yields

(A.9)

The roots of (A.9) are

(A.10)

and by substitution into (A.6) we obtain

(A.11)

2. Since the forcing function is , we assume that the particular solution is

(A.12)
and by substitution into (A.5),

Division of both sides by  yields

or  and thus

(A.13)

The total solution is the addition of (A.11) and (A.13), that is,

(A.14)

yC n( )

yC n( ) k1a1
n k2a2

n+=

y n( ) 5
6
---y n 1–( ) 1

6
---y n 2–( )+– 0= n 0≥

y n( ) an=

an 5
6
---an 1––

1
6
---an 2–+ 0=

an 2–

a2 5
6
---a– 1

6
---+ 0=

a1
1
2
---= a2

1
3
---=

yC n( ) k1
1
2
---⎝ ⎠

⎛ ⎞
n

k2
1
3
---⎝ ⎠

⎛ ⎞
n

+ k12 n– k23 n–+= =

5 n–

yP n( ) k35 n–=

k35 n– k3
5
6
---⎝ ⎠

⎛ ⎞ 5 n 1–( )–– k3
1
6
---⎝ ⎠

⎛ ⎞ 5 n 2–( )–+ 5 n–=

5 n–

k3 1 5
6
---⎝ ⎠

⎛ ⎞ 5–
1
6
---⎝ ⎠

⎛ ⎞ 52+ 1=

k3 1=

yP n( ) 5 n–=

y n( ) yC n( ) yP n( )+ k12 n– k23 n– 5 n–+ += =
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To evaluate the constants  and  we use the given initial conditions, i.e., s  and
. For , (A.14) reduces to

from which
(A.15)

For , (A.14) reduces to

from which
(A.16)

Simultaneous solution of (A.15) and (A.16) yields 

(A.17)

and by substitution into (A.14) we obtain the total solution as

(A.18)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=1.5.*2.^(−n)−(2./3).*3.^(−n)+5.^(−n); stem(n,yn); grid

The plot is shown in Figure A.1.

Figure A.1. Plot for the difference equation of Example A.1

k1 k2 y 2–( ) 25=

y 1–( ) 6= n 2–=

y 2–( ) k122 k232 52+ + 25= =

4k1 9k2+ 0=

n 1–=

y 1–( ) k121 k231 51+ + 6= =

2k1 3k2+ 1=

k1
3
2
---= k2

2
3
---–=

y n( ) yC n( ) yP n( )+
3
2
---⎝ ⎠

⎛ ⎞ 2 n– 2
3
---–⎝ ⎠

⎛ ⎞ 3 n– 5 n–+ += = n 0≥

0 n 10≤ ≤

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
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Example A.2  
Find the total solution for the second−order difference equation

(A.19)

subject to the initial conditions  and 

Solution:

1. We assume that the complementary solution  has the form

(A.20)

The homogeneous equation of (A.19) is

(A.21)

Substitution of  into (A.21) yields

(A.22)

Division of (A.22) by  yields

(A.23)

The roots of (A.23) are

(A.24)

and by substitution into (A.20) we obtain

(A.25)

2. Since the forcing function is , in accordance with the first and third rows of Table A.1,
we would assume that the particular solution is

(A.26)

However, we observe that both relations (A.25) and (A.26) contain common terms, that is, the
constants  and . To avoid the duplication, we choose the particular solution as

(A.27)

and by substitution of (A.27) into (A.19) we obtain

y n( ) 3
2
---y n 1–( ) 1

2
---y n 2–( )+– 1 3 n–+= n 0≥

y 2–( ) 0= y 1–( ) 2=

yC n( )

yC n( ) k1a1
n k2a2

n+=

y n( ) 3
2
---y n 1–( ) 1

2
---y n 2–( )+– 0= n 0≥

y n( ) an=

an 3
2
---an 1–– 1

2
---an 2–+ 0=

an 2–

a2 3
2
---a– 1

2
---+ 0=

a1
1
2
---= a2 1=

yC n( ) k1
1
2
---⎝ ⎠

⎛ ⎞
n

k2 1( )n+ k12 n– k2+= =

1 3 n–+

yP n( ) k3 k43 n–+=

k2 k3

yP n( ) k3n k43 n–+=
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Equating like terms, we obtain

and after simplification,

By substitution into (A.27),

(A.28)

The total solution is the addition of (A.25) and (A.28), that is,

(A.29)

To evaluate the constants  and  we use the given initial conditions, i.e., s  and
. For , (A.29) reduces to

from which

(A.30)

For , (A.29) reduces to

from which

(A.31)

Simultaneous solution of (A.30) and (A.31) yields 

(A.32)

and by substitution into (A.29) we obtain the total solution as

k3n k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3 n 1–( )– 3
2
---⎝ ⎠

⎛ ⎞ k43 n 1–( )–– 1
2
---k3 n 2–( ) 1

2
---⎝ ⎠

⎛ ⎞ k43 n 2–( )–+ + + 1 3 n–+=

k3n k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3n–
3
2
---⎝ ⎠

⎛ ⎞ k3
9
2
---⎝ ⎠

⎛ ⎞ k43 n––
1
2
---k3n k3–

9
2
---⎝ ⎠

⎛ ⎞ k43 n–+ + + + 1 3 n–+=

k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3 k3–+ 1 3 n–+=

3
2
---⎝ ⎠

⎛ ⎞ k3 k3– 1=

k43 n– 3 n–=

k3 2= k4 1=

yP n( ) 2n 3 n–+=

y n( ) yC n( ) yP n( )+ k12 n– k2 2n 3 n–+ + += =

k1 k2 y 2–( ) 0=

y 1–( ) 2= n 2–=

y 2–( ) k122 k2 4– 9+ + 0= =

4k1 k2+ 5–=

n 1–=

y 1–( ) k121 k2 2– 31+ + 2= =

2k1 k2+ 1=

k1 3–= k2 7=
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(A.33)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=(−3).*2.^(−n)+7+2.*n+3.^(−n); stem(n,yn); grid

Figure A.2. Plot for the difference equation of Example A.2

Example A.3  
Find the total solution for the first-order difference equation

(A.34)

subject to the initial condition 

Solution:

1. We assume that the complementary solution  has the form

(A.35)

The homogeneous equation of (A.34) is

(A.36)

Substitution of  into (A.35) yields

(A.37)

y n( ) yC n( ) yP n( )+ 3–( )2 n– 7 2n 3 n–+ + += = n 0≥

0 n 10≤ ≤

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

y n( ) 0.9y n 1–( )– 0.5 0.9( )n 1–+= n 0≥

y 1–( ) 5=

yC n( )

yC n( ) k1an=

y n( ) 0.9y n 1–( )– 0= n 0≥

y n( ) an=

an 0.9an 1–– 0=
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Division of (A.37) by  yields

