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This study presents an exact analytical solution of transient heat conduction in cylindrical multilayer
composite laminates. This solution is valid for the most generalized linear boundary conditions consisting
of the conduction, convection and radiation heat transfer. Here, it is supposed that the fibers are winded
around the cylinder and their direction can be changed in each lamina. Laplace transformation is applied
to change the domain of the solutions from time into the frequency. An appropriate Fourier transforma-
tion has been derived using the Sturm–Liouville theorem. Here, a set of equations for Fourier coefficients
are obtained based on the boundary conditions both inside and outside the cylinder, and the continuity of
temperature and heat flux at boundaries between adjacent layers. The exact solution of this set of equa-
tions is obtained using Thomas algorithm and Fourier coefficients are expressed by recessive relations.
Due to the difficulty of applying the inverse Laplace transformation, the Meromorphic function method
is utilized to find the transient temperature distribution in laminate. Some industrial examples are pre-
sented to investigate the ability of current solution for solving the wide range of applied steady and
unsteady problems.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Current developments in composite materials have introduced
these materials as the best choice in many branches of engineering
applications. This is generally related to some advantages of these
materials such as higher ratio of strength to weight, plasticity, low
cost and their unique behavior of anti-corrosion. Today, composite
materials have been used abundantly in different fields of indus-
trial applications such as aerospace [1–3], brake and friction
systems [4,5], fins, vessels, heat exchangers [6–9], electrical appli-
cation [10,11] and biomaterials [12,13]. Although, there are a lot of
articles that deal with mechanical and thermo-mechanical behav-
iors of these materials, [14–17] just a few studies related to heat
conduction phenomena are available. It is important to mention
that heat conduction is very significant in manufacturing process
[18–20], thermal fraction analysis [21–23] and on the like.

Previous investigations of the heat transfer in composite mate-
rials have been restricted mostly to numerical analysis. A new
approximated computational model has been proposed by Blanc
and Touratier [24] to analyze heat transfer in composite materials.
In fact, this approach is completely coincident with a finite element
approximation in one-dimensional problems. A computational
ll rights reserved.
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study of heat transfer in unidirectional composites using homoge-
nization technique and finite element method is presented by
Kaminski [25]. He showed that the real composite behavior is esti-
mated by the homogenized model response. Corlay and Advani
[26] worked on the determination of numerical and experimental
temperature of a thin composite plate that is subjected to a con-
centrated heat source. They conducted a parametric investigation
to determine impressive dimensionless numbers and their effect
on the temperature distribution. A numerical model for thermal
conductivities of four-axial non-woven composites (NWCs) has
been proposed using thermal resistance concept by Lee et al.
[27]. It has been shown that when the NWCs are rain forced with
rods of the same diameters in in-plane directions, they can possess
transverse isotropy. Similar works have been done for heat transfer
through woven textiles [28,29].

A number of analytically investigations have been performed in
this discipline. Ma et al. [30,31] have developed an analytical solu-
tion of heat conduction problem for an anisotropic medium; they
used a linear transformation to convert the original anisotropic
problem to an equivalent isotropic problem with a same geometri-
cal configuration. Analytical two-dimensional heat conduction in
polar coordinate for a multi-layer medium has been presented by
Singh et al. [32]; separation of variables method has been used
to achieve the transient temperature distribution which is only va-
lid for homogenous boundary conditions of the first and second
kind in the angular direction. Kayhani et al. [33] presented an exact
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solution for steady state conductive heat transfer of cylindrical
composite laminates in radial and angular directions just available
for geometries with a high ratio of longitudinal to radial dimen-
sion. An analytical solution for heat conduction of cylindrical com-
posite laminate in longitudinal and radial directions has been also
done by Kayhani et al. [34]. They obtained a closed form of temper-
ature distribution for steady state condition.

In the present paper, unsteady heat conduction in composite
laminates has been investigated analytically. Laminate is in cylindri-
cal shape and the fibers are winded around the cylinder. The direc-
tion of fibers could be varied layer by layer. Fig. 1 shows the
geometry of such composite cylinder. Axisymmetric unsteady heat
transfer in longitudinal and radial directions (r, z) has been focused
in this research. Unlike the work of Kayhani et al. [34] which ex-
pressed a solution for steady state condition, the current paper pre-
sents an analytical solution for transient conductive heat transfer in
cylindrical multi-layer composite laminates as a more generalized
solution. Here, the authors considered the most general linear
boundary conditions. Using this solution, it is possible to investigate
the combined effects of conduction, convection and radiation both
inside and outside the cylindrical composite laminates which is
the main innovation of current study. The Laplace transformation
has been used to change the problem domain from time into
frequency. The resulted partial differential equation has been sim-
plified into an ordinary differential equation by applying an appro-
priate Fourier transformation. This Fourier transformation has
been derived using the Sturm–Liouville theorem. Here, a set of equa-
tions for Fourier coefficients are obtained based on the boundary
conditions both inside and outside the cylinder and temperature/
heat flux continuity at boundaries located between the layers. The
exact solution of this set of equations is obtained using Thomas algo-
rithm and Fourier coefficients are expressed by recessive relations.
Finally, the inverse Fourier and inverse Laplace transformations
have been respectively applied, to attain the time dependent tem-
perature distribution of composite laminate. The main problem
encountered at this stage is the difficulty to solve the complex inte-
gral of inverse Laplace. Here, the authors use a technique called
‘‘Meromorphic function method’’ to overcome on this problem. This
general solution has been utilized on some applied examples to
verify the ability of the current solution in achieving the transient
temperature distribution in different industrial situations.
2. Conductive heat transfer in composites

