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In this paper, a novel separation of variables is presented for solving the exact solutions for the free vibra-
tions of thin orthotropic rectangular plates with all combinations of simply supported (S) and clamped
(C) boundary conditions, and the correctness of the exact solutions are proved mathematically. The exact
solutions for the three cases SSCC, SCCC, and CCCC are successfully obtained for the first time, although it
was believed that they are unable to be obtained. The new exact solutions are further validated by exten-
sive numerical comparisons with the solutions of FEM and those available in the literature.
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1. Introduction

The orthotropic plates are commonly used in the fields of struc-
tural engineering and considered as the fundamental structural
elements [1–3] in aerospace, naval and ocean structures. The
orthotropic behavior not only arises from the use of materials with
such constitutive relations, many composite plates may be mod-
eled analytically as orthotropic plates [4]. Isotropic plates altered
by metallurgical process along perpendicular directions, and pan-
els unequally stiffened along two orthogonal directions, also exhi-
bit orthotropic characteristics [1,4]. The wide use of such
structures requires investigating the vibration characteristics of
orthotropic plates in order to develop accurate and reliable design.
The study of the free vibration of plates dates back to the 1880s,
see references [5–7], as reported in the literature survey of Liew
and Xiang [8]. And an extensive review of the works up to 1985
has been given by Leissa in his monograph [9] and in a series of re-
view articles [10–13].

Problems involving rectangular plates fall into three distinct
categories [14]: (a) plates with all edges simply supported; (b)
plates with a pair of opposite edges simply supported; (c) plates
which do not fall into any of the above categories. Problems of
the first and second categories are amenable to straightforward
rigorous analysis in terms of the well-known Navier and Levy solu-
tions [15]. These methods can be simply extended to orthotropic
plates [16]. However, owing to coupled multiple differential equa-
tions of high order, it was believed that the problems of the third
category are difficult to deal with ([1,4] for example), rigorous ana-
lytical solutions, which satisfy the governing differential equation
ll rights reserved.

: +86 10 82338527.
and the boundary conditions exactly, turn out to be rare. For this
reason many efforts were devoted to develop approximate meth-
ods [17–48].

Due to its high versatility and conceptual simplicity [17], the
Rayleigh–Ritz method is one of the most popular methods to ob-
tain approximate solutions for the natural frequencies of an ortho-
tropic rectangular plate. Hearmon [18] proposed an approximate
general solution for the free vibrations of the orthotropic plates
applying the Rayleigh method with characteristic beam functions.
Using a set of boundary characteristic orthogonal polynomials pro-
posed by Bhat [19], Dickinson and Di Blasio [20] calculated the nat-
ural frequencies of rectangular orthotropic plates with various
boundary conditions. Particularly interesting, among the papers
using the Rayleigh–Ritz method, is the contribution of Marangoni
et al. [21], wherein the Rayleigh–Ritz method and the decomposi-
tion technique presented by Bazely et al. [22] were extended to
compute the upper and lower bounds of vibration frequencies for
clamped orthotropic rectangular plates. Rossi et al. [2] have used
the optimized Rayleigh–Ritz method and a pseudo-Fourier expan-
sion to analyze the plates with one or more free edges, their results
showed excellent agreement with those obtained by means of
finite element method.

The method based on superposition of appropriate Levy type
solutions for the analysis of rectangular plates was first illustrated
by Timoshenko and Krieger [23]. Gorman extended this method to
the free vibration analyses of isotropic [24], clamped orthotropic
[25], free orthotropic [26,27], point supported orthotropic [28],
and laminated symmetric cross-ply rectangular plates [29]. It has
been shown [30] that the approach is powerful for such problems
since the governing differential equation is satisfied rigorously at
every stage and the boundary conditions can be satisfied in a series
sense to any desired degree of accuracy. Yu and Cleghorn [31] em-
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Fig. 1. A rectangular plate and coordinates.
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ployed the superposition method and the affined transformation
developed by Brunelle and Oyibo [32] to obtain vibration frequen-
cies for orthotropic rectangular plates with combinations of
clamped and simply supported edges, their results manifest high
accuracy through comparisons with the upper and lower bounds
of Marangoni et al. [21]. Recently, Bhaskar and Sivaram [33] ex-
pounded a novel superposition approach for the problems of static
flexure, the distinguishing feature being the use of untruncated
series counterparts of the conventional lengthy Levy-type expres-
sions without any loss of accuracy. Kshirsagar and Bhaskar [34] ex-
tended this method for the free vibration and buckling studies of
orthotropic rectangular plates with any combination of the con-
ventional edge conditions.