(A.38)

and by substitution into (A.35) we obtain

(A.39)

2. Since the forcing function is , in accordance with the first and third rows of
Table A.1, we would assume that the particular solution is

(A.40)

However, we observe that both relations (A.39) and (A.40) contain common terms, that is,
the constants  and . To avoid the duplication, we choose the particular solu-
tion as

(A.41)

and by substitution of (A.41) into (A.34) we obtain

Equating like terms, we obtain

and after simplification,

By substitution into (A.41),

(A.42)

The total solution is the addition of (A.39) and (A.42), that is,

(A.43)

an 1–

a 0.9– 0=

a 0.9=

yC n( ) k1 0.9( )n=

0.5 0.9( )n 1–+

yP n( ) k2 k3 0.9( )n+=

k1 0.9( )n k3 0.9( )n

yP n( ) k2 k3n 0.9( )n+=

k2 k3n 0.9( )n 0.9k2– 0.9k3 n 1–( ) 0.9( ) n 1–( )–+ 0.5 0.9( )n 1–+=

0.1k2 k3n 0.9( )n 0.9k3n 0.9( ) n 1–( )– 0.9k3 0.9( ) n 1–( )+ + 0.5 0.9( )n 1–+=

0.1k2 k3n 0.9( )n 0.9k3n 0.9( )n0.9 1–– 0.9k3 0.9( )n0.9 1–+ + 0.5 0.9( )n 1–+=

0.1k2 k3n 0.9( )n k3n 0.9( )n– k3 0.9( )n+ + 0.5 0.9( )n 1–+ 0.5 0.9( ) 1– 0.9( )n
+= =

0.1k2 0.5=

k3 0.9( )n 0.9( ) 1– 0.9( )n
=

k2 5= k3
10
9
------=

yP n( ) 5 10
9
------n 0.9( )n+=

y n( ) yC n( ) yP n( )+ k1 0.9( ) n 10
9
------n 0.9( )n 5+ += =
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To evaluate the constant  we use the given initial condition, i.e., . For ,
(A.43) reduces to

from which

(A.44)

and by substitution into (A.43) we obtain the total solution as

(A.45)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=(n+1).*(0.9).^(n-1)+5; stem(n,yn); grid

Figure A.3. Plot for the difference equation of Example A.3

Example A.4  
Find the total solution for the second−order difference equation

(A.46)

k1 y 1–( ) 5= n 1–=

y 1–( ) k1 0.9( ) 1– 10
9

------ 1–( ) 0.9( ) 1– 5+ + 5= =

10
9
------k1

100
81
---------– 0=

k1
10
9
------=

y n( ) 0.9( ) n 1– n 0.9( ) n 1– 5+ +=

y n( ) n 1+( ) 0.9( ) n 1– 5+= n 0≥

0 n 10≤ ≤

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

y n( ) 1.8y n 1–( ) 0.81y n 2–( )+– 2 n–= n 0≥
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subject to the initial conditions  and 

Solution:

No initial conditions are given and thus we will express the solution in terms of the unknown
constants.

1. We assume that the complementary solution  has the form

(A.47)

The homogeneous equation of (A.46) is

(A.48)

Substitution of  into (A.48) yields

(A.49)

Division of (A.49) by  yields

(A.50)

The roots of (A.50) are repeated roots, that is,

(A.51)

and as in the case of ordinary differential equations, we accept the complementary solution to
be of the form

(A.52)

2. Since the forcing function is , we assume that the particular solution is

(A.53)
and by substitution into (A.46),

Division of both sides by  yields

y 2–( ) 25= y 1–( ) 6=

yC n( )

yC n( ) k1a1
n k2a2

n+=

y n( ) 1.8y n 1–( ) 0.81y n 2–( )+– 0= n 0≥

y n( ) an=

an 1.8an 1–– 0.81an 2–+ 0=

an 2–

a2 1.8a– 0.81+ 0=

a1 a2 0.9= =

yC n( ) k1 0.9( )n k2n 0.9( )n+=

2 n–

yP n( ) k32 n–=

k32 n– k3 1.8( )2 n 1–( )–– k3 0.81( )2 n 2–( )–+ 2 n–=

2 n–

k3 1 1.8( )2– 0.81( )22+[ ] 1=

k3 1 3.6– 3.24+[ ] 1=

k3
1

0.64
---------- 25

16
------= =
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and thus

(A.54)

The total solution is the addition of (A.52) and (A.54), that is,

(A.55)

Example A.5  
For the second−order difference equation

(A.56)

what would be the appropriate choice for the particular solution?
Solution:

This is the same difference equation as that of Example A.4 where the forcing function is 

instead of  where we found that the complementary solution is

(A.57)

Row 3 in Table A.1 indicates that a good choice for the particular solution would be . But
this is of the same form as the first term on the right side of (A.57). The next choice would be a
term of the form  but this is of the same form as the second term on the right side of
(A.57). Therefore, the proper choice would be 

(A.58)

Example A.6  
Find the particular solution for the first-order difference equation

(A.59)

Solution:

From Row 4 in Table A.1 we see that for a sinusoidal forcing function, the particular solution has
the form

(A.60)

yP n( ) 25
16
------⎝ ⎠

⎛ ⎞ 2
n–

=

y n( ) yC n( ) yP n( )+ k1 0.9( )n k2n 0.9( )n 25
16
------⎝ ⎠

⎛ ⎞ 2
n–

+ += =

y n( ) 1.8y n 1–( ) 0.81y n 2–( )+– 0.9( )n= n 0≥

0.9( )n

2 n–

yC n( ) k1 0.9( )n k2n 0.9( )n+=

k3 0.9( )n

k3n 0.9( )n

yP n( ) k3n2 0.9( )n
=

y n( ) 0.5y n 1–( )–
nπ
2

------⎝ ⎠
⎛ ⎞sin= n 0≥

yP n( ) k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos+=
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and by substitution of (A.60) into (A.59)

(A.61)

From trigonometry,

Then,

and by substitution into (A.61)

(A.62)

Equating like terms, we obtain
(A.63)

(A.64)

and simultaneous solution of (A.63) and (A.64) yields

Therefore, the particular solution of (A.59) is

(A.65)

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

n 1–( )π
2

--------------------sin 0.5k2
n 1–( )π

2
--------------------cos––+ nπ

2
------⎝ ⎠
⎛ ⎞sin=

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

nπ
2

------ π
2
---–sin 0.5k2

nπ
2

------ π
2
---–cos––+

nπ
2

------⎝ ⎠
⎛ ⎞sin=

θ π
2
---–⎝ ⎠

⎛ ⎞sin θcos–=

θ π
2
---–⎝ ⎠

⎛ ⎞cos θsin=

nπ
2

------ π
2
---–sin nπ

2
------⎝ ⎠

⎛ ⎞cos–=

nπ
2

------ π
2
---–cos nπ

2
------⎝ ⎠

⎛ ⎞sin=

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k2

nπ
2

------⎝ ⎠
⎛ ⎞sin–+ +

nπ
2

------⎝ ⎠
⎛ ⎞sin=

k1 0.5k2– 1=

0.5k1 k2+ 0=

k1
4
5
---= k2

2
5
---–=

yP n( ) 4
5
--- nπ

2
------⎝ ⎠
⎛ ⎞sin 2

5
---– nπ

2
------⎝ ⎠
⎛ ⎞cos=
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Appendix B

Introduction to Simulink®

his appendix is a brief introduction to Simulink. This author feels that we can best intro-
duce Simulink with a few examples. Some familiarity with MATLAB is essential in under-
standing Simulink, and for this purpose, it is highly recommended that the novice to MAT-

LAB reader reviews Chapter 1 which serves as an introduction to MATLAB.