In this section, the basic concepts of conductive heat transfer in
composite laminates are presented briefly. Fourier law for conductive
Fig. 1. Direction of fibers in a cylindrical laminate.
heat transfer in orthotropic mediums in a cylindrical system is as
follows [35]:
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where q is heat flux, kij is conductive heat transfer coefficient and T
is temperature. The relations between heat conduction coefficients
have been investigated in details by Fung [36] and Powers [37]. In
order to study the heat conduction in composite laminates, two dif-
ferent coordinate systems should be defined [38]. Here, (x1, x2, x3)
and (r, u, z) are considered as on-axis and off-axis coordinate sys-
tems, respectively. Off-axis coordinate system is defined to study
the thermal properties in unique directions. The direction of on-axis
coordinates depends on fiber orientation, in a way that x1 is indirec-
tion of the fibers, x2 is perpendicular to the fiber direction located in
the plane of lamina and x3 is the third orthogonal direction. The fi-
ber direction in each layer can be different from the other layers.
Therefore, on-axis and off-axis systems have an angular deviation
equal to h in each lamina. The Fourier law in on-axis coordinate sys-
tem can be written as [39]:
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In this study, the composite laminate is in cylindrical shape. Hence,
the problem must be solved in a cylindrical coordinate system. As
shown in Fig. 1, the fibers have been winded in specific directions
around the cylinder. Here, h is the angle between the tangent line
on cylinder in u direction (t 0) and the tangent line in fibers’ direc-
tion (L0). Applying the rotation h to the on-axis conductivity tensor
[k], the off-axis conductivity tensor ½�k� is obtained [34]:

�k11 ¼ k22
�k22 ¼ m2

l k11 þ n2
l k22

�k33 ¼ n2
l k11 þm2

l k22

�k12 ¼ �k21 ¼ 0
�k13 ¼ �k31 ¼ 0
�k23 ¼ �k32 ¼ mlnlðk11 � k22Þ

ð3Þ

In these relations, ml and nl represent cos h and sin h, respectively.
Using the balance of energy in a cylindrical element and substitut-
ing Eq. (3) into the Eq. (1), the two-dimensional unsteady heat con-
duction equation in cylindrical laminate will be achieved:
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whereq and cp are density and specific heat capacity at constant pres-
sure, respectively. Due to the multi-layer form of laminate, it is nec-
essary to obtain the relation between the temperature and heat flux
of layers. Fig. 2 shows the arrangement of the layers in the cylindrical
laminate. If r = ri is boundary between two layers i and i + 1, then tem-
perature continuity and heat flux continuity will be as follows:

TðiÞ ¼ Tðiþ1Þ ð5aÞ

kðiÞ22
@TðiÞ

@r
¼ kðiþ1Þ

22
@T ðiþ1Þ

@r
ð5bÞ



Fig. 2. Arrangement of layers in a cylindrical laminate.
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3. Analytical solution

In this section, the analytical solution of unsteady temperature
distribution under generalized linear boundary conditions is pre-
sented. For simplification, the modified temperature has been de-
fined as:

/ðr; z; tÞ ¼ Tðr; z; tÞ � Ti ð6Þ

where Ti is the initial temperature of laminate. The energy equation
for two- dimensional heat conduction in radial and longitudinal
directions can be written as:

ar
@2/
@r2 þ ar

1
r
@/
@r
þ az;i

@2/
@z2 ¼

@/
@t

ð7Þ

where

ar ¼
k22

qcp
ð8aÞ

az;i ¼
n2

l k11 þm2
l k22

qcp
ð8bÞ

It is important to mention that az,i is a function of fibers’ angle in
each layer and can be changed layer by layer. Initial condition and
general linear boundary conditions can be expressed as follows:

/ðiÞðr; z;0Þ ¼ 0; i ¼ 1;2; . . . ; nl ð9aÞ

a1/ðr;0; tÞ þ b1
@/ðr;0; tÞ

@z
¼ f1ðr; tÞ ð9bÞ

a2/ðr; L; tÞ þ b2
@/ðr; L; tÞ

@z
¼ f2ðr; tÞ ð9cÞ

c1/ðr0; z; tÞ þ d1
@/ðr0; z; tÞ

@r
¼ g1ðz; tÞ ð9dÞ

c2/ðrnl
; z; tÞ þ d2

@/ðrnl
; z; tÞ

@r
¼ g2ðz; tÞ ð9eÞ

where f1(r, t), f2(r, t), g1(z, t), and g2(z, t) are arbitrary functions. The
constant coefficients a1; a2; c1, and c2 have the same dimensions as
the convection coefficient (i.e., W/m2 K), whereas b1; b2; d1, and d2

have the same dimensions as the conduction coefficient (i.e., W/
m K). Laplace transformation has been used to convert the heat
conduction equation (Eq. (7)) from time domain (t) into frequency
domain (s) [40]:

Lf/ðr; z; tÞg ¼ �/ðr; z; sÞ ð10Þ

Applying the Laplace transformation and initial condition on Eq. (7),
the energy equation in frequency domain is obtained:

ar
@2 �/
@r2 þ ar

1
r
@�/
@r
þ az;i

@2 �/
@z2 � s�/ ¼ 0 ð11Þ

Furthermore, the boundary conditions in frequency domain can be
expressed as:

a1
�/ðr;0; sÞ þ b1

@�/ðr;0; sÞ
@z

¼ �f 1ðr; sÞ ð12aÞ

a2
�/ðr; L; sÞ þ b2

@�/ðr; L; sÞ
@z

¼ �f 2ðr; sÞ ð12bÞ

c1
�/ðr0; z; sÞ þ d1

@�/ðr0; z; sÞ
@r

¼ �g1ðz; sÞ ð12cÞ

c2
�/ðrnl

; z; sÞ þ d2
@�/ðrnl

; z; sÞ
@r

¼ �g2ðz; sÞ ð12dÞ

where

�f 1ðr; z; sÞ ¼ Lff1ðr; z; tÞg ð13aÞ

�f 2ðr; z; sÞ ¼ Lff2ðr; z; tÞg ð13bÞ

�g1ðr; z; sÞ ¼ Lfg1ðr; z; tÞg ð13cÞ

�g2ðr; z; sÞ ¼ Lfg2ðr; z; tÞg ð13dÞ

Due to the complicated boundary conditions, an appropriate Fourier
transformation has been derived using Sturm–Liouville theorem.
The Fourier transformation of arbitrary function f(z) could be writ-
ten as follows [40]:

Fðf Þ ¼
R b

a sðzÞf ðzÞu0nðzÞdzR b
a sðzÞu02n dz

ð14Þ

where s(z) is the weighting function and u0nðzÞ is the eigenfunction
related to homogenous form of heat transfer equation and bound-
ary conditions in z direction. In addition, the inverse Fourier trans-
formation has been defined as:

f ðzÞ ¼
X1
n¼0

Fðf Þu0nðzÞ ð15Þ

Since we study the unsteady heat conduction in radial and longitu-
dinal direction, the temperature distribution could be separated as
two independent functions R(r) and Z(z):

�/ðr; z; sÞ ¼ RðrÞ � ZðzÞ ð16Þ

Substituting Eq. (16) into the Eq. (11), heat conduction equation has
been separated as:

a�
R00

R
þ a�

R0

R
� s ¼ �

€Z
Z
¼ k2 ð17Þ

where k is a constant and a⁄ is defined as:

a� ¼ ar

az�i
ð18Þ

The following equation could be found from the Eq. (17):

@2ZðzÞ
@z2 þ k2ZðzÞ ¼ 0 ð19Þ
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Also, homogenous boundary conditions in z direction are:

a1Zð0Þ þ b1
@Zð0Þ
@z

¼ 0 ð20aÞ

a2ZðLÞ þ b2
@ZðLÞ
@z
¼ 0 ð20bÞ

Solving Eq. (19) under the homogeneous boundary conditions (Eq.
(20)), the eigenfunction of this problem (u0n) will be achieved:

u0n ¼ ða1 sinðknzÞ � b1kn cosðknzÞÞ ð21Þ

Eigenvalues (kn) of the Eq. (21) are obtained by solving the follow-
ing trigonometric equation:

ða1b2 � a2b1Þkn cosðknLÞ þ ða2a1 þ b1b2k
2
nÞ sinðknLÞ ¼ 0 ð22Þ

In this problem, the weighting function (S(z)) is constant [40].
Substituting these relations into the Sturm–Liouville Eq. (14), suit-
able Fourier transformation (F) will be obtained:

Fðf Þ ¼ 4kn

A2
n

Z L

0

�
f ðzÞða1 sinðknzÞ � b1kn cosðknzÞÞ

�
dz ð23Þ

where

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2

1 þ ðb1knÞ2
� �

sinð2knLÞ þ 2a1b1kn cosð2knLÞ þ 2knða2
1

r

þ b1knÞ2ÞL� 2a1b1kn

�
ð24Þ

The second order derivation of Fourier transformation is obtained
using the fractional integration technique:

Fðf 00Þ ¼
2kn
An

� �2 �a1
ða2 cosðknLÞ�b2kn sinðknLÞÞ

�f 2ðr; sÞ þ �f 1ðr; sÞ
h i

�k2
nFðf Þ

8<
:

9=
; ð25Þ

Eq. (11) is a second order partial differential equation. By applying
the Fourier transformation (Eqs. (23) and (25)) on Eq. (11), the heat
conduction will be changed to an ordinary differential equation:

a�
@2U
@r2 þ a�

1
r
@U
@r
� k2

n þ S=az;i
	 


U

¼ 2kn

An

� �2

� a1

ða2 cosðknLÞ � b2kn sinðknzÞÞ
�f 2ðr; sÞ � �f 1ðr; sÞ

� �
ð26Þ

Moreover, boundary conditions in r direction – Eqs. (12c) and (12d)
– will be altered:

c1Uðr0;n; sÞ þ d1
@Uðr0;n; sÞ

@r
¼ G1ðn; sÞ ð27aÞ

c2Uðrnl
;n; sÞ þ d2

@Uðrnl
;n; sÞ

@r
¼ G2ðn; sÞ ð27bÞ

where

Uðr;n; sÞ ¼ Fð�/ðr; z; sÞÞ ð28aÞ

G1ðn; sÞ ¼ Fð�g1ðz; sÞÞ ð28bÞ

G2ðn; sÞ ¼ Fð�g2ðz; sÞÞ ð28cÞ

The solution of Eq. (26) is as follows:

UðiÞðr;n; sÞ ¼ aðiÞn I0ðxn;srÞ þ bðiÞn K0ðxn;srÞ þwðiÞðr;n; sÞ ð29Þ
where

xn;s;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þ s=az;i

q
ð30Þ

and w(i)(r, n, s) is non-homogenous solution of Eq. (26) and in
general form has been written as:
wðiÞðr;n; sÞ ¼ I0ðxn;s;irÞ �
Z rnl

r0

½r � K0ðxn;s;irÞ � hðr;n; sÞ�dr

þ K0ðxn;s;irÞ �
Z rnl

r0

½r � I0ðxn;s;irÞ � hðr;n; sÞ�dr ð31Þ

where

hðr;n; sÞ ¼ a1

ða2 cosðknLÞ � b2kn sinðknzÞÞ
�f 2ðr; sÞ � �f 1ðr; sÞ ð31aÞ

I0 and K0 represent modified Bessel functions of the first and the
second kind of order zero, respectively. Regarding to the boundary
conditions in r direction and considering the temperature and heat
flux continuity at the boundaries located between layers, series
coefficients (an and bn) will be achieved:
� Applying boundary condition inside of cylinder (Eq. (27a)):
að1Þn;s c1I0ðxn;s;1r0Þ þ d1xn;s;1I1ðxn;s;1r0Þ½ �

þ bð1Þn;s c1K0ðxn;s;1r0Þ � d1xn;s;1K1ðxn;s;1r0Þ½ �

¼ G1ðn; sÞ � c1wð1Þðr0;n; sÞ � d1
@wð1Þðr0;n; sÞ

@r
ð32aÞ
� Applying boundary condition outside of cylinder (Eq. (27b)):
aðnlÞ
n;s c2I0ðxn;s;nl

rnl
Þ þ d2xn;s;nl

I1ðxn;s;nl
rnl
Þ

� �
þ bðnlÞ

n;s c2K0ðxn;s;nl
rnl
Þ � d2xn;s;nl

K1ðxn;s;nl
rnl
Þ

� �
¼ G2ðn; sÞ � c2wðnlÞðrnl

;n; sÞ � d2
@wðnlÞðrnl

;n; sÞ
@r

ð32bÞ
� Applying temperature continuity at the boundary located
between the layer i and i + 1 (Eq. (5a)):
UðiÞðri;n; sÞ ¼ Uðiþ1Þðri;n; sÞ

) aðiÞn;sI0ðxn;s;iriÞ þ bðiÞn;sK0ðxn;s;iriÞ

� aðiþ1Þ
n;s I0ðxn;s;iþ1riÞ þ bðiþ1Þ

n;s K0ðxn;s;iþ1riÞ

¼ wðiþ1Þðri;n; sÞ �wðiÞðri;n; sÞ ð32cÞ
� Applying heat flux continuity at the boundary located between
the layer i and i + 1 (Eq. (5b)):
@UðiÞðri;n;sÞ
@r

¼@Uðiþ1Þðri;n;sÞ
@r

)kðiÞ22 aðiÞn;sxn;s;iI1ðxn;s;iriÞ
h

þbðiÞn;spn;s;iK1ðxn;s;iriÞ
i

� leftkðiþ1Þ
22 aðiþ1Þ

n;s xn;s;iþ1I1ðxn;s;iþ1riÞ
h

þbðiþ1Þ
n;s xn;s;iþ1K1ðxn;s;iþ1riÞ

i
¼kðiþ1Þ

22
@wðiþ1Þðri;n;sÞ

@r
�kðiÞ22

@wðiÞðri;n;sÞ
@r

ð32dÞ
where I1 and K1 represent modified Bessel functions of the first and
second kind of order one, respectively. In order to determine series
coefficients in each layer (aðiÞn and bðiÞn ), a set of equations consist of
Eqs. (32a), (32b), (32c), and (32d) should be solved. In this set of
equations, the matrix of coefficients is a five diagonal matrix. Here,
the researchers used Thomas algorithm to achieve a reciprocity
relations between the series coefficients in each layer:

að1Þn;s ¼ Mð1Þ
n;s ð33aÞ

bðiÞn;s ¼ NðiÞn;s � aðiÞn;s � aðiÞn;s

aðiþ1Þ
n;s ¼ Mðiþ1Þ

n;s � bðiþ1Þ
n;s � bðiÞn;s

8>><
>>: 1 < i < nl � 1 ð33bÞ

bðnlÞ
n;s ¼ NðnlÞ

n;s � aðnlÞ
n;s � aðnlÞ

n;s ð33cÞ



Table 1
Properties of graphite fibers and epoxy matrix [42].

Matrix material Epoxy
Fibers material Graphite
Conductive coefficient of matrix (W/m K) 0.19
Conductive coefficient of fibers (W/m K) 14.74
Heat capacity of matrix (J/kg K) 1613
Heat capacity of fibers (J/kg K) 709

Table 2
Properties of graphite/epoxy composite material [42].

k In parallel direction of fibers (W/m K) 11.1
k In perpendicular direction of fibers (W/m K) 0.87
Volumetric percentage of fibers 75
Melting point (K) 450
Heat capacity (J/kg K) 935
Density (kg/m3) 1400
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where an,s, bn,s, Nn,s and Mn,s for all layers are obtained from follow-
ing relations:

aðnlÞ
n;s ¼

c2I0ðxn;s;nl
rnl
Þ þ d2xn;s;nl

I1ðxn;s;nl
rnl
Þ

c2K0ðxn;s;nl
rnl
Þ � d2xn;s;nl

K1ðxn;s;nl
rnl
Þ ð34aÞ

NðnlÞ
n;s ¼

G2ðn; sÞ � c2wðnlÞðrnl
;n; sÞ � d2

@wðnlÞðrnl
;n;sÞ

@r

c2K0ðxn;s;nl
rnl
Þ � d2xn;s;nl

K1ðxn;s;nl
rnl
Þ ð34bÞ

bðiþ1Þ
n;s ¼ pi

vi�aðiþ1Þ
n;s

Mðiþ1Þ
n;s ¼ Ei�Nðiþ1Þ

n;s

vi�aðiþ1Þ
n;s

aðiÞn;s ¼ ci

wi�bðiþ1Þ
n;s

NðiÞn;s ¼
Fi�Mðiþ1Þ

n;s

wi�bðiþ1Þ
n;s

8>>>>>>>>><
>>>>>>>>>:

1 < i < nl � 1 ð34cÞ

Mð1Þ
n ¼ G1ðn; sÞ � c1wð1Þðr0; n; sÞ � d1

@wð1Þðr0; n; sÞ
@r

�
Nð1Þn;s ðc1k0ðxn;s;1r0Þ � d1xn;s;1K1ðxn;s;1r0ÞÞ

ðc1I0ðxn;s;1r0Þ þ d1xn;s;1I1ðxn;s;1r0ÞÞ � að1Þn ðc1k0ðxn;s;1r0Þ
� d1xn;s;1K1ðxn;s;1r0ÞÞ ð34dÞ

where coefficients pi, vi, ci, wi, Ei and Fi are as follows:

pi ¼
�I0ðxn;s;iriÞK1ðxn;s;iriÞ � I1ðxn;s;iriÞK0ðxn;s;iriÞ

xn;s;iþ1
xn;s;i

kðiþ1Þ
22

kðiÞ22

I0ðxn;s;iriÞK1ðxn;s;iþ1riÞ þ I1ðxn;s;iriÞK0ðxn;s;iþ1riÞ

ð35aÞ

vi ¼
�xn;s;iþ1

xn;s;i

kðiþ1Þ
22

kðiÞ
22

I0ðxn;s;iriÞI1ðxn;s;iþ1riÞ þ I0ðxn;s;iþ1riÞI1ðxn;s;iriÞ

xn;s;iþ1
xn;s;i

kðiþ1Þ
22

kðiÞ
22

I0ðxn;s;iriÞK1ðxn;s;iþ1riÞ þ I1ðxn;s;iriÞK0ðxn;s;iþ1riÞ

ð35bÞ

ci ¼
I0ðxn;s;iriÞ

vi � K0ðxn;s;iþ1riÞ � I0ðxn;s;iþ1riÞ
ð35cÞ

wi ¼
pi � K0ðxn;s;iþ1riÞ þ K0ðxn;s;iriÞ
vi � K0ðxn;s;iþ1riÞ � I0ðxn;s;iþ1riÞ

ð35dÞ

Ei ¼ pi kðiþ1Þ
22

@wðiþ1Þðri;n; sÞ
@r

� kðiÞ22
@wðiÞðri; n; sÞ

@r

� ��

�xn;s;ik
ðiÞ
22ðwðiþ1Þðri;n; sÞ �wðiÞðri;n; sÞÞI1ðxn;s;iþ1riÞ

i
ð35eÞ

Fi ¼
Ei � K0ðxn;s;iþ1riÞ �wðiþ1Þðri; n; sÞ �wðiÞðri; n; sÞ

vi � K0ðxn;s;iþ1riÞ � I0ðxn;s;iþ1riÞ
ð35fÞ

The temperature distribution in frequency domain for each layer
(�/ðiÞðr; z; sÞ) is determined by utilizing the inverse Fourier transfor-
mation (Eq. (15)) on the Eq. (29):

�/ðiÞðr; z; sÞ ¼
X1
n¼1

ðUðiÞðr;n; sÞ �unðzÞÞ

¼
X1
n¼1

ðaðiÞn;sI0ðxn;s;irÞ þ bðiÞn;sK0ðxn;s;irÞ þwðiÞðr; n; sÞÞ

� ða1 sinðknzÞ � b1kn cosðknzÞÞ ð36Þ

It is important to mention that in Eq. (36), the coefficients aðiÞn;s, bðiÞn;s

and the arguments of Bessel functions (xn,s,i) are functions. The
laminate temperature in time and space domain will be achieved
using the inverse Laplace transformation:
/ðr; z; tÞ ¼ L�1f�/ðr; z; sÞg ¼ 1
2pj

Z cþj1

c�j1
est �/ðr; z; sÞds ð37Þ

where c is a constant complex number and real part of �/’s poles are
larger than c. Finding an exact solution for complex integral ex-
pressed with Eq. (37) is very difficult or maybe impossible. Here,
‘‘Meromorphic Function method’’ has been used to solve this com-
plex integral [41]. Based on this method, a function is fitted on �/ as:

�/ðiÞðr; z; sÞ ¼
Xn

i¼1

ji

sþ #i
ð38Þ

where #i introduces the function poles of �/. Finally, the complex
integral of Eq. (38) can be calculated as follows:

/ðiÞðr; z; tÞ ¼
Xn

i¼1

ji expð�#itÞ ð39Þ
4. Results and discussion

In this section, the researchers examined the ability of the cur-
rent analytical solution to solve the practical engineering prob-
lems. For this reason, we selected two applied cases consisting of
a multi-layer composite coolant pipe under a longitudinally vary-
ing heat flux and a multi-layer storage tank with temperature con-
trolled fluid. These results can be used to analyze the conductive
heat transfer and thermal fracture in composite pipes and vessels.
The composite material considered in this study is graphite-epoxy
(25% epoxy and 75% graphite fibers). Graphite is a conductive
material while epoxy is a heat insulator; as a result, there is a sig-
nificant difference between conductive heat transfer coefficients
indirection and perpendicular direction of fibers. This difference
helps us to investigate the properties of two-dimensional orthotro-
pic heat conduction in details. Physical properties of the fiber and
matrix are presented in Table 1. The physical properties of compos-
ite which is made up of graphite and epoxy are also available in
Table 2.