The Kantorovich method [35] of reducing a partial differential
equation to an ordinary differential was extended, respectively
by Jones and Milne [36], and Bhat et al. [37] to study free vibration
of isotropic rectangular plates. Dalaei and Kerr [38], and Bercin [39]
used the method in reference [36] to obtain natural frequencies of
fully clamped orthotropic thin plates. Sakata et al. [40] applied the
method in reference [37] to the vibration analysis of rectangular
orthotropic plates, obtaining very accurate results. They empha-
sized that the method is simpler than others available in the liter-
ature such as, for example, the Rayleigh–Ritz method that requires
a larger computing effort.

Several other methods have also been investigated by research-
ers. Biancolini et al. [1] proposed a simplified approximate method
to evaluate the natural frequencies of an orthotropic plate. They
proclaimed the method is suitable to execute simple preliminary
design considerations for fast final general checks of accuracy.
Jayaraman et al. [41] have studied free vibrations of rectangular
orthotropic plates with the two parallel sides simply supported
using an exact analysis. Ramkumar et al. [42] employed the La-
grange multiplier technique to study the free vibration behavior
of clamped orthotropic plates. Al-Khaiat [43] employed an initial
value method to analyze the vibration of rectangular orthotropic
plates. Chen [44] used an iterative approach based on finite differ-
ence equations to calculate the fundamental vibration frequency of
an orthotropic plate. Huang et al. [45] have used the Green func-
tion to analyze the free vibration of orthotropic rectangular plates
with variable thickness and general boundary conditions. Bardell
et al. [46,47] have studied the free vibrations of specially orthotro-
pic plates and generally orthotropic coplanar plate assemblies
using a new h–p finite element methodology. Excellent agreement
was found with the work of other investigators. Tsay and Reddy
[48] developed a finite element model that is very convenient,
especially when dealing with every-day design-type problems.

Of all the available solutions, those based on an exact approach,
wherein the governing equations and the boundary conditions are
satisfied rigorously, are valuable and computationally efficient
[33]; there is renewed interest in such classical solutions because
the solution methodologies are often applicable with minor
changes to modern state-of-the-art laminated plate structures
made up of functionally graded materials or those with mag-
neto–electro–thermo–elastic coupling effects ([49,50] for exam-
ple). However, it is hitherto believed that there are no exact
solutions when at least two opposite sides of a rectangular plate,
whether isotropic or orthotropic, are not simply supported ([1,4]
for example), and many researchers have devoted to develop
approximate solutions with a high level of accuracy, see references
[9–13] and above review.

In this context, the objective of this work is to solve new exact
solutions with reference to the title problem by using a novel sep-
aration of variables. The remainder is organized as follows. In Sec-
tion 2, the closed-form formulation of natural mode is solved by
using the method of separation of variables, and its correctness is
proved mathematically. In Section 3, the exact normal eigenfunc-
tions and eigenvalue equations for the boundary condition combi-
nations SSCC, SCCC and CCCC are obtained through the mode
formulation and boundary conditions. In Section 4, the solution
method of the transcendental eigenvalue equations is discussed.
Numerical comparison studies are presented in Section 5, the con-
clusion follows.
2. The closed-form natural mode

An orthotropic material is characterized by the fact that the
mechanical elastic properties have two perpendicular planes of
symmetry. Due to this only four elastic constants E1, E2, G12, t12

are independent. The coefficient t21 can be determined according
to following relation

t12

E1
¼ t21

E2
ð1Þ

Defining some orthotropic bending stiffness parameters as

D1 ¼
E1h3

12ð1� t12t21Þ
; D2 ¼

E2h3

12ð1� t12t21Þ
; D66 ¼

G12h3

12
D12 ¼ t12D2 ¼ t21D1; D3 ¼ D12 þ 2D66

ð2Þ

where h is the thickness of the uniform plate, see Fig. 1. Using the
Love–Kirchhoff’s hypotheses, the differential equation of the free
vibration of orthotropic thin plate has the form

D1
@4wðx; y; tÞ

@x4 þ 2D3
@4wðx; y; tÞ
@x2@y2 þ D2

@4wðx; y; tÞ
@y4 þ qh

@2wðx; y; tÞ
@t2

¼ 0 ð3Þ

The solution of normal harmonic vibration of the plate can be writ-
ten as

wðx; y; tÞ ¼Wðx; yÞðA cos xt þ B sin xtÞ ð4Þ

Substitution of Eq. (4) into Eq. (3) results in the following partial dif-
ferential equation involved the natural mode W(x,y) as

