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Message from the Conference Chairs

It is a pleasure to welcome you to CACNA 2014, the first conference on “Computational
Algebra, Computational Group Theory and Applications” at the University of Kashan, IRAN.
Over the past 20 years, the Computational Algebra and Computational Number Theory have
grown to be one of the main topics of research in our country. The conference is organized as a
set of tracks in Computational Group Theory, Computational Number Theory, Cryptography,
Coding Theory, Algebraic Combinatorics and Computer Algebra.

There will be also a workshop on Computational Group Theory, Coding Theory and
Computational Number Theory for graduate students and those who are working in
computational aspects of algebra, number theory and cryptography. Finally, we are honored to
have Professors Francesco Belardo, Bijan Davvaz and Saeed Kayvanfar as our keynote speakers
and professors Modjtaba Bahramian, Hassan Daghigh, Somayeh Didari, Mohammad Gholami
Babadegani, Reza Kahkeshani, Hamid Mousavi and Reza Orfi as workshop speakers.

The successful organization of this conference has required the talents, dedication and time of
many volunteers and strong support from the University of Kashan. We hope that you will find
the conference both enjoyable and valuable, and also enjoy the architectural, cultural and natural
beauty of Kashan, a city with 7000 years history.

CHAIR OF ORGANIZING COMMITTEE: HASSAN DAGHIGH

CHAIR OF ACADEMIC COMMITTEE: ALI REZA ASHRAFI
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Keynote Speaker

Spectral Theory of Signed Graphs

Francesco Belardo
Department of Mathematics, University of Primorska, Slovenia

Abstract

A signed graph is pair (G, s) where G is a graph and s, the signature, is a function on the edges
of G assigning values in {1,—1}. Similarly to unsigned graphs, it is possible to associate several
graph matrices and to study the signed graphs from a spectral viewpoint. Hence, we will show
that the spectral theory of signed graphs naturally extend that of unsigned graphs. In particular,
we consider the relation between the least eigenvalue of the Laplacian and the frustration of
the signed graph; we establish the relation between the Laplacian characteristic polynomial of
a signed graph with adjacency characteristic polynomials of its opportunely defined signed line
graph and signed subdivision graph; we express the coefficient of the Laplacian characteristic
polynomial of (G, s), based on the signed TU-subgraphs. Finally we outline some problems that
are a generalization of those considered in spectral (unsigned) graph theory.






The First Conference on Computational Group Theory, Computational Number Theory and Applications,
University of Kashan, 26-28 Azar, 1393 (December 17-19 2014), pp: 3-5.

Keynote Speaker

On some Old and New Problems in Algebraic
Hyperstructures

Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran
davvaz@yazd.ac.ir

Abstract

The overall aim of this paper is to present an introduction to some of the old and new subjects
and problems in algebraic hyperstructures.

Keywords: Hypergroup, polygroup, H,-group, n-ary hypergroup.

MSC(2010): Primary: 20N20.

1 Introduction

The concept of a hypergroup which is a generalization of the concept of a group, first was introduced
by Marty. Indeed, hypergroups represent a natural extension of groups. In a group, the composi-
tion of two elements is an element, while in a hypergroup, the composition of two elements is a
set. Application of hypergroups have mainly appeared in special subclasses. For example, poly-
groups which are certain subclass of hypergroups are used to study color algebra and combinatorics.
Moreover, there exist two generalization of hypergroups. The concept of an H,-group as an exten-
sion of hypergroups was introduce by Vougiouklis. Recently, research about n-ary hypergroups has
been initiated by Davvaz and Vougiouklis, who introduced these structures. The concept of n-ary
hypergroups is a generalization of hypergroups in the sense of Marty. Also, we can consider n-ary
hypergroups as a nice generalization of n-ary groups. Many papers and several books have been
written till now on algebraic hyperstructures [2, 3, 4, 15, 22]. Many of them are dedicated to the
applications of hyperstructures in other disciplines. The overall aim of this paper is to present an
introduction to some of the old and new subjects and problems in algebraic hyperstructures.



2 Main Subjects

In this section, we review:
(1) Hypergroups [2, 3, 4, 15];
(2) Polygroups [4];
(3) H,-groups [5, 22];
(4) n-ary hypergroups [16, 13, 13, 20];
(5) Enumeration of hyperstructures on small sets [1, 21];
(6) Ordered semihypergroups [6];

(7) Examples of hyperstructures associated with Chemistry, Biology and Physics [7, 8, 9, 10, 11,
12,17, 18].
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Keynote Speaker

Can Pairs of Groups Help the Classification of
Groups?

Saeed Kayvanfar
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
skayvanf@math.um.ac.ir & skayvanf@yahoo.com

Abstract

P. Hall introduced the notion of isoclinism in order to classify groups of prime power order.
The notion of isoclinism can be simulated for pairs (G, N) of groups, in which G is a group and N
is a normal subgroup. This talk verifies the classification of some pairs of groups, when N is to be
chosen a suitable subgroup. Then using this, we explain how this classification can be considered
as the first step of screening for classification of some classes of groups.

Keywords: Pairs of groups, isoclinism, classification of groups.

MSC(2010): Primary: 20D15; Secondary: 20E99, 20D60.
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Oral Presentation

Finite Semi-Rational Groups:
Solvable and non-Solvable

Seyed Hassan Alavi
Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran
alavi.s.hassan@gmail.com

Abstract

In this talk, we give a survey of some recent advances on the problem of studying semi-rational
finite groups.

Keywords: Semi-rational groups, solvable groups, non-solvable groups.

MSC(2010): Primary 20E45; Secondary 20E34.

Let G be a finite group. An element x of a finite group G is called rational if all generators of the
group (x) are conjugate in G. If all elements of G are rational, then G itself is called rational. It was
proved by Gow [6] that if G is a rational solvable group then 7(|G|) C {2,3,5}.

The notion of rational elements and rational groups has been generalised by Chillag and Dolfi [3].
An element x € G is called k-semi-rational if the generators of (x) belongs to at most k conjugacy
classes of G. The group G is said to be k-semi-rational if all its elements are k-semi-rational in
G. In particular, a 2-semi-rational group is called semi-rational and its elements are called semi-
rational. Chillag and Dolfi extended Gow’s result to semi-rational groups and proved that 7(G) C
{2,3,5,7,13,17} when G is a semi-rational solvable group. They also posed the following problem:

Problem 1. [3, Problem 2] Let G be a solvable group, and let k be a positive integer. If G is a
k-semi-rational, then is ©(|G|) bounded in terms of k?

Motivated by [4], we studied semi-rational Frobenius groups in [1]. We indeed answered Prob-
lem 1 for Frobenius groups G and showed that |7(G)| < 4. In the case where G is a non-solvable
Frobenius group, we have proved that |7(G)| < 11.



In general, composition factors of rational group studied by Feit and Seitz [5], in particular, they
determined all simple rational groups. In this direction, for semi-rational groups, Alavi, Burness and
Daneshkhah [2] studied semi-rational almost simple groups.
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Oral Presentation

On the Randi¢ Characteristic Polynomial of
Specific Graphs

Saeid Alikhani
Department of Mathematics, Yazd University, 89195-741, Yazd, Iran
alikhani@yazd.ac.ir

Nima Ghanbari
Department of Mathematics, Yazd University, 89195-741, Yazd, Iran
n.ghanbari @stu.yazd.ac.ir

Abstract

Let G be a simple graph with vertex set V(G) = {v,v,...,v,}. The Randié¢ matrix of G,
denoted by R(G), is defined as the n x n matrix whose (i, j)-entry is (didj)%I if v; and v; are
adjacent and O for another cases. Let the eigenvalues of the Randié¢ matrix R(G) be p; > pp >
... > p, which are the roots of the Randi¢ characteristic polynomial [T?_,; (p — p;). The Randi¢
energy RE of G is the sum of absolute values of the eigenvalues of R(G). In this paper we compute
the Randi¢ characteristic polynomial and the Randi¢ energy for specific graphs G.

Keywords: Randi¢ matrix; Randi¢ energy; Randi¢ characteristic polynomial; eigenvalues.

MSC(2010): Primary: 15A18.

1 Introduction

In this paper we are concerned with simple finite graphs, without directed, multiple, or weighted
edges, and without self-loops. Let G be such a graph, with vertex set V(G) = {vy,va,...,v, }. If two
vertices v; and v; of G are adjacent, then we use the notation v; ~ v;. For v; € V(G), the degree of
the vertex v;, denoted by d;, is the number of the vertices adjacent to v;.
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Let A(G) be adjacency matrix of G and A1,A,...,A, its eigenvalues. These are said to be the
eigenvalues of the graph G and to form its spectrum [1]. The energy E(G) of the graph G is defined
as the sum of the absolute values of its eigenvalues

E(G) :iw.

Details and more information on graph energy can be found in [3, 4, 5, 6].
In 1975 Milan Randic¢ invented a molecular structure descriptor defined as [7]

1
did;

R(G) =),

V,‘NVj

The Randi¢-index-concept suggests that it is purposeful to associate to the graph G a symmetric
square matrix R(G). The Randi¢ matrix R(G) = (ij)nxn is defined as [8, 9, 10]

1 .
ifvi~v;
r”_{ dldj l VJ
Ly —

0 otherwise.

Denote the eigenvalues of the Randi¢ matrix R(G) by py, P2, .., P, and label them in non-increasing
order. Similar to characteristic polynomial of a matrix, we consider the Randi¢ characteristic poly-
nomial of R(G) (or a graph G), as det(pI — R(G)) which is equal to [T, (p — p;). The Randié
energy [8, 9, 10] of G is defined as

RE(G) =ipi.

For several lower and upper bounds on Randi¢ energy, see [8, 9, 10].
In this paper, we obtain the Randi¢ characteristic polynomial and energy of specific graphs. As a
result, we show that for every natural number m > 2, there exists a graph G such that RE(G) = m.

2 Main Results

In this section we study the Randi¢ characteristic polynomial and the Randi¢ energy for certain
graphs. The following theorem gives a relationship between the Randi¢ energy and energy of path
by.

Lemma 2.1. [10] Let P, be the path on n vertices. Then

1
RE(Pn) =2+ EE(Pan)'

The following theorem gives the Randi¢ energy of even cycles.
Lemma 2.2. [11] Let Gy, be the cycle on 2n vertices for n > 2. Then
2sin((| 2] +4)2
RE(Coy) — 2L £2)0).
siny,

Here we shall compute the Randi¢ characteristic polynomial of paths and cycles.

12



Theorem 2.1. For n > 5, the Randic¢ characteristic polynomial of the path graph P, satisfy

RP(Py,A) = (A% —1)(AA, 3 — %An,4),

where for every k > 3, Ay = AA_1 — %Ak_z with Ay = A and Ay = A% — %.
Theorem 2.2. For n > 3, the Randic¢ characteristic polynomial of the cycle graph C, is

1 1
RP(Cp,A) = ANyt — EAIFZ - (E)n_l’

where for every k > 3, Ay = AA_1 — iAk—z with Ay = A and Ay = A% — %.
Theorem 2.3. Forn > 2,
(i) The Randi¢ characteristic polynomial of the star graph S, = Kj ,—1 is

RP(S,A) =A""2(A% —1).

(ii) The Randic energy of Sy is
RE(S,)=2.

Theorem 2.4. Forn > 2,

(i) the Randi¢ characteristic polynomial of complete graph K,, is

RP(Ky,A) = (A—1)(A + ! 1)”—1.

n—

(ii) the Randic energy of K,, is
RE(K,)=2.

Theorem 2.5. For natural number m,n # 1,

(i) The Randic characteristic polynomial of complete bipartite graph K, , is

RP(KpppsA) = A"72(22 1),

(ii) The Randic energy of Ky, is
RE (Km,n) =2.

Let n be any positive integer and F, be friendship graph with 2n 41 vertices and 3n edges. In other
words, the friendship graph F, is a graph that can be constructed by coalescence n copies of the cycle
graph C3 of length 3 with a common vertex. The Friendship Theorem of Erdés, Rényi and Sés [2],
states that graphs with the property that every two vertices have exactly one neighbour in common
are exactly the friendship graphs. The Figure 1 shows some examples of friendship graphs. Here we

shall investigate the Randi¢ energy of friendship graphs.

Theorem 2.6. Forn > 2,

13
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Figure 1: Friendship graphs F», F3, Fy and F,,, respectively.

(i) The Randi¢ characteristic polynomial of friendship graph F, is

RP(FA) = (22— )" (=13 + )2
(ii) The Randic energy of F;, is
RE(F,) =n+1.

Remark. In [12] has shown that the energy of a graph cannot be an odd integer. Since RE(F,) =
n+ 1 for n > 2, the Randi¢ energy can be odd or even integer. More precisely we have:

Corollary 2.1. For every natural number m > 2, there exists a graph G such that RE(G) = m.

Let n be any positive integer and D} be Dutch Windmill graph with 3n + 1 vertices and 4n edges.
In other words, the graph D7 is a graph that can be constructed by coalescence n copies of the cycle
graph Cy of length 4 with a common vertex. The Figure 2 shows some examples of Dutch Windmill
graphs. Here we shall investigate the Randi¢ energy of Dutch Windmill graphs.

3n-1

3n+1

Figure 2: Dutch Windmill Graph D3, D3, D} and D, respectively.

Theorem 2.7. Forn > 2,
(i) The Randi¢ characteristic polynomial of friendship graph DY is

RP(DI,A) = A" (A% — %)"—1(12 —1).

(ii) The Randic¢ energy of F,, is
RE(D}) =2+ (n—1)V2.

14
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In this talk we consider and study properties of two kind of magic graphs. The first kind is
distance magic graphs and the second one is barycentric magic graphs.
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1 Introduction

Let G = (V,E) be a finite, simple and undirected graph. A labeling for a graph is a map that takes
graph elements to numbers (usually positive or non-negative integers).

The concept of distance magic labeling of a graph has been motivated by the construction of magic
squares. A magic square of side n is an n X n array whose entries are an arrangement of the integers
{1,2,...,n?} in which all elements in any row, any column, or either the main diagonal or main back-
diagonal, add to the same sum r. Now if we take a complete n partite graph with parts V1,Va,...,V,
with |V;] = n, 1 <i < n and label the vertices of V; with the integers in the ith row of the magic
square, we find that the sum of the labels of all the vertices in the neighborhood of each vertex is
the same and is equal to r(n — 1). Motivated by this observation in 1994 Vilfred [7] in his doctoral
thesis introduced the concept of sigma labelings. The same concept was introduced by Miller et al.
[5] under the name 1-vertex magic vertex labeling. Sugeng et al. [6] introduced the term distance
magic labeling for this concept. We use the term distance magic labeling.
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Distance magic labeling of G of order n is a bijection f:V — {1,2,....n} with the property that
there is a positive integer k such that ¥’ cy(y) f (y) = k for every x € V. The constant k is called the
magic constant of the labeling f. The sum Y cn(y) f (y) is called the weight of the vertex x and is
denoted by w(x).

Now we consider another kind of magic graphs.

Let A be an abelian group (written additively). The graph G is called A-magic if there exists a
labeling [ : E(G) — A\ {0} such that for each vertex v, the sum of values of all edges incident
with v, denoted by /" (v), is a constant, that is, [T (v) = ¢, for some ¢ € A. When this constant is
0, G is said to be A-zero-sum magic. The integer-magic spectrum of a graph G is the set IM(G) =
{k € N: G is Zy-magic}.

If there exists a labeling / for a graph G, whose induced vertex set labeling is a constant map and for
allv € V(G) the sum [ (v) also satisfies I (v) = deg(v)[(u,v) for some vertex u, adjacent to v, G is
said to be A-barycentric-magic [1].

Note that the motivation of this definition is the following definition of k-barycentric sequence which
was introduced in [2] and has already been used in graph labeling problems, specially in Ramsey
theory [2, 3, 4].

Definition 1.1. Let x1,x2,...,x; be k elements of an abelian group A. This sequence is k-barycentric
if there exists j such that x| +x2+...+xj+...+xx = kx;j. The element x; is called a barycenter.

In this paper we study the properties of graphs which are distance magic. Also for some graphs
G, we characterize all m € N for which G is Z,,-barycentric-magic.
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Abstract

For a finite group G, let 7, (G) be the set of element orders of G and m;(G) be the set of
elements of G of order i. Let nse(G) = {m;(G) : i € m,(G)}. In this paper, we prove that if G
is a finite group and p > 5 is a prime number such that p | |G| but p? |G|, n € {p,p+1} and
nse(G) = nse(S,), then G §,,.

Keywords: Set of elements of the same order, prime graph.
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1 Introduction

If n is a natural number, then we denote by 7(n), the set of prime divisors of n. For a finite group
G, let ©(G) be ©(|G|). Also, we use the notation 7, (G) for the set of element orders of G. Suppose
that m; = m;(G) = |{g € G| the order of G is i}| and nse(G) = {m;|i € m,(G)}. It is clear that if
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n € m,(G), then m, = ¢ (n)k, where k is the number of cyclic subgroups of order n in G and ¢ is the
Euler’s function, Also ¢ (n)|m,. The prime graph GK(G) of G is the graph with vertex set 7(G),
where two distinct primes r and s are joined by an edge, if G contains an element of order rs. The
set of connected components of GK(G) is denoted by 7(G), m(G), ..., M) (G), which t(G) is the
number of connected components of GK(G). If 2 € n(G), we always assume that 2 € m;(G). If
{k1,.-.,ki(G)} is the coprime factors set of |G|, where 7(k;) = 7;, then this set is called the set of
order components of G and is denoted by OC(G). The sets of order components of finite simple
groups with disconnected prime graph can be obtained using [7]. We show every p-Sylow subgroup
of Gby S,(G) and set n,(G) = [Syl,(G)|. In 1987, J. G. Thompson posed a very interesting problem
related to algebraic number fields as follows:

Thompson’s Problem. Let 7(G) = {(n,m,) | n € ,(G) and m,, € nse(G)}. Suppose that for some
(finite) group H, T(G) = T(H). If G is a finite solvable group, is it true that H is also necessarily
solvable?

This question in some case is answered, but the perfect answer to it has not ever seen. In [1, 5], the
authors showed that some alternating groups are characterizable by the set nse in the class of finite
groups. Also, in [3], the author proved that PGL,(p) is characterizable by the set nse in the class of
finite groups which their orders are divisible by p but p? does not divide their orders. The goal of
this paper is to prove the following theorem:

Main Theorem. Let G be a finite group and p € 7(G), where p > 5and n € {p,p+1}. If p*{ |G|
and nse(G) = nse(S,), then G S,,.

In the following, we bring some lemmas, which is used in the proof of the main theorem.

Lemma 1.1. [2] Let G be a finite group and m be a positive integer dividing |G|. Also, L,,(G) =
{g € G|g" = 1}. Then m||L,,(G)|.

Lemma 1.2. (1)[4, Lemma 1] Ifn > 6 is a natural number, then there are at least s(n) prime numbers
pi such that (n+1)/2 < p; < n such that
s(n) =6, forn > 48;
s(n) =35, for42 <n < 47;
s(n) =4, for38 <n <41;
(n)
(n)

2}

n) =3, for 18 <n <37;

s(n) =2, for14<n<17;

s(n) =1, for6 <n<13.

(2)[4, Lemma 6(c)] Let S be a finite simple group of Lie type with t(S) > 2 and there exist 2 <i<t(S)
such that k;i(S) = p. If S % 2G,(q), then for every 1 < j <t(S) (j # i), there exists at most one prime
number s € 7;(S) such that (p+1)/2 < s < p. If S =2 2G»(q), then there exist at most three prime
numbers s € w(G) such that (p+1)/2 < s < p.

Lemma 1.3. [6] The number of Sylow subgroups of order p™ in the Symmetric group of degree n is
n!
W’ where n = ag +a1p+a2p2 +... +Clkpk.
Corollary 1.1. Ifn € {p,p+ 1}, then
(p=1! ifn=p
Sp) = ;
LIRS WA i A
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2 Main Results

In this section, by applying the method in [1] for S,, we complete the proof of the main theorem.
First note that if ¢ is a permutation, which its product to disjoint cycles is composed of #; cycle of
length 1, 7, cycle of length 2....,; cycle of length /, then |cls, (0)| = Wm Thus by the
fact that for every s € 7. (S,), ms(Sn) = Lo(x,)=s |¢ls, (Xt )|, Where x;s are selected from dintict con-
jugacy classes. Note that G is a finite group, p > 5 is a prime number such that p | |G| but p* { |G|,
n € {p,p+ 1} and nse(G) = nse(S,). We emphasize that the proof of Lemmas 2.1 to 2.11 are same
with those of given in [1].

Lemma 2.1. For every s € m,(S,) — {1}, p1ms(S,) if and only if s = p. In particular, if s # p, then
p || ms(Sn)-

Lemma 2.2. m,(G) =mp(S,).

Lemma 2.3. If s € m(G) such that p t ms(G), then ms(G) = m,(G).

Lemma 2.4. Forevery s € n(G) — {2}, 2| ms(G). Also, 2 € n(G) and ma(G) = ma(Sy).
Lemma 2.5. |S,(G)| = p.

Lemma 2.6. For every s € n(G) —{p}, sp € m.(G).
From the previous lemma, we can conclude that t(G) > 2 and there exists 2 < j < t(G) such that

kj(G) = p.
Lemma 2.7. n(G) = n(S,) and |G| | |S,|. In particular, n,(S,) | |G]|.

Lemma 2.8. G is neither a Frobenius group nor a 2-Frobenius group.
As was stated before, t(G) > 2 and there exists 2 < j < t(G) such that k;j(G) = p.

Lemma 2.9. ¢(G) > 2 and G has a normal series | <H <K < G such that

(1) H is nilpotent;

@) n(H)Un(G/K) C m;

(3) K/H is a non-abelian simple group;

4) G/K <Out(K/H);

(5) the odd order components of G are the odd order components of K/H. In particular, p €
OC(K/H)—{k }.

Lemma 2.10. Lett € n(G) — {p}. If |H|, =t', then p|t' — 1.

Lemma 2.11. Ift € n(G)Un(G/K), thent < (p+ 1)/2. Forthermore, {t | (p+1)/2 <t < pandt
is prime} C (K /H).
Now Lemma 2.7 and the above lemma show that p is a maximal prime divisor of K /H.

Lemma 2.12. K/H is not isomorphic to any sporadic simple group.

Sketch of the proof. On the contrary, suppose that K /H is isomorphic to a sporadic simple group.
As was stated before, p is a maximal prime divisor of K/H. First let K/H = My,. Then p = 11. By
applying Lemma 2.7 and Lemma 2.9(4), we can see |H |3 = 3%. Hence, Lemma 2.10 yields 11| 3% — 1,
which is impossible. In other cases, we can get a contradiction with Lemmas 2.7, 2.9 or 2.11.
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Lemma 2.13. K/H is not isomorphic to any finite simple group of Lie type.

Sketch of the proof. On the contrary, suppose that K /H is isomorphic to a finite simple group of Lie
type. Frist define two sets that during our proof are used. For a finite group T, define o, (T) = {t €
n(T)| (p+1)/2 <t < p} and for a natural number m, B(m) = |{t | t is prime and (m+1)/2 <t <
m}|. Let K/H = 2G,(q), where g = 3*"*1 > 3, then by Lemmas 1.2 and 2.9(5), we have o4, (K /H) <
3. Also, Lemmas 2.7 and 2.11 imply that B(p) = o,(K/H) and hence, B(p) < 3. Hence, Lemma
1.2(1) forces p < 37. Lemma 2.9(5) shows either g++/3q+1 = p or q—+/3q+ 1 = p and hence,
q =27 or p=737. Since 29 & n(G), we get a contradiction with Lemma 2.11. In other cases, we can
get a contradiction with Lemma 2.7 or Lemma 2.11.

Main Theorem. Let G be a finite group and p € ©t(G), where p >S5 andn € {p,p+1}. If p*1|G|
and nse(G) = nse(Sy), then G = S,,.

Sketch of the proof. Applying Lemma 2.7 leads us to see that, there exists a natural number m so
that p <m <nand K/H = A,,. In the following, we examine the values of n:

(1) Let n = p. Thus m = p and K/H = A,. But since |G| | |S,|, then |G| = |Ay| or |G| = |S,|- If
|G| = |Ay|, then |H| =1 and |G/K| =1 and hence, G = K = A,. But since my(Sy) > ma(A,), we
get a contradiction with Lemma 2.4. Therefore, |G| = |S,| and hence, |G/K]| is either 2 or |H| = 2.
According to Lemma 2.10, |H| # 2 and hence, G = A, : Zp =2 S,,, as claimed.

(2) If n=p—+1, then either m = p orm = p+ 1. When m = p+ 1, with the same argument as (1)
is concluded G = S,. Let m = p. Thus K/H = A,. Applying Lemma 2.7 and Corollary 1.1, we get
p(p+1)(p—2)!||G| and hence, (p+1)!/(4,p—1) | |G|. Since |H| | 2(p+1), |H| # 1 and p+ 1 is
a power of 2 or not. If p+ 1 =2% then H is a nilpotent 2-group and hence, Cx(H)/H = {1,K/H}
which in every case we can get a contradiction. Finally suppose that p+ 1 is not a power of 2. Thus
there exists a prime divisor t # 2 of p+ 1. Hence |H|; = ((p+1)/2);. Now, Lemma 2.10 implies
that p | ((p+1)/2); — 1, which is impossible.

Thus we prove that G = S,,.
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Abstract

Let G be a finite group and 7. (G) be the set of element orders of G. Suppose that k € m,(G) and
my, is the number of elements of order k in G. Set nse(G) := {my, : k € w,(G)}. In this paper, we
prove that if G is a group with nse(PSL(3,9)) = nse(G), then G = PSL(3,9).
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1 Introduction

Let G be a finite group. Denote by (G) the set of prime divisors of the order of G and the set of
element orders of G is denoted by 7,(G). A finite group G is called a simple K,-group, if G is a
simple group with |7(G)| = n. For a group G and i € 7,(G), set m;(G) = |{g € G : the order of g is
i}|. In fact, m;(G) is the number of elements of order i in G and nse(G) := {m;(G) : i € 7, (G)}, the
set of the number of elements with the same order. If there is no ambiguity, we write m; instead of
m;(G). Throughout this paper, we denote by ¢ the Euler’s function. If G is a finite group, then we
denote by P,(G) a Sylow g-subgroup of G, by Syl (G) the set of Sylow g-subgroups of G and n,(G)
is the number of Sylow g-subgroups of G, that is, n,(G) = [Syl,(G)|.
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We say that the group G is characterizable by the set of nse if every group H with nse(G) =
nse(H) is isomorphic to G. In 1987, J. G. Thompson posed a very interesting problem related to
algebraic number fields as follows :

Thompson’s Problem. Let T(G) = {(k,my) : k € 7, (G), my € nse(G)}, where my, is the number of
elements of G with order k. Suppose that H is a group with 7(G) = T (H). If G is solvable, then is
it true that H is also necessarily solvable?

Thompson’s Problem is still open, but some authors have tried to deal with the analogous prob-
lem which asks whether the finite simple groups can be characterized by nse. In [6], it has been
shown that the finite simple groups PSL(2,q), where g € {7,8, 11,13} are characterizable by their
nse.

In this paper, we show that the finite simple group PSL(3,9), which is a simple Ks-group, can be
characterized by nse. The main result of this paper is the following theorem:

Main theorem. If G is a group such that nse(G) = nse(PSL(3,9)) = {1,7371,531440,678132,
1061424,589680,933120,4009824,1179360, 1866240,2122848,2358720,4245696,8491392,
11197440}, then G = PSL(3,9).

Lemma 1.1. [2] Let G be a finite group and m be a positive integer dividing |G|. If L,(G) = {g €
G| g" =1}, thenm| |Ly,(G)|.

Lemma 1.2. [7] Let G be a group containing more than two elements. If the maximal number s of
elements of the same order in G is finite, then G is finite and |G| < s(s*> —1).

Lemma 1.3. [5] Let G be a finite solvable group and |G| = mn, where m = p{"...p% and (m,n) = 1.