In order to investigate the effects of fibers’ angle on tempera-
ture distribution of laminates, three different arrangements of fi-
bers in laminate have been considered:

1. Fiber angles in all laminas are equal to zero (the fibers are
winded in / direction) so the composite laminate is in the form
of an isotropic laminate with conductive coefficients krr =
kzz = k22.



Fig. 3. Composite pin fin cooling rate variation with conductivity ratio.

Fig. 4. History of temperature for the center of an isotropic cylinder.
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2. Fiber angles in all laminas are equal to 90� (the fibers are placed
in z direction) so the composite laminate is in the form of a
block orthotropic material with conductive coefficients kzz = k11

and krr = k22.
3. Fibers are placed in the laminas in the form of a multi-layer

quasi-isotropic laminate (½0�; 45�; 90�; 135�; 180�; 225�; 270�;
315��).

An analytical solution for steady heat conduction in a single
layer orthotropic pin fin has been presented by Bahadur and
Bar-Cohen [43]. Heat conduction in such pin fin is such a simple
part of current research that the angle of fibers’ in a single-layer
laminate in steady state is equal to 90�. The result of Bahadur
and Bar-Cohen solution is employed to validate the result of this
paper. Fig. 3 shows the variation of cooling rate in terms of conduc-
tivity ratio (k⁄ = k11/k22). This figure has been depicted in different
arrangements of fibers. According to the figure, the result in
Fig. 5. Geometry and boundary
orthotropic case agrees with the result of Bahadour and Bar-Cohen
[43]. Furthermore, in order to validate our results in unsteady sit-
uations, an isotropic solid cylinder under specific boundary condi-
tions and predefined initial condition has been considered. The
temperature distribution of cylinder has been achieved using sep-
aration of variables method (refer to Appendix A). The Eq. (39)
should presents the same result when the fibers’ angles in all lam-
inas are equal to zero and k⁄ = 1. The history of temperature varia-
tion in the solid cylinder for various amount of radial Biot numbers
(Bir = hr1/K) are presented in Fig. 4. The figure is depicted using
both analytical solutions presented by Eqs. (39) and (A24). Accord-
ing to the figure, the results are completely coincident. In this
study, the following applied examples are considered:
4.1. Case 1: coolant pipe

Temperature distribution in a five-layer coolant pipe with lon-
gitudinally varying heat flux at outside has been considered. It is
assumed that heat flux varied as a sinusoidal function,
_q00o ¼ aþ b sinðpz=LÞ, where a and b are two constants and L refers
to length of pipe. This condition usually occurs in cooling pipe of
nuclear reactors [44]. Here, we considered a five-layer graphite
epoxy composite pipe and it is supposed that the reactor is cooled
with air. Fig. 5 shows the geometry and boundary conditions of
such a pipe. Properties of this pipe are presented in Table 3. The
coefficients a and b are supposed equal to be 90 and 250 w=m2,
respectively. At the left hand side of the pipe, temperature is con-
stant and it is isolated at the other side. Moreover, there is convec-
tion inside the pipe.
4.2. Case 2: storage tank

Recently, a new kind of storage tanks called ‘‘Lock-Temperature
Storage Tanks’’ has been developed which have the ability to stratify
hot and cold water. An inner chamber baffle that absorbs and
eliminates turbulence caused by incoming water was used. The re-
sult is directing the hottest water to the top of the tank and the
colder water to the bottom for returning to the heater. Since 1/3 less
hot water storage is needed with this kind of storage tanks than
with ordinary ones, so there are several economic features to con-
sider such as, reduced water heater operation cost, lower standby
losses and lower installed cost. Here, we suppose a three-layer
cylindrical tank that its inside temperature varied from constant in-
let temperature to outlet temperature consistent with an exponen-
tial function as TðzÞ ¼ c þ d� expðz=LÞ , where c and d are related to
the amount of desired outlet and inlet temperatures. If temperature
changes from 300.15 to 355 K, the coefficients c and d will be 285.37
and 14.78, respectively. Convective heat transfer has been applied
as the second radial boundary condition. Insulate and temperature
constant conditions are also deemed for the ends of pipe. Fig. 6
conditions of cooling pipe.



Table 3
Geometry and boundary conditions of cooling pipe.

Inner diameter (m) 0.25
Length (m) 3
Thickness of each layer (m) 0.015
Initial temperature (K) 373
Ambient temperature (K) 373
Internal mean temperature (K) 553
End temperature (K) 423
Convective coefficient (W/m2 K) 50
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shows the geometry of such tank. The geometry and boundary con-
ditions of tank are available in Table 4.

In order to investigate the variation of temperature distribution
in different arrangements of fibers, the dimensionless temperature
(T⁄ = (T � T1)/(Tend � T1)) is defined. Fig. 7 shows that the variation
of dimensionless temperature in terms of time for three mentioned
arrangements of fibers; this figure has been depicted for both
cases. According to the figure, in the first and the second cases,
the steady state heat conduction takes place approximately after
two and twenty hours, respectively. The steady state in storage
tank occurs later because compared to coolant pipe the dimension
of Tank is greater. In addition, under the current boundary condi-
tions, the amounts of mean temperature for orthotropic and isotro-
pic laminates are maximum and minimum, respectively. It is
Fig. 6. Geometry and boundary conditions of storage tank.

Table 4
Geometry and boundary conditions of storage tank.

Inner diameter (m) 0.8128
Length (m) 1.9558
Thickness of each layer (m) 0.05
Initial temperature (K) 300.15
Ambient temperature (K) 300.15
End temperature (K) 355
Convective coefficient (W/m2 K) 100
consequential to mention that the heat transfer in r direction is
more dominant which is related to the type of boundary condi-
tions. When the fibers’ angle approaches to 90�, the heat conduc-
tion in r direction will be decreased and the mean temperature
of laminate will be increased consequently. For other arrange-
ments of fibers, the temperature distribution is in a state between
two previous states. Mean temperature history in mentioned layer
arrangements are shown in Table 5. According to the Table 5, in the
case of quasi-isotropic, temperature values are between the isotro-
pic and orthotropic states.