D1
@4W
@x4 þ 2D3

@4W
@x2@y2 þ D2

@4W
@y4 � b4W ¼ 0 ð5Þ

where the frequency parameter b4 = x2qh. The natural mode func-
tion W(x, y) can be solved from Eq. (5) in conjunction with the
boundary conditions. The simple or classical boundary conditions
for thin plate include the free, the simply supported and the
clamped. Consider a separation of variable solution

Wðx; yÞ ¼ /ðxÞwðyÞ ð6Þ

to the homogeneous governing Eq. (5), the following equation can
be obtained

D1/
ðIVÞwþ 2D3/

00w00 þ D2/wðIVÞ � b4/w ¼ 0 ð7Þ
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In order for the separation of variables to occur, it was requested
that

w00 ¼ �c2w or /00 ¼ �a2/ ð8Þ

Thus two opposite edges of the plates must be simply supported, i.e.
w = sin cy or u = sin ax, so that the condition (8) can be satisfied.In
present paper, the authors assume the eigenfunctions in Eq. (7) as

/ðxÞ ¼ Aelx; wðyÞ ¼ Beky ð9Þ

where the variables l and k are the eigenvalues corresponding to
the eigenfunctions u(x) and w(y), respectively. Substituting Eq. (9)
into Eq.(7), one can obtain

D1l4 þ 2D3l2k2 þ D2k
4 � b4 ¼ 0 ð10Þ

This is the characteristic equation of Eq. (7) or Eq. (5). By solving Eq.
(10), one can obtain the characteristic roots

l1;2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#1 þ d1

p
¼D �ia1; l3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#1 � d1

p
¼D �b1 ð11abÞ

where i2 = �1, and

d1 ¼ k2 D3

D1
; #1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 D3

D1

� �2

� D2

D1

" #
þ b4

D1

vuut ð12Þ

In Eq. (11), l is expressed by k. Conversely, k can be expressed by l,
that is

k1;2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 þ d2

p
¼D �ia2; k3;4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 � d2

p
¼D �b2 ð13abÞ

where

d2 ¼ l2 D3

D2
; #2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 D3

D2

� �2

� D1

D2

" #
þ b4

D2

vuut ð14Þ

Substitution of l = ia1, see Eq. (11a), into Eq. (13) leads to

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

1
D3

D2

� �2

� D1

D2

" #
þ b4

D2

vuut � a2
1

D3

D2

vuuut ð15aÞ

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

1
D3

D2

� �2

� D1

D2

" #
þ b4

D2

vuut þ a2
1

D3

D2

vuuut ð15bÞ

Eliminating k from Eq. (11), one can have

ða2
1 þ b2

1Þ
2 þ D1D2 � D2

3

D2
3

ða2
1 � b2

1Þ
2 ¼ 4b4

D1
ð16Þ

It is noteworthy that Eqs. (15) and (16) will be used to solve the fre-
quencies, this is done below. According to the characteristic roots in
Eqs. (11) and (13), the two eigenfunctions or the two Levy’s solu-
tions in Eq. (9) can be written as
O

S

O S

S C

C C

C

(a) SSCC (b) SCCC 

Fig. 2. The boundary c
/ðxÞ ¼ A1 cos a1xþ B1 sina1xþ C1 cosh b1xþ H1 sinh b1x ð17Þ
wðyÞ ¼ A2 cos a2yþ B2 sin a2yþ C2 cosh b2yþ H2 sinh b2y ð18Þ

The remaining problem is to prove the solution W(x, y) = u(x)w(y) in
Eq. (6), where u(x) and w(y) are given in Eqs. (17) and (18), is the
general solution of Eq. (5), and the prove is presented in Appendix
A.

For rectangular thin plate, as shown in Fig. 1, there are two
boundary conditions at each side, so only one of the eight integral
constants in Eqs. (17) and (18) is independent, and the integral
constants and both eigenvalue equations can be derived exactly
by means of the eight boundary conditions. It follows from Eqs.
(15) and (16) that if a1, b1 and the frequency parameter b have
been solved, then the eigenvalues a2 and b2 can be solved accord-
ingly, that means a1, b1 and b can be considered as independent
parameters. The solutions methods for eigenvalues and frequen-
cies will be presented below.