Let m = {pi1,...,pr} and hy, be the number of Hall w-subgroups of G. Then h,, = qlf‘ ...qf“ satisfies

the following conditions for all i € {1,2,...s}:
(1) qlﬁ" =1 (mod p;) for some p;;
(2) the order of some chief factor of G is divided by q;".

Lemma 1.4. [4] If G is a simple Kz-group, then G is isomorphic to one of the following groups:
As,Aq, PSL(2,7),PSL(2,8),PSL(2,17),PSL(3,3),PSU(3,3) or PSU (4,2).

Lemma 1.5. [8] Let G be a simple K4-group. Then G is isomorphic to one of the following groups:
(1) A7,As,A9,A10;
(2) My, M2, J2;
(3) on of the following simple groups:

(a) PSL(2,r), where r is a prime and satisfies r2—1=2%3% v witha,b,c>1andv >3 is
a prime;

(b) PSL(2,2™), where m > 2 satisfies 2" — 1 =uand 2" +1 = 3t?, with u,t are primes, t >3
and b > 1;

(c) PSL(2,3™), where m > 2 satisfies either 3" +1 = 4t and 3™ — 1 = 2u¢ or 3" + 1 = 4¢”
and 3™ — 1 = 2u, with u,t are odd primes and b,c > 1;
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(4) one of the following 28 simple groups:
PSL(2,16), PSL(2,25), PSL(2,49), PSL(2,81), PSL(3,4), PSL(3,5), PSL(3,7), PSL(3,8),
PSL(3,17), PSL(4,3), PSp(4,4), PSp(4,5), PSp(4,7), PSp(4,9), PSp(6,2), 0*( ), G2(3),
PSU(3,4), PSU(3,5), PSU(3,7), PSU(3,8), PSU(3,9), PSU(4,3), PSU(5,2), Sz(8), Sz(32),
3D4(2), 2F4(2)/.

Lemma 1.6. [1] Let G be a simple K5-group. Then G is isomorphic to one of the following groups:
(1) PSL(2,q) with |(¢* —1)| = 4;
(2) PSL(3,9) with |z((¢* — 1)(¢* — 1))] = 4
(3) PSU(3,q) with [z((¢* —1)(¢* +1))| =4
(4) Os(q) with (g —1)| = 4;
(5) Sz(2%mF1) with [z (22 — 1) (242 4+ 1))| = 4;
(6) R(q) where ¢ is an odd power of 3, |7(¢> —1)| =3 and |7(¢*> —q+1)| = 1;

(7) one of the following 30 simple groups:
Ay1, A2, My, J3, HS, He, McL, PSL(4,4), PSL(4,5), PSL(4,7),PSL(5,2), PSL(5,3), PSL(6,2),
07(3), 09(2), PSp(6,3), PSp(8,2), PSU (4,4) , PSU (4,5), PSU(4,7), PSU(4,9), PSU(5,3),
PSU(6,2), Og (3), 05 (2),°Da(3), G2(4), G2(5), Ga2(7), or G2(9).

Remark 1.1. Let G be a group with nse(G) = nse(PSL(3,9)). By Lemma 1.2, we can see that G is
finite. It is known that m, = k¢ (n), where k is the number of cyclic subgroups of order n in G and
if n > 2, then ¢ (n) is even, so m, is even. If n € m,(G), then by Lemma 1.1 and the above notation,
we have:

¢ (n) [ my

1.1

dln

2 Main Results

Lemma 2.1. (i) Let¢ be the number of cyclic subgroups of order # in G, namely Hy, ..., H; and let
for 1 <i<t, B; be the number of cyclic subgroups of C(H;) of order r, where gcd(r,n) = 1.

If B =min{f;: 1 <i<t}, then m,¢(r)B = ¢ (nr)Bt < my,,.

(i) If P € Syl,(G) is cyclic of prime order p and r € 7(G) — {p}, then m,, = n,(G)(p —1)(r —
1)k = m,(G)(r — 1)k, where k is the number of cyclic subgroups of order r in Cg(P).

Lemma 2.2. Let G be a finite simple K,-group such that 3® | |G| and |G| | 28.3%.5.7.13, where
n=4,5, then G = PSL(3,9).

We will prove the Lemma by the following two steps:

Step 1. G is a simple K4-group.

From Lemma 1.5, we can conclude that G is not a simple K4-group.

Step 2. G is a simple K5-group.

In view of Lemma 1.6 (2), G = PSL(3,9).
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Theorem 2.1. If G is a group such that nse(G) = nse(PSL(3,9)) = {1,7371,531440,678132,
1061424,589680,933120,4009824, 1179360, 1866240,2122848,2358720,4245696, 8491392,
11197440}, then G = PSL(3,9).

We will prove the theorem by the following three steps:

Step 1. By Remark 1.1, G be a finite group and by [3], we can see that nse(G) = nse(PSL(3,9))=
{1,7371,531440,678132, 1061424, 589680, 933120, 4009824, 1179360, 1866240, 2122848, 2358720,
4245696, 8491392, 11197440}.

Step 2. Since 7371 € nse(G), by Remark 1.1, 2 € n(G) and mp = 7371. Let 2 # p € n(G).
Then by (1.1), p | (14+my) and (p — 1) | m,, so checking the elements of nse(G) implies that
p € {3,5,7,13,17,19,31,43,47,79,241,589681,678133,2358721}. Again by (1.1) and Lemma
2.1 we can see that n(G) C {2,3,5,7,13}. Also by Euler’s function and checking the elements of
nse(G), we can conclude that 7(G) = {2,3,5,7,13}.

Step 3. G is a non-solvable group and hence, G has a normal series 1 <N <<M <G such that M /N
is a simple K;-group with i = 3,4,5. It is easy to prove that M /N is not a simple K3-group. There-
fore M/N is a simple K;-group with i = 4,5, thus by Lemma 2.2, M/N = PSL(3,9). By Step 2 and
Lemma 2.2, we can conclude that |G| =27 x 3% x 5 x 7 x 13 = [PSL(3,9)| and by applying the above
argument, G = PSL(3,9). This completes the proof of the theorem.
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1 Introduction

At-(v,k, L) design 9 = (¥, 2B) is an incidence structure consisting of a set ¥ of v points, and a set
A of k-element subsets of ¥, called blocks, such that every ¢-element subset of points lies in exactly
A blocks. The design is nontrivial if t < k < v—t, and is symmetric if | %] = v. If & is symmetric and
nontrivial, then < 2 (see [3, Theorem 1.1]or [7, Theorem 1.27])). This motivates to study nontrivial
symmetric 2-(v,k,A) designs which we simply call symmetric (v,k,A) designs. A flag of P is an
incident pair (a,B) where o and B are a point and a block of &, respectively. An automorphism
of a symmetric design Z is a permutation of the points permuting the blocks and preserving the
incidence relation. An automorphism group G of ¥ is called flag-transitive if it is transitive on the
set of flags of Z. If G is primitive on the point set #, then G is said to be point-primitive. A group
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G is said to be almost simple with socle X if X <G < Aut(X) where X is a (nonabelian) simple
group. Further notation and definitions in both design theory and group theory are standard and can
be found, for example, in [4, 7, 9].

Symmetric designs with A small have been of most interest. Kantor [8] classified flag-transitive
symmetric (v,k, 1) designs (projective planes) of order n and showed that either & is a Desarguesian
projective plane and PSL(3,n) <G, or G is a sharply flag-transitive Frobenius group of odd order
(n> +n+1)(n+1), where n is even and n> +n+ 1 is prime. Regueiro [11] gave a complete classi-
fication of biplanes (A = 2) with flag-transitive automorphism groups apart from those admitting a
1-dimensional affine group (see also [12, 13, 14, 15]). Zhou and Dong studied nontrivial symmetric
(v,k,3) designs (triplanes) and proved that if & is a nontrivial symmetric (v, k,3) design with a flag-
transitive and point-primitive automorphism group G, then & has parameters (11,6,3), (15,7,3),
(45,12,3) or G is a subgroup of AT'L(1,q) where ¢ = p™ with p > 5 prime [6, 20, 21, 22, 23].
Nontrivial symmetric (v,k,4) designs admitting flag-transitive and point-primitive almost simple
automorphism group whose socle is an alternating group or PSL(2,¢) have also been investigated
[5, 24]. It is known [18] that if a nontrivial (v,k,A)-symmetric design & with A < 100 admitting
a flag-transitive, point-primitive automorphism group G, then G must be an affine or almost simple
type. Therefore, it is interesting to study such designs whose socle is of almost simple type or affine
type.

In this poster, however, we are interested in large A. In this direction, it is recently shown in
[1] that there are only four possible symmetric (v,k, A1) designs admitting a flag-transitive and point-
primitive automorphism group G satisfying X <G < Aut(X) where X = PSL(2,¢). In the case where
an almost simple group G with socle X = PSL(3, g) acts flag-transitively and point-primitively on &,
we have shown that 2 must be a Desarguesian projective plane PG(2,¢q) (see [2]). Note in passing
that when X is a sporadic simple group, there exist only four possible parameters (see [19]).

In the case where G is imprimitive, Praeger and Zhou [16] studied point-imprimitive symmetric
(v,k,A) designs, and determined all such possible designs for A < 10. This motivates Praeger and
Reichard [10] to classify flag-transitive symmetric (96,20,4) designs. As a result of their work,
the only examples for flag-transitive, point-imprimitive symmetric (v,k,4) designs are (15,8,4)
and (96,20,4) designs. In a recent study of imprimitive flag-transitive designs [17], Cameron and
Praeger gave a construction of a family of designs with a specified point-partition, and determine
the subgroup of automorphisms leaving invariant the point-partition. They gave necessary and suf-
ficient conditions for a design in the family to possess a flag-transitive group of automorphisms
preserving the specified point-partition. Consequently, they gave examples of flag-transitive de-
signs in the family, including a new symmetric 2-(1408,336,80) design with automorphism group
212 ((3-Myy) : 2), and a construction of one of the families of the symplectic designs exhibiting a
flag-transitive, point-imprimitive automorphism group.
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Abstract

In this paper we generalize the algorithm of constructing elliptic curve with a prescribed
N—torsion point to the efficiently generating an elliptic curve with a point of order 2*N, with the
method of successive halving. In this method we search among the curves generated with the
modular curves Y1 (2/N) for i = 1,...,s — 1, to find the equation of a curve with a point of order
2¥N— which is cryptographically more efficient than using Y} (2°N).
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1 Introduction

Let N > 2 be an integer. The modular curve X (N) (with cusps removed) parametrizes isomorphism
classes of pairs (E, P) where E is an elliptic curve and P, is a torsion point of order N on E.
We are trying to find a curve with a prescribed order. We may be able to do this work by reducing
a curve defined over a quadratic field Q(v/d) with a point of order N to a curve defined over F,, but
only when d is a quadratic residue.
Alternatively, we can use an Fy-rational point on Y; (N), the affine part of X; (N), to directly construct
the Tate normal form

E(b,c)/F; : y*+ (1 —c)xy—by = x> —bx*.

containing a point of order N, for any sufficiently large g prime to N. Any elliptic curve with a point
of order greater than 3 can be put in this form [1]. Provided E(b,c) is nonsingular, we obtain an
elliptic curve on which the point P = (0,0) has order N.

To apply this method we require a defining equation for Y1 (N). Then by choosing the point (x,y)
on Y| (N) and applying suitable transformations, we construct E (b, ¢) and if it is singular, we simply
look for a different point on the curve.

2 Computing Y| (N)

Following [4], we give a method to compute a defining equation Fy(r,s) = 0 for ¥; (N). For the curve
E(b,c), if P=(0,0) then 2P = (b,bc) and if nP = (x,,y,) then

Xn+1 :byﬂ/xﬁ y  Ynt+l :bz(xyzzfyn)/xi

N+1 N-1
If P is an N—torsion point and m+n = N, then for m = (TJF] and n = LTJ we have

NP=0 <= x,=2x,

The algorithm to compute Fy(r,s) = 0 for N > 5 is as follows [6]:
Assume that the polynomials Fj; have already been computed, for 5 < M < N, and that the rational
function x,(r,s) is in the form x,, = v, /w,,, where v, and w,, are relatively prime polynomials in Z[r, s].

Algorithm 1. Given an integer N > 5, compute Fy(r,s) as follows:
+1 N—-1
land n= LTJ
2. Remove any powers of r,s, (r — 1) or Fy, that divide Gy, for all M > 5 properly dividing N.
3. Make the remaining polynomial square-free and output the result as Fy(r,s).

1. Compute Gy = v;wy, — VyWy,, where m = |

The following theorem shows that the polynomial Fy(r,s) gives us a curve with a point of exact
order N.

Theorem 2.1. Let Fj(r,s) be the polynomial output by Algorithm I on input N > 5. Let b= ryso(ro—
1) and ¢ = so(ro — 1) with A(b,c) # 0, where ry and sy lie in a field whose characteristic does not
divide N. Then P = (0,0) is a point of order N on E(b,c) if and only if Fy(ro,so) = 0.
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3 Prescribing 2€N-torsion

Let N be an odd number. Our contribution is to generalize the method of Sutherland [6] to find a
curve with prescribed 2°N —torsion point by the method of successive halving in [5]. We can use this
method to efficiently search for an elliptic curve with a point of order 2°N using curves generated
with ¥ (2/N), where 1 < i < s. We also use the form of

y2 zx(xz—l—ax—i—ﬁ)

of an elliptic curve in which p = o> — 43 determines the number of points of order 2.

A curve with a point of order N has a point of order 2°N if and only if it has a point of order 2°. Now
assume that a given curve E has point Q of order 2%, with k > 1. If Q = 2P, we say that Q has a half
point P = (x,y) of order 2(k + 1). Such a condition is equivalent to

2 p\2
E=x(2P) = ()64))2[3) 3.1

Y =x(* + ox+ )

So one follows that
Lemma 1. Let E(F,) :y* =x(x* +ax+ ) and Q = (§,{) € E(F,;) \ {O}. A necessary condition

for the existence of a half point of Q is that & is a square in F,. Furthermore, since {* = £8; with

8 = &2+ a& + B, it follows that & should also be a square in F.
On the other hand, from equations 3.1, we get the quartic equation over F;

feoxt —4EX —2020E + B)x* —4BEx+ B2 =0 (3.2)

3.1 Halving Process

The main strategy for efficiently searching an elliptic curve with a point of order 2°N between modu-
lar curves ¥ (2'N), is to determin the points of order 2 of the curve Y1 (2'N) by starting from i = 1 and
checking the existence of their half points. We have two cyclic and noncyclic cases for the structure
of the group of two torsion points depending on the existence of one or three points of order 2.

A) Cyclic Case:
Lemma 2. A curve E(F,) : y* =x(x? 4+ ax+ ) with x(p) = —1 has a point of order 4 if and only
if x(B)=1.

The inductive step is completed with the following proposition:
proposition 1. Let y? = x(x* + ox + 8) with x(p) = —1. Let us assume that Q = (£, {) is a point
of E(F,) of order 2K with k > 1. Then there exists a half point of Q if and only if (£) = 1.
B) Noncyclic Case:

Lemma 3. Let E(F,) : y* = x(x> + ax+ ) with x(p) = 1 and {(0,0), (&,0), (&2,0)} its rational
points of order 2. Then, E has rational points of order 4 if and only if one of the following conditions
holds:

(1) x(B)=1and x(a—2/B) =1;
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Figure 1: Tree of abscissas in the cyclic case

) x(&) =x2& +a)=1;
B3 x(&) =228 +a)=1.

As before, in order to continue the halving process, first we need the characterization of the
image of multiplication by 2.

Proposition 2. Let E(F,) : y?> = x(x* + ax+ ) with x(p) = 1. Let us assume that 0 = (£,{) isa
point of E(F,) of order 2K, with k > 1. Then, there exists a half point of Q if and only if

x8)=1, x(2§+a+2\/5>§) =1
where 8; = &2+ a& +B.

In the noncyclic case, as same as the cyclic case, if the process of halving continued untill the
step k = s, the coresponding curve has at least one point of order 2° and we are done, otherwise we
discard the curve and do the process for the next i.

Remark. Let us assume that the condition in Proposition 2 holds. If a root x of f; ¢ is the abscissa
of a point P € E(F;), then the other root of f; ¢, namely f/x is the abscissa of P+ (0,0). If a
root x of one of the polynomials f; ¢ is the abscissa of P € E(F), then the abscissa of P+ (&1,0),
namely &;(x— &) /(x— &) is a root of the other polynomial. Let us denote by {Qp = (0,0), Q; =
(&1,0) , 02 =1(&,0)} the points of order 2, and

Tj={PcE(F,) | 3t >0 suchthar 2P =Q;}

for j ={0,1,2}. In these trees 7T}, if a vertex Q has children, then it has four, which are {P,P +
Qo,P+ 01,P+ 02}. So if all the points Qp, 01, 02, have half point, then either the four points can
be halved or none of them can. So in each step we need at most three checkings, one in each tree.
Therefore, in E[2|(F,) = Z/2"Z x Z./2*Z, we have 3.4~ points of order 2, but three checkings
of condition of proposition 2 and therefore three computations of a root of a quadratic polynomial
are enough to continue the process and the algorithm is efficient.
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Figure 2: Tree of abscissas in the noncyclic case

At last we implement the procedure using the softwares MAPLE and PARI and find all the curves
generated by Y1 (2N) for N = 17 with their 2-Sylow subgroup over the prime field Fy3. We can see
that in this family of curves, there is no curve with the rational point of order grater than 2* in the
group of points of the curve.

4 Main Results

In this paper we generalize the algorithm of constructing elliptic curve with a prescribed N—torsion
point to the efficiently generating an elliptic curve with a point of order 2°N, with the method of
successive halving. In this method we search among the curves generated with the modular curves
Y (2iN) fori=1,...,s — 1, to find the equation of a curve with a point of order 2°N— which is
cryptographically more efficient than using Y; (2°N).

We also implement the procedure using the softwares MAPLE and PARI and find all the curves
generated by Y1 (2N) for N = 17 with their 2-Sylow subgroup over the prime field Fy3. We can see
that in this family of curves, there is no curve with the pational point of order grater than 2* in the
group of points of the curve.
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Abstract

Let G be a directed graph with n vertices and m edges, and I(B) a binomial ideal corresponded
to the incidence matrix B of the graph G. Also by removing the i’th row of B, a new matrix is
made and is called B;. In this paper it is shown that the heights of /(B) and I(B;) are equal to
n-1 and the dimensions of /(B) and I(B;) are equal to m-n+1. Then a sufficient and necessary
condition is given for I(B;) to be prime. A sufficient combinatorial condition is given for /(B)
and /(B;) to be complete intersections. Finally a free complex for I(B) will be presented and, for

specific graphs, a free resolution will be stated for /(B).
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In this paper we find a sharp bound on the canonical height of non-torsion points on elliptic
curves of the form y? = x> — nx, where n is a square- free integer. By an example we will show
that our bound is the sharpest possible bound.
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1 Introduction

Let E be an elliptic curve over Q and P = (x,y) = (5, %) € E(Q). If ged(a,d) = 1, we define the
naive height of P by h(P) = max{log|al,log|d?|} and the canonical height of P by

h(P) = lim h2'P)

n—oo 4N

(1.1)

The canonical height measures the size of points on elliptic curves. It plays fundamental roles in
many theoretical and practical problems such as proving the Mordell- Weil theorem. There is a
well-known conjecture about this function.
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Conjecture 1.1 (Lang’s Conjecture). Let E /K be an elliptic curve with minimal discriminant Ag JK-
There exist constants Cy > 0 and Cy, depending only on [K : Q|, such that for all nontorsion points
P € E(K) we have

}’l\(P) > C ]Og (J‘k/@ (AE/]K)) + ;.

Silverman [4] showed that Lang’s conjecture holds for any elliptic curve with integral j-invariant
over any number field.

Let n be a positive square- free integer and £_ > denotes the elliptic curve y? = x> —n’x, Bremner,
Silverman and Tzanakis [1, Proposition 2.1] proved that for any non torsion point P € E_,»2(Q),

3

1

h(P) > glog (2n%).

3

Fujita [3] considered elliptic curves of the form E_,, : y*> = x> — nx and showed that for any positive
forth- power- free integer n # 4 (mod 16), and for every P € E_,(Q),

h(P) > {logn+0.3917.

Later Voutier and Yabuta [7, Theorem 1.2] showed that for any fourth-power-free integer —n, and
PeE_,(Q),

(9/8)log(2)  ifn=1,5,7,9,13,15 mod 16
(5/8)log(2)  if n=20,36 mod 64

orn=2,3,6,8,10,11,12,14 mod 16
—(1/8)log(2) if n=4,52 mod 64.

n(P) > +logn+

Remark 1.2. Indeed [7] use a definition of height which is half of our definition.

In this paper we consider elliptic curves of the form E_,, : y> = x3

square- free integer. we will show that

— nx for which n is a positive

Theorem 1.3. Let n be a positive square-free integer and E,, denotes the elliptic curve y* = x> — nx.

For every P € E_,(Q), we have
A 1
h(P) > glogn+0.4331.

Our bound is the best known method, we will show this is the best possible bound.

2 Estimating canonical height

Let E be an elliptic curve and P € E(Q), computing 2(P) by (1.1) is difficult. To compute A(P) one
can use local height of P, indeed The value /4(P) can be expressed as

WP)="Y, Ap(P)+2u(P),
p

prime
where Z,,(P) is the local height at prime p and A..(P) is the local height at infinity. Let

ilfin(P) = Zp prime iP(P)
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Remark 2.1. Let E_,, be an elliptic curve of the form y* = x> — nx, where n is a rational number. It

is easy to see that every rational point P # O on E,, has the form P = (blrz/sz, blrt/s3)f0r integers
r,s,t € Z such that (r,s) = (t,s) = 1 and

9(1)1) S = b1}"4+b284, biby =—n 2.1

Conversely, if (r,s,t) is a nontrivial primitive solution of 7 (by), then (b1r? /s%,byrt/s3) is a rational
point on E,,.

Lamma 2.2. Let n be a positive square-free integer and E,, be the elliptic curve given by y*> = x> —nx.

For every P = (by1? /s, b1t /s3), hyin(P) can be computed as
A 1 A
hyin(P) =2logs — Elogb’l +hy(P),

where b} is the odd part of by and hy(P) is a real number satisfying —(log2)/2 < hy(P) < 0.
Proof. By [3, Lemma3.2], we know that
X 1 s
h fin(P) :210gs—§]og( [T r7)+m(P) (2.2)
pl(an),p#2

If (by,r) # 1 then there exists prime p which p|(ba,r) so p|bir* + bys* = 12, hence p?|bys*, thus
p?|by which is a contradiction, so (by, r) = 1. To deal with local height at 2, we consider the possible
cases:

1. If s is even, then fzg(P) =0.

2. If s is odd, n is odd and r is odd, then i, (P) = —log(2)/2.

(O8]

If s is odd, 7 is odd and r is even, then /i, (P)=0.
4. If s is 0dd, by is even, then /1y (P) = —log(2)/2.
5. If s is odd, b, is even and r is even, then i (P) = —log(2) /2.

6. If s is odd, bj is even and r is odd, then /, (P)=0.

O
Lamma 2.3. Let n be a positive square-free integer and E_, be the elliptic curve given by y* =
x> —nx. For every P = (byr?/s?,byrt/s3), we have
R 1 1 1. byt
he(P) > glogrﬂ— §10g2+ > log 3 +0.3465.
Proof. Using algorithm [2, Algorithm 7.5.7], we see that
. 1. 6dn’® 1 1 1. bt 1
he(P) = —log—— + —logw; — —log2m + —log —— — = log 6, 2.3
(P) 1608~ T glogn — glog2m+ S log =5 — 7 log (23)

oo

n(n+1)
where o is a real period of E; and g = 2™®1/® and 6 = Z (-1)"q > sin((2n+1)ARe(z(P)).
n=0

Using algorithm [2, Algorithm 7.4.7], we have
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(]

T T
AGM(N4n/n)  YmAGM(V/2,1)
and @, = io;, hence g = 2*®1/® = ¢=2*T_On the other hand

1
—lgl  1—e2m

0| <
0l < 1
Combining these results yields the inequality. O

Theorem 2.4. Let n be a positive square-free integer and E, be the elliptic curve given by y* =

x> —nx. For every P € E_,(Q), we have

R 1
h(P) > 3 logn+0.4331.

Proof. Let P = (b1r*/s?,byrt/s*), by Lemma 2.2 and Lemma 2.3, we have
h(P) = hyin+ heo > 210gs — L logh) + 7y (P) + L logn+ §log2 + L log 24 +0.3465.
So we have to consider two cases:

e If by is even then b} = b1 /2 and by [4] in proof of Lemma 2.2, /i (P) = —log(2)/2 so in this
case

h(P) > tlogn+ tlog2+ Llogrts+0.3465 > Logn+0.4331.

e If by is odd then b’1 = by, in this case we have four cases:

if b, is odd and r is odd then ¢ is even so ¢ > 2, on the other hand by item [2] in Lemma
2.2, hp(P) = —log(2)/2 so in this case

h(P) > {logn+ flog2+ Llogrs +0.3465 > Llogn+0.4331.

If by is odd and r is even by [3] in proof of Lemma 2.2, i, (P) = 0 so in this case
h(P) > tlogn+ Llog2+ Llogrst +0.3465 > Llogn +0.4331.

If by is even and r is odd then by [6] in proof of Lemma 2.2, i, (P) = 0 so in this case
h(P) > tlogn+ Llog2+ Llogrst +0.3465 > Llogn +0.4331.

If b, is even and r is even then r > 2, on the other hand by [5] in proof of Lemma 2.2,
ha(P) = —l0g(2)/2 so in this case

h(P) > {logn+ flog2+ logts+0.3465 > L logn +0.4331.
As we saw, in any case we have fl(P) > %logn +0.4331. O
Now, we give an example which shows that this is the sharpest bound.
Example 2.5. Let E be the elliptic curve y*> = x> — 5x and P = [—1,2), then by our result
h(P) > élogS +0.4331 = 0.6342797390542625468250949167,
On the other hand, using PARI/GP, we see that
h(P) = 0.6355287144445497811461681913.
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3 Family of Rank one Elliptic Curves

Let E be an elliptic curve over Q and E(Q) be its Mordell-Weil group over Q which is a finitely
generated abelian group. The rank of the free part of E(Q) as a Z-module is called the rank of E
over Q. In this section, first we recall the concept of the root number and then using Parity conjecture
we find a family of rank one elliptic curves, finally using height function we determine a generator
for the family.

Definition 3.1. Let E be an elliptic curve over Q and n, denotes the number of points in the
reduction of curve modulo p. Also let a, = p+1—np. The local part of the L-series of E at p is
defined as

l—a,T +pT?  if E has good reduction at p,

L,(T) = 1-T if E has split multiplicative reduction at p,
r ) 1+4T if E has non- split multiplicative reduction at p,
1 if E has additive reduction at p.

The L- series of E is defined to be
L(E7S) = Hp ma
where the product is over all primes.

Theorem 3.2. The L- series L(E,s) has an analytic continuation to the entire complex plane, and it
satisfies the functional equation

A(E,s) = e(E)A(E,2—s),
where
A(E,s) = (Ngg)**(2m) T (s)L(E,s),

Ng qis the conductor of E and I is the Gamma function. Here €(E) = %1 is called the global root
number of E.

The Parity conjecture states that
e(E)=(-1)", 3.1

where rg denotes the rank of Mordell- Weil group of E.

Proposition 3.3. (/8])For elliptic curve E : y* = x> — dx, such that d # 0 (mod 4), the sign of the
global root number of the elliptic curve Eg : y* = x> — dx, has the following formula

S(E )_ -1 lfd5275a67779710714715 (mod 16)
YT\ H1 ifd=1,3,11,13 (mod 16)

Proposition 3.4. Under the Parity conjecture, for every prime number p =2,5,6,7,9,10, 14,15 (mod 16),
the rank of elliptic curve E_, : y* = x> — px is exactly one.