B.1 Simulink and its Relation to MATLAB

The MATLAB® and Simulink® environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We will introduce Simulink with a few illustrated examples. 

Example B.1  

For the circuit of Figure B.1, the initial conditions are , and . We will
compute .

Figure B.1. Circuit for Example B.1

For this example,

(B.1)

and by Kirchoff’s voltage law (KVL),

(B.2)

Substitution of (B.1) into (B.2) yields

T

iL 0−( ) 0= vc 0−( ) 0.5 V=

vc t( )

−

+
R L

+
−

C1 Ω

vs t( ) u0 t( )=

vC t( )
i t( )

1 4⁄  H

4 3⁄  F

i iL iC C
dvC

dt
---------= = =

RiL L
diL

dt
------- vC+ + u0 t( )=
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(B.3)

Substituting the values of the circuit constants and rearranging we obtain:

(B.4)

(B.5)

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method − Assumed Solution

Equation (B.5) is a second−order, non−homogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

However, decaying exponentials of the form  where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

It can be shown* that if  and  where  and  are constants and  and  are the
roots of the characteristic equation of the homogeneous part of the given differential equation,

the natural response is the sum of the terms  and . Therefore, the total solution will
be

(B.6)

The values of  and  are the roots of the characteristic equation 

* Please refer to Circuit Analysis II with MATLAB Applications, ISBN 0−9709511−5−9, Appendix B for a
thorough discussion.

RC
dvC

dt
--------- LC

d2vC

dt2
----------- vC+ + u0 t( )=

1
3
---d2vC

dt2
----------- 4

3
---dvC

dt
--------- vC+ + u0 t( )=

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3u0 t( )=

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3= t 0>

ke at–

k1e
s1t–

k2e
s2t–

k1 k2 s1 s2

k1e
s1t–

k2e
s2t–

vc t( ) natural response forced response+ vcn t( ) vcf t( )+ k1e
s1t–

k2e
s2t–

vcf t( )+ += = =

s1 s2
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(B.7)

Solution of (B.7) yields of  and  and with these values (B.6) is written as

(B.8)

The forced component  is found from (B.5), i.e., 

(B.9)

Since the right side of (B.9) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (B.9) we obtain

or
 (B.10)

Substitution of this value into (B.8), yields the total solution as 

 (B.11)

The constants  and  will be evaluated from the initial conditions. First, using 
and evaluating (B.11) at , we obtain

 (B.12)

Also,

and

(B.13)

Next, we differentiate (B.11), we evaluate it at , and equate it with (B.13). Thus,

(B.14)

By equating the right sides of (B.13) and (B.14) we obtain

s2 4s 3+ + 0=

s1 1–= s2 3–=

vc t( ) k1e t– k2e 3– t vcf t( )+ +=

vcf t( )

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3= t 0>

vCf k3=

0 0 3k3+ + 3=

vCf k3 1= =

vC t( ) vCn t( ) vCf+= k1e t– k2e 3– t 1+ +=

k1 k2 vC 0( ) 0.5 V=

t 0=

vC 0( ) k1e0 k2e0 1+ + 0.5= =

k1 k2+ 0.5–=

iL iC C
dvC
dt

---------= =   
dvC
dt

--------- iL
C
----=,

   
dvC
dt

---------
t 0=

iL 0( )
C

------------ 0
C
---- 0= = =

t 0=

      
dvC
dt

---------
t 0=

k1– 3k2–=
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(B.15)

Simultaneous solution of (B.12) and (B.15), gives  and . By substitution into
(B.8), we obtain the total solution as

(B.16)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=−0.75*exp(−t)+0.25*exp(−3*t)+1; %  The total solution y(t), for our example, vc(t)
y1=diff(y0) %  The first derivative of y(t)

y1 =
3/4*exp(-t)-3/4*exp(-3*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 =
-3/4*exp(-t)+9/4*exp(-3*t)

y=y2+4*y1+3*y0 %  Summation of y and its derivatives

y =
3

Thus, the solution has been verified by MATLAB. Using the expression for  in (B.16), we
find the expression for the current as

  (B.17)

Second Method − Using the Laplace Transformation

The transformed circuit is shown in Figure B.2.

Figure B.2. Transformed Circuit for Example B.1

k1– 3k2– 0=

k1 0.75–= k2 0.25=

vC t( ) 0.75– e t– 0.25e 3– t 1+ +( )u0 t( )=

vC t( )

i iL= iC C
dvC
dt

---------- 4
3
--- 3

4
---e t– 3

4
---– e 3t–

⎝ ⎠
⎛ ⎞ e t– e 3t––  A= == =

−

+
R L

+
−

C  1

Vs s( ) 1 s⁄= VC s( )
I s( )

0.25s

3 4s⁄  

+
− VC 0( )

0.5 s⁄  
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By the voltage division* expression,

Using partial fraction expansion,† we let

(B.18)

and by substitution into (B.18)

Taking the Inverse Laplace transform‡ we find that 

Third Method − Using State Variables

**

* For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with
MATLAB Applications, ISBN 0−9709511−2−4.

† Partial fraction expansion is discussed in Chapter 12, this text.
‡ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer to Chapters 2 and 3,

Signals and Systems with MATLAB Computing and Simulinl Modeling, ISBN 0-9744239-9-8.
** Usually, in State−Space and State Variables Analysis,  denotes any input. For distinction, we will denote

the Unit Step Function as . For a detailed discussion on State−Space and State Variables Analysis, please
refer to Chapter 5, Signals and Systems with MATLAB Computing and Simulinl Modeling, ISBN 0-
9744239-9-8.