3. Eigenvalue equations and eigenfunctions

Regardless of the two opposite edges being S–S, or S–C or C–C,
as shown in Fig. 2, the exact solutions of eigenfunctions and eigen-
value equations can be solved similarly, therefore only the case C–
C is solved to show the solution methods of eigenfunctions and
eigenvalues. Assume both edges x = 0 and x = a are clamped (i.e.
the case C–C), the boundary conditions have the form

Wð0; yÞ ¼ 0) /ð0Þ ¼ 0; Wða; yÞ ¼ 0) /ðaÞ ¼ 0
@Wð0; yÞ=@x ¼ 0) /0ð0Þ ¼ 0 @Wða; yÞ=@x ¼ 0) /0ðaÞ ¼ 0

ð19Þ

Substitution of Eq. (17) into Eq. (19) results in four homogeneous
algebraic equations for unknown constants A1, B1, C1 and H1

1 0 1 0
0 a1 0 b1

cos a1a sin a1a cosh b1a sinh b1a
�a1 sin a1a a1 cos a1a b1 sinh b1a b1 cosh b1a

0
BB@

1
CCA

A1

B1

C1

H1

2
664

3
775

¼

0
0
0
0

2
664

3
775

ð20abcdÞ
It can be solved from Eqs. (20a) and (20b) that

A1 ¼ �C1

a1B1 ¼ �b1H1
ð21Þ

Then Eq. (20) can be rewritten as

cos a1a� cosh b1a b1
a1

sina1a� sinh b1a

a1 sina1aþ b1 sinh b1a b1ð� cos a1aþ cosh b1aÞ

 !
C1

H1

� �
¼

0
0

� �

ð22abÞ
O

C C

C

C

C

(c) CCCC 

onditions of plate.



Table 1
The eigensolutions for the cases SSCC, SCCC and CCCC.

Eigenvalue equations Normal eigenfunctions

SSCC tana1a
a1 a �

tanh b1a
b1a ¼ 0 /ðxÞ ¼ sina1x� sin a1 a

sinh b1a sinh b1x

tana2b
a2 b �

tanh b2 b
b2b ¼ 0 wðyÞ ¼ sin a2y� sin a2 b

sinh b2b sinh b2y

SCCC tana1a
a1 a �

tanh b1a
b1a ¼ 0 /ðxÞ ¼ sina1x� sin a1 a

sinh b1a sinh b1x

1�cos a2 b cosh b2 b
sin a2b sinh b2b ¼

a2
2�b2

2
2a2b2

wðyÞ ¼ � cos a2yþ ðb2=a2Þk1 sin a2yþ cosh b2y� k1 sinh b2y
k1 ¼ cosa2a�cosh b2a

ðb2=a2Þ sina2a�sinh b2a

CCCC 1�cos a1 a cosh b1 a
sin a1a sinh b1a ¼

a2
1�b2

1
2a1b1

/ðxÞ ¼ � cos a1xþ ðb1=a1Þk2 sin a1xþ cosh b1x� k2 sinh b1x

1�cos a2 b cosh b2 b
sin a2b sinh b2b ¼

a2
2�b2

2
2a2b2

wðyÞ ¼ � cos a2yþ ðb2=a2Þk1 sin a2yþ cosh b2y� k1 sinh b2y
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For obtaining nontrivial solutions, the determinant of the coeffi-
cients matrix of the above homogeneous Eq. (22) must be zero, thus
the eigenvalue equation can be obtained as

1� cos a1a cosh b1a
sin a1a sinh b1a

¼ a2
1 � b2

1

2a1b1
ð23Þ

And one can also obtain from Eq. (22a) that

H1 ¼ �k2C1 where k2 ¼
cos a1a� cosh b1a

ðb1=a1Þ sin a1a� sinh b1a
ð24Þ

Then the normal eigenfunction /(x) can be obtained by substituting
Eqs. (21) and (24) into Eq. (17) and assuming C1 = 1 as follows:

/ðxÞ ¼ � cos a1xþ ðb1=a1Þk2 sina1xþ cosh b1x� k2 sinh b1x ð25Þ

The exact eigenfunctions and eigenvalue equations corresponding
to the other two opposite edges y = 0 and y = b can be obtained in
Table 3
Frequency parameter c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2qh=D1

4
p

for plates with a � b=1m � 1.2m and M1.

B.C. Method Mode sequence number

1st 2nd 3rd 4th

SSCC Exact 4.02 4.38 5.09 6.06
FEM 4.02 4.39 5.10 6.07

SCCC Exact 4.04 4.49 5.28 6.30
FEM 4.05 4.50 5.29 6.31

CCCC Exact 4.80 5.08 5.68 6.56
FEM 4.81 5.10 5.70 6.57

Table 4
Frequency parameter c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2qh=D1

4
p

for CCCC plates with variable b and M2.

b Method Mode sequence number

1st 2nd 3rd 4th

1 Exact 4.87 5.50 6.68 7.91
FEM 4.88 5.52 6.70 7.92

2 Exact 4.75 4.82 5.00 5.32
FEM 4.75 4.83 5.01 5.33

3 Exact 4.74 4.76 4.81 4.90
FEM 4.74 4.76 4.81 4.91

Table 2
Four types of material properties.