Proof. By [5, Section X.6], for every prime number p, rank(E,) < 2. On the other hand by Parity
conjecture and 3.3, we know that the rank is odd, so rank(E_ ,,) =1. O
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Theorem 3.5. For any prime number p of the form p = 4r> + (n1)*, where r is odd, the point

P =[—ny,—nyr] is a generator of E, : y* = x> — px.

Proof. By Lemma 2.2, we know
N 1 N 1
hyin(P) = 2logs — 3 logny +hy(P) < 5 logn

on the other hand

1

he(P) <

3 1
r + —log2+ Elognl7

1
1 —1
ogp—k2 ogr—+ g3

Thus
h(P) < {logp+ 1logr+0.4794.

By Proposition 3.3, we know that Rank(Ep) =1, Let Q be a generator of E,, then there exists an
integer k € Z such that P = kQ +n| T, where T is a torsion point. Hence h(P) = k*h(Q), if k # +1
then we have

Logp+ Llogr+0.4794 > h(P) = k*h(P) > k*(L1og p +0.4331) > 4(} log p+0.4331)
Thus
%logrz %logp:> r?>p

Which is a contradiction. So k = £1 and hence P is a generator of the free part of E,(Q). O

4 Main Results

We show that for any positive square-free integer #, and for every non-torsion point P € E_, : y> =

x> — nx, we have

A 1
h(P) > 3 logn+0.4331.

Also we showed that this is the sharpest possible lower bound. Using this estimation, we showed
that for every prime number p of the form p = 4(2k + 1) + (n1)*, the point P = [—ny, —n (2k+1)]
is a generator of E, : > =x3—px.
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1 Introduction

The non-commuting graph of a group is one of the first graphs that is associated to a group. In [1]
the authors define the non-commuting graph and studied some properties of it. The non-commuting
graph of a non-abelian group G denoted by I'; is a graph whose vertices are the elements of G\Z(G)
and two distinct vertices x,y are adjacent iff xy = yx. In [1] the following conjecture was stated:

If I'g 2Ty then |G| = |H|.
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This conjecture was answered negatively in [12]. The affirmative answer for simple groups and
p—groups appeared in [6] and [2]. Another question that appeared in the subsequent papers is the
following:

When the non-commuting graph determines the structure of group?

For simple groups this question answered in many papers. This is related to Thompson’s conjec-
ture about simple groups and prime graph of a group.

The chromatic number of a graph is the minimum number & such that the vertices of the graph can
be colored by {1,---,k} such that adjacent vertices have different colours. The chromatic number
of a graph is denoted by x(G). A complete subgraphs of a graph is called a clique. The suprimum
of the size of the cliques is called clique number and denoted by @(G).

Let 6(G) be the minimum number n such that G is union of n proper subgroups. If ®(G)
denotes the frattini subgroup of G then there is a relation between 6(G) and the structure G/®(G).
The relation between y(G) and the structure of G/Z(G) is a similar problem. It is proved that if G
has at most 20 maximal subgroup then G is solvable. The similar problem states if w(G) < 20 then
G is solvable.

2 Main Results

Theorem 1. x (G) is the minimum number of abelian groups which cover G.
Theorem 2. (Isaacs) % (G) < o iff ©(G) < o iff |G/Z(G)| < oo.
Remark 1.
1. If G = U H; and S C I then ;s Hi = Z(G) or Nicy Hi = Z(G).
2. If G= U Hiand S CI\{j} then N;csH; = Z(G) or ;e Hi=Z(G) or [G: H;] = 2.

3. If |G/Z(G)| = nand |H;/Z(G)| = a; and k; = 2 then for n =2m, 1 < Y7 (5 + = — t=t—)
1

and forn =2m+1,1 < é+2§il<a+ﬁ*k2iklzi_l)

Definition 1. A group G is called an AC—group if the centralizer of any non-central element is an
abelian group.

The AC—groups are studied in [13] and [14].

Definition 2. The minimum number  such that G = |J;_; C;(g:) where g1, , & € G\Z(G) denoted
by ¢(G).

Definition 3. A group G is called a C—group if ¢(G) = x(G).
Lemma 3. ¢(G) < o(G) < x(G).

Lemma 4. If G is an AC—group then G is a C—group.
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Lemma 5. If G is a C—group and G = U._H; where x(G) =t then H;NH; = Z(G).
Theorem 6. If |G/Z(G)| = pqr then G is an AC—group.

Theorem 7. If |G/Z(G)| is a cube free number and every element has prime power order then G is
an AC—group.

Corollary 8. If G/Z(G) = As then G is an AC—group.

Theorem 9./4] If G is a non-solvable finite group and ©(G) < 21 then G 2 Z(G) x As and ®(G) =
x(G) =21.

Corollary 10. If ®(G) < 20 then G is a solvable group.
Theorem 11. If G is a finite group and G/Z(G) = As then G = Z(G) x As and x(G) = 21.
Theorem 12. ([11]) If |G| = n then ®(G) < x(G) < 5+ 1.

Theorem 13. If G/Z(G) has an element of order n with k prime factors and ¢(G) > k+ 1 then
o(G)>n+1.IfGis a C—group or k <2 then ¢(G) > k+ 1.

Theorem 14. If G is a C—group and x(G) =t then |G/Z(G)| < (t —1)2.
Theorem 15. x(G) =3 iff o(G) = 3.

Theorem 16. ®(G) = 4 then every element of G/Z(G) has order two or three.
Theorem 17. ®(G) =5 then every element of G/Z(G) has order 2,3,4.

The following Theorem of G. Higman classifies all the solvable groups G in which every element
has prime power order[8][p 213].

Theorem 18. Let G be a solvable group in which every element has prime power order. Then G is
one of the following groups:

1. A Frobenius group G = FH, where F is an abelian p—group (p > 2) and H is a generalized
quaternion group.

2. G has a normal series P<<PQ <G where G/P and PQ are Frobenius groups, P and G/PQ
are p—groups, PQ/P is a g—group, PQ/P and G/PQ are cyclic(Here p|q— 1).

Theorem 19. If G/Z(G) has a normal cyclic subgroup K of index p then x(G) = |K|+ 1.
Theorem 20. [f G/Z(G) = D, then x(G) = n+ 1. In particular, }(Day—2) = n.

Corollary 21. If |G/Z(G)| = pq where p < q then G/Z(G) = D4, %(G) = 5 or G/Z(G) = @;_, Z»,
x(G)=5,7.

Corollary 22. If |G/Z(G)| = pgr where p < g < rand gtr—1then x(G) = qr+ 1.
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Corollary 23. If |G/Z(G)| = 30 then x(G) = 16.
Theorem 24.[1]
1. x(GL2(q)) = ©(GLa(q)) = ¢* +q+ 1.
2. x(SLa(q)) = ©(SLa(q)) = ¢* +q+ 1.
3. x(PSL2(q)) = @(PSLa(q)) = ¢* +q+ 1.
Theorem 25. x(G) =3 iff G/Z(G) 2 Z, P Z,.
Theorem 26. ¥ (G) =4 iff G/Z(G) 2 Z3 D Z3,Ss3.
Theorem 27. If x(G) = 5 then G/Z(G) = @®>_, Z2,A4, D4 or |G/Z(G)| = 16.
Theorem 28.1f |G| = 20 and Gy has no element of order 10 then G| = (a,b: a* = b° = 1, ab = b*a).

Theorem 29. If x(G) = 6 then G/Z(G) = G1,Ds, %, Zs or |G/Z(G)||64.
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1 Introduction

In this paper we study the coprime graph of a group is defined in [4]. The coprime graph of a group
G, denoted by I'i, is a graph whose vertices are elements of G and two elements x 7 y are adjacent

iff (|x],|y|) = 1. The following question were posed in [4]:
Classify groups with three end vertices.

Wse classify groups with at most seven end vertices. First we recall some facts and notations
related to this paper. Throughout this paper G denotes a nontrivial finite group. The centralizer of
a € G is denoted by Cg(a). If H < G the normalizer of H is denoted by Ng(H). Also Z(G) denotes

the center of G. The symmetric group on n letters is denoted by S,,.

Let 77(n) be the set of prime divisors of . For a natural number n = p{! -- -pZ" setr(n) =pi-- pg-
Let I be a simple graph. The degree of v € V(I') denoted by d(v). The set of vertices which are

adjacent to v is denoted by Nr(v). A vertex of degree one is called an end vertex.
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2 Main Results

In this section we classify groups with at most seven end vertices.
Lemma 1. Set f(n) =Y ¢(d), where r(n)|d|n. If n = p\'--- p{* then f(n) = (p}' —1)--- (p;* —1).

Lemma 2. Let a € G be an element of order n. Then deg(a) = 1 i.e a is an end vertex iff r(n) = r(G).
Also G contains at least f(n) end vertices.

Theorem 3. Assume I'g has at most seven end vertices. If a is an end vertex with maximal order
then o(a) € {2,3,4,5,6,7,8,10,12,14}. Also n(G) <2 and n(G) C {2,3,5,7}.

The following Theorem is a part of a Frobenius theorem in [3][Theorem 9.9,p 119-120].
Theorem 4. [f m||G| then |{g € G : g" = 1}| is divisible by m.

Theorem 5. Let G be a group of order 18 which has an element of order six. Then one of the
following occurs:

1. G is an abelian group and G = Ly @723 D Z3,Zr @ Zo. In this case T'g has f(18) = 8 end
vertices.

2. G= <b,c,d b*=c3=d*=1,cd =dc,cb =bc,bdb! = d_1>. Also G has three element of
order two, eight elements of order three and six elements of order six.

Theorem 6. Let G be a group such that ©(G) = {2,p} and p* { |G|. Let a be an element of order
n. Assume every end vertex of T'g be in {(a). Then {(a) is a characteristic subgroup of G. Also its
p—Sylow subgroup is the unique subgroup of order p. Also every element in G\({a) is a 2—power
element.

Theorem 7. Assume I'g has at most seven end vertices. Let a be an end vertex of maximal order. If
O(Q) € {27 37475777 8} then G = 22323524722 @ZLZS,Z%ZZ ®Z2@22722®Z47283 Q47D4-

Theorem 8. Assume I'g has at most seven end vertices. Let a be an end vertex of maximal order. If
o(a) = 6 then G is one the following groups:

1. G=7Z¢and ' has two end vertices.

2. G= <a,b :a® =b>=1,bab! = a_1> = D¢ and I'g has two end vertices.

3. G= <a,b ca®=1,0>=d’,bab™!' = a‘1> = Q¢ and I' has two end vertices.

4. G=ZZryPZyP7Z3 and ' has six end vertices.

5.G= <b,c,d b= =d*=1,cd =dc,ch =bc,bdb! = d‘1> and ' has six end vertices.
6. |G| =24,36,72.

Theorem 9. Assume I' has at most seven end vertices. Let a be an end vertex of maximal order. If
o(a) = 10 then G is one the following groups:

1. G =7y and T has four end vertices.

2. G= <a,b cal%=pr=1,bab~! = a‘1> 2 Dy and I'g has four end vertices.
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3. G= <a,b :a'" =1, =@ ,bab™! = a’1> and U has four end vertices.
4. G= <a,b :a' =1,b* =@, bab™! = a’1> and T has four end vertices.

Theorem 10. Assume I'g has at most seven end vertices. Let a be an end vertex of maximal order. If
o(a) = 12 then G is one of the following groups:

1. G=Zip and I'g has six end vertices.

2. G= <a,b a2 =b2=1,bab~' = a’l> = Dy and g has six end vertices.
3. G= <a,b a2 =02 =1,bab™' = a5> and U has six end vertices.

4. G= <a,b ca'? =1,b> = ab, bab™! = a’1> and I has six end vertices.
5.G= <a,b ca'? =1,b> = a®, bab™! = a5> and T has six end vertices.

6. G= <a,b cal? =1, =a’,bab~! = a’1> ~ <a,b a2 =1, =a3 bab™' = a’1> and I'g
has six end vertices.

7. G <a,b ca? =1, =ad’,bab~! = a5> = <a,h ca'?=1,>=a3 bab™! :a5> and g has
six end vertices.

Theorem 11. Assume I'g has at most seven end vertices. Let a be an end vertex of maximal order. If
o(a) = 14 then G is one of the following groups:

1. G =74 and I'g has six end vertices.
2. G= <a,b cat=p? = l,bczlf1 = a’1> = D4 and U has six end vertices.
3. G= <a,b cat =1, =d bab~! = a’1> and ' has six end vertices.
Corollary 12.
1. T'g has two end vertices iff G = 7o, 73, Zs,
(a,b:a®=b*=1,bab~" =a~") = Dy,
<a,b ca® =1, =a,bab~' = a’1> = Q¢.
2. T'g has three end vertices iff G = 24,2, D 7.
3. T has four end vertices iff G = Zs, Zo,
<c,d,e ct=d*=¢>=1,cd =dc,ce = ec,ded™' = e_1> ,
a,b:a'®>=b>=1,bab~' = a_1> = Dy,
a,b:a®=1,b>=a’,bab! = a’1>
a,b:a =b*=1,bab™' =a7 "),

a,b:a=1,b* =a’,bab~! :a’1>.

)

o o~~~
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4. If T'g has six end vertices then |G| = 24,36,72 or G = 77,7, D7y B 73,712,714,
(be,d:0*=c*=d*=1,cd =dc,cb=bc,bdb™' =d ")
v<a,b cal?=b>=1,bab™' = a‘1> >~ Dy,

ca? =b?=1,bab”! =a°),

ca'? =1,0> =a® bab™" = a"),

<a b
<a b
<a,b:a12:17b2:a6,bab_1 :a5>,
<a,b
<a,b
<a b

3

ca? =1, =a®,bab™! = a‘1> =~ <a,b ca?=1,0*=a3,bab™! = a‘1>,
ca? =1,0* =a®,bab" = a5> = <a,b ca?=1,b*=a3,bab™! :a5>,
ra* == 1,bab~" =a ') 2 Dy,

<a,b ca*=1,0>=d" bab™! = a_1>.

5. T'g has seven end vertices iff G = Zy @ Zo P Zy, 72 P Z4, 7.3, Q4,Dy.
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Abstract

Suppose F' be a (3,6)-Fullerene graph with n vertices, namely a planar 3-regular graph have
triagonal and hexagonal faces. If A be adjacency matrix of F and Ay,...,A, be eigenvalue of A
we know the energy of a graph is:E(G) = Y.}, |Ai|. In this paper we consider an infinie class of
fullerene graph with 8n vertices and find suitable labeling that be centrosymmetric. Finally with
suitable blocking and by properties of centrosymmetric matrix, find a upper bound of energy of
infinite class of this fullerene.
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Abstract

Suppose F' be a (3,6)-Fullerene graph with n vertices, namely a planar 3-regular graph have
triagonal and hexagonal faces. We know from Euler’s formula, number of triangle in these graphs
be four. Diastance between two x and y vertices be length of shortest path between x and y, and
has been shown d(x,y). Consider W (F) be half sum of distances between vertices exclusively and

Define average of distance of F be u(G) = W(Ef)”) Generally this invariant problem in fullerene
2

graphs be unsolved. In this paper we consider an infiinite class of (3,6)-fullerene graph with 8n
vertices and compute average distance of them. By this value, we present some bound of invariant
of this graphs.
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Abstract

Statistical modeling is a crucial issue in scientific data analysis. Models are used to represent
stochastic structures, predict future behaviour, and extract usful information from data. Many
researchers in medicine, engineering, social sciences and economics, planning, management, ge-
ography, physics, mathematics, statistics and other sciences to conduct an investigation, according
to the data available for the test under consideration requires notice to the selection criteria models
are suitable. When the correct model is unknown, the researchers proposed a family of models
to find the closest model is the correct model, it is necessary to define a criterion for unbiased
information. This paper examines the information criteria AIC and AICc deals.

Keywords: Bias, information criterion, Kullback-Leibler risk.
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1 Introduction

Statistical modeling is used for investigating a random phenomenon that is not completely pre-
dictable. One of the criteria that have usage of the frequency in model selection is Kullback-Leibler
(KL) information criterion (see Kullback and Leibler 1951). This information criterion was in-
troduced as one risk in model selection. Akaike (1973) introduced information criterion, AIC as
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asymptotically the unbiased of an estimator for the second term the KL risk and to form penalty
likelihood function. Akaike stated modeling is not only finding a model which describes the be-
havior of the observed data, but it is main aim is predicted as a possible good, the future of the
process under investigation. The during these years has been made the corrections on penalty term,
and criteria such as AIC (Akaike 1973), TIC (Takeuchi 1976), are introduced. In section 2, is stated
the Kullbake-Liebler risk and a consistent information criterion is proposed instead of the AIC. In
section 3, information criterion A’ICc is proposed instead of the AICc. In section 4, we present the
main results.

2 Kullback-Leibler (KL)

Let X = (Xj,...,X,) is a i.i.d random sample from true model and unknown, A(.) and the family
Fo, ={f(:;6r) = fg,:6 €O C R} from offered models has been considered for approximate true
model. The family Fy, is well specified, if there is a 6y € © such that A(.) = f(.;6p) ; otherwise it is
mis specified. The KL risk definds for generate model and unknown /(.), and offered model, fg, as:

h(.)
f(56k)

The expectation is taken with respect to the unknown model %(.). The first term in the right hand
side of (1) is called irrelevant part, because it does not depend on 6 , and the second term is called
relevant part. Based on the properties of the KL risk, the smaller value showed the closeness of
the offered model to the unknown and true model. Therefore the problem reduces to obtain a good
estimate of the expected log-likelihood. Since the expectation is with respect to the model with
unknown parameters, one estimator is E,{logf(.;6,)} = 1 ¥7_ logf(X;;6,). So that 6, is the max-

KL(h, fo,) = Enlog( )| = Epllogh(.)] — Epllogf(.;6:)] (1)

imum likelihood estimator of 6; and f(.; én) is the maximum likelihood function.
The general form of the information criterion that has been shown by IC, as:

IC = -2 (log-likelihood of statistical model - bias estimator)=—2I f(é,,) +2 bias estimator.

Akaike, when offered family is well specified, size of bias is estimated with dimensional param-
eter én , means k, and Akaike information criterion, is stated as: AIC = —2I én + 2k.

With attention to form the AIC by increasing the number of parameters in the offered model the
penalty term, 2k will be increased and the term -2Y} | log f (X;; én) will be decrease. Penalty term is
constant to chance of size sample in the information criterion AIC, and by increasing the size sample,
AIC can not distinguish the true model with the probability one. Therefore this problem is the same
concept of inconsistency for an information criterion. Following the inconsistency of information
criterion AIC, based on the definition similar to the definition of AIC, a consistent of information
criterion which called A'IC has presented. Akaike information criterion, by Akaike for model selec-
tion is introduced, but this useful criterion is inconsistent (see Akaike 1973). In this selection the
bias term has used in the general form information criterion is considered from another perspective.
We obtain the information criterion that furthermore has nice specials the information criterion AIC,
it is also consistent. In the beginning the bais of the log-likelihood function as follows:

b=E,{logf(.;6,) —nE,{logf(Z;6,)},

so that Z is a random variable i.i.d with X/s. In the second term of the right hand side the inner
expectation is calculated with respect to h(z) and the outer expectation is calculated with respect to
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h(x). By evaluating the bias it is composed as follows:

b= Ep{logf(;6,) —logf(:60)} + En{log (s 60) — nEx{logf(Z; 60)}}
+nEn{En{logf(Z:60) — En{logf(Z:6,)}} = b1 + by + b3.

We calculate the three expectations separately by, b, and bs.
a) For calculation of by by writing /¢(68y) = logf(.;6) and by applying a Taylor series expansion
around the maximum likelihood estimator én , we have

A ~ 7 01(0) 1 ~ 7 0%1¢(0) A
T2 T9 '
lf(eo) = lf(en) + (9() - en) W |9:én +§(90 - en) W |9:én (90 - Gn) +0p(1) (2)
0,(1) is expression of quantity that in the probability tends to zero. With attention to, the 815 ée) lo— 6=
2
0Oand 12 91-5297) |lg—g, is converge to J(6p). ( for more study see Akaike 1973).

no
2
So, J(6p) = —Eh[%} |o—g, Thus, the relation above can be approximated, as:

1:(8,) — 1(80) ~ g(e0 —0,)77(8)(80— 6,) +0p(1)
This based on the b; can be written as follow:
b1~ Ei{5(60—8,)"I(60) (60— 6.} (3)
b) The b, does not contain an estimator and it can easily be written as;

by = Ep{logf(.;60) —nEp{logf(Z;60)}} =0  (4)

¢) For calculation of value the bs first, the phrase Ej,{logf(Z;60)} be definded equally of Q(6,). By
using from Taylor expectation Q(6,) around 6y we have:

99(6) I 920(0) A
! 00 |9:90 +7(9n_60)TW |9:90 (6,,—60)-‘1-01;(1)

Q(én) :Q(GO)+(én_60) )

with attention to the a%ge) lo—g,= 0. Thus when n tends to infinity, the relation above can be

approximated as:

Q@Jsgﬁﬁ+ga—%fu%x@—%ymAn

Thus the b3 can be written as:
n A N
mzi&«@—%ﬁﬂ%x@—%» (5)

If the family of Fg, is well specified, with attention to quadratic forms in relations (3) and (5), that
converge to centrally distributed chi-square with k degrees of freedom. Therefore b and b3 can be
written as: n

by =b3= Ek (6)

So by combining of b; and b3 , in relation (6) and , in relation (4), bias the b is as follow: b =
b1 + by + by = nk. With replacing the value of b in the general form of the information criterion, the
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offered information criterion called, A’IC is obtained as: A'IC = —2/ f(é,,)+2nk.

In the offered information criterion A’IC, penalty term 2nk changes will change with sample size
changes. So, if sample size will be very large, information criterion A’IC, with the probability of
one, find the true model data. In other words information criterion A’IC, is the only consistent
information criterion, that has been obtained based on Kullback-Leibler risk. (For further study
about the consistency of an information criterion, see Hu and Shao 2008).

3 Information criterion AICc

The AIC penalizes for the addition of parameters, and thus selects a model that fits well but has a
minimum number of parameters (i.e., simplicity and parsimony). For small sample sizes (i.e. 7 <
40), the second-order Akaike Information Criterion(A/Cc) should be used instead:

2k(k+1) 2k(k+1)

AICc = —2(log — likelihood ) + 2k + ——— = Al
Cc (log — likelihood) + Jrn—k—l CJrn—k—l

where n is the sample size. As sample size increases, the last term of the AICc approaches zero,
and the AICc tends to yield the same conclusions as the AIC (Burnham and Anderson 2002). By
attention to information criterion A’IC, information criterion A’ICc is proposed instead of the AICc.

2+ 1 2Ue(k+ 1
A'ICe = —2(log — likelihood) + 2nk + % +2k =2k =AIC+ %
n—k— n—k=

4 Main Results

The Akaike information criterion (AIC) is a measure of the relative quality of a statistical model, for
a given set of data. As such, AIC provides a means for model selection. The AIC can not distinguish
the true model with the probability one. Therefore this paper a consistent information criterion is
proposed instead of the AIC, and also information criterion A’ICc is proposed instead of the AICc.
for future research to further explore the information criteria AIC, A’IC , AICc and A’ICc in different
models to be compared, and the principle of parsimony and goodness of fit can be examined.
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Abstract

Information theory is a branch of applied mathematics, electrical engineering, and computer
science involving the quantification of information. Information theory was developed by Claude
E. Shannon to find fundamental limits on signal processing operations such as compressing data
and on reliably storing and communicating data. Since its inception it has broadened to find ap-
plications in many other areas, including statistical inference, natural language processing, cryp-
tography, neurobiology, the evolution and function of molecular codes, model selection in ecol-
ogy, thermal physics, quantum computing, linguistics, plagiarism detection, pattern recognition,
anomaly detection and other forms of data analysis. Theory of information in all applications.
This article briefly describe some of the information theory Deals.

Keywords: Entropy, estimation theory, Kullback-Leibler.
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1 Introduction

A key measure of information is entropy, which is usually expressed by the average number of
bits needed to store or communicate one symbol in a message. Entropy quantifies the uncertainty
involved in predicting the value of a random variable. For example, specifying the outcome of a fair
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coin flip (two equally likely outcomes) provides less information (lower entropy) than specifying
the outcome from a roll of a die (six equally likely outcomes). Applications of fundamental topics
of information theory include lossless data compression (e.g. ZIP files), lossy data compression
(e.g. MP3s and JPEGs), and channel coding (e.g. for Digital Subscriber Line (DSL)). The field is
at the intersection of mathematics, statistics, computer science, physics, neurobiology, and electrical
engineering. Its impact has been crucial to the success of the Voyager missions to deep space, the
invention of the compact disc, the feasibility of mobile phones, the development of the Internet, the
study of linguistics and of human perception, the understanding of black holes, and numerous other
fields. Important sub-fields of information theory are source coding, channel coding, algorithmic
complexity theory, algorithmic information theory, information-theoretic security, and measures of
information. Information theory to include, Coding theory [1], Detection theory [2], Estimation
theory [3] , Fisher information [4], Information theory and measure theory [5], deals. In this article,
we briefly review the information theory. In section 2, is stated quantities of informations, In section
3, is presented Kullback- Leibler (KL) divergence, In section 4, is stated estimation theory, In section
5, we present the main results.

2 Quantities of Information

Information theory is based on probability theory and statistics. The most important quantities of
information are entropy, the information in a random variable, and mutual information, the amount
of information in common between two random variables. The former quantity indicates how easily
message data can be compressed while the latter can be used to find the communication rate across a
channel. The choice of logarithmic base in the following formulae determines the unit of information
entropy that is used. The most common unit of information is the bit, based on the binary logarithm.
Other units include the nat, which is based on the natural logarithm, and the hartley, which is based
on the common logarithm. In what follows, an expression of the form plog p is considered by con-
vention to be equal to zero whenever p = 0. This is justified because lim,,_,y+ plog p = 0 for any
logarithmic base.

Entropy of a Bernoulli trial as a function of success probability, often called the binary entropy
function Hp(p). The entropy is maximized at 1 bit per trial when the two possible outcomes are
equally probable, as in an unbiased coin toss. The entropy H, of a discrete random variable X is a
measure of the amount of uncertainty associated with the value of X. Suppose one transmits 1000
bits (0s and 1s). If these bits are known ahead of transmission (to be a certain value with absolute
probability), logic dictates that no information has been transmitted. If, however, each is equally
and independently likely to be 0 or 1, 1000 bits (in the information theoretic sense) have been trans-
mitted. Between these two extremes, information can be quantified as follows. If X is the set of all
messages {x,...,X, }, that X could be, and p(x) is the probability of some x € X, then the entropy H,
of X is defined: H(X) = Ex[I(x)] = — Y ex P(x)logp(x). (Here I(x) is the self-information, which is
the entropy contribution of an individual message, and E is the expected value.) An important prop-
erty of entropy is that it is maximized when all the messages in the message space are equiprobable
p(x)= % most unpredictablein which case H(X) = logn. The special case of information entropy for
arandom variable with two outcomes is the binary entropy function, usually taken to the logarithmic

base 2: Hy(p) = —plogp— (1 —p)log(1—p).
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2.1 Joint Entropy

The joint entropy of two discrete random variables X and Y is merely the entropy of their pairing:
(X,Y). This implies that if X, and Y, are independent, then their joint entropy is the sum of their
individual entropies. For example, if (X,Y) represents the position of a chess piece X the row and
Y the column, then the joint entropy of the row of the piece and the column of the piece will be the
entropy of the position of the piece:

H(X,Y) = Exy[—logp(X,Y)] = =) p(x,y)logp(x,y).
Xy

Despite similar notation, joint entropy should not be confused with cross entropy [6].

2.2 Conditional entropy (equivocation)

The conditional entropy or conditional uncertainty of X given random variable Y (also called the
equivocation of X about Y ) is the average conditional entropy over Y :

Because entropy can be conditioned on a random variable or on that random variable being a certain
value, care should be taken not to confuse these two definitions of conditional entropy, the former of
which is in more common use [7]. A basic property of this form of conditional entropy is that:

H(X|Y)=H(X,Y)—H(Y).