VC s( ) 3 4s⁄
1 0.25s 3 4s⁄+ +( )

---------------------------------------------- 1
s
--- 0.5

s
-------–⎝ ⎠

⎛ ⎞⋅ 0.5
s

-------+= 1.5
s s2 4s 3+ +( )
--------------------------------- 0.5

s
-------+ 0.5s2 2s 3+ +

s s 1+( ) s 3+( )
------------------------------------= =

0.5s2 2s 3+ +
s s 1+( ) s 3+( )
------------------------------------

r1
s
----

r2
s 1+( )

----------------
r3

s 3+( )
----------------+ +=

r1
0.5s2 2s 3+ +
s 1+( ) s 3+( )

----------------------------------
s 0=

1= =

r2
0.5s2 2s 3+ +

s s 3+( )
----------------------------------

s 1–=

0.75–= =

r3
0.5s2 2s 3+ +

s s 1+( )
----------------------------------

s 3–=

0.25= =

VC s( ) 0.5s2 2s 3+ +
s s 1+( ) s 3+( )
------------------------------------ 1

s
--- 0.75–

s 1+( )
---------------- 0.25

s 3+( )
----------------+ += =

vC t( ) 1 0.75e t– 0.25e 3t–+–=

RiL L
diL

dt
------- vC+ + u0 t( )=

u t( )
u0 t( )



  Introduction to Simulink®

B−6 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications

By substitution of given values and rearranging, we obtain

or

(B.19)

Next, we define the state variables  and . Then,

* (B.20)

and

(B.21)

Also,

and thus,

or

(B.22)

Therefore, from (B.19), (B.20), and (B.22), we obtain the state equations

and in matrix form,

(B.23)

Solution† of (B.23) yields

* The notation  (x dot) is often used to denote the first derivative of the function , that is, .

† The detailed solution of (B.23) is given in Chapter 5, Signals and Systems with MATLAB Computing and
Simulinl Modeling, ISBN 0-9744239-9-8.

1
4
---diL

dt
------- 1–( )iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x· 1
diL

dt
-------=

x· x x· dx dt⁄=

x· 2
dvC

dt
---------=

iL C
dvC

dt
---------=

x1 iL C
dvC

dt
--------- Cx· 2

4
3
---x· 2= = = =

x· 2
3
4
---x1=

x· 1 4x1– 4x2– 4+=

x· 2
3
4
--- x1=

x· 1

x· 2

4– 4–
3 4⁄ 0

x1

x2

4
0

u0 t( )+=
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Then,

(B.24)

and

(B.25)

Modeling the Differential Equation of Example B.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the MATLAB Command prompt, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure B.3. It appears on the top bar on
MATLAB’s Command prompt. 

Figure B.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks appear as shown in Fig-
ure B.4.

In Figure B.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example B.1 as

(B.26)

A block diagram representing relation (B.26) above is shown in Figure B.5. We will use Simulink
to draw a similar block diagram.*

* Henceforth, all Simulink block diagrams will be referred to as models.

x1

x2

e t– e– 3t–

1 0.75– e t– 0.25e 3t–+
=

x1 iL e t– e– 3t–= =

x2 vC 1 0.75e– t– 0.25e 3t–+= =

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC 3u0 t( )+––=
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Figure B.4. The Simulink Library Browser

Figure B.5. Block diagram for equation (B.26)

To model the differential equation (B.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure B.6. 

3u0 t( ) Σ dt∫ dt∫

−4

−3

d2vC

dt2
----------- dvC

dt
--------- vC



Numerical Analysis Using MATLAB® and Excel®, Third Edition B−9
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

Figure B.6. The Untitled model window in Simulink.

The window of Figure B.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure B.6 where we choose Save as and name the file as Equation_1_26. Simulink will add
the extension .mdl. The new model window will now be shown as Equation_1_26, and all
saved files will have this appearance. See Figure B.7.

Figure B.7. Model window for Equation_1_26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function shown as Step. See Figure B.8. We select it, and we drag it into
the Equation_1_26 model window which now appears as shown in Figure B.8. We save file
Equation_1_26 using the File drop menu on the Equation_1_26 model window (right side of
Figure B.8).

3. With reference to block diagram of Figure B.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
B.8. If the Equation_1_26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two
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blocks.* We double−click on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure B.9.

Figure B.8. Dragging the unit step function into File Equation_1_26

Figure B.9. File Equation_1_26 with added Step and Gain blocks

* An easy method to interconnect two Simulink blocks is by clicking on the source block to select it, then holding
down the Ctrl key, and left−clicking on the destination block.
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5. Next, we need to add a thee−input adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1_26 model window. We double click it, and on the Function Block Parameters
window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure B.10.

Figure B.10. File Equation_1_26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-
ure B.11.

Figure B.11. File Equation_1_26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we double−click on these
gain blocks and on the Function Block Parameters window, we change the gains from to −4
and −3 as shown in Figure B.12.

Figure B.12. File Equation_1_26 complete block diagram
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8. The initial conditions , and  are entered by

double clicking the Integrator blocks and entering the values  for the first integrator, and 
for the second integrator. We also need to specify the simulation time. This is done by specify-
ing the simulation time to be  seconds on the Configuration Parameters from the Simula-
tion drop menu. We can start the simulation on Start from the Simulation drop menu or by

clicking on the  icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.13. 

Figure B.13. The waveform for the function  for Example B.1

Another easier method to obtain and display the output  for Example B.1, is to use State−
Space block from Continuous in the Simulink Library Browser, as shown in Figure B.14.

Figure B.14. Obtaining the function  for Example B.1 with the State−Space block.

iL 0−( ) C dvC dt⁄( )
t 0=

0= = vc 0−( ) 0.5 V=

0 0.5

10
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vC t( )
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The simout To Workspace block shown in Figure B.14 writes its input to the workspace. The
data and variables created in the MATLAB Command window, reside in the MATLAB Work-
space. This block writes its output to an array or structure that has the name specified by the
block's Variable name parameter. This gives us the ability to delete or modify selected variables.
We issue the command who to see those variables. From Equation B.23, Page B−6,

The output equation is

or

We double−click on the State−Space block, and in the Functions Block Parameters window we
enter the constants shown in Figure B.15.

Figure B.15. The Function block parameters for the State−Space block.

x· 1

x· 2

4– 4–
3 4⁄ 0

x1

x2

4
0

u0 t( )+=

y Cx du+=
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The initials conditions  are specified in MATLAB’s Command prompt as

x1=0; x2=0.5;

As before, to start the simulation we click clicking on the  icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale  icon, we
obtain the waveform shown in Figure B.16.

Figure B.16. The waveform for the function  for Example B.1 with the State−Space block.

The state−space block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example B.2  
A fourth−order network is described by the differential equation

(B.27)

where  is the output representing the voltage or current of the network, and  is any input,
and the initial conditions are .

a. We will express (B.27) as a set of state equations

x1  x2[ ]'

vC t( )

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t( )+ + + + u t( )=

y t( ) u t( )
y 0( ) y' 0( ) y'' 0( ) y''' 0( ) 0= = = =
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b. It is known that the solution of the differential equation

(B.28)

subject to the initial conditions , has the solution

(B.29)

In our set of state equations, we will select appropriate values for the coefficients
 so that the new set of the state equations will represent the differential equa-

tion of (B.28), and using Simulink, we will display the waveform of the output .