Material E1 (GPa) E2 (GPa) G12 (GPa) m12 q (kg/m)

M1 T-graphite/epoxy 185 10.5 7.3 0.28 1600
M2 B-boron/epoxy 208 18.9 5.7 0.23 2000
M3 K-aryl/epoxy 76 5.6 2.3 0.34 1460
M4 E-glass/epoxy 60.7 24.8 12.0 0.23
the same way as above. The exact eigensolutions for cases SSCC,
SCCC and CCCC as shown in Fig. 2 are presented in Table 1. It should
be pointed out that the exact solutions for the three cases were not
available.

4. Solution method of eigenvalue equations

It is apparent from Table 1 that there are five quantities a1, b1, b,
a2 and b2 in any two eigenvalue equations, but only three of them
are independent, for example a1, b1 and b, here a2 and b2 are cal-
culated by using Eqs. (15a) and (15b), respectively.

The two eigenvalue equations involved a1, b1 and b can be
solved in conjunction with Eq. (16). In this paper Newton’s method
is chosen to solve the transcendental equations. The initial values
of Newton’s method can be appropriately determined according
to the characters of the eigenvalue equations. Let us take the case
SSCC as an example to show the method of determining the initial
values. From the definition of tangent functions in the two eigen-
value equations, it is readily to determine the intervals of a1a
and a2b, that is

a1a 2 ðmp;mpþ 0:5pÞ; m ¼ 1;2; . . .

a2b 2 ðnp;npþ 0:5pÞ; n ¼ 1;2; . . .
ð26Þ

The interval of b1 is determined as follows. It can be solved from Eq.
(11) that

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 2k2 D3

D1

s
ð27Þ
5th 6th 7th 8th 9th 10th

7.12 7.17 7.27 7.59 8.09 8.34
7.12 7.17 7.28 7.59 8.09 8.35

7.12 7.30 7.44 7.66 8.21 8.63
7.12 7.31 7.45 7.66 8.21 8.64

7.60 7.89 8.03 8.31 8.74 8.76
7.62 7.90 8.04 8.32 8.75 8.77

5th 6th 7th 8th 9th 10th

8.15 8.16 8.72 9.62 9.75 10.81
8.17 8.18 8.73 9.64 9.77 10.83

5.78 6.37 7.05 7.79 7.85 7.90
5.80 6.39 7.06 7.80 7.87 7.91

5.05 5.26 5.54 5.89 6.28 6.71
5.06 5.27 5.55 5.89 6.29 6.72
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Substituting k = ia2 into Eq. (27) leads to

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2

2
D3

D1
þ a2

1

s
ð28Þ

Thus the interval of b1 is determined by Eq. (28), wherein the inter-
vals of a1 and a2 are determined by Eq. (26). The middle values of
the intervals in Eqs. (26) are recommended as the initial values of
Table 6
Frequency parameters cij ¼ xija2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for D3 = D1, D2 = D1.

B.C. b/a References Mode shape

(1, 1) (2, 1)

SSCC 0.5 Exact 70.877 100.436
Ref. [4] 71.081 100.803

1.0 Exact 26.867 60.549
Ref. [4] 27.059 60.667

2.0 Exact 17.719 52.346
Ref. [4] 17.770 52.343

CSCC 0.5 Exact 72.899 107.469
Ref. [4] 73.405 108.236

1.0 Exact 31.438 70.877
Ref. [4] 31.833 71.081

2.0 Exact 24.066 63.714
Ref. [4] 24.144 63.742

CCCC 0.5 Exact 97.542 125.751
Ref. [4] 98.324 127.333

1.0 Exact 35.112 72.899
Ref. [4] 35.999 73.405

2.0 Exact 24.358 63.920
Ref. [4] 24.581 63.985

Table 7
Frequency parameters cij ¼ xija2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for D3 = 0.5 D1, D2 = D1.

b/a References Mode shape

(1, 1) (2, 1)

SSCC 0.5 Exact 67.331 90.528
Ref. [4] 67.497 90.838

1.0 Exact 24.449 56.603
Ref. [4] 24.610 56.700

2.0 Exact 16.833 51.248
Ref. [4] 16.874 51.261

CSCC 0.5 Exact 69.254 97.795
Ref. [4] 69.687 98.440

1.0 Exact 29.296 67.331
Ref. [4] 29.625 67.497

2.0 Exact 23.385 62.772
Ref. [4] 23.447 62.794

CCCC 0.5 Exact 94.725 117.182
Ref. [4] 95.391 118.502

1.0 Exact 33.174 69.254
Ref. [4] 33.917 69.687

2.0 Exact 23.681 62.939
Ref. [4] 23.848 62.991

Table 5
Frequency parameters c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2qh=D1