Since two-dimensional transient heat conduction in multi-layer
cylindrical laminate is studied in this paper, we should investigate
the temperature distribution in radial and longitudinal direction as
a function of time. Contours of temperature variation in r direction
have been shown in Figs. 8 and 9 at specific longitudinal cross sec-
tion for both cooling pipe and storage tank, respectively. Due to the
axi-symmetric condition, radial slices of temperature contours at
different times have been separated to have an obvious compare
among the temperature patterns. According to the figures, temper-
ature distributions change to reach a steady state condition by
marching in time. Furthermore, these figures have been illustrated
in different arrangements of fibers to present the effect of fibers’
angle on temperature contours.
Fig. 7. History of temperature for cooling pipe and storage tank cases.

Table 5
Mean temperature values at the various times for different arrangements of fibers.

Time (s) Mean temperature (K)

Isotropic Quasi-isotropic Orthotropic

Case 1 15 383.6905 383.7209 383.7609
Case 2 150 304.8262 305.2026 305.5439
Case 1 100 386.8671 387.0110 387.1684
Case 2 1000 308.3813 309.3789 310.0306
Case 1 200 389.3152 389.5764 389.8151
Case 2 2000 311.2415 312.6955 313.4415
Case 1 400 392.2634 392.6966 393.0198
Case 2 4000 314.7791 316.6960 317.4708
Case 1 1000 397.2854 398.0841 398.5427
Case 2 10000 321.2276 323.5080 324.2480
Case 1 1500 399.5293 400.5196 401.0399
Case 2 15000 324.5615 326.7461 327.4423
Case 1 2500 401.5884 402.7711 403.3478
Case 2 25000 328.2335 330.0773 330.6973
Case 1 3500 402.3383 403.5967 404.1931
Case 2 35000 329.9728 331.5479 332.1170
Case 1 5000 402.6638 403.9567 404.5611
Case 2 50000 331.0077 332.3691 332.8995
Case 1 7500 402.7454 404.0473 404.6534
Case 2 75000 331.4271 332.6769 333.1871



Fig. 8. Contours of temperature distribution in radial direction in section z = L/2 at
the different times for cooling pipe case.

Fig. 9. Contours of temperature distribution in radial direction in section z = L/2 at
the different times for storage tank case.

Fig. 11. Temperature distribution in longitudinal direction in section r = R + thick-
ness/2 at the different times for storage tank case.

Fig. 10. Temperature distribution in longitudinal direction in section r = R + thick-
ness/2 at the different times for cooling pipe case.
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Figs. 10 and 11 show variation of temperature distributions in z
direction versus time at the specific radial section for cases 1 and 2,
respectively. Here, the temperature distributions in this direction
are mainly affected with longitudinal boundary conditions outside
the cooling pipe and inside the storage tank, respectively. In the
first case, a symmetric sinusoidal boundary condition in z direction
has been applied and as it is seen in Fig. 10, a maximum tempera-
ture will be located at the middle longitudinal section of pipe. In
the second case, an exponential function has been considered for
boundary condition inside of storage tank. For this kind of bound-
ary conditions, temperature increases from minimum value at the
bottom to its maximum at the top of tank according to an exponen-
tial function in all laminates.
5. Conclusion

In the current research, an analytical solution for transient heat
conduction in multi-layer composite laminates has been pre-
sented. This solution is obtained for generalized linear thermal
boundary conditions and can be used for various types of applied
situations without any assumption. The results that are obtained
in this investigation can be employed for predicting and control-
ling the thermal stress and thermal fraction in composite struc-
tures. When the angle of fibers is zero, temperature gradient is
least and heat conduction is more effective in fibers. In contrast,
when the angle of fibers in laminas increases, mean temperature
of laminates will increase in such a form that the most temperature
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amount occurs at h = 90�. Regarding to the thermal designing
objectives, the appropriate selection of composite material and
fibers’ arrangement in each lamina must be implemented to have
desired heat conduction through the laminate. This method intro-
duced in previous sections can be used for any cylindrical multi-
layered laminates such as composite reservoirs, heat exchangers,
pipes, pin fines and so on.
Appendix A. Analytical solution for heat conduction in an
isotropic medium

Unsteady heat conduction equation in radial and longitudinal
dimension for an isotropic medium is as follow:

@2T
@r2 þ

1
r
@T
@r
þ @

2T
@z2 ¼

1
a
@T
@t

ðA1Þ

In order to achieve an exact solution for this equation, we consider a
rod of radius r1 under the following boundary and initial conditions
which enable us to solve it with separation of variables method as
an alternative exact method.