1. The differential equation of (B.28) is of fourth−order; therefore, we must define four state vari-
ables that will be used with the four first−order state equations. 

We denote the state variables as , and , and we relate them to the terms of the
given differential equation as

(B.30)

We observe that

(B.31)

and in matrix form 

(B.32)

In compact form, (B.32) is written as

(B.33)
Also, the output is

(B.34)
where

d4y
dt4
-------- 2d2y

dt2
-------- y t( )+ + tsin=

y 0( ) y' 0( ) y'' 0( ) y''' 0( ) 0= = = =

y t( ) 0.125 3 t2–( ) 3t tcos–[ ]=

a3 a2 a1  and a0, , ,
y t( )

x1 x2 x3, ,  x4

x1 y t( )= x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x· 1 x2=

x· 2 x3=

x· 3 x4=

d 4y
dt4
--------- x· 4 a0x1– a1x2 a2x3–– a3x4– u t( )+= =

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t( )+=

x· Ax bu+=
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(B.35)

and since the output is defined as 

relation (B.34) is expressed as

(B.36)

2. By inspection, the differential equation of (B.27) will be reduced to the differential equation of
(B.28) if we let

and thus the differential equation of (B.28) can be expressed in state−space form as

(B.37)

where

(B.38)

Since the output is defined as 

in matrix form it is expressed as

x·

x· 1

x· 2

x· 3

x· 4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u,=, , , u t( )=

y t( ) x1=

y 1  0  0  0[ ]

x1

x2

x3

x4

⋅ 0[ ]u t( )+=

a3 0= a2 2= a1 0= a0 1= u t( ) tsin=

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0
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0
0
0
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x·
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a0– 0 2– 0
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0
0
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     and u,=, , , tsin=

y t( ) x1=
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(B.39)

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1_2 model window, we click
and drag the State−Space block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
B.17.

Figure B.17. Block diagram for Example B.2

We now double−click on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time

Amplitude: 1

Frequency: 2

Units: Hertz

Next, we double−click on the state−space block and we enter the following parameter values
in the Function Block Parameters: 

A: [0  1  0  0; 0  0  1  0; 0  0  0  1; −a0  −a1 −a2  −a3]

B: [0  0  0  1]’

C: [1  0  0  0]

D: [0]

Initial conditions: x0

y 1  0  0  0[ ]

x1

x2

x3

x4

⋅ 0[ ] tsin+=
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Absolute tolerance: auto

Now, we switch to the MATLAB Command prompt and we type the following:

>> a0=1; a1=0; a2=2; a3=0; x0=[0  0  0  0]’;

We change the Simulation Stop time to , and we start the simulation by clicking on the 
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.18.

Figure B.18. Waveform for Example B.2

The Display block in Figure B.17 shows the value at the end of the simulation stop time.

Examples B.1 and B.2 have clearly illustrated that the State−Space is indeed a powerful block. We
could have obtained the solution of Example B.2 using four Integrator blocks by this approach
would have been more time consuming.
 

Example B.3  
Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns , , and  in the system of the equations

(B.40)

25

z1 z2 z3

a1z1 a2z2 a3z3 k1+ + + 0=

a4z1 a5z2 a6z3 k2+ + + 0=

a7z1 a8z2 a9z3 k3+ + + 0=
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The model is shown in Figure B.19.

Figure B.19. Model for Example B.3

Next, we go to MATLAB’s Command prompt and we enter the following values:

a1=2; a2=−3; a3=−1; a4=1; a5=5; a6=4; a7=−6; a8=1; a9=2;...
k1=−8; k2=−7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as ,
, and .These values are shown in the Display blocks of Figure B.19.

The Algebraic Constraint block constrains the input signal  to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We
can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.

z1 2=

z2 3–= z3 5=

f z( )
z
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An outstanding feature in Simulink is the representation of a large model consisting of many
blocks and lines, to be shown as a single Subsystem block.* For instance, we can group all blocks
and lines in the model of Figure B.19 except the display blocks, we choose Create Subsystem
from the Edit menu, and this model will be shown as in Figure B.20† where in MATLAB’s Com-
mand prompt we have entered:

a1=5; a2=−1; a3=4; a4=11; a5=6; a6=9; a7=−8; a8=4; a9=15;...
k1=14; k2=−6; k3=9;

Figure B.20. The model of Figure B.19 represented as a subsystem

The Display blocks in Figure B.20 show the values of , , and  for the values specified in
MATLAB’s Command prompt. 

B.2 Simulink Demos
At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. It is highly recommended that the reader becomes familiar with the block
libraries found in the Simulink Library Browser. Then, the reader can follow the steps delineated
in The MathWorks Simulink User’s Manual to run the Demo Models beginning with the thermo
model. This model can be seen by typing

thermo

in the MATLAB Command prompt.

* The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 2−2, Introduction to Simulink with
Engineering Applications, ISBN 0−9744239−7−1.

† The contents of the Subsystem block are not lost. We can double−click on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 2−2, Introduction to Simulink with Engineering Applica-
tions, ISBN 0−9744239−7−1.

z1 z2 z3
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Appendix C 

Ill−Conditioned Matrices

his appendix supplements Chapters 4 and 14 with concerns when the determinant of the
coefficient matrix is small. We will introduce a reference against which the determinant can
be measured to classify a matrix as a well− or ill−conditioned.

C.1 The Norm of a Matrix

A norm is a function which assigns a positive length or size to all vectors in a vector space, other

than the zero vector. An example is the two−dimensional Euclidean space denoted as . The
elements of the Euclidean vector space (e.g., (2,5)) are usually drawn as arrows in a two−dimen-
sional cartesian coordinate system starting at the origin (0,0). The Euclidean norm assigns to each
vector the length of its arrow.

The Euclidean norm of a matrix , denoted as , is defined as 

(C.1)

and it is computed with the MATLAB function norm(A).

Example C.1  

Using the MATLAB function norm(A), compute the Euclidean norm of the matrix , defined as

Solution:

At the MATLAB command prompt, we enter

A=[−2  5  −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; norm(A)

and MATLAB outputs

T

R2

A A

A Aij
2

j 1=

n

∑
i 1=

n

∑=

A

A

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

=
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ans =
   14.5539

C.2 Condition Number of a Matrix

The condition number of a matrix  is defined as

(C.2)

where  is the norm of the matrix  defined in relation (C.1) above. Matrices with condition
number close to unity are said to be well−conditioned matrices, and those with very large condition
number are said to be ill−conditioned matrices.