3 Kullback- Leibler (KL) divergence

Another interpretation of KL divergence is this: suppose a number X is about to be drawn randomly
from a discrete set with probability distribution p(x). If Alice knows the true distribution p(x), while
Bob believes (has a prior) that the distribution is q(x), then Bob will be more surprised than Alice, on
average, upon seeing the value of X. The KL divergence is the (objective) expected value of Bob’s
(subjective) surprisal minus Alice’s surprisal, measured in bits if the log is in base 2. In this way, the
extent to which Bob’s prior is "wrong” can be quantified in terms of how “unnecessarily surprised”
it’s expected to make him. Other important information theoretic quantities include Renyi entropy
(a generalization of entropy), differential entropy (a generalization of quantities of information to
continuous distributions), and the conditional mutual information.

The Kullback-Leibler divergence (or information divergence, information gain, or relative entropy)
is a way of comparing two distributions: a “true” probability distribution p(X), and an arbitrary
probability distribution q(X). If we compress data in a manner that assumes q(X) is the distribu-
tion underlying some data, when, in reality, p(X) is the correct distribution, the Kullback-Leibler
divergence is the number of average additional bits per datum necessary for compression. It is thus
defined

Dra(PX) 11900 = ¥ ~p(o)loga(s) ~ I ~p(x)lozp(x) = ¥ plo) o 2]

Although it is sometimes used as a ’distance metric’, KL divergence is not a true metric since it is
not symmetric and does not satisfy the triangle inequality (making it a semi-quasimetric) [8].
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4 Estimation theory

Estimation theory is a branch of statistics that deals with estimating the values of parameters based
on measured/empirical data that has a random component. The parameters describe an underlying
physical setting in such a way that their value affects the distribution of the measured data. An esti-
mator attempts to approximate the unknown parameters using the measurements. For example, it is
desired to estimate the proportion of a population of voters who will vote for a particular candidate.
That proportion is the parameter sought; the estimate is based on a small random sample of voters. In
estimation theory, two approaches are generally considered. The probabilistic approach (described
in this article) assumes that the measured data is random with probability distribution dependent
on the parameters of interest. The set-membership approach assumes that the measured data vector
belongs to a set which depends on the parameter vector. For example, in electrical communication
theory, the measurements which contain information regarding the parameters of interest are often
associated with a noisy signal. Without randomness, or noise, the problem would be deterministic
and estimation would not be needed.

5 Main Results

Information theory is known as the mathematical theory of communication, with great features such
as domain general, and basic principles to deal with the problems that brought the simplicity and
robustness of results, are described. The whole idea is so that it can be written in the language,
musical notes, spoken words, pictures and many other related marks are used. In this paper, some
applications of the theory of knowledge is expressed in statistics.
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1 Introduction

In this section we recall some definitions that will be used in the paper. An orientation of a simple
graph G is a sign-valued function o on the set of ordered pairs {(i, j), (j,i)|ij € E(G)} that specifies
an orientation to each edge ij of G. If ij € E(G), we take 6 (i, j) = 1 wheni — jand 6(i,j) = —1
when j — i. The resulting oriented graph is denoted by G°. Both ¢ and G° are called orientations
of G.

The skew-adjacency matrix S = S(G®) of G° is the {0,1,—1}-matrix with (i, j)-entry equal
to o (i, j) if ij € E(G) and O otherwise. Thus S; ; = 1 if (i, j) € E(G°®), —1if (j,i) € E(G®) and 0
otherwise. Let Uy, denote the set of all collections @ of vertex disjoint dicycles in G(A; (including

loops and digons) that cover precisely k vertices of G(A ). For @ € ﬁ, let [T (A) =i j)er(w) %ijs
then

det(A) = (=1)" L i (D)7 [Tz (4),

where | | denotes the number of dicycles in .

Recall that U, denotes the set of all collections u of (undirected) vertex disjoint edges and cycles
(of length 3 or more) in G that cover k vertices, and that a routing U of u € uy is obtained by
replacing each edge in u by a digon(dicycles of length 2) and each cycle in u by a dicycle. If ¢ is an
orientation of a simple graph G and % is a routing of u € Uy, let o(#) = i jyeecay o (s J)-

We say that U is positively oriented (resp. negatively oriented) relative to o if 0'(7) equel 1
(resp. -1), or, equivalently, if an even (resp. odd) number of arcs in 7 have an orientation that is
opposite to that in G°. If § = S(G?) is the skew-adjacency matrix of G, then

. . %
[1%(S) = i jew sij =i jew o(i,j) = o(u).

%
Also, if the dicycle components (including digons) of Wareul,i€c [k], then o (u) =TT, G(E?).

Now suppose that Uy be the set of all members of U, with no odd cycles. If ¢ is an orientation
of G and u € Uf, let C*(u) (resp. C~(u)) denote the number of cycles in u that are positively
(resp. negatively) oriented relative to & when u is given a routing . Then C(u) = C* (1) +C~ (1)
is the total number of cycles in u. If m(u) is the number of single edge components of u, then
|u| = C(u) +m(u) is the number of components of u.

Definition 1.(see[2]) Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjancent
edges; that is, no two edges share a common vertext. A perfect matching is a matching which
matches all vertices of the graph. That is, every vertex of the graph is incident to exactly one edge
of the matching.

Definition 2. Let G be a simple graph with n vertices and A be the adjacent matrix of G and let A;
(i =1,2...n) be the eigenvalues of A. Then the energy of the graph is defined as:

E(G) =X Al
The skew-energy of G is the energy of matrix S(G°), that is, E(G°) = ¥Yjcsp(co) [A] (see [3]).

2 Main Results

In this section we abtain some lower bounds for summation of absolute of skew-eigenvalue of some
graphs with conditions are considered. Let Ps(x) = det(xI —S) = x" +s;x" ! + ... +s, be the char-
acteristic polynomial of a skew-adjacency matrix S associated with an orientation G° of G.
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Lemma 3.(see [1]) If S(G?) is an n X n skew-adjacency matrix of the orientation G® of a graph G.
Then

1) detS =s, =m,(G)+ Zueu,g’,c(u)>o(—1)C+(”)2C<”), if n is even, in particular, detS = —s,, = 0
if nis odd

2) s, < my(G)?, (when = is even), with equality if and only if each nice even cycle in G is
negatively to o,

where m,(G) is the number of perfect matchings in G, ¢ (U) is the number of cycles in U that are
positively orinted relative to ¢ and ¢(U) is the number of cycles in U.

Definition 4. A subgraph H of G is termed nice [2, p. 125] if G— V(H) has a perfect matching.
Note that if u € U¢ and C is a cycle in u, then C must be nice because each of the remaining cycles
in ¥ may be replaced by matchings.

Let G is a graph with exactly one perfect matching such that the number vertex of G is even and
each nice even cycle in G is negatively oriented relative to . Thus detS = m,(G)? and so we have
the following resulte.

Theorem 5.Let G is a graph of order n with conditions saied in above. Then: E(G°) > n

Theorem 6. Let G be graph with n vertices,(n is even), and m edges such that each nice even cycle
in G is negatively oriented relative to ¢. Then:

E(G%) > \/2m+n(n—1)det(s°)?
Corollary 7. Let T is a tree with n vertices such that it has exactly one perfect matching, then

1)E(T)>n

2 )VE(T) > /(n+2)(n—1)
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Abstract

Dual RSA cryptosystem is essentially two distinct instances of RSA that share the same public
and private exponents. Dual RSA can be used in scenarios that requires two instances of RSA.
Dual RSA includes three variants: Dual RSA Small public key, Dual RSA Small private key and
Dual Generalized Rebalanced (DGR)-RSA. In this paper, we present a new attack on DGR-RSA
based on continued fractions and lattices to break the system.
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1 Introduction

RSA cryptosystem is one of the public-key cryptography with a modulus N, such that N is product
of two large unknown primes. This system [1] was introduced by Rivest, Shamir, and Adleman in
1977. Let N = pq be the product of two large primes p, g of the same size. Let e, d be two integers
satisfying ed = 1 mod ¢ (N) where ¢(N) = (p —1)(¢— 1) is the number of integers a, 0 < a <N,
such that (a,N) = 1. We call N the RSA modulus, e the encryption exponent, and d the decryption
exponent. The pairs < e, N > and < d,N > are called the public and private keys, respectively. A
message is an integer M, 0 < M < N. To encrypt M, one computes C = M® mod N. To decrypt the
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cipher text, the receiver computes C? mod N. Indeed, C? = M = M mod N. In order to decrease
the computational costs of decryption in practice, the RSA decryption computations are performed
in modulus of p and ¢ and then combined via the Chinese Remainder Theorem (CRT) to obtain the
desired solution in modulus of N, instead of directly computing the exponentiation in N.

Both encryption and decryption in RSA require only one modular exponentiation. However,
computing an exponentiation modulo N is very costly. In order to solve this problem, Dual RSA [2,
3] was introduced by Sun, Wu, Ting and Hinek in 2007. In fact, whenever two RSA key pairs
are required, Dual RSA can be used to decrease the storage requirements. In Dual RSA, the private
exponent d is replaced by CRT-exponents d, =d mod p—1 and d; = d mod ¢ — 1, which reduce the
cost for each exponentiation when d is larger than the primes. As a result, the storage requirements
is to reduce. The security of RSA is based on the integer factorization problem, because if we can
factor N, then RSA can be broken.

Dual Generalized Rebalanced-RSA (DGR-RSA) [2] is a Dual RSA with small public exponent
and small CRT-exponents. In this paper, we are interested in reviewing a new attack on DGR-RSA.
In section II, we review the Dual RSA and present three variants of Dual RSA: Dual RSA small-
e (small public exponent), Dual RSA small-d (small private exponent) and DGR-RSA. In section
III, we present the key generation algorithm for DGR-RSA. Finally, in section IV, we consider the
security of DGR-RSA.

2 Dual RSA

The following two remarks can be seen easily from the number theory [4].
Remark 2.1. Let |x| be the bit-length of any x € N. Thus, we have 2M—! < x < 21,
Remark 2.2. Fors=p+q—1,wehave N—¢(N) =s.

Dual RSA is essentially two distinct instances of RSA that share the same public and private
exponents. Combining one instance of RSA with public key (e, N;) and private key (d, p1,41) with
other instance public key (e,N,) and private key (d, p2,g2), results one Dual RSA instance with
public key (e,Ni,N,) and private key (d,p1,q1,p2,92), where e and d satisfy ed = 1 mod ¢ (N;)
and ed = 1 mod ¢ (N2). By these two relations, it follows that there exists two positive integer k;
and k» such that

{ed = 1+k1¢(N1) = 1+k1(N1—S1)

ed = 14+koN) = 1+k(N2—s) @.h

The equations 2.1 are called the Dual RSA key equations or simply the key equations. We can
replace the private exponent d with d;, = d mod p —1 and d; = d mod g — 1, where d), and d,, are
called the CRT-exponents. Whenever small CRT-exponents are used, the Dual version has public
key (e,Ni,N,) and private key (dp,dy, p1,q1,p2,492), where e, d,, and d, satisfy ed, = 1 mod p; — 1
and ed, = 1 mod g; — 1 for i = 1,2. By these relations, it follows that there exists positive integers
kp,, kg, kp, and k,, such that

{ed,, = l+kp(p1—1) = 1+kp(p2—1) 2.2)
ed; = l+ky(q—1) = l+k,y(g2—1) .

The equations 2.2 are called the Dual RSA-CRT equations or simply the CRT equations. Dual RSA
includes three variants: Dual RSA small-e, Dual RSA small-d and DGR-RSA that each consists of
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three algorithms: key generation, encryption and description. Encryption for each scheme follows
by the standard method. That is, a plain text massage M, 0 < M < N, is encrypted by C = M° mod N,
and decrypted by using the CRT.

3 Dual Generalized Rebalanced-RSA

In this section, we consider a Dual RSA with a small public exponent and small CRT-exponents,
which is called a DGR-RSA. We present key generation algorithm that takes (7, 1y, 1, 1) as input
(with n, < 5 and n, +ng = 5 +ny) and outputs a valid public/private key pair with an n,-bit public
exponent, an ng-bit private exponent and n-bit modulo. The value ny is a security parameter which
is the bit-length of the constants kp, and k,, (for i = 1,2) in 2.2. The following result from number
theory will be used in the key generation algorithm.

Theorem 3.1. Let a and b be two coprime integers, i.e. (a,b) = 1. For every integer / there
exists a unique pair of integers (uy,vy,) satisfying au;, — bvy, = 1, where (h— 1)b < uj, < hb and
(h—1)a < v, < ha.

The DGR-RSA key generation algorithm, with (7, n4,n;,n) as input, is as follows.

1. Randomly select an n,-bit integer e and let k be the smallest integer larger than (n/2 —n,)/ny,
iek=[(n/2—ne)/ng].

2. Randomly select k — 1 ng-bit integers py,, ..., Pag_y and an even integer p,, such that p, =

Pay -+ Pay_y Pa; has bit-length (n/2 —n,) and (e, pa) = 1.
3. Randomly select an n;-bit integer k,, such that (e,k, ) = 1.

4. Based on theorem 3.1, compute d, and py, such that ed, = (k,, pa)p» + 1, where e < pj, < 2e
and kp, p, < dp < 2kp, ps. If p1 = papp + 1 not be prime then go to step 3.

5. If (kp,PaPb/Pay) + 1 be prime for some 1 < < k—1 then let py = (kp paps/pa,) + 1.
Otherwise, go to step 3.

6. Randomly select k — 1 ny-bit integers gy, ,. .. sdag_y) and an even integer g, such that g, =
qay ---Gay._ 1 qa; has bit-length n/2—n, and (e,q,) = 1.

7. Randomly select an n;-bit integer k,, such that (e, kg, ) = 1.

8. Based on theorem 3.1, compute d, and g, such that ed, = (kq,qa)qp + 1, where e < g, < 2e
and kg, g, < dy < 2kg,qq. If g1 = gaqp + 1 not be prime then go to step 7.

9. If (kqlqaqb/qaj,) + 1 be prime for some 1 < j/ < k— 1 then let g» = (kqlqaqb/qai,) + 1. Oth-
erwise, go to step 7. '

10. Let N1 = p1q1, N2 = p2qo, kpz = Pay and qu = qaj,.
The relations in the above algorithm are logical, because:

ed, = l—l—kpl(pl—l):l—i—kpl(papb):1—|—kpl(pal...pai,...pakpb)
= 1+pa,(Pay - -kpy - PaPp) = 1 +kp,(p2— 1)

for some i’ € {1,...,k—1}. Similarly ed, = 1 + kg (g1 — 1) = 1+ kg,(g2 — 1) for some j' €
{1,...,k—1},wherekq2:qa/_,.
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4 Security of Dual Generalized Rebalanced-RSA

In this section, we present an attack when the security parameter in the key generation algorithm is
small (i.e., n is small). In this attack, the following theorems will be used.

1

Theorem 4.1. Let a, b, ¢ and d be some integers satisfying [§ — 7| < 5.

=3 Then § is one of the
convergents in the continued fraction expansion of 7.

Theorem 4.2. Let f(xi,...,x,) be a linear polynomial with integer coefficients. Let Xi,...,X, be
positive integers, W = || f(x1X1,...,%X,)||2 and N be a sufficiently large integer with unknown
factorization. Given (yi,...,y,) € Z" satisfying |y| < Xi,...,|y| < X, if (y1,...,y,) is a root of
fand [T, X; < W, orif (y1,...,y,) is a root of f modulo N and []/_; X; < N then for sufficiently
large W or N, respectively, we can compute (yj,...,y,) in polynomial time, provided a common
assumption about the algebraic independence of reduced vectors holds.

In key generation algorithm, the following relations hold.

N = Piq1 N = pag
ro= PaPb+1 P2 = paPrtl
q = qaqp + 1 @ = dadp +1
Pa = PaPay-- 'Pa(k,l)Pak Pad = p;[ilp/l
_ _ qﬂklﬂ
qa - qtll qaz e qa(;{,l)qak qa - W

=~

for some ¢/, /' € {1,2,...,k— 1}, where k = [(n/2 —n,)/ni], kp, = pa, and kg, = qa, - Further, the
maximum size of each parameter is shown in the following table. '

parameters bitlength | max size
P1,491,P2,92 3 23
Pa;sqa;skp, kg, N 2netna=3
Pa;Pd'>Y9a,9d %_ne 227"
Pby9b Ne 2Me

Table 1: bit-length and max size

In continue, by Theorem 4.2, it is verified that for large enough N;, we will be able to recover
some factor N; and N,.
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Abstract

The purpose of this paper is to computing of fundamental relations of (general)hypergroups.
In this regards first we study some basic properties of fundamental relation of hypergroups, then
we show that any given group is isomorphism to the fundamental group of a nontrivial hyper-
group. Especially any abelian group is isomorphic to a fundamental group of a commutative
hypergroup. Finally we study the connections between categories of hypergroups and groups via
the fundamental relation.
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1 Introduction

The theory of hyperstructures has been introduced by Marty in 1934 at the 8¢4 Congress of the
Scandinavian Mathematicians [9]. Marty introduced hypergroups as a generalization of groups.
He published some notes on hypergroups, using them in different contexts as algebraic functions,
rational fractions, non commutative groups and then many researchers have been worked on this
new field of modern algebra and developed it. A short review of the theory of hypergroups appears
in [2]. The relation B (resp. B*) was introduced on hypergroups by Koskas [8] and was studied
mainly by Corsini [2] and Vougiouklis [12]. Freni in [4] proved that in hypergroups the relation
B is transitive. Recently, Freni in [5] introduced the relation I as a generalization of the relation
B and proved that in hypergroups, the relation I' is transitive. In [1], Davvaz, et.al are introduced
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the smallest equivalence relation v* on a hypergroup H such that the quotient ‘I/i*, the set of all

equivalence classes, is a nilpotent group and in this paper the characterization of nilpotent groups
via strongly regular relations is investigated and several results on the topic are presented.

In this paper, we compute the fundamental groups via the fundamental relations and work on
commutative hypergroups and try to show that any abelian group is a fundamental group of a com-
mutative hyper group with underling abelian group.

2 Preliminaries

In this section we recall some definition and results from [2, 12], which we need to development
of our paper. Suppose G be a nonempty set and P*(G) be the family of all nonempty subset of G,
every function o; : G x G — P*(G) where i € {1,2,...,n} and n € N are called hyperoperation.
For all x, y of G, o;(x,y) is called the hyperproduct of x, y. An algebraic system (G,01,0,...,0,)
is called a hyperstructure and binary structure (G, o) endowed with only hyperoperation is called a
hypergroupoid. For any two nonempty subsets A and B of G and x € G:

AoB= U aob, on:Uaox and xoB:Uxob
acA,beB acA beB

Recall that a hypergroupoid (G,o) is called a semihypergroup if for any x,y,z € G,(xoy)oz =
xo(yoz) and semihypergroup (G, o) is a hypergroup if satisfies in reproduction axiom, i.e. for any
x € G,xoG = Gox=G. If G is commutative with respect to (o) , then we call it is a commutative
hypergroup. Let G; and G, be two hypergroups. The map f : G; — G, is called an inclusion
homomorphism if for all x,y € G,f(xoy) C f(x)o f(y) and f(x.y) C f(x).f(y) and is called a
strong homomorphism if for all x,y € G, we have f(xoy) = f(x) o f(y).

3 Fundamental Groups

Let (G,0) be a hypergroup and p is an equivalence relation on G. Letting % ={p(g) | g€ G}, be
the set of all equivalence classes of G with respect p. Define a hyperoperation ® as follows:

pla)@p(b)={p(c)|cepla)op(b)}

In [2] it was proved that (%, ®) is a hypergroup if and only if p is regular. Moreover, (%, ®)isa
group if and if only p is strongly regular ([2]). The smallest equivalence relation, B* on G such
that (ITG*’ ®) is a group is called fundamental relation. Let % denote the set of all finite product of

elements of G. Define relation 8 on G by
apb<=Jue ¥ :{a,b} cu

In [2] it was proved that B* is the transitive closure of B, and (%,@) is called the fundamental
group of (G,0). In [2] it was rewrited the definition of $* on G as follows:

af*b<— 371 =a,20,...,2y = b € G; and uy,uz..,u, € U such that{z;,z;1} €u; forany 1 <i<n

Fundamental relation plays an important role in theory of algebraic hyperstructure.(for more see
[2, 6,7, 10, 11]). Let us first survey some simple results on hypergroups such that we will apply in
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the next sections. Now, briefly introduce the category of hypergroup. Category H-gr, consists of the
following data:
Objects: (G,0),(H,o0),... that are hypergroups.
Arrows: f,g,... that are good homomorphisms.
For each arrow f : (G,0) — (H, o) there are given objects dom(f) = G and cod(f) = H and called
domain and codomain.
Given arrows f : (G,0) — (H,o0) and g : (H,0) — (T, 0), that with cod(f) = dom(g), there is an
arrow go f : G — T called the composite of f and g and for any arrows & : (G,0) — (H,0),g:
(H7O) - (T,O),f: (T7O) — (Mvo) have (fog)oh =fo (gO/’l).
For object G there is given an arrow 1 : G — G and called identity arrow of G and for any arrow
f:G— Ghave fol=1of=f.

Let G x H denote the cartesian product of G and H. If (G, o) and (H, o) are two hypergroups.
Then, we define hyperoperation ”o” on G x H by (r,s) o (r',s") = {(a,b) |a € ro,r',b € so, s'}.
Let (G,o¢) and (H,op) be two hypergroups. Then (G x H, o) is a hypergroup.

Theorem 3.1. [3] Let (G, o) and (H, o) be two hypergroups. For fundamental relations 3, B;; and

*  we have (GxH#0) o (Go)  (Ho0)

* — * * .
GxH’ Bén B By

X

Corollary 3.2. Let for 1 <i<n, (G,,o) be hypergroups, and B’s be fundamental relations on
G,’s. Then,
(G, xG,%x...xG,,0) _, (G1,9,) (Ga,0,) (Gn,o0,)

X X ... X
glezx“.xGn ﬁl* ﬁZ* ﬁ:

1%

4 Computing of Fundamental Groups

Theorem 4.1. In H-gr there exists product and for two object G and H triple (G x H,0), g, &, ) is
a product.

Lemma 4.2. Let (G,®), (H,®') be hypergroups and f : (G,®) — (H,®') be a homomorphism.
Then the following statements are satisfied:
(i) For any x,y € G, xB*y implies that f(x)B*f(y);
(ii) If f is an injection, then for any x,y € G, f(x)B* f(y) implies that xB*y;
(iii) If f is a bijection, then for any x,y € G, xB*y if and only if f(x)B* f(y);
(iv) If fis a bijection. Then for any x € G, f(B*(x)) = B*(f(x)).
(G1,.o1) Gy,2)

Corollary 4.3. Let (G1,®1) and (Ga,®2) be isomorphic hypergroups. Then ( i ,®) (( 5 ,®).

Definition 4.4. A group (G,.) is said to be a fundamental group if there exists a nontrivial hyper-

group say, (H,®) such that ((Fg*o ),®) = (G,.). In other words, it is equal to the fundamental of

nontrivial hypergroup up to isomorphic.

Remark 4.5. We know that on any group (G,.), if define a binary hyperoperation ”®” as x ®
y = {x.y} such that is singleton, then (G,®) is a trivial hypergroup. Therefore, its fundamental
group is isomorphic with to (G,.). In the following, we define a nontrivial hypergroup such that its
fundamental group, be isomorphic with to given group (G,.).

Lemma 4.6. Let (G,.) be a group. Then for any group (H,.), there exist a binary hyperoperation
”®” on group G x H such that (G x H,®) is a hypergroup.
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Remark 4.7. (i) The hypergroup (G x H,®) is called the associated hypergroup to G via H (or
shortly associated hypergroup) and denote by Gy .

(if) The mapping @ : G — Gy by ¢(g) = (g, 1) is an embedding.

(iii) Gy is a hypergroup with identity.

(iv) H = Z and we denote Gy by G.

(vi) For H = 7, Gy is the smallest associated hypergroup.

Theorem 4.8. Let (Gy,.) and (G»,.) be isomorphic groups. Then, for any group (H,.), Gy, and
Gy, are isomorphic hypergroups.

Theorem 4.9. Every group is a fundamental group.

Theorem 4.10. Let G and H be two sets such that |G| = |H|. If (G,®) is a hypergroup, then there
exist a hyperoperation” @' ” on H , such that (G,®) and (H,®'), are isomorphic hypergroups.

Corollary 4.11. Let (G,.) be a group of infinite order (|G| = o). Then there exists a hyperoperation
”®” on G such that (G,.) is fundamental group ofitself.(% ~(G,.))

Theorem 4.12. Every finite group is not its fundamental group.

Lemma 4.13. Let (n,k) = d, where n,k € ZZ. Then in cyclic group (Zy,+), o(k) = 7.

Theorem 4.14. Let n € N. For any k < n, there exists hyperoperation o on Zy such that (Z,,oy) is
a hypergroup.

Corollary 4.15. Let n,k € N. Then for any m < n,(Zy,oy) is a subhypergroup of (Zy,oy).
Theorem 4.16. Let n € N. For any k < n, there exists a hyperoperation ” o, ” on Z,, such that
() &) 2= (Zy 9, +)-

Theorem 4.17. Letn € Z. Then, there exist hyperoperation o, on Z such that (7, 0,,) is a hypergroup.

Theorem 4.18. Let n € N. Then there exists a hyperoperation ” o, on Z, such that ((Z[;i:") D) X

(Zn,+)

Theorem 4.19. Any finite abelian group is a fundamental group.
Proposition 4.20. (Z,+) is a fundamental group.

Theorem 4.21. Every finitely generated abelian group is a fundamental group.

S On Fundamental Functor of Category of Hypergroups

In this section we apply the results obtained of previous sections and define a functor of category
H-gr (category of hypergroups) to category Grp(category of groups) as fundamental functor and
investigate some properties of fundamental functor. In last we show that H-gr and Grp are not
isomorphic.

Theorem 5.1. Let (H,o) be a hypergroup. If (K,o) is a subhypergroup of (H,o), then (I;’f) is a

(H,0)
B* -

subgroup of
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Lemma 5.2. (i) : Every singleton can be an object in Grp.
(ii) : Every nonempty set can be an object in H-gr.

Theorem 5.3. (i) In Grp, the singletons are zero objects.
(i) In H-gr, the singletons are terminal objects.
(iii) H-gr has not zero object.

Corollary 5.4. The categories H-gr and Grp are not isomorphic.

Definition 5.5. For categories H-gr and Grp, define a categorical morphism as follows:
G
F:H-gr— Grpby F(G) = (E’@))

where, (G, o) is a hypergroup and for any homomorphism f : (Gy,0) — (G2,0), we define

F(f): (%@) — <%,®> by F(f) = B*(f)

we show that F' is fundamental and call fundamental functor .
Theorem 5.6. F is a functor of H-gr to Grp.

Theorem 5.7. The fundamental functor preserves terminal object.
Theorem 5.8. The fundamental functor preserves binary products.
Theorem 5.9. The fundamental functor is not faithful.

Theorem 5.10. The fundamental functor is surjective on objects.

Theorem 5.11. The fundamental functor is not injective on objects.
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Abstract

In this paper, we consider the notions of T M-algebras and Quasi hyper TCK-algebras, give
some related results, introduce the relation § on hyper BCK-algebras and let B* be the transitive
closure of 8. Then by considering the concept of strongly regular equivalence relation (fundamen-
tal relation) B* on quasi hyper BCK-algebras, we define the notion of fundamental 7 M-algebra
and we prove that any countable 7' M-algebra is a fundamental 7 M-algebra and infinite countable
T M-algebra is a fundamental 7'M-algebra of itself.