Tðr;0; tÞ ¼ T1 ðA2aÞ

@Tðr; L; tÞ
@z

¼ 0 ðA2bÞ

Tð0; z; tÞ ¼ finite ðA2cÞ

�k
@Tðr1; z; tÞ

@r
¼ hðTðr1; z; tÞ � T1Þ ðA2dÞ

Tðr; z;0Þ ¼ Ti ðA2eÞ

For the first step, we must homogenize the boundary conditions in
both r and z directions. Here, the modified temperature has been
defined as follows:

/ðr; z; tÞ ¼ Tðr; z; tÞ � T1 ðA3Þ

Using this modified temperature, the formulation of problem will
change to:

@2/
@r2 þ

1
r
@/
@r
þ @

2/
@z2 ¼

1
a
@/
@t

ðA4Þ

subjected that

/ðr;0; tÞ ¼ 0 ðA5aÞ

@/ðr; L; tÞ
@z

¼ 0 ðA5bÞ

/ð0; z; tÞ ¼ finite ðA5cÞ

�k
@/ðr1; z; tÞ

@r
¼ h/ðr1; z; tÞ ðA5dÞ

/ðr; z;0Þ ¼ /iðzÞ ¼ ðTi � T1Þ ðA5eÞ

Using the product solution /(r, z, t) = R(r)Z(z)T(t), we can separate
the differential Eq. (A4) in the following form:

1
RðrÞ

@2RðrÞ
@r2 þ 1

r
@RðrÞ
@r

 !
þ 1

ZðzÞ
@2ZðzÞ
@z2 ¼ 1

aTðtÞ
@TðtÞ
@t
¼ �k2 ðA6Þ

which leads in the following equation for time function (T(t)):

@TðtÞ
@t
þ ak2TðtÞ ¼ 0 ðA7Þ

Furthermore, by rearranging the first equality of Eq. (A6) in the
following form, we have
1
RðrÞ

@2RðrÞ
@r2 þ 1

r
@RðrÞ
@r

 !
þ k2 ¼ �1

ZðzÞ
@2ZðzÞ
@z2 ¼ l2 ðA8Þ

Therefore, the following differential equation and boundary condi-
tions are obtained in z direction:

@2ZðzÞ
@z2 þ l2ZðzÞ ¼ 0; Zð0Þ ¼ 0;

@ZðLÞ
@z
¼ 0 ðA9Þ

The second characteristic differential equation and boundary condi-
tions in r direction are as follows:

@2RðrÞ
@r2 þ 1

r
@RðrÞ
@r
þ j2RðrÞ ¼ 0; Rð0Þ ¼ finite;

� kR0ðr1Þ ¼ hRðr1Þ ðA10Þ

where j2 ¼ k2 þ l2: The solution of Eq. (A9) is

ZnðzÞ ¼ AnunðxÞ; unðxÞ ¼ sin lnz ðA11Þ

where the characteristic values are ln ¼ ð2n� 1Þp=2L; n ¼ 1;2;3; . . .

.The solution of Eq. (A10) gives

RmðrÞ ¼ BmwmðrÞ; wmðrÞ ¼ J0ðjmrÞ ðA12Þ

where the characteristic values, jm, are the zeros of
J00ðjmr1Þ þ ðh=kÞJ0ðjmr1Þ ¼ 0 and, J0 represent the Bessel functions
of the first kind, of order zero.The solution of Eq. (A7) is

TnmðtÞ ¼ Cnme�ak2
nmt ; k2

nm ¼ l2
n þ j2

m ðA13Þ

Hence, the product solution becomes

/ðr; z; tÞ ¼
X1
n¼1

X1
m¼1

anme�ak2
nmt � J0ðjmrÞ � sinðlnzÞ ðA14Þ

where anm ¼ AnBmCnm. The non-separable initial condition (Eq.
(A5e))gives

/iðzÞ ¼
X1
n¼1

X1
m¼1

anmJ0ðjmrÞ
 !

� sinðlnzÞ ðA15Þ

Using the relation of Fourier–Bessel series [40,45], the coefficient of
this series can be calculated. The interior summation can be consid-
ered as the coefficient of Fourier sine series and calculated as

X1
m¼1

anmJ0ðjmrÞ ¼ 2
L

Z L

0
/iðzÞ sinðlnzÞdz ¼ /in ðA16Þ

where

/in ¼
2

lnL
½ðTi � T1Þ� ðA17Þ

Using the relation of Bessel functions [45], we have

amn ¼
R r1

0 r/inJ0ðjmrÞdrR r1
0 rJ2

0ðjmrÞdr
ðA18Þ

where the jm is a root of J00ðjmr1Þ þ ðh=kÞJ0ðjmr1Þ ¼ 0; the denomi-
nator of Eq. (A18) isZ r1

0
rJ2

0ðjmrÞdr ¼ ðj
2
m þ ðh=kÞ2Þr2

1

2j2
m

J2
0ðjmr1Þ ðA19Þ

The numerator of Eq. (A18) equalsZ r1

0
rhinJ0ðjmrÞdr ¼ r1/in

jm
J1ðjmr1Þ ðA20Þ

Substituting Eqs. (A19) and (A20) into the Eq. (A18), yields:

amn ¼
2/inðjmr1ÞJ1ðjmr1Þ
½j2

mr2
1 þ Bi2

r �J
2
0ðjmr1Þ

; Bir ¼
hr1

k
ðA21Þ
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where J1 represent the Bessel functions of the first kind, of order
one. This relation may further be rearranged by considering the out-
er boundary condition (J00ðjmr1Þ þ ðh=kÞJ0ðjmr1Þ ¼ 0) which is
equivalent to

jmr1J1ðjmr1Þ ¼ BirJ0ðjmr1Þ ðA22Þ

Substituting Eq. (A22) into Eq. (A21), we have

anm ¼
2/inBir

½j2
mr2

1 þ Bi2
r �J0ðjmr1Þ

ðA23Þ

Finally, introducing the Eq. (A23) into Eqs. (A14) and (A3), we find
the solution as

Tðr; z; tÞ ¼ T1 þ
X1
n¼1

X1
m¼1

2/inBir

½j2
mr2

1 þ Bi2
r �J0ðjmr1Þ

e�ak2
nmtJ0ðjmrÞ

� sinðlnzÞ ðA24Þ
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