The condition number of a matrix  is computed with the MATLAB function cond(A).

Example C.2  

Using the MATLAB function cond(A), compute the condition number of the matrix  defined
as

Solution:

At the MATLAB command prompt, we enter

A=[−2  5  −4  9; −3  −6  8  1; 7  −5  3  2; 4  −9  −8  −1]; cond(A)

and MATLAB outputs

ans =
    2.3724

This condition number is relatively close to unity and thus we classify matrix A as a well-condi-
tioned matrix.

We recall from Chapter 4 that if the determinant of a square matrix A is singular, that is, if
, the inverse of A is undefined. Please refer to Chapter 4, Page 4−22. 

A

k A( ) A A 1–⋅=

A A

A

A

A

2– 5 4– 9
3– 6– 8 1
7 5– 3 2
4 9– 8– 1–

=

det A( ) 0=



Numerical Analysis Using MATLAB® and Excel®, Third Edition C−3
Copyright © Orchard Publications

Hilbert Matrices

Now, let us consider that the coefficient matrix*  is very small, i.e., almost singular. Accordingly,
we classify such a matrix as ill−conditioned.

C.3 Hilbert Matrices

Let  be a positive integer. A unit fraction is the reciprocal of this integer, that is, . Thus,
 are unit fractions. A Hilbert matrix is a matrix with unit fraction elements

(C.3)

Shown below is an example of the  Hilbert matrix.

(C.4)

* In general, a system with m linear equations and n unknowns can be written as

where  are the unknowns and the numbers  are the coefficients of the system.

The coefficient matrix is the  matrix with the coefficient  as the (i,j)-th entry:

a11x1 a12x2 …+a1nxn+ + b1=

a21x1 a22x2 …+a2nxn+ + b2=

...          ...         ...       ...          ...
am1x1 am2x2 …+amnxn+ + bm=

x1 x2 …  xn, , , a11 a12 …  amn, , ,

m n× aij

a11 a12 … a1n

a21 a22 … a2n

… … … …
am1 am1 am1 am1

n 1 n⁄
1 1 1 2⁄,⁄ 1 3⁄ …, ,

Bij 1 i j 1–+( )⁄=

5 5×

1
1
--- 1

2
--- 1

3
--- 1

4
--- 1

5
---

1
2
--- 1

3
--- 1

4
--- 1

5
--- 1

6
---

1
3
--- 1

4
--- 1

5
--- 1

6
--- 1

7
---

1
4
--- 1

5
--- 1

6
--- 1

7
--- 1

8
---

1
5
--- 1

6
--- 1

7
--- 1

8
--- 1

9
---
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MATLAB’s function hilb(n) displays the Hilbert  matrix.

Example C.3  

Compute the determinant and the condition number of the  Hilbert matrix using MATLAB.

Solution:

At the MATLAB command prompt, we enter

det(hilb(6))

and MATLAB outputs

ans =

  5.3673e-018

This is indeed a very small number and for all practical purposes this matrix is singular.

We can find the condition number of a matrix A with the cond(A) MATLAB function. Thus, for
the  Hilbert matrix,

cond(hilb(6))

ans =
  1.4951e+007

This is a large number and if the coefficient matrix is multiplied by this number, seven decimal
places might be lost.

Let us consider another example.

Example C.4  

Let  where  and 

Compute the values of the vector .

Solution:

Here, we are asked to find the values of  and  of the linear system

n n×

6 6×

6 6×

Ax b= A 0.585 0.379
0.728 0.464

= b 0.187
0.256

=

x

x1 x2

0.585 0.379
0.728 0.464

x1

x2

⋅ 0.187
0.256

=
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Hilbert Matrices

Using MATLAB, we define  and , and we use the left division operation, i.e.,

A=[0.585 0.378; 0.728 0.464]; b=[0.187 0.256]'; x=b\A

x =
    2.9428    1.8852

Check:

A=[0.585 0.378; 0.728 0.464]; x=[2.9428 1.8852]'; b=A*x

b =
    2.4341
    3.0171

but these are not the given values of the vector , so let us check the determinant and the condi-
tion number of the matrix .

determinant = det(A)

determinant =
   -0.0037

condition=cond(A)

condition =
  328.6265

Therefore, we conclude that this system of equations is ill-conditioned and the solution is invalid.

Example C.4 above should serve as a reminder that when we solve systems of equations using
matrices, we should check the determinants and the condition number to predict possible floating
point and roundoff errors.

A b

b
A
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characteristic equation of a second diagonal of a matrix - see matrix first divided difference 7-1
     order difference equation 11-3 diff(s) MATLAB function 2-6 first harmonic 6-1
chart type in Excel 2-10 difference equations A-1 fixed point format 2-21
Chart Wizard Excel feature 2-10, 8-6 difference operator 7-4, 11-1 Flip Block command in Simulink B-11
Chebyshev polynomials 15-22 differences - see finite differences forced response 5-8
Chebyshev polynomials of the dipole 15-12 forcing function A-1
     first kind 15-22 direct terms in MATLAB 12-1 format MATLAB command 1-31

directed network 16-15 format specifiers in MATLAB 2-21
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forward substitution 14-10 improper integral 13-1 Math Operations Library in Simulink B-11
Fourier analysis 3-2 improper rational function 12-1 MATLAB Demos 1-2
Fourier series 6-1 increments between points matrix (matrices) 4-1
fplot MATLAB command 1-27      in MATLAB 1-14      adjoint of 4-22
fprintf MATLAB command 7-29 in-phase sinusoids 3-3      coefficient C-3
frequency 3-2 input(‘string’) MATLAB command 2-2     cofactors of 4-11
Frequency Modulation (FM) 15-4 int(f,a,b) MATLAB function 10-5      condition number of C-2
frequency response 1-11 interp1(x,y,xi) MATLAB function 7-24     conformable for addition 4-2
full-wave rectifier with even interp1(x,y,xi,’method’) MATLAB      conformable for multiplication 4-4
     symmetry 6-24      function 7-25     conformable for subtraction 4-2
function block parameters in Simulink B-10 interp2(x,y,z,xi,yi) MATLAB      congugate of 4-8
function files in MATLAB 1-26,  1-27, 2-4      function 7-25     determinant of 4-9
fundamental frequency 6-1 interp2(x,y,z,xi,yi,’method’) MATLAB      diagonal elements of 4-1
fundamental theorem of      function 7-25      diagonal of 4-6
     integral calculus 7-12 interpolation 7-1     elements of 4-1
fundamental theorem of interpolation with MATLAB 7-24     Hermitian 4-9
     sum calculus 7-13 interval halving 2-19      Hilbert C-3
fzero MATLAB function 1-27, 1-29 inverse of a matrix - see matrix      identity 4-6
fzero(‘function’,x0) MATLAB isoprofit line 16-2      ill-conditioned 4-22, C-2
     function 12-18     inverse of 4-23
fzero(f,x) MATLAB function 2-7 J     lower triangular 4-6