Keywords: T M-algebra, fundamental 7 M-algebra, quasi hyper BCK-algebra.
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1 Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iseki [11] in 1966 as a generalization of
the concept of set-theoretic difference and propositional calculi. Since a great deal of literature has
been produced on the theory of BCK-algebras. In [13] Borzooei, et al. applied the hyperstructures
to BCK-algebras, and introduced the concept of a hyper BCK-algebras which is a generalization of a
BCK-algebra and investigated some related properties. They introduced the notions of hyper BCK-
ideals and weak hyper BCK-ideals and gave relations between theorem. Y.B. Jun et al, [12] gave a
condition for a hyper BCK-algebra to be a BCK-algebra and introduced the notion of strong hyper
BCK-ideal and reflexive hyper BCK-ideal. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [1, 2] Q. P. Huand X. Li introduced a wide class of abstract
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algebras as BCH-algebras.They have shown that the class of BCI-algebras is a proper subclass of
the class of BCH-algebras. J. Neggers and H. S. Kim [6] introduced the notion of d-algebras which
is another generalization of BCK-algebras, and also they introduced the notion of B-algebras [7, 8].
Moreover, Y. B. Jun, E. H. Roh and H. S. Kim [3] introduced a new notion, called a BH-algebra,
which is a generalization of BCH /BCI/BCK-algebras. Walendziak obtained the another equivalent
axioms for B-algebra [9]. H. S. Kim, Y. H. Kim and J. Neggers [5] introduced the notion a (pre-)
Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose
elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim [4] introduced the notion of
a BM-algebra which is a specialization of B-algebras. Tamilarasi [17] introduced a class of abstract
algebras as TM-algebras , which is a generalisation of Q/BCK /BCI/BCH-algebras.

Now, in this paper, we consider a nonempty set and construct a quasi hyper BCK-algebra and
TM — algebra with given set and via the fundamental relation prove that any 7'M-algebra is a fun-
damental T M-algebra. Moreover, show that any infinite countable set convert to a T M-algebra such
that is fundamental 7 M-algebra of itself, but any finite 7M-algebra is not a fundamental 7'M-algebra
of itself.

2 Preliminaries

Definition 2.1. [11] Let X be a set with a binary operation "+ and a constant “0”. Then, (X, ,0)
is called a BCK-algebra if it satisfies the following conditions:

(BCI-1) ((x*y)* (x*2)) * (z*y) =0,

(BCI-2) (x* (xxy))*y=0,

(BCI-3) xxx =0,

BCI4)xxy=0and yxx =0 imply x =y,

(BCK-5) 0xx=0.

We define a binary relation ” <” on X by x <y if and only if x*y = 0. Then, (X,*,0) is a BCK-
algebra if and only if it satisfies the following conditions:

(BCL-) ((x#) # (x+2)) < (2%),

(BCI-2') (xx (x*y)) <y,

(BCI-3') x < x,

(BCI-4') x <yand y < ximply x =y,

(BCK-5') 0 < x.

Definition 2.2. [4] Let X be a set with a binary operation ”*” and a constant "0”. Then, (X, *,0) is
called a TM-algebra if it satisfies the following conditions:

(TM-1) xx0 =x,

(TM-2) (z*x)* (zxy) = y*x.

We define a binary relation ” < on X by x <y if and only if x*y = 0.

Theorem 2.3. [17] Let (X,*,0) be a TM-algebra. Then for any x,y and z € X, the following hold:
Dxxx=0,

2) (x*y)*x=0xy,

3 xx(xxy) =y,

4) (xx7)* (y*2z) <xxy,

5) (xxy)kz=(x*2)*y,

6)xx0=0=x=0,
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Nx<y=x*xz<yxzandzxy < zx*Xx,
8) xk (X (xky)) = xxy.

Definition 2.4. [4] Let (X, %,0) and (X', *',0') be two TM-algebras. A mapping f : X — X' is called
a homomorphism from X into X', if for any x,y € X, f(x*y) = f(x) ' f(y). The homomorphism f,
is called an isomorphism, if it is onto and one to one.

Definition 2.5. [10] Let H be a nonempty set and P*(H) be the family of all nonempty subsets of
H. Functions o;, : Hx H — P*(H), where i € {1,2,...,n} and n € N, are called binary hyper-
operations. For all x, y of H, oi, (x,y) is called the hyperproduct of x and y. An algebraic system
(H 101,102, 5+ "O”H) is called an n-algebraic hyperstructure and structure (H,o,,) endowed with
only one hyperoperation is called a hypergroupoid. For any two nonempty subsets A and B of hy-

pergropoid H and x € H, we define

Ao, B= U ao, b, Aon:Uaon and onB:Uonb
acA,beB acA beB

Definition 2.6. [14] Let H be a non-empty set, endowed with a binary hyperoperation ”o” and a
constant ”0”. Then, (H,o,0) is called a quasi hyper BCK-algebra if satisfies the following axioms:
(HI) (xoz)o(yoz) < xoy,

(H2) (xoy) oz = (xoz) oy,

(H3) xoH < x.

and a quasi hyper BCK-algebra is called a hyper BCK-algebra, if

(H4) x <yandy < x imply x =y,

for all x,y,z in H, where x < y is defined by 0 € xoy and for every A,B C H, A < B is defined
by Va € A,3b € B such that a < b. Nontrivial hyper quasi hyper BCK-algebra means that the
hyperoperation ” o is not singleton.
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Nontrivial quasi hyper BCK-algebra means that the hyperoperation ” o” is not singleton.

3 Construct of 7' M-algebras and Quasi Hyper BCK-algebras

Definition 3.1. Let (X,0) be a quasi hyper BCK-algebra and R be an equivalence relation on X. If
A and B are nonempty subsets of X, then

(i) ARB means that for all a € A, there exists b € B such that aRb and for all b’ € B, there exists
a' € A such that b'Rd’.

(ii) ARB means that for all a € A, and b € B, we have aRb.

(iii) R is called regular on the right (on the left) if for all x of X, from aRb, it follows that (aox)R(box)
((xoa)R(xob) respectively).

(iv) R is called strongly regular on the right (on the left) if for all x of X, from aRb, it follows that
(aox)R(box) ((xoa)R(xob) respectively).

(v) R is called regular (strongly regular) if it is regular (strongly regular) on the right and on the left.
(vi) R is called good, if (a0 b)RO and (b oa)RO imply aRb, for all a,b € X.

Theorem 3.2. In any quasi hyper BCK-algebra H, the following hold:
(al) xoy < {x},
(a2) xo0 < {x},
(a3) 0ox < {0},
(a4) 000 < {0},
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(a5) (AoB)oC=Ao0(Bo(),
(a6) AoB < A and00A < {0}.
forall x,y,z€ Hand A,B,C C H.

Lemma 3.3. Let (X,<,0) be a well-ordered set. Then, there exists a binary operation” x” on X,
such that (X,*,0) is a TM-algebra.

Corollary 3.4. Every countable set can be a T M-algebra.

Theorem 3.5. Let X be an infinite countable set. Then there exist x, € X and a binary operation
”x” on X and W, such that (X ,*,x,) and (W,*,0) are TM-algebras and (X, *,x,) = (W, *,0).

s T s Ty

Theorem 3.6. Every set can be a TM-algebra.
Theorem 3.7. Every nonempty set can be a quasi hyper BCK-algebra.

Theorem 3.8. Let X and Y be two nonempty sets and |X| = |Y|. Then for x, € X and y, € Y, there

exists a binary hyperoperation”o” on X andY, such that (X ,0,xg) and (Y, 0,yo) are two isomorphic
quasi hyper BCK-algebras.

Theorem 3.9. Let (A,*,,0,) and (B,*,,0,) be two TM-algebras. Then there exists a hyperoperation

Iy A

”0” on A X B, such that (A x B,o,(0,,0,)) is a quasi hyper BCK-algebra.

4 Fundamental Relation on Quasi Hyper BCK-algebras

In this section, by define the notion of fundamental relation (strongly regular equivalence relation)
on quasi hyper BCK-algebras, we define the concept of fundamental 7 M-algebra and we prove that
any countable T M-algebra is a fundamental 7'M-algebra.

Let (X,0) be a quasi hyper BCK-algebra and A a subset of X. Then we let £ (A), denote the set
of all finite combinations of elements A with o. Now, in the following, the well-known idea of *
relation on hyperstructure [10, 15, 16] is transferred and applied to hyper BCK-algebras.

Definition 4.1. Let (X, o) be a quasi hyper BCK-algebra. Then we set:
Br={(x,x) [x€ X}
and, for every integer n > 1, B, is the relation defined as follows:
xPpy <= Iay,az,...,a,) € X", Ju e L(ay,a,...,a,) such that {x,y} Cu

Obviously, for every n > 1, the relations f3, are symmetric and the relation § = U By is reflexive
n>1

and symmetric. Let B* be the transitive closure of 3. Then in the following theorem we show that

B* is a strongly regular relation.

Theorem 4.2. Ler (X,0) be a quasi hyper BCK-algebra. Then B* is a strongly regular relation on
X.

Theorem 4.3. Let (X,0) be a weak commutative quasi hyper BCK-algebra. Then, B* is a good
strongly regular relation on X.
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Theorem 4.4. Let (X,0) be a quasi hyper BCK-algebra. Then, (%76) is a TM-algebra, such that
B*(x)oB™(y) = {B"(2) | z € xoy} forall x,y € X.
Theorem 4.5. Let (A,0,) and (B,o,) be two quasi hyper BCK-algebras. Then,

(AXB,OAXE) ~ (A7OA) (B7OB)

= X
/;ka ﬁ: ﬁ;

Definition 4.6. A TM-algebra (X, *,0), is called a fundamental T M-algebra, if there exists a non-

trivial quasi hyper BCK-algebra (H, o), such that (([Ef) ,0) = (X, ).

Theorem 4.7. Every TM-algebra is a fundamental BCK-algebra.

Corollary 4.8. Every nonempty set can be a fundamental T M-algebra.

Theorem 4.9. Let (X,*,0) be any finite TM-algebra. Then for any hyperoperation ” o” on X,
such that (X ,0,0) is a quasi hyper BCK-algebra, there is not any isomorphic between (X ,*,0) and

((’Ef) ,5), that is (X, *,0) % (<X[§’°) ).

Theorem 4.10. Let X be an infinite countable set. Then there exist an operation” *” and a hyper-
operation ”o” on X, such that (<Xl’;’0) ,0) 2 (X,%,0). That is X is a fundamental TM-algebra of
itself.

Open Problem: If (X,*,0) be an infinite non-countable 7T M-algebra, then is it X as a funda-
mental BCK-algebra of itself?
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Abstract

We study the method of Rosser and Schoenfeld for explicit approximation of Chebychev func-
tions in the theory of distribution of prime numbers. This method based on some computations
over the zeros of the Riemann zeta function and ends in some sharp explicit bounds for the primes
counting function 7(x) =Y. p<x | and the nthe prime number p,,. We utilize such bounds to study
some problems concerning distribution of prime numbers.
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1 Introduction

The Riemann zeta function is defined for R(s) > 1 by {(s) = Y, n*. In his only paper about
prime numbers, B. Riemann extended {(s) by analytic continuation to the complex plan with a
simple pole at s = 1 with residue 1, and obtained a functional equation concerning it. The Riemann
zeta function has trivial (real) zeros at the double negative points s = —2n for all n € N, and has
infinitely many nontrivial (nonreal) zeros inside the region 0 < R(s) < 1 (critical strip), which are
symmetric about both the vertical line R(s) = J (critical line) and the real axis 3(s) = 0. The
Riemann Hypothesis (RH) asserts that all nontrivial zeros of (s) lie on the critical line R(s) = 1.
RH is one of the Riemann’s wonderful conjectures about { (s), and the only one which still is waiting
for a proof or disproof. Riemann guessed an explicit relation between distribution of primes and
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zeros of the Riemann zeta function. This relation is known as the Riemann’s explicit formula, and
can be formulate as follows

Y +ylx)

| 1 p
: :x—log(2n)-210g<1—x2>—hm y & (1.1)

I=eyzr P

Here the summation is over all nontrivial zeros p = 8 4 iy of the Riemann zeta function and y/(x) =
Y ym<xlogp. The relation (1.1) suggests that if we obtain some approximations for the sum

P (1.2)

NS}
y=r P

then we may obtain some approximations for y/(x). We recall the function 6(x) = ¥, ,<log p and

the elementary relations y(x) =Y ,-_, 6 (x%) and

n(x):@+/2x 00) 4. (13)

logx tlog’t

where 7(x) = the number of primes < x.

The above relations describe how we can transfer approximations concerning the sum (1.2) to
approximations concerning the function 7(x), and hence primes. This observation is the starting
point of a method due to J.B. Rosser and L. Schoenfeld for approximating the sum (1.2), based one
several numerical and analytic information about the nontrivial zeros of the Riemann zeta function.
Numerical information consists of computational justification of RH for |3(s)| < Tp. Rosser and
Schoenfeld used the value Ty = 1°894°438.51224. Thanks to the project ZetaGrid, we may take Ty =
29°538°618°432.236. Analytic information consists of explicit zero free regions (regions with no
zero) for {(s) of the form ¢ > 1 — B(y), in which B is a positive (and preferably differentiable) func-
tion. The classical zero free regions are originally due to de la vallée Poussin with B(¢) < (log#)~!
and the best known explicit region of this form is due to H. Kadiri with B(r) = m(logt)’l.
Rosser and Schoenfeld used a classic region with B(t) = gsasezor (102(75)) ™! The best known
zero free regions is originally due to Korobov and Vinogradov with B(t) < (logt)’% (log logt)’%,
and the best known explicit region of this type, and in fact the best know zero free region for the
Rimemann zeta function up to now, is due to K. Ford with B(¢) = ﬁ (logt)_% (loglogt)_%.

The method of Rosser and Schoenfeld [1] ends in several explicit sharp bounds for the functions
related by primes. The best known bounds for the primes counting function 7(x) and the nthe prime
number p, is due to P. Dusart [2]. He applied the method of Rosser and Schoenfeld to prove that

X (1+ L4 1‘8)§n(x)< X (1+ ! +2'51), (1.4)

logx logx  log’x ~ logx logx = log’x

where the left inequality holds for x > 32299, and the right inequality holds for x > 355°991. Also,
he proved that

loglogn —2.25 loglogn — 1.8

) <p, < n(logn—i—loglogn— 1+
logn

n(logn—l—loglogn—1+ ), (1.5)

logn

where the left hand side inequality holds for n > 2 and the right hand side one holds for x > 27°076.
While we have the above unconditional bounds, it is very important to obtain conditional bounds
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under assumption RH. Among several conditional results, Rosser and Schoenfeld [1] proved that if
we assume RH is true, then for x > 2657 we have

) V/xlogx _ /1 € /
—1 < - h li 1.6
|7 (x) —1i(x)] e where li(x) = lim e logt (1.6)

Explicit approximations of the above type has wide applications in problems concerning primes. In
the next section we explain some recent results.

2 Main Results

2.1 Means of prime numbers and Mandl’s inequality

Stirling’s approximation for n! implies that 11m,Hm o= 5. where A and G, are the arithmetic and
geometric means of the integers 1,2,...,n, respectlvely Motlvated by the above fact, we study the
behaviour of the similar sequence con51st1ng of the ratio A, by G,, the arithmetic and geometric
means of the prime numbers py,p2,...,p,. Indeed, by using the inequalities (1.4) and (1.5) we
prove the following result.

Theorem 2.1. For n > 2 we have

e 14.951<An e 9514

2 logn G, 2 + logn

Regarding to the above theorem more computational evidences support the following conjectures
concerning the ratio A"
Conjecture 1. For n > 226 we have g”“ < A”

Conjecture 2. There exists a real number o w1th 0 < a0 < 9.514, and there exists a positive integer

ng such that for n > ny we have
e o A,

logn < G,

The so-called Robert Mandl’s inequality asserts that A,, < ”7” for n > 10. By using the inequalities
(1.4) and (1.5) we prove a refinement and a reverse of Mandl’s inequality as follows.

Theorem 2.2. We have

Pn 9
Pn_ Zca, <P
R N N Tt

where the left hand side inequality is valid for any integer n > 2, and the right hand side inequality
is valid for any integer n > 10.

2.2 On an inequality of S. Ramanujan

Among his various conjectures and results on the theory of prime numbers, Ramanujan asserts that

the inequality
()< S g (f) , @.1)
logx \e
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holds for x sufficiently large. Originally, this inequality can be found on page 310 in Ramanujan’s
second notebook. As a fast proof, the prime number theorem with error term gives the expansion

5 k! X

j—o log

for any integer n > 0. Considering this expansion with n = 4, implies

2 2
m(x)? — ad n({):f x() +0<x7) as x — oo,
logx  \e log®x log’ x

and this proves (2.1) for x sufficiently large. By utilizing the conditional approximation (1.6) we
obtain the following result.

Theorem 2.3. Assume that the Riemann hypothesis is true. Then the inequality (2.1) is valid for
x> 138°766°146°692°471228.

Under assumption of the existence some “very good” upper bounds for the function 7(x), we
prove the following.

Theorem 2.4. Assume that 7t(x) /x = Y;_ok!/log"™ x4+ E where E < blog™° x for some real number
b with b > 120, and for x > xq. Also, let € € (0,1/25) is a fixed real number. Then, the inequality
(2.1) is valid for any x > eV, where N = max{2b(1+¢€) +73+¢€,2.2+ 132 /¢,logxo }. Moreover, we
have N > 530.2.

2.3 A very sharp bound concerning y(x)

While the classical zero free regions give approximations like (1.4), we except that regions of
Korobov—Vinogradov type give sharper approximations. In a recent joint investigation, which is
under refereeing, Y. Cheng, G.J. Fox and the author of present note prove the following result.

Theorem 2.5. We have |y(x) — x| < E(x), where

7.65x7 (log x)? 28.99 < x < 6.647 x 103,
E(x) < . 3 1
4.87x(logx)?e~ o7 (logx)3 (loglogx) 3 > 6 647 % 1013,

One may transfer the above bound in terms of 7(x) by using the relation (1.3) and the known

inequalities 0.998684x2 < y(x)—0(x) < 1.001 102x? + 3x3, which are valid for x > 121 and x > 0
respectively, and then determine the constant of O-term in (2.2) in order to obtain sharp bounds with
satisfactory terms. As the above examples show, such bounds have several applications and allow us
to improve many known results.
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Abstract

We generate several graphs of the Weyl sums involving the several sequences concerning the
values of ¥,, where };, runs over the imaginary parts of the zeros of {(s). Such graphs lead us to
several conjectures about uniform distribution of sequences involving values of ;.
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1 Introduction

The Riemann zeta function is defined for R(s) > 1 by {(s) = Y- ;n~*, and extended by analytic
continuation to the complex plan with a simple pole at s = 1. It has trivial (real) zeros at s = —2n for
all n € N, and has infinitely many nontrivial (nonreal) zeros inside the region 0 < R(s) < 1 (critical
strip), which are symmetric about both the vertical line R(s) = % (critical line) and the real axis

3(s)=0.

An arbitrary real sequence (ay),>1 is uniformly distributed modulo 1, if for all real numbers
a,b with 0 < a < b <1 one has #{n < N : {a,} € [a,b]} ~ (b —a)N as N — . Here, {x} =
x — | x| denotes the fractional part of the real number x. An efficient criterion to determine uniform
distribution modulo 1 of a given sequence, due to H. Weyl asserts that the sequence (a,),>1 is
uniformly distributed modulo 1 if and only if ¥, <y e(ha,) = o(N) as N — o, for every positive
integer h. Here, and in what follows, we let e(x) = e>™*. It is known that the sequence (a};)n>1 is
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uniformly distributed modulo 1, where & # 0 is a fixed real number and ¥, runs over the imaginary
parts of the zeros of {(s). Dekking and Mendés France introduced an idea to make visible the
Weyl sums Y, <y e(ha,) for a given real sequence (a,),>1 and given positive integers / and N, by
drawing a plane curve generated by successively connected lines segment, which joins the point V,,
to V4.1, where V, = (81(n),S2(n)) with Sy (n) = Y4<, cos(2hay) and S (n) = ¥ x<, sin(2mhay), for
1<n<N.

In this note, we generate several graphs of the Weyl sums involving the several sequences con-
cerning the values of ¥,. Since it is not possible to consider all positive integer values of 4, hence we
will take 7 = 1 in all graphs. To generate figures appeared on this paper, we used Maple software to
do several computations running over the numbers (%, )1<,<20000, all of which are based on the tables
of zeros of the Riemann zeta function due to A. Odlyzko. The present note is a concise version of

[1].

2 Visual observations and some conjectures

2.1 Sequences concerning polynomial values

Figure 1 shows the graphs of the Weyl sums ¥,<s000€(+) with k = 2,3,10. Small size of frames
lead us to the following conjecture.

Conjecture 1. For any non-constant polynomial P(x) with real coefficients, the sequence (P(%,))n>1
is uniformly distributed modulo 1.

T T T T T T T
-20 0 20 40 60 80 -50 -40 -30 -20 -10 0 10

Figure 1: Graphs of the Weyl sums }’, <5000 e(y¥) with k = 2,3, 10 respectively from left to right

2.2 Sequences concerning rational powers

Figure 2 shows the graphs of the Weyl sums Y, 5000 €(¥;) for several rational values of r. A. Fujii
developed a method to obtain uniform distribution modulo 1 of a family of sequences (f(7))n>1
for a wide class of smooth functions f. In particular, his method implies that sequences of the form
(¥2)n>1 for any fixed real r € (0, 1) are uniformly distributed modulo 1.

2.3 Sequences concerning logy,

The above mentioned family of smooth functions f due to Fujii for which the sequences (f(¥:))n>1
are uniformly distributed modulo 1 includes a number of logarithmic functions. More precisely, he
asserts that for any fixed arbitrary real number ¢ > 0 the sequences with general terms

T Yalog ¥,
(logy,)' 1 log; %’

(logy)(logg 1), (logm)'™,
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Figure 2: Graphs of the Weyl sums Y, <5000 €(%;) With r =2/3,7/8,17/20 respectively from left to
right

-10 8 -6 -4 -2 0 -10

all are uniformly distributed modulo 1. Here, k > 1 is an integer, and log, denotes the k-fold iterative
logarithm function. Also, he remarks that the sequence with general term log?, is not uniformly
distributed modulo 1. Figure 3 shows the graphs of the Weyl sums Y, <5000 €(a,) With a, = log¥,,
an = Vlog Y, ay = Yu/log ¥, and a,, = nlogy,. The sizes of the frames in these graphs led us to the
following conjecture.

Conjecture 2. Sequences with general terms a, = ¥,log¥,, and a, = nlog?y, are uniformly dis-
tributed modulo 1.

800 o

600

400
40

200
304

201 4

-200 10 4

-400 o 0+

T T T T T T T T T T T T T T T T T
-600  -400 -200 0 200 400 600 -30 <20 -10 0 10 -15-10 =5 0 5 0 102 30 40

Figure 3: Graphs of the Weyl sums ¥, <5000 €(a,) With a, =10g ¥, @y = %108 Y, an = ¥/ log ¥, and
a, = nlog7y,, respectively from left to right

2.4 Tornado patterns in space curves

As we mentioned in the above sections, by a theorem of Fujii, sequences with general terms a, =7,
where r € (0,1), and a, = ¥,/log¥, are uniformly distributed modulo 1. Some of the graphs of
their corresponding Weyl sums in Figure 2, and Figure 3, consist of “S” shape, where many of lines
segment snuggle around two holes and generate S-shape graphs. To detect exactly for which values
of N the graphs of the Weyl sums Y,y ¢(a,) generate such S-shapes, we study the space curve form
of the graphs of the Weyl sums Y,y e(ha,) for a given real sequence (a,),>1 and given positive
integers h and N, by drawing a space curve generated by successively connected lines segment,
which joins the point V,, to V,,..|, where V,, = (S1(n),S2(n),n/1000).

In Figure 4, we generate the space curves of the Weyl sums Y, 50000 €(@n) With a, = }/,10/ “,
ap = }/,17/ 20, and a, = ¥,/logy,. These curves show more detains of the related S-shape graphs.

They contain some “tornado” patterns, and it seems that as N growths in the related Weyl sums
Y.<ne(an), we expect some more “tornado” patterns around several holes. There are also some
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spiral and tornado patterns in the classical examples, pictured in Figure 5. Studying the mathematical
justification for the patterns in these classical examples will help us in understanding of the patterns
appeared in the case of the Riemann zeta function. We note that the most simple tornado pattern is
the space curve of the Weyl sum Y, -y e(a,) with a, = an where « is an irrational coefficient. The
leftmost graph pictured in Figure 5 shows the space curve of the Weyl sum Y, <1090 €(12/€), as an
example. The fundamental fact here is that for the linear sequence a,, = ocn with irrational coefficient
o, the generating vertices V,, of the related plane curve lie on a circle with radii 1/(2|sin(7et)|) and
the center located at the point (—1/2,cot(mer)/2).

Y A A A A A A

Figure 4: The space curves of the Weyl sums Y, <50000 €(@n) With a, = ‘)/,10/ 11, an = }/,17/ 20, and

=

Figure 5: The space curves of the Weyl sums Y, <1909 ¢(n/€) (Ieftmost graph), and ¥,,< 0000 €(¢n)
with @, = (50/5001)n? (mid graph), and a, = nlogn (rightmost graph)

To justify the pattern in the rightmost graph of Figure 5, Tenenbaum and Mendes France remark
that because of the weak growth of logn, the curve behaves locally like the curve associated with the
linear sequence a, = cyn where cy is a local constant with ¢y & {log H} for n = H. Thus, the graph
of the Weyl sum of the sequence a, = nlogn appears as a succession of annuli, joined by almost
straight lines, corresponding to the values of H such that {logH} ~ 0.
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Abstract

The purpose of this paper is to give a new and shorter proof of the Hegarty’s result on the
absolute center and autocommutator subgroup of a group and to improve the bound attained by
Hegarty for autocommutator subgroup. Furthermore, we prove an analogous statement for 7-
groups.
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1 Introduction

Let G be a group and g1, g> be elements of G, then g§> = g, ' g1g2 and [g1,82] = g; ' ¢} = gflgipgz

denote the conjugate of g| by g» and the commutator of g; and g, respectively, where @,, is the
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inner automorphism of G. Following Hegarty [2], if & € Aut(G) and g € G, then the autocommutator
of g and « is defined to be [g,at] = g 'g* = g 'a(g).
Now, using the above notation one may define

L(G)={g€G|g,a| =1, forall o € Aut(G)},

K(G)=([s,all € G, acAu(G)),

which are called the absolute center and the autocommutator subgroup of G, respectively. It is clear
that the absolute center is a subgroup contained in the center of G and K(G) is a subgroup of G
containing the deriver subgroup.

Now, the following general question can be arisen. For which classes x of groups, if G/L(G) € g,
then K(G) € x?

In 1904, Schur [5] proved his famous result that for any group G, if G/Z(G) is finite, then so is
G'. Also in [6], Wiegold showed that if |G/Z(G)| = n, then |G'| < nilogan,

In 1994, Hegarty [2] by a complicated technique proved the analogous of Schur’s result for
G/L(G), which states if G/L(G) is finite, then so is K(G). That is, the answer to the above question
is affirmative if j is the class of finite groups. Furthermore, He showed that if |G/L(G)| = n, then
IK(G)| < n((n=1)*+[n/2])llogan]

In the present paper, we prove both the Hegarty’s result by a different and very simple technique
and present a smaller bound for the order of K(G) in terms of |G/L(G)|.

Furthermore, we also give an affirmative answer to the stated question when Y is the class of 7-
groups (7 is a set of primes).

2 Main Results

(I) x = the class of finite groups.

The following theorem is the first main theorem of the paper which is proved by a different
method of Hegarty’s. It also improves the bound attained by Hegarty[2].

Theorem 2.1. If G is a group whose absolute center has finite index n, then K(G) is finite and

IK(G)| < n(2logan+llogan]),

Hegarty in [3] by an example pointed out the converse of Theorem 2.1 does not hold in general,
but if G is to be chosen finitely generated, then the converse is true. In the following theorem, we
prove that the assumption of being finitely generated for G can be substituted by a weaker assump-
tion. That is, G/L(G) is considered to be finitely generated.