4
p

for CCCC plates with variable b and M3.

b Method Mode sequence number

1st 2nd 3rd 4th

1 Exact 4.85 5.41 6.48 7.87
FEM 4.87 5.44 6.50 7.85

2 Exact 4.75 4.82 4.98 5.26
FEM 4.75 4.82 4.99 5.27

3 Exact 4.74 4.76 4.81 4.90
FEM 4.74 4.76 4.81 4.90
a1a and a2b, and the initial value of b1 can be computed through
Eq. (28).

5. Numerical comparisons and discussion

The main purpose of present work is to solve some new exact
solutions for the free vibrations of rectangular orthotropic thin
plates. Although the correctness of the new exact solutions have
(3, 1) (1, 2) (2, 2) (3, 2)

151.576 209.302 238.135 287.227
151.906 209.377 238.347 287.542
114.568 60.549 92.665 145.786
114.633 60.667 92.844 145.937
106.640 25.109 59.534 113.856
106.649 25.201 59.587 113.894

164.387 210.362 242.197 295.698
165.023 210.526 242.667 296.366
130.240 63.053 100.436 159.198
130.353 63.340 100.803 159.487
123.066 30.071 70.052 129.641
123.081 30.253 70.143 129.693

177.613 255.678 283.509 331.850
179.115 255.939 284.325 333.125
131.629 72.899 107.469 164.387
131.902 73.405 108.236 165.023
123.217 31.438 70.877 130.240
123.249 31.833 71.081 130.353

(3, 1) (1, 2) (2, 2) (3, 2)

137.293 204.990 222.753 258.282
137.574 205.045 222.923 258.547
110.137 56.603 82.431 131.639
110.189 56.700 82.584 131.766
105.504 22.632 55.688 109.558
105.510 22.710 55.731 109.581

150.754 205.859 226.410 266.561
151.290 205.994 226.800 267.127
126.178 59.021 90.528 145.751
126.268 59.270 90.838 145.990
122.034 27.906 66.600 125.690
122.045 28.057 66.672 125.730

164.294 251.755 269.323 304.619
165.583 251.965 269.987 305.677
127.382 69.254 97.795 150.754
127.613 69.687 98.440 151.290
122.150 29.296 67.331 126.178
122.175 29.625 67.497 126.268

5th 6th 7th 8th 9th 10th

7.92 8.15 8.66 9.33 9.47 10.54
7.92 8.16 8.67 9.35 9.48 10.56

5.68 6.21 6.83 7.50 7.87 7.90
5.69 6.22 6.84 7.51 7.88 7.91

5.03 5.22 5.47 5.77 6.12 6.52
5.04 5.23 5.48 5.78 6.13 6.53



Table 9
Frequency parameters c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qx2=E2h24

q
for orthotropic rectangular plates with M4.

b/a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

SSCC 1.0 Exact 5.803 8.087 9.339 10.703 10.911 12.806
Ref. [45] 5.818 8.090 9.330 10.695 10.879 12.772

2.0 Exact 5.113 5.679 6.618 7.813 8.990 9.299
Ref. [45] 5.115 5.684 6.612 7.759 8.977 9.287

CSCC 1.0 Exact 6.119 8.676 9.437 11.007 11.599 13.189
Ref. [45] 6.156 8.683 9.435 11.007 11.555 13.135

2.0 Exact 5.149 5.803 6.831 8.087 9.000 9.339
Ref. [45] 5.156 5.816 6.826 8.018 8.988 9.330

CCCC 1.0 Exact 6.714 8.921 10.297 11.605 11.720 13.663
Ref. [45] 6.780 8.953 10.293 11.615 11.686 13.636

2.0 Exact 6.073 6.508 7.308 8.401 9.678 9.962
Ref. [45] 6.080 6.532 7.320 8.347 9.698 9.941

Table 10
Frequency parameters c ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for CCCC orthotropic rectangular plates with

D1 = 1.543 D3, D2 = 4.810 D3.

a/b Mode Upper bounds [21] Lower bounds [21] Ref. [31] Exact

0.5 1 25.425 25.420 25.424 25.104
2 37.715 37.303 37.719 37.330

1.0 1 47.482 47.473 47.481 46.741
2 78.015 – 78.021 77.300

1.5 1 93.981 93.960 93.980 93.378
2 115.45 – 115.47 114.33

2.0 1 161.95 161.85 161.95 161.51
2 177.91 – 177.94 176.78

Table 11
Frequency parameters c ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for CCCC orthotropic rectangular plates with