    main diagonal elements of 4-1
G j operator 3-11     main diagonal of 4-1

    minor of determinant 4-13
Gain block in Simulink B-18 L     non-singular 4-22
gamma distribution 13-16     scalar 4-6
gamma function 13-1 L’ Hôpital’s rule 13-2     singular 4-22
gamma(n) MATLAB function 13-3, 13-10 lagging sinudoid  3-3     size of 4-7
GAMMADIST Excel function 13-16 Lagrange’s interpolation method 7-17     skew-Hermitian 4-9
GAMMALN Excel function 13-5 Laguerre polynomials 15-21      skew-symmetric 4-8
Gaussian elimination method 4-20, 14-9 leading sinusoid 3-3     square 4-1
Genenbauer 15-22 least squares 8-2,  8-3     symmetric 4-8
general solution of a differential least squares line 8-2     trace of 4-2
     equation 5-6 least-squares curve 8-2     transpose of 4-7
generalized factorial function 13-1 least-squares parabola 8-2, 8-7      unitary 14-25
generating function for Bessel functions Legendre functions 15-10     upper triangular 4-5
     of the first kind of integer order 15-9 Legendre functions of the      well-conditioned C-2
generating function for Legendre      second kind 15-11     zero matrix - see matrix
     polynomials 15-12 Legendre polynomials 15-11 matrix left division in MATLAB 4-26
Goal Seek Excel feature 2-16 Legendre polynomials in matrix multiplication in MATLAB 1-19, 1-20
Gram-Schmidt orthogonalization      trigonometric form 15-18 mesh(x,y,z) MATLAB command 1-17
     procedure 5-39, 14-7 legendre(n,x) MATLAB function 15-19 mesh(Z) MATLAB function 7-32
Gregory-Newton Backward Legendre’s equation 15-10 meshgrid(x,y) MATLAB command 1-17
     Interpolation Formula 7-21 lims = MATLAB function 1-27 method of Frobenius 15-1
Gregory-Newton Forward line graph 16-4 method of least squares 8-2, 8-3
     Interpolation Formula 7-19 line spectrum 6-33 method of Picard 15-1
grid MATLAB command 1-11 linear factor 1-9 method of undetermined
gtext MATLAB command 1-14, 15-25 linear interpolarion 7-25     coefficients 5-10, 11-2, A-1

linear programming 16-1 method of variation of parameters 5-20
H linear regression 8-2 m-file in MATLAB 1-1 1-26, 1-27

linspace MATLAB command 1-14 Milne’s method 9-15
half-wave rectifier 6-19,  6-22 ln (natural logarithm) 1-12 minimum span problems 16-15
half-wave symmetry 6-7, 6-31 log (common logarithm) 1-12 minor of determinant - see matrix
help in MATLAB 1-2, 1-15 log(x) MATLAB function 1-12 MINVERSE Excel function 4-28
Hermitian matrix - see matrix log10(x) MATLAB function 1-12 MMULT Excel function 4-28, 4-29
hilb(n) MATLAB function C-4 log2(x) MATLAB function 1-12 modified Bessel functions 15-7
Hilbert matrix - see matrix loglog MATLAB command 1-12, 34 modulation index 15-4
homogeneous difference equation 11-2 lower triangular matrix - see matrix multiple poles 12-6
Hz (Hertz) 3-3 lsqnonneg MATLAB function 14-28 multiplication of complex numbers 3-12

LU factorization method 14-9
I lu(A) MATLAB function 14-12, 14-14 N

identity matrix - see matrix M NaN in MATLAB 1-27
ill-conditioned matrix - see matrix natural response 5-8, A-1
imag(z) MATLAB function 1-24 Maclaurin power series 6-41, 7-6 nearest neighbor interpolarion 7-25
imaginary axis 3-10 main diagonal elements - see matrix network analysis 16-14
imaginary number 3-10 main diagonal of a matrix - see matrix Neumann functions 15-7
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Newton’s divided difference quadratic factor 1-9 Stirling’s asymptotic series
     interpolation method 7-15 quit MATLAB command 1-2      for the G(n) function 13-9
Newton-Cotes 8-panel rule 10-10 string in MATLAB 1-17
non-homogeneous difference R subplot MATLAB command 1-18
     equation 11-2 surface zonal harmonics 15-11
non-homogeneous ODE 5-6 radian frequency 3-2 svd(A) MATLAB function 14-28
non-singular matrix - see matrix rational polynomial 1-8 sym, syms MATLAB symbolic
norm C-1 rationalization of the quotient 3-13      expressions 12-4
norm(A) MATLAB function C-1 real axis 3-10 symbolic expressions in MATLAB  12-3
numeric expressions in MATLAB 12-4 real number 3-11 Symbolic Math Toolbox in MATLAB 12-4
numerical evaluation of Fourier real(z) MATLAB function 1-24 symmetric matrix - see matrix
     coefficients 6-36 recursion A-1 symmetry 6-7,  6-14, 6-31

recursive method A-1
O regression 8-1 T

regression analysis 8-7
odd functions 6-8, 6-31 relative cell in Excel 2-19 Taylor series 5-24, 6-41, 6-44
odd symmetry 6-7 repeated poles 5-9, 12- 6 Taylor series expansion method 9-1
ODE (Ordinary Differential Equation) 5-3 residue(r,p,k) MATLAB function 12-1 text MATLAB command 1-14, 1-17
ode23 MATLAB function 9-9 revolutions per second 3-5 third harmonic 6-1
ode45 MATLAB function 9-9 Rodrigues’ formula 15-12, 15-18 title(‘string’) in MATLAB 1-12
one-dimensional wave equation 5-3 roots of polynomials 1-3 trace of a matrix - see matrix
optimum path policy 16-5 roots(p) MATLAB function 1-3, 1-8 transpose of a matrix - see matrix
order of a differential equation 5-3 rotating vector 3-5 trapezoidal rule 10-1
ordinary differential equation 5-3 round(n) MATLAB function 1-24 trapz(x,y) MATLAB function 10-3, 10-5
oriented network 16-15 row vector 1-3, 1-19 Tree Pane in Simulink B-7
orthogonal basis 14-5 Runge-Kutta method 5-24, 9-5 Trendline Excel feature  8-9
orthogonal functions 6-2, 14-1, 14-2 triangular waveform 6-11, 6-19
orthogonal system 15-9 S trigonometric Fourier series 6-1
orthogonal trajectories 14-2 trigonometric relations 3-5
orthogonal unit vectors 14-5 sawtooth waveform 6-10, 6-18 two-dimensional plots 7-32
orthogonal vectors 5-39, 14-4 scalar matrix - see matrix type of a diferential equation 5-2
orthonormal basis 14-5 Scope block in Simulink B-12
out-of-phase sinusoids 3-3 script file in MATLAB 1-26 U
overdetermined system 8-3 second divided difference 7-1