Theorem 2.2. Let G be a group such that d(G/L(G)) and K(G) are finite. Then G/L(G) is finite and
its order is bounded by some function of |K(G)| and d(G/L(G)), where d(G/L(G)) is the minimal
number of generators of G/L(G).

(IT) x = the class of w-groups (7 is a set of primes).

For proving the main theorem of this part, we need the following lemmas.
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Lemma 2.3. Let G be a group such that G/L(G) is torsion. Then K(G)/G' is also a torsion group.

Lemma 2.4. Let G = (X) be an abelian torsion group. If the prime g does not divide the order of x,
for every x € X, then q does not divide the order of g, for every element g € G.

Now, the following theorem gives the second affirmative answer to the above general question.

Theorem 2.5. If G is a group whose absolute central factor is a w-group, then K(G) is also a
T-group.
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Abstract

Suppose G is a finite group, A and B are conjugacy classes of G and 17(AB) denotes the number of
conjugacy classes contained in AB. The aim of this paper is to compute 1 (AB), where A and B are
conjugacy classes of G and G € {Da,, T, Ugn, Vsn,SDg, } or G is a group of orders 2pq,p?, p*
such that p and g are prime numbers.
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1 Introduction

Throughout this paper all groups are assumed to be finite. If G is such a group and A, B are conjugacy
classes of G then it is an elementary fact that AB is a normal subset of G. So, AB can be written as a
union of conjugacy classes of G. The number of conjugacy classes of G contained in AB is denoted
by 1(4B).

The most important works on the problem of computing the number of G—conjugacy classes
in the product of conjugacy classes were done by Adan—Bante. Here, we report some of his nice
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results in this topic. Suppose SL(2,q) is the group of 2 x 2 matrices with determinant one over a
finite field of size g. Adan—Bante and Harris [1] proved that if g is even, then the product of any
two noncentral conjugacy classes of SL(2,q) is the union of at least ¢ — 1 distinct conjugacy classes
of SL(2,q), and if ¢ > 3 is odd, then the product of any two noncentral conjugacy classes of SL(2,q)
is the union of at least # distinct conjugacy classes of SL(2,q). Adan—Bante [2], proved that for
any finite supersolvable group G and any conjugacy class A of G, dl(%) <2n(AA~") —1, where

C(A) denotes the centralizer of A in G and dI(H) is the derived length of a group H. In [3], he also
proved that if p is an odd prime number, G is a finite p—group and a, b® are conjugacy classes of G
of size p. Then either a®b% = (ab)® or a®bC is the union of at least 23 distinct conjugacy classes.
If G is nilpotent and a is again a conjugacy class of G of size p then either a®a® = (a?)¢ Gal

ora”a
is the union of exactly pTH distinct conjugacy classes of G of size p.
Darafsheh and Robati [6] continued the works of Adan—Bante and proved that if [a,G] =
{[a,x] | x € G} then we have:

i. n(a®b%) =1a®|[b]/lla, GI N (6~")bC||(ab)“|;
ii. If ap%NZ(G) # 0, then n(a®b) = |a®|;

iii. If |a®| is an odd number, then 1(a®a®) = 1;

iv. If |a®| is an even number, then 1(a®a®) = 2n, where n is the number of cyclic direct factors
in the decomposition of the Sylow 2—subgroup of [a, G].

We encourage to the interested readers to consult also papers by Arad and his co-workers [4, 5]
and references therein for more information on this topic. Our notation is standard and can be taken
from [9, 10].

2 Main Results

The aim of this section is to compute 1(AB), where A and B are conjugacy classes of G and G €
{Dn, Tan,Ugy, Van,SDsy, } or G is a group of orders 2pg, p>, p* such that p and ¢ are prime numbers.
The semi-dihedral group SDg,, dicyclic group Tu, and the groups U, and Vg, have the following
presentations, respectively:

SDg, (a,b| a™ = b* = e, bab=a*""",
T,y = (ab|ad=1,a"=b* b ab=a"),
Unw = la,b|a™=b*=e, bab=a),
Vo = l{a,b|a® =b*=e, aba=b"" ab~'a=0b).

It is easy to see the dicyclic group Ty, has order 4n and the cyclic subgroup (a) of T4, has index
2 [10]. The conjugacy classes of ug, and Vg,, n is odd, computed in the famous book of James
and Liebeck [10]. The groups Vg, n is even, and SDg, have order 8xn and their cconjugacy classes
computed in [7, 8], respectively.

For simplicity of our argument, we assume that 717(G) denotes the set of all 11(AB), where A and
B are conjugacy classes of G.

Proposition 1.
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LG +2, (5151 +1) niseven
: n(D2">_{ {1,2,213 n is odd

2. n(Ven) ={1,2},
3. n(Tan) ={1,2},
4. n(Uen) = {1,2},
5. n(SDs,) ={1,2}

Proposition 2. Suppose G is a group of order 2pg, p and g, p > g, are odd primes. Then
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Abstract
In this paper we assert some properties of finitely generated multiplication modules. Also
we charactrize all finitely generated multiplication modules M when Fitty(M) is a power of a
maximal ideal of R..
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1 Introduction

Let R be a commutative ring with identity and M be a finitely generated R-module. For a set

. ®
{x1,...,x,} of generators of M there is an exact sequence 0 N R" M 0

where R" is a free R-module with the set {ey,...,e,} of basis, the R-homomorphism ¢ is defined by
(p(ej) = x; and N is the kernel of ¢. Let N be generated by u; = aj;eq + ... + ap;e,, with i in some
index set I. Let Fitt;(M) be an ideal of R generated by the minors of size n — i of matrix




For i > n Fitt;(M) is defined R, and for t < O Fitt;(M) is defined as the zero ideal. It is known that
Fitt;(M) is the invariant ideal determined by M, that is, it is determined uniquely by M and it does
not depend on the choice of the set of generators of M [5]. The ideal Fitt;(M) will be called the i-th
Fitting ideal of the module M. It follows from the definition of Fitt;(M) that Fitt;(M) C Fitt;1 (M)
Moreover, it is shown that Fittg(M) C ann(M) and (ann(M))" C Fitto(M). (M is generated by n
elements.) The most important Fitting ideal of M is the first of the Firt;(M) that is nonzero. We shall
denote this Fitting ideal by I(M). Note that if /(M) contains a nonzerodivisor then I(Mp) = I(M)p
for every prime ideal P of R. Fitting ideals are strong tools to identify propreties of modules and
sometimes to charactrize modules. For example Buchsbaum and Eisenbud have shown in [3] that for
a finitely generated R-module M, I(M) = R if and only if M is a projective of constant rank module.

An R-module M is called a multiplication module if for each submodule N of M, N = IM for
some ideal  of R. In this case we can take [/ = (N : M) [1].

2 Main Results

In this section we study some properties of Fitting ideals.

Proposition 2.1. Let R be a ring and M be a finitely generated multiplication R-module. Let Q
be a maximal ideal of R such that Fitto(M) = Q", for some positive integer n. Then M is a cyclic
R-module.

Proof. By [4, proposition 20-7], Q" = Fitty(M) C ann(M). Hence ann(M) is contained only in
maximal ideal Q. Thus by [|, Lemma 3] M is cyclic. O

Theorem 2.2. let R be a ring and M be a multiplication R-module generated by two elements. If
Fitto(M) = 0 then M is projective of constant rank one R-module.

Proof. Let M =< x1,xp > and 0 N R? ¢ M 0 be an exact sequence. Let
N =< {n;}ict > and n; = ajje; + azies. Put A; = (Rx : Rxy) and A = (Rx; : Rxp). Thus a;; € A;
and asj € A, for each j € I. We have Firt)(M) =< a;;,1 <i<2,j €l >CA;+As. Leta € A;.
So ax; € Rxp. This implies that ax; = bx,, for some element b in R. Thus (a,—b) € N. Hence
Ay C Fitt)(M). Similarly we have Ay C Fitt)(M). So Ay + A, C Fitt;(M). So Ay + A, = Fitt) (M).
On the other hand we have (A; +A;)M = M. Hence A} + Ay = R. Thus Fitt; (M) = R. So by [3,
Lemma 1], M is a projective of constant rank one R-module. O

Lemma 2.3. Let M be a finitely generated multiplication R-module. Then Fitto(M) =ann(M).

Proof. By [I, Lemma 3 and Propostion 1], My is cyclic. Thus Fittg(Mgp) =ann(Mp), for every
prime ideal Q of R. Since M is finitely generated, hence ann(Myp) =ann(M)e. Thus by [4, Corollary
20.5], Fitto(M) o =ann(M), for every prime ideal Q of R. Therefore Fitty(M) =ann(M). O

Proposition 2.4. Let M be a finitely generated multiplication module. Let N be a submodule of M
such that (N : M) =< e >, where e is an idempotent element of R. Then M = N & M/N.

Proof. 1tis easily seen that M /N is a multiplication module and ann(M/N) = (N : M) =< e >. Thus
by Lemma 2.3 Fittg(M/N) =< e >. So M/N is a projective R-module. Now Consider the exact
sequence

0 N M M/N 0.
Since M /N is projective, hence M 2 N ® M /N. O
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Theorem 2.5. Let M be a finitely multiplication R-module. If Fitto(M) is a prime ideal then M is
indecomposable.

Proof. Let M = N®K and 7, m : M — M be defined by 7 (n+k) =n and m(n+ k) = k. Since
M is a finitely generated multiplication module so there exist 0 # r; and 0 # r, in R such that
m (m) = rym and m, (M) = rym, for every m € M. Since mj0m, = mom; = 0, hence rirpM = 0. So
riry € ann(M) = Fitto(M). Since Fitty(M) is a prime ideal, hence r| € ann(M) or r, € ann(M).
Therefore N =0or K =0. O

Theorem 2.6. Let M be a finitely generated multiplication module over a ring R. Let N be a finitely
generated nonzero submodule of M and Fitto(M) be a prime ideal of R. Then Fitty(N) C Fitto(M).

Proof. Consider the exact sequence

0 N M M/N 0.

By [2]p.174], Fitty(N)Fitto(M/N) C Fitto(M). Since Fitto(M) is a prime ideal of R, hence Fitfy(N) C
Fitty(M) or Fitto(M/N) C Fitto(M). If Fitto(M/N) C Fitto(M), by Lemma 2.3, We have Fitto(M/N)
= (N: M) C Fitto(M) C ann(M). So N = 0, a contradiction. Hence Fitty(N) C Fitto(M). O
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Abstract

Suppose that G is a finite group. The graph I'(G) is related to conjugacy classes of G. Its
vertices are the non-central conjugacy class sizes of G and there is an edge between two distinct
vertices of I'(G), if and only if their class sizes have a common prime divisor.

In this paper, some properties of graph I'(G) such as chromatic polynomial, chromatic number
and clique number are discussed for G 2 SL, (F), where F is a finite field.

Keywords: Conjugacy class, special linear group, chromatic number, clique number.
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1 Introduction

The graph related to conjugacy classes is studying widely. For instance in [1], the authors proved
that for a finite simple group G , n(I'(G)) < 2. They also showed for a non-abelian finite simple
group G, its conjugacy class graph is complete.

Also in [3], Fang and Zhang proved the symmetric group S3 , the dihedral group Ds, the three
pairwise non-isomorphic non-abelian groups of order 12, and the non-abelian group 7>; of order 21
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is the complete list of all G such that I'(G) contains no triangles.

We explain some of notations that will be used later. All groups considered in this paper are finite.
Let G be a finite group, x an element of G. x“ denotes the conjugacy class containing x and |xC|
denotes the size of x”. Let I' be a graph. A subset C of the vertices of I' is called a clique if the
induced subgraph on C is a complete graph. The maximum size of a clique in a graph I" is called
the clique number and denoted by @(I"). The minimum number of colors which can be assigned
to the vertices such that every two adjacent vertices have different colors is called the choromatic
number of " and denoted by x(I'). Let I be a graph and also |V (T")| = n and u is a complex number.
For any natural number r, let m,(I") denotes the number of distinct color-partitions of V(I') into r
color-classes, and define U, to be the complex number U, = O u—i)=u(m—1)-(u—r+1).
The chromatic polynomial of I"is the polynomial

V(@)
C(F;U): Z m,(F)Um

r=1

In this paper, we consider graph I'(G) for G = SL,(F), where F is a finite field. We study some
properties of this graph.

2 Preliminary Lemmas

We need the following lemmas which will be used later:
Lemma 2.1 [4] Let G be a non-abelian finite simple group. Then I'(G) is a complete graph.
Lemma 2.2 Suppose that I is a graph, then:

V()|

Y, d(ve) =2|E(D)].

e=1
Lemma 2.3 [2] If G is a finite group and N is a normal subgroup. Then:
i) \gNll\gGl ;gEN.

.. G
i) [(gN)¥|[g%] ; g € G.

3 Main Results

Suppose that F = GF(g);q is a prime power. So SL,(F) is denoted by SL,(q).

Theorem 3.1 If G = SL, (g), then |[V(I(G))| = (¢ — 1)~ Lgj(ng—1) P2(d)Cs — (n,qg —1).
Theorem 3.2 Let G = SL,(q):

i) If g =2 and n = 2, then graph I'(G) is a non-complete graph,

E(I'(G))| =0.
ii) If ¢ # 2 and n > 2, then graph I'(G) is a complete graph and

E(T(G)| =27 (IVIT(G)DN(VIT(G)] - 1).

Proposition 3.3 Let G = SL,(g)

120



i) Ifg=2and n =2, then ¥(I'(G)) =1 and o(I'(G)) = 0.

i) If g # 2 and n > 2, then x(I(G)) = o(T(G)) = (¢~ 1)~ Lagjng-1) 92(d)Cn — (n,g—1).
Proposition 3.4 Let G = SL,(q)

i) If g =2 and n = 2, then C(T'(G);U) = u>.

ii) If ¢ # 2 and n > 2, then the chromatic polynomial of graph I'(G) is as following:

CD(G):U) =u(u—1)- (u—((g—1)"" |(Z )(Pz(d)Cg—(mq—l))H).
d|(n,g—1
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Abstract

The modified-—Wiener and modified hyper—Wiener indices of graphs are defiend as follows:

. V(G)|
WG = = Y Y dusgw),
( ) 2‘r| uEV(G)gEF ( g( ))
WW(G) = %W(G)—FL;T;)' Y Y d(u,g(u)?).

uev(G) g€l

The aim of this talk is to report our recent results in this topic.

Keywords: Modified Wiener, automorphism group, modified hyper—Wiener.

123



1 Introduction

Suppose G is connected graph and V(G) is its vertex set. The distance between the vertices u,v €
V(G), d(u,v), is defined as the number of edges in a shortest path connecting u and v. The sum
of distances between all pairs of vertices in G is called the Wiener index of G [6]. Graovac and
Pisanski [3] applied the symmetry group of the graph under consideration to generalize the Wiener
index. To the best of our knowledge, this paper is the only published paper in mathematics lit-
erature that combines the symmetry and topology of molecules. To explain, we assume that G
is a graph with automorphism group I' = Aut(G). Following [3], we define the distance num-
ber of an automorphism g, 6(g), to be the average of d(u,g(u)) overall vertices u € V(G) and

6(G) = V@) Yuev(G) Lgerd(u,g(u)). The modified Wiener index of G is defined as:
R 1
W(G) = 3IV(G)*8(G) = Z ) d(u,g(u)

ueV(G)gel’

Throughout this paper we use the standard notations of group theory and graph theory. Suppose
G and H are two graphs. The Cartesian product GOH is a graph with vertex set V(G) x V(H) in
such a way that vertices (a,b) and (x,y) are adjacent if and only if a = x and by € E(H) or b=y and
ax € E(H). Our notation is standard and taken from the standard books on these topics. The path,
cycle and complete graphs with n vertices are denoted by P,, C,, and K,,, respectively.

The hyper—Wiener index of acyclic graphs was introduced by Milan Randi¢ in 1993. Then Klein
et al. [4], generalized Randi¢’s definition for all connected graphs, as a generalization of the Wiener
index. It is defined as |

WW(G)==-W(G)+ = d(x
6) =3 {XZV,} )

We define in a similar way the modified hyper-Wiener index of G as follows:

LY Y diws

ueV(G) gel

N 1.
WW(G) = EW(
In this talk we report our recent results in [1, 5]

2 Main Results

A graph G is called asymmetric if its automorphism group is trivial. It is easy to see that the modified
Wiener index of a graph G is equal to zero if and only if G is asymmetric. In [2, Corollary 2.3.3],
it is proved that the most of finite graphs are having trivial automorphism group. To explain, we
assume that o, and B, denote the number of n—vertex graphs and n—vertex graphs with trivial
automorphism group, respectively. Then,
. O
limy_yoo B 1.

This means that the modified Wiener index of the most of graphs is zero.

A class function over the complex number C is a function f on a group H, such that f is con-
stant on the conjugacy classes of H. It is well-known that the set CF (H,C) of all class functions
constitutes a vector space over C.

124



Suppose G is a connected graph and I = Aur(G). For each automorphism g € ', we define
1

o(g) = V(G Yrev(c)d(x, g(x)). This defines a mapping 6 : I' — C. Then,
4 (Gl

Theorem 1. § is a class function and §(g) = §(g™!), for each automorphism g € T".

Suppose H is a group, V is a vector space over C and ¢ is a homomorphism from H into GL(V),
the set of all invertible n by n matrices on C, n = dimV. The homomorphism ¢ is said to be a
complex representation of H and the function ) from H into C given by x(g) =tre(g), g € H, is
called the complex character of H afforded by ¢. If ¥ and 7y are two complex class functions on H
then their scalar product is defined as

1

= H Z X(g)Tg)

gceH

X7

An irreducible complex character is a complex character y such that (), x) = 1. It is well-known
that the set of all irreducible complex characters of H constitute an orthonormal subset of CF(H,C).

In Theorem 1, we proved that & is a class function. Since 6(e) = 0, 6 is not a character of H. In
the next theorem, we will prove that if n > 1 then the trivial character is a constituent of §.

Theorem 2. Suppose G is a connected n—vertex graph, I' = Aut(G), t; denotes the number of orbits
of T on V(G) and t, is the number of orbits of I on V(G) x V(G) under natural actions of I on V(G)
and V(G) x V(G), respectively. Then,

21 15
1. (6,6)>1——+ =
< ) >— n +n27

t
2. (6,1g) >n— —1, where 1 denotes the trivial character of G.
n

Suppose G is a graph with V(G) = {vy,...,v,} and as usual I’ = Aut(G) = {g1,...,8m}- The
matrix D = [d;j] is called the modified distance matrix, where d;; = d(v;,g;(v;)), 1 <i <n and
1 < j < m. Then the modified Wiener index of G is equal to:

n . . . oa
> x the summation of all entries in D.
m

Notice that 8(g;) is the the average of the row corresponding to g;. Define y: G — C given by

1
Yix) = T Zeerd (x,8(x)).
Theorem 3. Suppose G is a connected n—vertex graph and I' = Aut(G). Then W > g(n —1;), where

t1 denotes the number of orbits of I on V(G). If G is vertex transitive then the equality is satisfied if
and only if G is isomorphic to K.

In the following example, we calculate the character table of the automorphism group of some
graphs together with their associated class functions. Suppose Z,, S, and D,, denote the cyclic
group of order n, the symmetric group on #n letters and the dihedral group of order 2n. If H and K
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are subgroups of a group G such that H is normal, HNK = {e} and G = HK then we say G is a
semidirect product of H by K and in this case we write G = H : K.

Example 4. In this example the class function 0 together with the modified Wiener index of Petersen
graph Ps. It is well-known that the automorphism group of the Petersen graph is isomorphic to the
symmetric group Ss. This graph is depicted in Figure 1 and its character table together with class
function & is recorded in Table 1.

Figure 1: The Petersen Graph.

Table 1: The Character Table of Aut(Ps) = S5 and the Class Function 6.

la 2a 2b 6a 3a 4a Sa
x| 1 1 1 1 1 1 1
w»n| 1 -1 1 -1 1 -1 1
»l| 4 -2 0 1 1 0 -1
Xa | 4 2 0o -1 1 0 -1
X5 | S 1 1 1 -1 -1 0
X | 5 -1 1 -1 -1 1 0
x| 6 o -2 0 0 0 1
alo ¢ ¢ ¢ 3 % 3

3 3 n
From Table 1, one can see that §; = Exl — EXS and W (Ps) =75.

Our calculations given Example 4, and some other calculations with GAP and MAGMA suggest
the following conjecture:

Conjecture 5: For each graph G, the class function § is a rational combination of the trivial character
x1 and at most two other irreducible characters of Aut(G).

For the sake of completeness, we mention here a result of Graovac and Pisanski [3] about modi-
fied Wiener index of the Cartesian product of graphs.

Theorem 6. (Graovac and Pisanski [3, Theorem 5.13]) Suppose G and H are connected graphs such
that each orbit of the action of Aut(G x H) on V(G) x V(H) has the form A x B, where A is an orbit
for the action of Aut(G) on V(G) and B is an orbit for the action of Auz(H) on V(H). Then

W(GOH) = |V(G)*W (H) + |V (H) W (G).

Example 7. In this example the modified Wiener index of a C4 —grid, C4—nanotube and C4 —nanotorus
are computed. We recall that the symmetry group of a path P, is a cyclic group of order two with the
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following non identity element g:

. (1n)(2n71)~~(n;1n;3) nis odd
(1n)(2n—1)~~-(§ n—|—2) nis even

2 2

On the other hand, the group of all symmetries of a regular polygon, including both rotations and
reflections is isomorphic to a dihedral group of order 2n, denote by D,,. We mention here that there
is a typographical error in [3, Example 5.6] for computing W (P, ). One can easily prove that:

3

% nis even
W(P,) =W(C,) = )

3
nis odd

n —n
Apply (2) and [3, Theorem 5.13] to prove the following equality:

w(c,0p,) = W(B,0P,)=W(C,OC,)

= |V(Cm)|2W(Cn) + |V(Cn)|2W(Cm)

2.2
m8n (n+m) m and n are even
mn, ) , ,
?(mn +n(m*—1)) m is odd and n is even
%(m(n2 —1)+nm?) nis odd and m is even
@(m(nz—l)—{—n(mz—l)) m and n are odd

8

The modified hyper—Wiener index of P, can be calculated in the following form:

302
A ’11—6—1—;—4@2—1) n is even
WW (B = 4 3 2
. —l—n——n——l nis odd

24716 24 16
By a method similar to the case of P,, we have:

1 1 1
A @n‘* + En3 + ﬁn2 nis even
WG = 1 1 1 1
—n*4+ =nP——n? — —n nisodd

48 16 48 16

It is clear that if u,v € K, then d(u,v) = 1 and so between graphs with exactly n vertices, the
complete graph K, has the minimum hyperWiener index. Hence for every nvertex graph G,

WW(G) > WW (K,) = (;)
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On the other hand, it is easy to see that the symmetry group of K, is isomorphic to the symmetric
group S, and so

I’l2 n

W(Kn) = WAW(Kn) = DR

Since graphs with trivial automorphism group have zero hyper—Wiener index, the complete
group K, does not have the minimum value of hyper—Wiener index in the set of all n—vertex graphs.
We end this section by calculation of the modified hyper—Wiener index of S,,. It is well-known that
the symmetry group of the star graph is isomorphic to Sym,_;. So,

W(s,) = n(n—2),
WW(S,) = %n(n—Z).
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Abstract

Let G be a group generated by a finite set S. Assume that S is symmetric, namely S = $~1.
The Cayley graph X = C(G,S) is defined as follows. Vertices of X are elements in G and two
vertices g1, g2 € G are adjacent if g = gps for some s € S. Also let I'] be an (n,k)-graph and let
I'; be a (k,k')-graph with V(I';) = [k] = {1,...,k} and fix a randomly numbering ¢r, of I';. The
replacement product F1®¢r] I'; is the graph whose vertex set is V(I'}) x V(I';) and there is an
edge between vertices (v, k) and (w,!) whenever v=w and kl € E(I’;) orvw € E(T'y), o5 (w) =k
and @ (v) = . In this note we study these new product of graphs and compute cayley graph of
some nanostructure.

Keywords: Cayley graph, replacement product, fullerene graphs.
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Abstract

We study the code parameters of a class of linear codes over the Galois field Z;, where [ is an

odd prime. This class is originally introduced by L. Skula as an invariant subspace of a special
linear operator on the vector space (Z;) 5

Keywords: Dual code, generator matrix, linear code.
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1 Introduction

Let g be a prime power and F; denote the field with g elements. A linear code C of length n and
dimension k over F, (an [n,k],-code ) is a k-dimensional linear subspace of F7'. The elemnts of a
code are called codewords. A generator matrix G for C is a k X n matrix whose rows form an F;-basis
of C. By definition,

C={X¥G|xeF},
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where x” stands for the transpose of a vector x. For any codeword ¢ = (cy,- - ,¢,), the weight w(c)
of ¢ is defined as the number of nonzero coordinates of c. The number

d(C) :=min{w(c) |0#c € C}

is called the minimum distance of C. It is well-known that k + d(C) < n+ 1. If the equality holds,
then we say that C is an MDS code.
The dual code C* of C is the [n,n — k],~code

n
{Gery %) € FJ | Ve = (c1,-+ ,cn) €C, Y xici=0}.
i=1

Now, assume that / is an odd prime, n = % and V is the vector space

(Zl)n = {(C17"' ;Cn) | ci € Z[}
Let L={1,2,---,n} and for a subset A C L put
1 .
Cy= {(al,"' ’gn) cVv | ijA, Zal_le—l :0}
i=1

It is easy to verify that Cy is a subspace of V for any A C L. The subspaces C, are defined by L.
Skula in [1] as invariant subspaces of a special linear operator on the vector space V. Skula has
proven that

1) For A C B C L, the relation C4 2O Cg holds,

2)C@=VandCL:O,

3) Cy is an (n — |A])-dimensional vector space.

In this paper, we are intrested to study C4 as a linear code over the field Z;. Specially, we focus
on the minimum distance, the dual code and the generator matrix of such codes.

2 Main Results

The following results are obtained for linear codes Cy.

Theorem 2.1. Forany ® # A C L, Cy4 is a linear code of minimum distance d(C) < |A|+ 1. Specially,
Cy is an MDS code for all 1-elemnt subsetes of L.

Theorem 2.2. IfA = {j}, 1 < j <n, then C+ = Cp where B= L\ {n— j+ 1}. This give us an
algorithm to find the dual code Cj forallACL.

Theorem 2.3. The set
{(]72%717"' an2i71) | lEB}

is a basis of Cy where B C L is the set in which Cj‘- = Cg. This gives us a generator matrix of Cy.
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Abstract

In this note, we compute the power graph of the cyclic group of order n and some of finite groups
with their automorphism groups.

Keywords: power graph, generalized join, automorphism group.
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1 Introduction

All groups and graphs in this note are assumed to be finite. Suppose G is a finite group, the power
graph of G, Z(G), is a graph in which V(£ (G)) = G and two distinct elements x and y are adjacent
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if and only if one of them is a power of the other. It can be easily investigated that the power graph
P(G) is a connected graph of diameter at most 2. The power graphs are a new representation of
groups using graphs. These graphs were first used by Kelarev [3]. Chakrabarty et al. [1] proved that
for a finite group G, & (G) is complete if and only if G is a cyclic group of order 1 or p™, for some
prime number p and positive integer m. They also obtained a formula for the number of edges in a
finite power graph. Suppose I'is a graph with V(I') = {1,2,--- , p} and .# = {T'y,--- ,[', } is a family
of graphs such that nj = |[V(I';)|, 1 < j < p. Define A=TTI",---,I',] to be a graph with vertex set
V(A) = U, V(T;) and edge set E(A) = (U7_ E(T))) U (Ujjepm{uvsu € V(Ii),v € V(T))}).

Example 1. Let G be an alternating group of order 12. Then Z2(G) consists of 4 triangels and three
lines sharing a common vertex (the identity):

Figure 1: The Power Graph of A4.