D1 = 4.310 D3, D2 = 0.305 D3.

a/b Mode Upper bounds [21] Lower bounds [21] Ref. [31] Exact

0.5 1 22.780 22.723 22.780 22.757
2 24.083 23.774 24.089 24.009

1.0 1 24.566 24.488 24.564 24.358
2 32.007 31.210 32.023 31.624

1.5 1 28.871 28.783 28.869 28.289
2 49.230 48.243 49.354 48.825

2.0 1 36.620 36.337 36.618 35.735
2 73.344 – 73.353 72.827

Table 8
Frequency parameters cij ¼ xija2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for D3 = 0.5 D1, D2 = 0.5 D1.

b/a References Mode shape

(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2)

SSCC 0.5 Exact 51.302 79.310 130.072 148.490 172.181 216.154
Ref. [4] 51.507 79.602 130.294 148.564 172.386 216.429

1.0 Exact 21.898 55.508 109.529 44.228 74.462 126.736
Ref. [4] 22.042 55.578 109.564 44.342 74.599 126.835

2.0 Exact 16.609 51.159 105.451 20.844 54.959 109.162
Ref. [4] 16.638 51.168 105.455 20.910 54.990 109.178

CSCC 0.5 Exact 53.831 87.591 144.279 149.691 176.911 226.031
Ref. [4] 54.344 88.169 144.689 149.870 177.369 226.602

1.0 Exact 27.258 66.436 125.658 47.305 83.374 141.366
Ref. [4] 27.527 66.552 125.719 47.584 83.640 141.547

2.0 Exact 23.235 62.702 121.990 26.501 66.000 125.349
Ref. [4] 23.277 62.716 121.997 26.620 66.052 125.377

CCCC 0.5 Exact 70.524 98.828 151.822 181.529 205.209 249.726
Ref. [4] 71.371 100.126 152.844 181.816 206.026 250.861

1.0 Exact 29.329 67.509 126.377 53.831 87.591 144.279
Ref. [4] 29.986 67.802 126.522 54.344 88.169 144.689

2.0 Exact 23.399 62.806 122.065 27.258 66.436 125.658
Ref. [4] 23.504 62.840 122.082 27.527 66.552 125.719
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been proved mathematically (see Appendix A), extensive numeri-
cal comparison studies are also presented in this section. We focus
only on the three newly solved cases SSCC, SCCC and CCCC, and the
exact frequencies are compared with the results calculated by FEM
and other approximate methods [4,21,31,45]. Four distinct types of
materials in Table 2 and the thickness h = 0.02 m are used in the
numerical comparison.

In Tables 3–5, the exact results are compared with the results
calculated using MSC/NASTRAN with the Bending Panel element
whose size is 1 cm � 1 cm. In Table 3, the exact results for cases
SSCC, SCCC and CCCC are studied comparatively for M1 (see Table
2) and a � b = 1 m � 1.2 m. In Table 4 and Table 5, the exact results
for CCCC orthotropic plates with variable length b are compared for
M2 and M3, respectively. It is found that all exact results in Tables
3–5 agree excellently with the FEM results.

In Tables 6–8, the results in reference [4], calculated through
Kantorovich method, are used for comparison, and the frequency
parameter cij, corresponding to the mode shape having i and j half
waves in x and y directions, respectively, are calculated for differ-
ent aspect ratios b/a, different flexural rigidity ratios D3/D1 and
D2/D1. It is noteworthy that the exact frequencies in Tables 3–8
are slightly smaller than the results used for comparisons, since
the frequencies obtained by using the two approximate methods
are the upper bounds.

In Table 9, the results [45] of Green function method are used
for comparison studies which are carried out for SSCC, CSCC and



Table 12
Frequency parameters c ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=D1

p
for CCCC orthotropic rectangular plates with

D1 = 2.0 D3, D2 = 1.0 D3.

a/b Mode Upper bounds [21] Lower bounds [21] Ref. [31] Exact

0.5 1 23.504 23.448 23.503 23.398
2 27.513 26.990 27.524 27.258

1.0 1 29.981 29.894 29.979 29.329
2 54.328 53.318 54.337 53.831

1.5 1 45.830 45.738 45.828 44.898
2 79.423 – 79.437 78.625

2.0 1 71.365 71.269 71.362 70.524
2 100.08 – 100.11 98.828
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CCCC plates for two aspect ratios. It is apparent that the exact re-
sults are slightly larger or smaller than the results in reference
[45], since in which the frequencies were obtained using Green
function method in conjunction with numerical integration based
on interpolation method.