second harmonic 6-1 ultraspherical functions 15-22
P semicolons in MATLAB 1-7 undetermined system  8-3

semilogx MATLAB command 1-12 unit fraction C-3
parabolic curve 8-1 semilogy MATLAB command 1-12 unitary matrix - see matrix
partial differential equation (PDE) 5-3 simple differential equations 5-1 upper triangular matrix - see matrix
partial fraction expansion 12-1 simplex method 16-4
PDE (Partial Differential Equation) 5-3 Simpson’s rule 10-6 V
Pearson correlation coefficient 8-10 Simulation drop menu in Simulink B-12
period 3-2,  3-3 simulation start icon in Simulink B-12 VLOOKUP Excel function 7-23
periodic waveform 3-2 Simulink icon B-7
phasor 3-2 Simulink Library Browser B-8 W
plot area in Excel 6 singular matrix - see matrix
plot MATLAB command 1-9, 1-12, 1-15 Singular Value Decomposition 14-28 Wallis’s formulas 13-16
plot3 MATLAB command 1-16 Sinks library B-18 Weber functions 15-7
polar form of complex numbers 3-15 sinusoids 3-2 well-conditioned matrix - see matrix
polar plot in MATLAB 1-24 size of a matrix - see matrix while end in MATLAB 2-4
polar(theta,r) MATLAB function 1-24 skew-Hermitian matrix - see matrix Wronskian determinant 5-10, 11-2
poles 12-2 skew-symmetric matrix - see matrix
poly MATLAB function 1-4 solution of the homogeneous ODE 5-8 X
polyder MATLAB function 1-7 solutions of ODEs 5-6
polyfit(x,y,n) MATLAB function 8-11 space equations 5-24 xlabel MATLAB command 1-12
polynomial construction from known spectrum analyzer 33 XY (Scatter) in Excel  8-6
     roots in MATLAB 1-4 spherical harmonics 15-18
polyval(p,x) MATLAB function 1-5, 8-11 sprintf MATLAB command 2-5 Y
power series 6-40 sqrt MATLAB function 10-12
proper rational function 12-1 square matrix - see matrix ylabel MATLAB command 1-12

square waveform
Q      6-9, 6-14, 6-16, 6-48, 6-49 Z

start simulation in Simulink B-12
QR factorization 14-25 state equations 5-24 zero matrix - see matrix
qr(A) MATLAB function 14-25 state transition matrix 5-28 zeros 12-2
quad MATLAB function 10-10 state variables 5-24 zlabel MATLAB command 1-17
quad8 MATLAB function 10-10 State-Space block in Simulink B-12
quadratic curve 8-1
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	Appendix C Ill-Conditioned Matrices
	Ill-Conditioned Matrices
	his appendix supplements Chapters 4 and 14 with concerns when the determinant of the coefficient matrix is small. We will introduce a reference against which the determinant can be measured to classify a matrix as a well- or ill-conditioned.
	C.1 The Norm of a Matrix
	A norm is a function which assigns a positive length or size to all vectors in a vector space, other than the zero vector. An example is the two-dimensional Euclidean space denoted as . The elements of the Euclidean vector space (e.g., (2,5))...
	The Euclidean norm of a matrix , denoted as , is defined as
	(C.1)
	and it is computed with the MATLAB function norm(A).
	Example C.1
	Using the MATLAB function norm(A), compute the Euclidean norm of the matrix , defined as

	Solution:
	At the MATLAB command prompt, we enter
	A=[-2 5 -4 9; -3 -6 8 1; 7 -5 3 2; 4 -9 -8 -1]; norm(A)
	and MATLAB outputs
	ans =
	14.5539


	C.2 Condition Number of a Matrix
	The condition number of a matrix is defined as
	(C.2)
	where is the norm of the matrix defined in relation (C.1) above. Matrices with condition number close to unity are said to be well-conditioned matrices, and those with very large condition number are said to be ill-conditioned matrices.
	The condition number of a matrix is computed with the MATLAB function cond(A).
	Example C.2
	Using the MATLAB function cond(A), compute the condition number of the matrix defined as

	Solution:
	At the MATLAB command prompt, we enter
	A=[-2 5 -4 9; -3 -6 8 1; 7 -5 3 2; 4 -9 -8 -1]; cond(A)
	and MATLAB outputs
	ans =
	2.3724
	This condition number is relatively close to unity and thus we classify matrix A as a well-condi tioned matrix.
	We recall from Chapter 4 that if the determinant of a square matrix A is singular, that is, if , the inverse of A is undefined. Please refer to Chapter 4, Page 4-22.
	Now, let us consider that the coefficient matrix is very small, i.e., almost singular. Accordingly, we classify such a matrix as ill-conditioned.


	C.3 Hilbert Matrices
	Let be a positive integer. A unit fraction is the reciprocal of this integer, that is, . Thus, are unit fractions. A Hilbert matrix is a matrix with unit fraction elements
	(C.3)
	(C.4)
	MATLAB’s function hilb(n) displays the Hilbert matrix.
	Example C.3
	Compute the determinant and the condition number of the Hilbert matrix using MATLAB.

	Solution:
	At the MATLAB command prompt, we enter
	det(hilb(6))
	and MATLAB outputs
	ans =
	5.3673e-018
	This is indeed a very small number and for all practical purposes this matrix is singular.
	We can find the condition number of a matrix A with the cond(A) MATLAB function. Thus, for the Hilbert matrix,
	cond(hilb(6))
	ans =
	1.4951e+007
	This is a large number and if the coefficient matrix is multiplied by this number, seven decimal places might be lost.
	Let us consider another example.

	Example C.4
	Let where and
	Compute the values of the vector .

	Solution:
	Here, we are asked to find the values of and of the linear system
	Using MATLAB, we define and , and we use the left division operation, i.e.,
	A=[0.585 0.378; 0.728 0.464]; b=[0.187 0.256]'; x=b\A
	x =
	2.9428 1.8852
	Check:
	A=[0.585 0.378; 0.728 0.464]; x=[2.9428 1.8852]'; b=A*x
	b =
	2.4341
	3.0171
	but these are not the given values of the vector , so let us check the determinant and the condi tion number of the matrix .
	determinant = det(A)
	determinant =
	-0.0037
	condition=cond(A)
	condition =
	328.6265
	Therefore, we conclude that this system of equations is ill-conditioned and the solution is invalid.
	Example C.4 above should serve as a reminder that when we solve systems of equations using matrices, we should check the determinants and the condition number to predict possible floating point and roundoff errors.
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