Definition 2. The semi-dihedral group SDsg,, dicyclic group 74, the groups Vg, and Ug, have the
following presentations, respectively:

SDg, =< a7b|a4" =b>=e,bab=a"""" >,
Ty, =< a,b|a2" =e,d" = bz,b_lab =a! >,
Van =< a,b|a2” =b*=c,aba=b""abla=1b>,
Us, =< a,b|a2" =b =c,a 'ba=b"">.

2 The Recent Results

The aim of this section is to compute the power graph of group Z, and groups SDs,, T4, Vs, and
Usy,. We calculate the automorphism groups of the power graph of group Z,, and mentioned groups.

Theorem 3[4] #(Z,) = Kp(n)+1+4n [K¢<d1),K¢<d2), e ,K¢(dp)], where A, is a graph with vertex and
edgesets V(A,) ={d; | I,n#di|n,1 <i< p}and E(A,) ={did; | dj|d;,1 <i< j< p},respectively.

In [2] Doostabadi et al. conjectured that the automorphism group of Z,, is isomorphic to the
direct product of some symmetry groups.
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Conjecture 4.[2] For every positive integer n,

Aut(P(Zn)) = Spm1 % [T Soca)-
1,n#d|n

It is clear that the mentioned conjecture is incorrect, when n is prime power. In the next theorem this
conjecture is proved for positive integer n, such that n cannot written as a prime power.

Theorem 5.[4] If n is not a prime power, then

Aut(c@(ZH)) = S¢(n)+1 X H S(P(d)
1,n#d|n

Corollary 6.[4] The automorphism group of the power graph D,, can be computed as follows:

Sn—1 XSy, n is a prime power
Aut (P (Dyy)) =
Sn X [lajnS¢(a), otherwise

Example 7. The power graph of SDsg,, is a union of & (Za,), n copies of &?(Z4) that share an edge
and 2n copies of &?(Z,), all of them are connected to each other in the identity element of SDsg,,, as
shown in Figure 2. The power graph of Ty, can be constructed in a similar way as a union of Z(Zy,)
and n copies of &?(Z4) that share an edge, all connected to each other in the identity element of Ty,
as shown in Figure 3.

The automorphism group of power graph 74, and SDg,, are computed in the following theorems:

Figure 2: The Power Graph of Ty,,.

Theorem 8. let n > 3 be a natural number, then
Son—2 X 82 X (S218y), nisa powerof 2,
Aut (P (Tay)) =

I‘Isﬁb(d) X (8208,), otherwise
d|2n
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Figure 3: The Power Graph of SDsg,,.

Theorem 9. let n > 2 be a natural number, then

San—2 X 82 X (S2080), nis a power of 2,
Aut (P (SD = .
ut(# (SDsn)) HS¢(d) X Son X (8208y), otherwise
d|4n

The automorphism groups of power graphs Ug, and Vs, are computed in the following theorems:

Theorem 10. let n be a natural number, then

HSq)(d)X H S¢(d)ZS37n7é3t,tZ]
d|3n d|2n.dmn
H S¢(d)ZS3XHS¢(d)>< H S¢(d)ZS3,n:3t,t21731't
Aut(z@(Uén)) = d|2n.din dln d|n,dit
IT Sow 1S3 xTTSow > TT SowtS3x TT SpwtSz,
d|2n,dtn din d|3t,dft d|n,df3t
n=3tk>21t>1

Theorem 11 let n be a natural number, then

Son X 8218, X H S¢(d) 1S) X HS¢(d),n > 3,2J(n
d|2n,dfn d|2n
k—1
Sont1 X 208 x [[ S5 x Sy 1Sa,n =25k >2
Aut(P (Vi) = !
k
4 2
Son X $218, X HSW) [T T1 So(d) % [T Sow 2,
d|t s=2 d|25t dpkty
d)(zs—lt dpkt
n=2ktk>1,214t
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Abstract
In this paper, we enumerate M-polysymmetrical hypergroups of order less than 6. We show
that there are 7 isomorphism classes of M-polysymmetrical hypergroups of order 5 and present
the Cayley tables of them.
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1 Introduction

The concept of a hyperstructures first was introduced by Marty at the 8/ international Congress
of Scandinavian Mathematicians. The hyperstructure theory had applications to several domains of

theoretical and applied mathematics[4, 5].

J. Mittas in his paper[6], which has been announced in the French Academy of Sciences, has
introduced a special type of hypergroup that he has named polysymmetrical. Also, in the same

paper J. Mittas has given certain fundamental properties of this hyperstructure.

139



Staring from the above paper and having called Mittas structure M-polysymmetrical hypergroup
(in order to distinguish this polysymmetrical hypergroup from other types of polysymmetrical hyper-
groups) we have proceeded to a profound analysis of this hypergroup[7] and its subhypergroups[8].

We recall definition of M-polysymmetrical hypergroup of [8] as follows:

A non-empty set H is called M-polysymmetrical hypergroup (M-P-H.) if it is endowed with a
hyperoperation + : H x H — &?*(H), when &7*(H) is the set of all non-empty subsets of H, that
satisfies the following axioms:

(1) + is associative, i. e, for every x,y,z € H we have x+ (y+2) = (x +y) + z;
(2) + is commutative, i. e, for every x,y € H, x+y=y+x;
(3) there exists 0 € H such that for every x € H we have x € x+0;

(4) for every x € H there exists X' € H such that 0 = x+x/, (' is an opposite or symmetrical of
x , with regard to considered 0, and the set of all the opposites S(x) = {x'|0 = x+x'} is the
symmetrical set of x),

(5) forevery x,y,z€ H,x' € S(x),y € S(y) and 7’ € S(z), x € y+z implies that x' € y' +7'.
Theorem 1.1. [8] Let (H,+) be a M-PH, then for every x,y,z,w € H we have:

(1) S(0) =0, that means 0+0 = 0;

(2) 0€0+x=x=0and henceyc y+x=x=0;

(3) 0 is unique;

(4) (x+y)N(z+w)=>x+y=z+w;

(5) forall7 € S(z), x €y+zimpliesthaty € x+7;

(6) 0ex+y=x+y=0.

2 Main Results

In this section we use the results of the papers [8] and [9] and characterize the M-PHs. of order less
than 6 up to isomorphism.

Theorem 2.1. Every M-PH. (H,+) of order 2 is a group and so H 2 7.

Notice that there are 20 isomorphism classes of H,-groups of order 2 and 8 isomorphism classes
of hypergroups of order 2.

Theorem 2.2. There are 2 isomorphism classes of M-PHs. of order 3 with the following tables:

+]0 1 2 +]0 1 2
0[o0 1 2 00 12 12
1|1 20 1|12 0 0
202 01 2112 0 0
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Bayon and Lygeros [1] show that there are 1.026.462 isomorphism classes of H,-groups of order
3. Also, Tsitouras and Massouros [9] enumerated 23.192 isomorphism classes of hypergroups of

order 3.

Theorem 2.3. There are 4 isomorphism classes of M-PHs. of order 4 with the following tables:

+]0 1 23 +]0 1 2 3
0[0 1 2 3 0] 0 123 123 123
11032 1{12 0 0 0
212 3 0 1 20122 0 0 O
33 210 312 0 0 0O
+]/0 1 23 +]0 1 2 3
0[0 1 2 3 oo 1 23 23
1|1 230 1|1 23 0 0
212 3 0 1 2023 0 1 1
3(3 01 2 323 0 1 1

Bayon and Lygeros [2] show that there are 10.614.362 isomorphism classes of abelian hyper-
groups of order 4. Bayon and Lygeros [3] enumerated 8.028.299.905 isomorphism classes of abelian

H,-groups of order 4.

Theorem 2.4. There are 7 isomorphism classes of M-PHs. of order 5 with the following tables:

+]0 1 2 3 4 +] 0 1 2 3 4 +]0 1 2 3 4
0[0o 1 2 3 4 0] 0 1234 1234 1234 1234 00 12 12 34 34
1|1 2 3 40 11234 0 0 0 0 112 34 3 0 0
202 3 4 0 1 211234 0 0 0 0 2012 34 34 0 0
303 0 1 2 4 31234 0 0 0 0 3034 0 0 12 12
410 1 2 3 4 411234 0 0 0 0 413 0 0 12 12
+]0 1 2 3 4 +] 0 1 2 3 4 +]0 1 2 3 4
00 1T 2 34 34 0] 0 1 234 234 234 00 1 23 23 4
1|1 2 3 0 0 1|1 234 0 0 0 1|1 23 4 4 0
202 3 0o 1 1 2024 0 1 1 1 2023 4 0 0 1
313 0 1 2 2 31234 0 1 1 1 3123 4 0 0 1
413 0 1 2 2 4124 0 1 1 1 414 0 1 1 23

+]0 1 2 3 4

00 1 2 34 34

1|1 0 3 2 2

202 34 0 1 1

303 2 1 0 0

403 2 1 0 0
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In this paper, we review the recent results concerning extension theorems of linear codes.
Keywords: Linear codes, extension, projective geometry.

MSC(2010): 94B27 . 94B05 . 51E20 . 05B25.

1 Introduction

Let Fy be the field of ¢ elements and let Iy denote the vector space of n-tuples over 4. A linear code
C of length n, dimension k and minimum distance d over Iy is called an [n,k,d],-code. A generator
matrix for C is a matrix whose rows generate C. For an [n,k,d],-code C with a generator matrix
G, C is called extendable to C' if there exists a vector h € IE"; such that the extended matrix [G,h”]

generates an [n+ 1,k,d + 1], code C'. The code C’ is an extension of C.

2 Results

Theorem 2.1. ([I]) Every [n,k,d)2 code with d odd is extendable.
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Hill and Lizak generalized Theorem 2.1 to the following for non-binary codes. The idea of the
proof of the next theorems refer to the Projective Geometry.

Theorem 2.2. ([2, 3]) Every [n,k,d], code with gcd(d, q) = 1 whose weights are congruent to 0 or
d (mod q) is extendable.

For an [n,k,d], code C with ged(d,q) = 1, let
CIJ():—] Y A P, = ; Y A
o © 7V i0,d(modq)

The pair of integers (Pg, D) is called the diversity of C. According to Theorem 2.1, C is extendable
if &; = 0. Landjev and Rousseva generalized Theorem 2.1 to the following:

Theorem 2.3. ([4]) Every [n,k,d], code with gcd(d,q) = 1 is extendable if

@1 < ¢ (s(gq) —q—1)/(g— 1),
where s(q) is the smallest size of a nontrivial blocking set in PG(2,q).

Maruta and Yoshida gave a further generalization of the previous results and proved the following
theorems:

Theorem 2.4. There exists no [n,k,d|, code with ged(d,q) = 1 for 0 < ®; < g2,
Theorem 2.5. Every [n,k,d], code with gcd(d,q) = 1 is extendable if @1 < g2
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Abstract

We study models for surface growth with a wetting and a roughening transition. Using simple
and pair mean-field approximations. The simple mean-field equations are solved exactly and
they predict the roughening transition and the correct growth exponents in a region of the phase
diagram.

Keywords: Phase transition, rsos model, mean-field approximation.

145



146



The First Conference on Computational Group Theory, Computational Number Theory and Applications,
University of Kashan, 26-28 Azar, 1393 (December 17-19 2014), pp: 147-150.

Poster Presentation

Revised Augmented Eccentric Connectivity
Index of Fullerenes

Maryam Safazadeh
Department of Mathematics, Persian Gulf University, Bushehr, Iran

Reza Sharafdini
Department of Mathematics, Persian Gulf University, Bushehr, Iran

Abstract

In theoretical chemistry, molecular structure descriptors are used for modeling physio-chemical,
pharmacologic, toxicological, biological and other properties of chemical compound. The aug-
mented eccentric connectivity index of graph G is defined as

AEG)= ) Muew) ™,

ueV(G)

where €(u) is defined as the length of a maximal path connecting u to another vertex of G.
Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms
bonded in a nearly spherical configuration. In this paper we compute some bounds of the aug-
mented eccentric connectivity index and then we calculate this topological index for two infinite
classes of fullerenes.

Keywords: Augmented eccentric connectivity index, fullerenes, topological index, eccentricity.
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1 Introduction

In theoretical chemistry, molecular structure descriptors are used for modeling physico-chemical,
pharmacologic, toxicological, biological and other properties of chemical compound.
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Let G be any simple connected graph with vertex set V(G) and edge set E(G) and n = |V(G)|.
For two vertices u and v in V(G) their distance dg(u,v) is defined as the length of a shortest path
connecting u and v in G. For a given vertex u of G its eccentricity £5(u) is the largest distance
between u and any other vertices of G, i.e., £5(u) = max,cy () d(u,v). The maximum eccentricity
over all vertices of G is called the diameter of G and is denoted by D(G); the minimum eccentricity
among the vertices of G is called radius of G and is denoted by R(G). The set of all vertices of
minimum eccentricity is called the center of G.

The eccentric connectivity index of a graph G is defined as

£(G)= ), do(u)eg(u),

ueV(G)

where dg(u) denotes the degree of vertex u, i. e., the number of its neighbors in G. The eccen-
tric connectivity index was introduced by Madan ef al. and used in a series of papers concerned
with QSAR/QSPR studies [8, 7, 5]. This index was successfully used for mathematical models of
biological activities of diverse nature. In fact, this index has been shown to give a high degree of
predictability of pharmaceutical properties, and may provide leads for the development of safe and
potent anti-HIV compounds.

The augmented eccentric connectivity index *£4(G) of a graph G is defined as [2]

*gA(G) _ Z M(M)

wevic) €6(u) 7

where M (u) denotes the product of degrees of all neighbors of vertex u. From above definition it is
clear that, as the degrees are taken over the neighborhoods and then multiplied, so the contribution
of a vertex to this index is non-local and again since the reciprocal of eccentricity is considered for
a vertex so the contribution of a vertex is also non-linear.

A revised version of augmented eccentric connectivity index, under the name Ediz eccentric
connectivity index, has been defined as

where S(u) denotes the sum of degrees of all neighbors of vertex u.

Fullerenes, discovered experimentally in 1985, are molecules in the form of cage-like polyhedra,
consisting solely of carbon atoms bonded in a nearly spherical configuration. It is well-known fact
that fullerenes made entirely of n carbon atoms, have 12 pentagonal and (n/2-10) hexagonal faces,
while n # 22 is a natural number equal or greater than 20 [12,13]. The most important member of the
family of fullerenes is Cgg (See Fig.1). In this paper we aim to compute revised augmented eccentric
connectivity index for two infinite classes of fullerene graphs Cj,42 and Cyo,+40. Throughout this
paper, our notations are standard and mainly taken from standard books of graph theory such as [19].

2 Main Results

In this section we aim to compute the revised augmented eccentric connectivity index of two infinite
classes of fullerenes, namely Cis,42 and Cyg,+49. First consider an infinite class of fullerene with
exactly 12n+ 2 vertices and 18n + 3 edges, depicted in Fig. 3. In Table 1, the augmented eccentric
connectivity index of Cyo,7 fullerenes is computed for 1 <n <9.
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Fullerenes | Exceptional augmented eccentric connectivity index for 1 <n <9
Co 3x72/5+1
Csg 3x114/7
Csp 3x36/7+3%x102/8+3%x12/9
Ce2 3x72/8+3%x72/94+3x42/10
Cyy 3x36/8+3%x72/9+3%x54/10+3 x36/11+3 x24/12
Cge 3x72/9+43%x54/10+3%x36/114+3x36/12+3 x36/13+24/14
Cog 3x(12/9+18/10+12/11+12/12+12/134+12/14+12/1548/16)
Ciio 3x (18/10+12/11+12/12+12/13+12/144+12/154+12/164+12/17+8/13)

A general formula for the revised augmented eccentric connectivity index of Cj,42, n > 10, is
obtained as follows:

Theorem 2.1.
1

n+i

A 90 1l
E(Crans2) = — 108 )
i=1

Proof. Using GAP [20] software, one can see that there are three types of vertices of fullerene graph
Ci2n+2. These are the vertices of the central and outer pentagons and other vertices of Cy2,42. By
computing the eccentricity of these vertices we have the following table:

Vertices e(u) Number
The Type 1 Vertices 2 8
The Type 1 Vertices n 6
Other Vertices n+i(l <i<n) 12

Consider now an infinite class of fullerene with exactly 20n + 40 vertices and 30n + 60 edges, de-
picted in Fig. 4. In Table 2, the eccentricity of vertices of Cyp,+40 fullerenes are computed for
1 <n <10. If n11 then a general formula for the augmented eccentric connectivity index of Crop,440
is obtained as follows:

Theorem 2.2.
1 1

n
A
=1
§(Caon40) = 180 ), mts  mt6

-+
Snt+4+i

90( ).

Proof. Similar to proof of Theorem 2.1, one can see that there are three types of vertices in the
fullerene graph (See Fig. 4). These are the vertices of the central and outer pentagons and other
vertices of C,+40. Computing the eccentricity of these vertices we have the following table:

Vertices e(u) Number
The Type 1 Vertices 2n+6 10
The Type 1 Vertices 2n+5 10
Other Vertices n+4+i0<i<n+1) 20
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Abstract

In this article we aim to obtain an explicit formula for some distance based graph invariants
of distance-regular graphs. In fact we obtain formulas for Wiener index and its multiplicative
version of a distance-regular graph in terms of its intersection array and its distance partition.
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1 Introduction

Throughout this paper G = (V, E) denotes a connected, simple and finite graph with vertex set V =
V(G) and edge set E = E(G).

The distance d(u,v) between two vertices u and v is the minimum of the lengths of paths between
u and v. The diameter D of a graph G is defined as D := max, ,cy(g)d(u,v). For a graph G of

diameter D, vertex v € V(G), and for 0 < i < D, define G;(v) = {w evidvw) = i}. These cells

Go(v),G1(v),...,Gp(v) form a distance partition (or a level decomposition) of G based on v € G. For
each v € V(G), G1(v) is called the set of neighbors of v; and the size of G;(v) is called the degree of
v. A graph is said to be k-regular if |G| (u)| = |G (v)| =k forall u,veV(G). A distance-regular
graph is a simple connected graph such that for any two vertices « and v, the number of vertices
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at distance i from u and at distance j from v depends only upon i, j, and ¢ = d(v,w). Equivalently,
a distance-regular graph is a simple connected graph of diameter D for which there exist integers
a;,bi,ci,i = 0,...,D such that for any two vertices x,y in V(G) at distance i = d(x,y), there are
exactly ¢; neighbors of y in G;_;(x), b; neighbors of y in G;+(x) and a; neighbors of y in G;(x).
Namely,

a; if j=1i;
|Gi(y)NGj(x) |=¢ ¢ if j=i—1;
b if j=i+1.
€ €1 -+ Cp-1 Cp
The numbers a;,b;, and c¢; are often displayed in a three-line array < a9 a; -+ ap-1 ap p,
bo by -+ bp1 bp

which is known as its intersection array. In particular G is regular of degree k := by and ag = cp =
bp=0, ,ci=1, a+bi+ci=k 0<i<D.We may represent the intersection arrays of a
distance-regular graph as

{bo =k,by,....bp_1;¢1 = 1,c2,...,cp}.

Suppose that G is a distance-regular graph of diameter D with the intersection array {by =
k,bi,....,bp_1;c1 = 1,c2,...,cp}. Fixing 0 < i < D, by the definition of distance-regular graphs,
the size of G;(u) does not depend on the choice of u € V(G). Let us denote the size of G;(u) by k;,
i.e., ki :=|G;(u)],0 <i< D. Note that ko = |Go(u)| = 1 and k; = |G;(u)| =k and

I +k+ky+...+kp = |[V(G)|. (1.1)

Moreover, For any vertex u € V(G), any vertex of G;(u) is adjacent to b; vertices in G;1 (u) and any
vertex of Giy1(u) is adjacent to ¢; vertices in G;(u). Thus by two way of counting the number of
edges between G;(u) and G4 (u) we have:

kib; =| Gi(u) | bi =| Giy-1(u) | civ1 = kiy1Cit1- (1.2)

Hence, it follows from (1.2) that the number of vertices at distance i of a vertex u, namely |G;(u)|, is
obtained directly from the intersection array ([1, Proposition 20.4])

i—1
_ I1 j=0 bj
Hlj:Z Cj

The problem of distances in graph attracts the attention of scientist both as theory and appli-
cations. In 1947, H. Wiener [18] has proposed his path number, as the total distance between all
carbon atoms for correlating with the thermodynamic properties of alkanes. Numerous of its chem-
ical applications were reported and its mathematical properties are well understood. This index now
is called the Wiener index W (G) of a graph G, and defined as the sum of distances between all un-
ordered pairs of vertices of G, i.e., W(G) := ¥y, ,ycy d(u,v). In fact, if we denote by d(G, k), k > 0,
the number of unordered vertex pairs at distance k, then W(G) = Y, k- d(G,k). Note that d(G,3)
is called the Wiener polarity of G which is some times denoted by W,(G).

For u € V(G), the distance sum D(u) and its multiplication version D*(u) of u is defined as
D(u) = Yyey(c)d(u,v), D*(u) = [lyev(c)d(u,v). In this case the Wiener index of G and its

VZEUu

ki = |Gi(u)| (2<i<D) and |Gy(u)| = bo. (1.3)

multiplicative version are represented as follows:

1
W(G) = EuevZ@D(”)’ (1.4)
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H D*(u (1.5)

u€V

The following modification of Wiener index has also been considered:

Wi(G):== Y d(uv)*; 2A#0.

{uyycv

Wi(G):=5 ) Di(u); A#0,
{uv}eVv(G)

where D (u) is called A-distance sum of u and defined as follows: D, (u) = Z{W}Ev(G)a’(u,v)7L

The multiplicative version of Wiener index of G, denoted by W*(G) is also defined as follows [4]:

W*(G) :=T[lev(g)d(u,v) = 17, k-d(G,k). Hosoya [5] introduced a distance-based graph polyno-
v£u

mial H(G,x) = ¥4~ d(G,k)x*, nowadays called the Hosoya polynomial. 1t is easy to check that it

can be written in the following form H(G,x) = Y1, ,ycv(c) X (V) The first derivative of the Hosoya
polynomial at = 1 is equal to the Wiener index.

2 Main Results

Theorem 2.1. Let G be a distance-regular graph whose intersection array is {bo,by,....bp_1;¢1 =

1,¢2,...,cp}. Then we have W) (G) = ”bﬂ ( ZD “—I, d ) .
j=2%J

Theorem 2.2. Let G be a distance-regular graph whose intersection array is {bo,b1,...,bp_1;c1 =

-1
D—1;D D—i
n ho H bi

1,¢2,...,cp}. Then we have W (G) = %D!l.

4HciD+1ﬂ
i=2

Theorem 2.3. Let G be a distance-regular graph of diameter D with n vertices. Then for each
ueV(G)
D

D
D(u) =Y ik, D*(u)=D!]]k,

D|n D

> 1%

A general case of the above theorem is formulated in the following statement whose proof is
done in the same way of Theorem 2.3.

Theorem 2.4. Let G be a distance- regular graph of diameter D with n vertices. Then for each
u€V(G) Dy(u) =Y, *ki, Wa(G)=4X2, itk

Theorem 2.5. Let G be a distance-regular graph of diameter D with n vertices. Then H (G,x) =

%Z,Dzl kix
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Theorem 2.6. Let G be a bipartite distance-regular graph of diameter D with n vertices. Then for
each f =uv € E(G)

Z ikibi+ (i—1)biby ...b;), _Toi (ikibi + (i = 1)b1by... by).

The line graph L(G) of a graph G is defined as follows: each vertex of L(G) represents an
edge of G, and any two vertices of L(G) are adjacent if and only if their corresponding edges share a
common endpoint in G. One can also define iterated line graphs by setting L°(G) = G,L' (G) = L(G)
and generally L"(G) = L(L"~'(G)).

The following observation is due to M.H. Khalifeh at. el [6, Theorem 2.4]

Theorem 2.7. Suppose G is a connected graph with m edges. Then

wiee)-m(c) - ()

Corollary 2.8. Let G be a bipartite distance-regular graph of diameter D with n vertices. Then

W(L(G)) = We(G) + <nb;/2) = TO Z_‘i (ikibi+ (i — Vbibs ... by) + ("bg/z)
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Abstract
In this paper we propose a secret sharing scheme based on elliptic curves over unsecured
channel. The security of this method is based on hardness of Discrete Logarithm Problem (DLP)
of elliptic curves. In addition we use Edwards curve because it provides a time effiecient for point
addition formula.

Keywords: Secret sharing schemes, elliptic curves, Edwards curves.
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1 Introduction

Secret sharing is a method of distributing a secret amongst a group of people by giving each person
a part of secret (a share), in which each of whom have equal rigths in decrypting the secret. Secret
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sharing schemes were introduced independetly by Blakley [1] and Shamir [2] in 1979.
Here we explain two types of secret sharing schemes:

I) (k,k) Threshold Scheme
A dealer, who distributes shares to peolpe, splits a secret S amongst k people such that all k£ people
are needed to construct the secret.

II) (k,n) Threshold Scheme
Dealer splits a secret S into n people such that any group of k people can reconstruct the secret, but
no group of people less than k people can do so.

The special case of threshold secret sharing invented by Shamir in 1979, based on k points S
needed to uniquely determining a polynomial of degree k — 1.
Dealer divides secret S € Z,, into pieces S; by randomly choosing k— 1 elements denoted by {a1,a>, ...,
ag—1} in which a9 = S and

f(x) =ag+aix+ ...+ a1 X!

where each share is a point (x;, f(x;)), (1 <i<n).
To reconstruct the secret S any group of k elements uses a method of calculating the polynomial
f(x), which is based on the Lagrange interpolation formula for polynomials,

k k

FO=Y fe) J] —2

i=1 j=lp XX

Every group of people only interested to compute the secret S = ag, therefore we can make simplifi-
cation, since S = ag = f(0), we substitute x = 0 into Lagrange interpolation formula and get

So we can calculate the secret S with an explicit formula.

2 Review of Elliptic Curves

In this section we briefly give the definitions and some properties of elliptic curve. For more infor-
mation see [4].

Definition. let F be a field of the characteristic different from 2 or 3. An elliptic curve E defined
over F is nonsingular plane curve with the equation

y2 =X +ax+b,

where a,b € F. So that 44> +27b* # 0in F.
Let E(F) be the set of all solutions (x,y) € F together with a point &, called the point at infinity.
For any two points P = (x,,y,) and Q = (x,4,y,) in E(F), operation R = P+ Q defines as

156



o Xp =Xqs Yp = —Vq
R=< 0 P=0
(Xr,yr) 0.
where
Xr = A? —Xp—Xq, Yr= Axp =) = Vp
and
2= { ()’qZ_YP)/(xq —xp) P#Q
(Sxp+a)/2yﬁ P:Qayp7£0
andif y, =0 then2P = 0.
With above definition, E(F) forms an additive abelian group with identity &
Discrete Logarithm Problem on Elliptic Curve (ECDLP)

Let E be an elliptic curve, G € E be a point and C € (G). Discrete logarithm problem on E is the
problem of finding an integer m such that C = mG.

There is no subexponential-time method for solving and the security of elliptic curve cryptograghy
depends on the hardness of discrete logarithm problem [3].

2.1 Edwards Curves

In [5] Edwards introdused an alternative model of elliptic curves over feild F with char(F) # 2.
Bernstein and Lang [6] improved the Edwards curves form and obtained

E,; :)c2+y2 = ler)czyz7

where d € F\ {0, 1} with the identity element &' = (0, 1).

Edwards curves have unified formula that can be use for point addition and point doublings.
For P = (x1,y1) and Q = (x2,y,) in E4(F), the addition law is defined as R = P+ Q = (x3,y3),
where

N T2 W T S8
1 +dxixoy1y2’ 1 —dxixoy1y2

X3

This algorithim is fast and provides a natural protection from side channel attacks.

3 Main Results

In this paper we present a method for secret sharing on elliptic curves.