In Tables 10–12, more exact results are presented for clamped
orthotropic plates for different aspect ratios and different rigidity
ratios D1/D3 and D2/D3. Some results used for comparison are from
reference [21] wherein the Rayleigh–Ritz technique using clamped
beam eigenfunctions and the decomposition technique (see refer-
ence [22]) were employed to estimate the upper bounds and lower
bounds, respectively; and some results used for comparison are
from reference [31] where the superposition method and the af-
fined transformation (see reference [32]) were employed to obtain
accurate natural frequencies for orthotropic rectangular plates.

It follows from Tables 10–12 that the exact results are slightly
smaller than the upper bounds; all the second frequencies are
within the upper and lower bounds whenever the lower bounds
are available; however, for the first frequencies, except for the
one of Table 11 for a/b = 0.5, all of them are smaller than the lower
bounds, this is bound to the inaccuracy of the lower bounds.
Marangoni et al. [21] have stated that their lower bounds are less
accurate than the upper bounds. And the upper bounds and the
lower bounds for the first modes are almost the same.

All comparisons in Tables 3–12 are limited to the three cases
SSCC, SCCC, CCCC, as shown in Fig. 2, the exact solutions of which
are obtained for the first time. All the exact results agree perfectly
with the results used for comparisons, therefore the present exact
solutions are validated.
6. Conclusions

For the free vibrations of rectangular orthotropic plates, the
general mathematical expression of natural mode has been derived
here by means of the novel separation of variables. The general
solution satisfies the governing equation of the eigenvalue problem
exactly, and is applicable for all kinds of boundary conditions. As
would be clear to anyone familiar with analysis of plates/shells,
the present method can be directly extended for buckling analysis
of plates.

In present study, the exact mode functions and the frequency
equations for the cases SSCC, SCCC and CCCC were obtained for
the first time, since no such results have been reported heretofore.
It is expected that the new exact results will provide other
researchers with data against which they can compare their
results.
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Appendix A

Substituting l = b1 into Eq. (13), one can have

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4

1
D3

D2

� �2

� D1

D2

" #
þ b4

D2

vuut þ b2
1

D3

D2

vuuut ðA1Þ

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4

1
D3

D2

� �2

� D1

D2

" #
þ b4

D2

vuut � b2
1

D3

D2

vuuut ðA2Þ

Eqs. (A1) and (A2) can be rewritten as

D1b
4
1 � 2D3b

2
1a

2
2 þ D2a4

2 � b4 ¼ 0 ðA3Þ
D1b

4
2 þ 2D3b

2
2b

2
1 þ D2b

4
1 � b4 ¼ 0 ðA4Þ

Similarly, Eqs. (15a) and (15b) can also be rewritten as

D1a4
1 þ 2D3a2

1a
2
2 þ D2a4

2 � b4 ¼ 0 ðA5Þ
D1a4

1 � 2D3a2
1b

2
2 þ D2b

4
2 � b4 ¼ 0 ðA6Þ

Eqs. (17) and (18) can be changed to

/ðxÞ ¼ /1ðxÞ þ /2ðxÞ ðA7Þ
wðyÞ ¼ w1ðyÞ þ w2ðyÞ ðA8Þ

where

/1ðxÞ ¼ A1 cos a1xþ B1 sin a1x; /2ðxÞ ¼ C1 cosh b1xþ H1 sinh b1x

ðA9Þ
w1ðyÞ ¼ A2 cos a2yþ B2 sina2y; w2ðyÞ ¼ C2 cosh b2yþ H2 sinh b2y

ðA10Þ

By substituting Eqs. (A7) and (A8) into the left side of Eq. (7), one
can obtain

D1/
ðIVÞwþ 2D3/

00w00 þ D2/wðIVÞ � b4/w

¼ D1a4
1 þ 2D3a2

1a
2
2 þ D2a4

2 � b4� �
/1w1

þ D1a4
1 � 2D3a2

1b
2
2 þ D2b

4
2 � b4� �

/1w2

þ D1b
4
1 � 2D3b

2
1a

2
2 þ D2a4

2 � b4� �
/2w1

þ D1b
4
2 þ 2D3b

2
2b

2
1 þ D2b

4
1 � b4� �

/2w2 ðA11Þ

Substituting Eqs. (A3)–(A6) into Eq. (A11) yields

D1/
ðIVÞwþ 2D3/

00w00 þ D2/wðIVÞ � b4/w ¼ 0 ðA12Þ

Thus the expression (6) is the solution of Eq. (5).
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