Let F, be a Galois field, where g is a power of a prime. We consider a group of k people, each
of them identified as {di,d>,...,dr} C IF, known by every one. Also we define notations D and
M = {M;}*_, for dealer and the set of points of an elliptic curve, where M = {M;}*_, are parts of
the message M.
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3.1 Our Scheme

First D chooses elliptic curve E defined over IF, with base point G, such that the number of ellements
of E(IF,) is a large prime or has a large prime factor and D selects a private key ¢ € F;, and computes
T = c¢G. Then D publishes {F;,a,b,G,T} as a public information.

1. D selects random numbers ¢; € Fy, (1 <i < k— 1) and defines f(x) = ¢+ X5 c;x'.

2. D randomly chooses r; € Fy, (1 <i < k) and computes r;G.

3. D sends (M; +r;T,r;G, f(d;)) to each d;, (1 <i < k) as the shares.

3.2 Recovery of the Message by k People

1. k People together can compute private key ¢ by using Lagrange interpolation

k k —d;
i=1 j=1,j4i TG

2. For 1 <i <k, d; computes r;cG and then achieve M; = M; + r;T — r;cG.

The security of this scheme is based on hardness of discrete logarithm problem and the security of
Shamir scheme. No one can reveal M;, and no group of less than k elements can reconstract M.
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Abstract

A topological index of a simple connected graph G is a numeric quantity related to the struc-
ture of the graph G. The set of all automorphisms of G under the composition of mapping forms a
group which is denoted by Aut(G). In this paper we study the Mobius ladder graph G=(V,E) with
the vertex set V and the edge set E and based on the feature of the action Aut(G) on the vertex set
V and the edge set E, we compute the Wiener, Szeged and pl indices this graph.

Keywords: Wiener index, Szeged index, PI index, mobius ladder graph .
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1 Introduction

A topological index of a simple connected graph G is a graph invariant which is related to the
structure of the graph,so when G is a molecular graph it’s topological indices are called as a molec-
ular structure descriptor and are used to undrstand properties of chemical compounds,also the old-
est topological index of a graph Wiener index was first studied by a chemist named H.Wiener[4]
for the determination of the boiling point of paraffin.Today many kinds of topological indices are
known and they have many chemical applications for chemical molecular graphs so, many scien-
tists in over the world like,H.Hosoya,A.A.Dobrynim,l.gutman,....have studied about the calculation
of the topological indices of the graphs also recently many researches in this case have done by
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,S.Yousefi,H.yousefi-Azari,A.R.Ashrafi and M.H.khalifeh in Iran. Let G = (V,E) be a simple con-
nected graph whereV and E are the vertex set and the edge set of G respectively. The Wiener index
of G, is denoted by W(G) and is defined as:

= Z d(u,v)

u,veV

Where d(u.v) is the distance between vertices u and v.If the sum of distances between the vertex u
with all other vertices of the graph G is denoted by d(u) then we have:

Zd

ueV

The Szeged index,see [1] is a topological index of the graph G which is closely related to the
Wiener index of G and coincides with the Wiener index in the case that G is a tree. This index
concerned about how the vertices of the graph G are distributed.and is denoted by SzG) and is
defined as :

S2(G)= ). nu(e|G)ny(e|G)
e=uvekE
The Padmakar-Ivan,PI index [3] is another topological index of a simple connected graph that takes
into account the distribution of edges,so is closely related to Szeged index. The PI index of G is
defined by :
PI(G) = Z New(€|G) + ney(e|G)
e=uvekE

All topological indices are based on a graph representation which in the case of molecular graphs is
related to physico-chemical properties of compounds.

We define a Mobious ladder graph G=(V,E) as a ladder with k steps such that the set of all nodes
of . steps forms the vertex set V of G,so |V| is even.Therefore n is of the forms n=4k or n=4k+2
,where k € N . Let |V| = n ,and the adjacent and opposite vertices are joint by an edge, also the
vertices of the first and the last steps are connected diagonally.

In this paper the Wiener, Szeged and PI index of a certain graph (Mobius ladder), based on the
feature of the action Aut(G) on the vertex set V and the edge set E of G which introduced in [2]
are computed. In [2] it has been proved for a vertex-transitive graph G the Wiener index can be
calculated by the following formula:

W(G) = 1/2|V]d(v)

Where v is an arbitrary vertex . Here by using the vertex-transitive property of graph, the Wiener
index is computed and the PI index of G is calculated by applying the proposition in [2] which
implies:

Let G=(V,E) be a simple connected graph.If Aut(G) on E has orbits E1, E3, ..., E, with represen-
tatives ey, e, ...,e,, Where ¢; = u;v; € E then:

Z |Eil [ (€1 G) + ey (€1 G)]
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2 Results
1.Let G = (V,E) be a Mobius ladder graph, and |V | = n, n > 4 ,TheWiener index of G is:

12(n)(n/2)(n+4)/4)—1 |, n=4k
w(G) { 1/20(((n+2)%)/8—1) , n=4k+2

2. Let G= (V,E) be a Mobius ladder graph, and |V| = n. The Szeged index of G is:

[ 3/2n(n/2—1)> | n=4k
SZ(G)_{ 3/8m3 = 4k+2

3.Let G=(V,E) be a Mobius ladder graph and,|V| = n. The padmakar Ivan index of G is:
[ 2n(n—=5) , n=4k
PI(G)_{ 2n(n—3) ,n=4k+2
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Abstract

Suppose G be a graph with signless Laplacian eigenvalues g1, ¢, ..., g,.The signless Lapla-
cian spectral moments of G is defined 7;(G) = YL, ¢*(G). In this paper we compute T;(G),
0 < i< 5, for any graph G and compare some graphs with respect to signless Laplacian spectral
moments.

Keywords: Signless laplacian, spectral moments, tree.

2010 AMS classification Number: 05C50, 15A18.

1 Introduction

In this section we recall some definitions that will be used in the paper. Let G is a simple graph. The
characteristic polynomial det(AI — A) of a (0, 1)—adjacency matrix of G is called the characteristic
polynomial of G and denoted by P;(A). The eigenvalues of A(i.e. the zeros of det(Al —A)) and the
spectrum of A are also called the eigenvalues and the spectrum of G, respectively. The eigenvalues

163



of G are usually denoted by A;(G), 22(G), -+, Ay(G). Let n, m, R be the number of vertices, the
number of edges and the vertex-edge incidence matrix of a graph G.

Lemma 1. (see [1]) Suppose G is a graph, A is the adjacency matrix of G and Ay, is the adjacency
matrix of the line graph L(G) of G. Then:

1) RR' =A+D,
2) RR=A,+2I,

where D is the diagonal matrix of vertex degrees. The matrix L = D — A is known as the Laplacian
of G and the matrix A 4 D is called signless Laplacian, where D is the diagonal matrix of vertex
degrees. Since non-zero eigenvalues of RR' and R'R are the same, from the above relations we
immediately obtain following result.

Lemma 2.(see [1])Let G is a graph with n vertices and m edges. Then the characteristic polynomial
of L(G) is

P (A) = (A +2)""0Qc(A +2),
where Qg (A) is the characteristic polynomial of the matrix Q = A+ D.

Definition 3. A semi-edge walk of length k in an undirected graph G is an altrnating sequence vy,
er, Vo, €, -+, Vg, €k, Vii1, Of vertices vy, v, ---, viy1 and edges ej,en, ---, e such that for any
i=1,2,---, kthe vertices v; and v;; | are end vertices (not necessarily distinct) of the edge e;.

Lemma 4.(see [2]) Let Q be the signless Laplacian of a graph G. The (i, j)—entry of the matrix Q*
is equal to the number of semi-edge walks of length k starting at vertex i and terminating at vertex j.

LetT, =37, q{-‘(G), k=0,1,2,... be the kth spectral moment for the Q—spectrum. Since 7} =
tr(QF), we have the following corollary.

Corollary 5.(see [2]) The spectral moment 7} is equal to the number of closed semi-edge walks of
length k.

In [3,4], we ordered some regular graphs with respect to spectral moments and in this paper we
obtain the formullas for some signless Laplacian spectral moments for any graph G.

2 Main Results

In this section, we find our description for the signless Laplacian spectral moments of graphs and
order the set of trees of order of n respect to spectral moment. The following two results are crucial
throughout this paper. Let (Tp(G),Ti(G),...,T,—1(G)) be the sequence of spectral moments of
G. For two graphs G; and G, we have G| <7 G; if for some k (k= 1,2,....n — 1), we have
Ti(G1) = Ti(Gz) (i=0,1,....,k—1) and T;(G1) < Tx(G2). An H—subgraph of G is a subgraph
isomorphic to the graph H. The number of all H—subgraphs of G is denoted by ¢¢(H) or ¢ (G). for
short. Let C,, and U, are the cycle of size n, and a graph obtained from C,_; by attaching a leaf to
one of its vertices, respectively. In this paper, we determine the first and the last tree, in an 7 —order,
in the set of all trees of order n, respectively.

In following we have the formulas for 7;, 0 < i < 5, that the three of them are proved in [2].
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Theorem 6. Let G be a graph with n vertices, m edges and vertex degrees dj,ds,...,d,. Then we

have:
H(G) = n,
Tl(G) = id,:Zm,
i=1 )
n(G) = 2m+Y d},
i=1

B(O) = 69(C)+3Y E+Yd

n

T4(G) = Zd,+2zd, 1)+86(Cy) +Zd4
i=1 i=1
+ 2Zd,3+42t,d,+422dd,, j~i
i=1 i=1 Jj=1li#j
n n n
T5(G) = 309(C3)+109(Us)+109(Cs)+ Y &} +6Y d} +6Y tid?

i=1 i=1 i=1

2
l[d +d(d*71)+2q,d+6zlziddj, ji.
J=li=

M=

+ 5

[}

where d; is degree of ith vertex, d; is the degree of its neighbours and #; and ¢; are the number of
triangles and quadrangles containing the ith vertex, respectively.

Theorem 7. In an T —order of trees on n vertices, the first graph is the path P,, and the last graph is
the star Ky ,_1 .
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Abstract

Let R be a commutative ring without identity. We define the graph G(R) with vertex set
V(G(R)) and edge set E(G(R)) as follows:

V(G(R)) ={1|1#{0} ,I< R},

E(G(R)) ={lJ|I+J=R}.
The set A(R) consists of all ideals I of R such that I is not contained in J(R), where J(R) denotes
the Jacobson radical of R. Throughout this paper we consider only commutative ring not neces-
sary unital. In this paper we study about this graph. We show that under some conditions on the
G(R), the ring R is Noetherian or Artinian.

Keywords: Commutative ring, graph.
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1 Introduction

Let G be a graph and L be a set. A coloring of G by L is a function ¢ : V(G) — L with this property:
if u,v € V(G) are adjacent, then c(u) and c(v) are different. The chromatic number of G is the
minimum number of colors which is needed for a proper coloring of G, and is denoted by x(G).
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Recall that a graph is said to be connected if for each pair of distinct vertices v and w, there is a finite
sequence of distinct vertices v = vy,vy,...v,, = w such that each v;v;11 is an edge. A complete graph
is a simple graph in which every pair of distinct vertices is connected by a unique edge. A clique of
the graph is its maximal complete subgraph. We denote the size of the largest clique of G by ©(G).
Obviously for every graph G, x(G) > o(G).

In [3], Beck considered I'(R) as a graph with vertices as elements of R, where two different
vertices a and b are adjacent if and only if ab = 0. He showed that x(I'(R)) = o(I'(R)) for certain
class of rings.

In [6], Sharama and Bhatwadekar defined another graph on R, I'(R), with vertices as elements
of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. They showed that
X(T(R)) < oo if and only if R is a finite ring. In this case % (I'(R)) = o(['(R)) =t +1, where 7 and [
are the number of maximal ideals of R and the number of units of R, respectively.

Maimani et al. in [5] study further the graph defined by Sharama and Bhatwadekar. They study
on connectivity and diameter of this graph. In addition, they completely characterize the diameter
of comaximal graph of commytative rings. In this paper we define a new graph on R, where R be a
commutative ring not necessary unital.

The notation we use is mostly standard and taken from standard graph theory textbooks, such as
[4] and [7].

2 Main Results

Throughout this section R will be a commutative ring with identity.

Definition 1. Let R be a commutative ring without identity. We define the graph G(R) with vertex
set V(G(R)) and edge set E(G(R)) as follows:

V(G(R)) ={I|1#{0} ,I<R},
E(G(R)) = {lJ|I+J =R}.

A ring R is quasi local if it has a unique maximal ideal. A quasi local ring R with unique
maximal m is denoted by (R,m). Obviously R is quasi local ring if and only if E(G(R)) = 0.
In the graph G(R), the induced subgraph Max(R) is complete. In this case we have w(G(R)) =
|[Max(R)|. Moreover m € V(G(R)) is a maximal ideal of R not contained in nonezero ideals of R.
So m is adjacent with all vertices of G(R) and in this case J(R) = {0}. In this section we look at the
conditions on the G(R) to prove R is Noetherian or Artinian.

Theorem 2.1. Let R be a ring, Assume that J(R) is finitely generated and each maximal ideals of R
as vertices of G(R) have finite degree and |Max(R)| > 2. Hence R is Noetherian.

Example. In the ring Z, degree of all maximal ideals as vertices of G(Z) is infinite, but Z is
Noetherian ring. Hence the converse of above theorem is not true.

Corollary. Let R be a ring, Assume that J(R) is finite and each maximal ideals of R as vertices
of G(R) have finite degree and |[Max(R)| > 2 and Spec(R) = Max(R). Then R is Artinian.

Recall that in this type of comaximal graph the clique number of G(R) is equal to |[Max(R)]|.

Theorem 2.2. The following statements are hold:
i. Let R be an Artinian ring then ®(G(R)) < oo and (Spec(R)) is a complete subgraph.
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ii. Let R be an infinite integral domain such that |U(R)| < eo. Then G(R) doesn’t have isolated vertex
and 0(G(R)) = oo

A ring is said to be clean if all of its elements can be written as the sum of a unit and an
idempotent see [1], [2] For example, a quasi local ring is clean. The following theorem characterize
clean rings.

Theorem 2.3. For the ring R, the following are equivalent:
i. R is a finite product of quasi local rings.
ii. R is clean and ®(G(R)) < eo.
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Abstract

In this paper, we review the capacity of some Gaussian channels: the Gaussian channels with
power constraint, the AWGN channels with their idealized duty cycle and the AWGN channels
with duty cycle constraint.

Keywords: Mutual information, channel capacity, Gaussian channel.
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1 Introduction

Definition 1.1. The mutual information /(X;Y) between two random variables with the joint density
flx,y)is
f(xy)

I(X;Y):/f(x,y) logm dx dy.

171



Definition 1.2. A Gaussian channel is a channel with output Y; at time i such that Y; is the sum of the
input X; and the noise Z; such that Z; is drawn independent identically distributed from a Gaussian
distribution with variance N. Thus,

Yi=Xi+Zi, Zi ~ A (O,N).
The noise Z; is assumed to be independent of the signal X;.

Definition 1.3. AWGN is a Gaussian channel that is added to any noise and it has uniform power
across the frequency band.

The most common limitation on the input is an energy or power constraint. We assume an
average power constraint. For any codeword (x1,x2, ...,X,) transmitted over the channel, we require

that
14,
*in <P
ni3

Definition 1.4. The information capacity of a Gaussian channel with power constraint P is
C= max I(X;Y).
fx)
E{X?}<P
Theorem 1.5. [1] The capacity of a Gaussian channel with power constraint P and the noise vari-
ance N is

1 P
— “log(1+ 2.
C=3log(l+ 1)

Definition 1.6. An (M,n)-code for the Gaussian channel with power constraint P consist of the
following:

1. Anindex set {1,2,....M}.

2. An encoding function x : {1,2,...,M} — x" yielding codewords x"(1),x"(2), ...,x" (M), satis-
fying the power constraint P, i.e., for every codeword:

n
Y d(w)<nP,w=12,....M.

i=1
3. A decoding function
g: 1" — {1,2,....M}.

Definition 1.7. A duty cycle is the precentage of one period in witch a signal is active. A duty cycle
may be expressed as
T
D= —x100
P
where D is duty cycle, T is the time the signal is active and P is the total period of the signal.

We assume that 1 — g is the maximum duty cycle allowd. It is required that every codeword
(x1,x2,...,x,) satisfies in

14 1 n—1
n Z L0y + ;zc(l{xn:()m#o} + Z Hx=01201) < 1=¢.
i=1 i=1

We refer to this as duty cycle constraint (q,c).

Definition 1.8. The idealized duty cycle constraint is the special case (g,0).
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2 The Recent Results

The set of all distributions of the channel input X with duty cycle constraint (¢,0) and power con-
straint P is denoted by

A(P,q) = {p|u is a distribution of X, u({0}) > q,Eu{Xz} < P}.

Theorem 2.1. [2] The capacity of the AWGN channel with its idealized duty cycle no greater than
1 — g and power constraint no greater than P is

C(P,gq) = max I(X;X+N).
(Pg)= max IX:X4N)

In particular,
1. the maximum is ashieved by a uniqe distribution [y € A(P,q).
2. Ug is symmetric about O and its second moment is exactly equal to P.

3. Ug is discrete with an infinite number of probability mass points, whereas the number of prob-
ability mass points in any bounded interval is finite.

We consider that p1 is the probability distribution of the process Xi1,X, ..., Uy, is the marginal
distribution of X; and piy, x; is the joint probability of (X;,X;).

Let A"(P,g,c) be the set of n-dimensional distributions witch satify duty cycle constraint (g,c)
and power constraint P:

[bx; ({0}) — 2¢pix; x;., ({0}« (R—{0}))] > g},

S| =

=

(WlEG Y XD <P

1 i
where y, x;({0} * (R—{0})) = P(X; = 0,X; #0).

Theorem 2.2. [2] The capacity of the AWGN channel with duty cycle constraint (q,c) and power
constraint P is

=

1
n?
1

1
C(P,g,c)=lim — max I(X";Y").
e N pPEN"(Pa.c)

The set of stationary distributions which satisfy duty cycle constraint (g,c) and power constraint
P, A(P,g,c), is

{ulu is starionary, Ey(XP) < Py, ({0}) 2t x, ({0} * (R — {0})) > g).
Theorem 2.3. [2] For any u € A(P,q,c), we let
L(w) = I(X1: X1 +N) —1(X1:X2,X3,...),
where N is standard Gaussian and independent of X|. Then we have:
1. L(p) is a lower bound of the channel capacity.
2. The maximum of L is achieved by a discrete first-order Markov process, denoted by p*.

3. W* satisfied in this property: If B; = 1(x, .0} then the variables X; and X1\ are independant,
for all i conditioned on B; and B, and

L(u*) = I(X1:X, +N) —I(By:B>).
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Abstract

Let G be a finite group and .45 denote the set of all non-trivial proper normal subgroups of G.
An element K of A¢; is said to be n—decomposable if K is a union of n distinct conjugacy classes
of G. G is called n—decomposable, if .45 # 0 and every element of .4 is n—decomposable.

In this paper, the problem of finding the structure of non—solvable non—perfect 12 and 13—
decomposable finite groups are considered into account.
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1 Introduction

Let G be a finite group and let 4G be the set of non-trivial proper normal subgroups of G. An
element K of A5 is said to be n—decomposable if K is a union of # distinct conjugacy classes of G.
If A5 # 0 and every element of .4 is n—decomposable, then we say that G is n—decomposable.
In [1], the problem of classifying n-decomposable finite groups was proposed and the authors
characterized the solvable n—decomposable finite groups under certain conditions. In the mentioned
paper, the structure of 2—, 3— and 4—decomposable finite groups are obtained. In [2, 3, 4], the
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authors continued this problem by characterizing n—decomposable finite groups, when 5 < n < 10.
It is merit to state here that such type of problems in group theory was started by Wu Jie Shi in the
field of quantitative structure of finite groups [5].

Throughout this paper, as usual, G denotes the derived subgroup of G, Z(G) is the center of G,
x%, x € G, denotes the conjugacy class of G with the representative x and G is called non-perfect, if
G # G. Also, SmallGroup(n,i) denotes the i’ group of order n in the small group library of GAP.
Our other notations are standard and can be taken from the standard books of group theory.

2 Main Results

In this section we report our new results on the characterization problem of finite non-perfect non-
solvable 12 and 13—decomposable finite groups. To do this, we first introduce some notations. Let
T ={Lx(q) | g = p", p and m are primes} and S = {L,(p) | p is prime}.

Proposition 1. If G is finite non-perfect non-solvable 13—decomposable finite group and p ¢
7(Aut(G')) then G’ is simple.

Proposition 2. Suppose G is non-perfect non-solvable 13—decomposable finite group and G’ €
T US. Then G = Aut(PSL(2,23)).

Proposition 3. Suppose G’ is simple and l//(G’) < 2 then there is no non-perfect non-solvable
13—decomposable finite group.

Proposition 4. Suppose G is finite non-perfect non-solvable finite group and p ¢ m(Aut(G')) then
there is no 12—decomposable finite group.

Proposition 5. Suppose G is non-perfect non-solvable 12—decomposable finite group and G’ €
T US. Then there is no non-perfect non-solvable 12—decomposable finite group.

Proposition 6. Suppose G’ is simple and y/(G,) < 2 then there is no non-perfect non-solvable
12—decomposable finite group.

Proposition 6. If G is finite non-perfect non-solvable 12—decomposable finite group

G 2 U;(5).3,Aut (M), Aut (M2, Aut (Ag).
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Abstract

In this paper, we review the stochastic encoders for channel coding and lossy source coding
with a rate close to the fudemental limits, where the input alphabet for channel coding and the
reproduction alphabet for lossy source coding are finite.

1 Introduction

The sequence U = {U"};>_, of random variables is called a general source, where U" € %". For a

general source U, the spectral Sup-entropy rate H(U) and the spectral Inf-entropy rate H(U) are:

— 1

HWU)=inf{0: i —log——F—+—>0)=0

() =ini{6: Jim p( lor gy > ) =)
1

HU)= 0:li —log——7——~<6)=0;.

H(U) SUP{ ,,EE,P(” Og,uUn(U”) ) }

For a pair (U,V) = {(U",V")};_, of general source, the spectral conditional Sup-entropy rate

H(U|V), the spectral conditional Inf-entropy rate H(U|V), the spectral Sup-mutual information rate
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I(U;V) and the spectral Inf-mutual information rate [(U;V) are:
1

- SR -
. 1 1
H(U|V) :sup{@ '}ﬂp<ﬁlogm < 9) :()}7

pynyn (U™, V") > 0) =0},
g (U™) pyn (V")

Hynyn (U™, V")
Hun (U") pyn (V")
A sequense W = { iy, x» } 7 of conditional probability distributions is called a general channel. For
a general channel W, the channel capacity C(W) is

- . . 1
I(U;V) =inf{0: }gl(}op(zlog

. 1
l(U;V):sup{G:nlgrclop(Zlog <6)=0.

C(W) =sup I(X;Y). (1.1)
b

In [2], the concept of channel capacity is described in detail.

A pair (R,D) consisting of a rate R and a distortion D is called achievable if for all § > 0
and all sufficiently large n there is a pair consisting of an encoder ¢, : #" — .#, and a decoder
W, : My — 2" such that

%10g\//{,,| <R and  P(dy(Wu(9,(Y")),Y") > D) < 8.

For a pair (X,Y) of general sources, D(X,Y) is

D(X,Y) =inf{6 : lim P(d,(X",Y") > 6) = 0}.

b

Let us define 64 (c) = {u : Au = c}. We continue according the definitions in [4]. Let o = {7, } ,
be a sequence of sets, where .24 is a set of functions on %/". For a probabiliy Py , on &, the sequence
(A, Pa) = {(A,Pan) }y-; is an ensemble. Hence, (oA, Px) has an (o, Ba)-hash property if there

=

are two sequence oy = {0aa(n)};_ and B4 = {Ba(n)};;_,, depending on {Py ,,};>_; such that:

For general source Y, the rate distortion R(y) is obtained as [3]:

IN I

w

20) = {(R,D) : %g§§

limos(m =1, limps(m) =0
and
Z Py,({A:Au =Au'}) < Ba(n)
We™\{u}:
Pan({AAu=Au'})> fA0)

forany nand u € Z".
For given r > 0 and R > 0, let (<7, P4) and (%, P3) be ensembles of functions on the same set
2" satisfying

1 1
r=—log|Im&/| and R= —log|Im%|.
n n
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Let X" = X?5(c,m) be a random variable corresponding to the distribution

Pxn (x)

_Ee®) e
Vinju, (Xm) = -l (GAB(c,m)) x € aple,m)
0

x & Gaplc,m).
The stochastic encoder ¢ : Im%& — 2" is

0

0

[ iylem) po(anlem) >
9n(m) = { ”gfmr” ‘uin (%Ag(c,m)) =

and also the decoder v, : #" — ImZ is

¥ (y) = Bxa(cly),

where x4 is defined by

xa(cly) = arg max frynyn (x'|y).
X' €, (c)

The Error probability Error(A,B,C) is given by

1 Py (V]x) pn (x)
Error(A,B,C) ; A + o || ixn (Gag(c,m)).
Uxn (€ap(c,m)=0 Lxn (€ap(c,m)>0
x€Cyp(c,m)
Y (y)#m

For introducing a lossy source code, a constrained random-number generator is used for con-
structing an encoder. Let X" = X’ (c|y) be a random variable corresponding to the distribution

xnjyn (X, )

S T ST Y 5 T IR
0

x ¢ 6x(c)

and define the stechastic encoder ¢ : #"* — ImZ by

[ BRIel) oy (a()y) > 0
W0)= { Yerror” i (4(0)]y) = 0

The decoder v : Im#B — 2" is
WYn (m) = xAB(Ca m),

where x4 is defined as
xap(c,m) = argmax € Gpp(c,m)pxn (x').
xl

The error probability Error(A,B,C,D) is given by
Error(A,B,C,D) = P(dy(yn(¢x(Y")),Y") > D),

where P(d, (Y (9(Y")),Y") = oo and pixayn (€ (c)ly) = 0.
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2 The Recent Results

Lemma 1. /5] For a general channel W,

cwW)= Sl;p[ﬂ(X) —H(X|Y)],

Where the supremum is taken over all general sources X.

Theorem 1. [1] Assume that r,R > 0 satisfy
r>HX|Y) , r+R<H(X). 2.1)

Let an ensemble (of ,Py) (resp. (4B, Pg)) has an (0, Ba)-hash (resp. (g, Bp)-hash) property. Then
for any & > 0 and all sufficeintly large n there are functions A € o/ and B € % and a vector ¢ € Imo/
such that

Error(A,B,C) < 4.

The channel capacity is achievable with the proposed code by letting X be a source that attains
the supremum on the right hand side of (1.1).

Theorem 2. [1] Assume that r,R > 0 satisfy
r<H(X|Y) , r+R>H(X)

And an ensemble (7 ,Py) (resp. (B, Pg)) has an (04, Ba)-hash (resp. (o, Bg)-hash) property. Then
for any 6 > 0 and all sufficeintly large n there are functions A € &/ and B € 9 and a vector ¢ € Ims/
such that

Error(A,B,C,D) < P(d,(X",Y") > D)+ 0.

By assuming that {lixn|yn }n=1= satisfies

D(X,Y) <D,

we have the fact that lim P(d,(X",Y") > D) = 0 from the definition of D(X,Y). If n — o, § — 0
n—yoo

and r — H xy) then for any (R, D) close to the boundary of Z(Y ), there is a sequence of proposed
codes such that
lim Error(A,B,C,D) = 0.

n—yoo
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Abstract

In this paper, we compute the normalized Laplacian spectral distances
and normalized Laplacian cospectrality of some particular classes of graphs.
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Output: initial state IS — Fn

9:
10: IS « P(IS)
11: end for

12: return IS

IS «+ k
fori=0to 79 do
if IV]i|=1 then

IS « S1(IS)

else

IS « SO(IS)

end if

end for

fori =0to 79 do

Algorithm 2 keystream generation
Input: initial state IS — Fn

Output: keystream ks — Fmy

1:

ks «— ]
fori=0toL-1do
ks «— ks|| Q(IS)

IS «+— P(IS)

end for

return ks
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