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In this study, an exact analytical solution for steady conductive heat transfer in multilayer spherical fiber
reinforced composite laminates is presented as the first time. Here, the orthotropic temperature distribu-
tion of laminate is obtained under the general linear boundary conditions that are suitable for various
conditions including combinations of conduction, convection, and radiation both inside and outside of
the sphere. The temperature and heat flux continuity is applied between the laminas. In order to obtain
the exact solution, the separation of variables method is used and the set of equations related to the coef-
ficient of Fourier–Legendre series of temperature distribution is solved using the recursive Thomas algo-
rithm. The capability of the present solution is examined by applying it on two industrial applications for
different fiber arrangements of multilayer spherical laminates.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The fiber reinforced multilayer composite materials have inter-
ested significantly in modern engineering. This fact is due to vast
advantages of these materials like high strength-to-density ratio,
stiffness-to-density ratio, high corrosion resistance and plasticity
as compared with most materials. Most of these unique advantages
are because of two properties of these materials i.e. (1) combining
different physical, mechanical and thermal properties of various
materials; and (2) ability to change the fibers’ orientations of every
layer to meet the design requirements. Furthermore, increasing the
more effective manufacturing technologies of composite materials
accumulated over the years caused decreasing the cost of these
kind of materials. Today, reinforced composites have been used
enormously in aerospace and marine industries, pressure vessels,
fluid reservoirs, pipes and so on. Although, the knowledge of
composite materials has a reasonable progressive with the devel-
opment of their applications, for example mechanical analysis
[1–7], but thermal analysis is an exception. Heat transfer in com-
posite laminates is vital for analyzing of thermal stress [8], thermal
shock [9], controlling directional heat transfer through laminates
and fiber placement in production processes [10,11].

The problem of heat conduction in multilayer structures can be
subdivided based on the coordinates of solutions as: heat conduc-
tion in Cartesian coordinate [12–21], cylindrical coordinate in r � z
[22–27], and r � u [28,29] directions; and heat transfer in spheri-
cal shapes [30,31].

Blanc and Touratier [12] present a new simple refined compu-
tational model to analyze heat conduction in composite laminates.
This model was based on an equivalent single layer approach
allows to satisfy the continuity of temperatures and the heat flux
between the layers, as well as the boundary conditions.

Separation of variables technique was used by Miller and
Weaver [13] to predict the temperature distribution through a
multi-layered system subject to complex boundary conditions.
The system is subjected to both convection and radiation boundary
conditions and results agree well with numerical results under the
same boundary conditions.

Ma et al. [14,15] developed a closed-form solution for heat con-
duction in an anisotropic single layer [14] and multi-layered [15]
media. A linear coordinate transformation is used to simplify the
problem into an equivalent isotropic one.

Salt [16,17] investigated the response of a 2-D multi-layer
composite slab, to a sudden temperature change. The solution is
analytically examined in two- and three-layer composite slabs.
Monte [18–21] developed several analytical solutions for heat con-
duction in 2-D composites.

Kayhani et al. [22–24] presented an exact analytical solution for
axisymmetric steady heat conduction in cylindrical multi-layer
composite laminates. The unsteady solution of this problem has
been presented by Amiri Delouei et al. [25]. In these studies, a
new Fourier transformation has been developed for steady and un-
steady cases. Furthermore the Meromorphic function method was
utilized to find the transient temperature distribution in laminate.
Also, some studies have been investigated the conductive heat
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Fig. 1. Direction of fibers in a spherical laminate.
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transfer in cylinders made from a functional graded material and
composite laminates [26,27].

The asymmetric steady and transient heat conduction in cylin-
drical composite laminates have been studied by Kayhani et al.
[28] and Norouzi et al. [29], respectively. Separation of variables
method and Laplace Transformation was used to solve the partial
differential equations. The solution they obtained is only valid for
long pipes and vessels.

Only few studies have considered heat conduction of spherical
multi-layered materials. Jain et al. [30,31] proposed an analytical
series solution for heat conduction in r � h spherical coordinates.
Although this solution is valid for different kind of boundary con-
ditions but materials in each layer have been considered in isotro-
pic type. This solution is valid only for multi-layer spheres and
cannot apply for multi-layer rein-forced composites spheres.

In this study, an exact analytical solution for steady state heat
conduction in spherical composite laminates is presented. Lami-
nates are in spherical shape (see Fig. 1) and composed from matrix
and fiber materials. Heat conduction is considered in r � h direc-
tions where r and h represent radius and cone angle, respectively.
Fibers are winded in circumferential direction (Fig. 1). The bound-
ary conditions are the general linear boundary conditions which
can simplified to all mechanisms of heat transfer both inside and
outside of laminate. Governing equation of orthotropic heat con-
duction in each layer has been achieved and solved based on the
separation of variables method. Using the separation of variables
method, the solution can be reduced to the expansion of an arbi-
trary function into a series of Legendre polynomials. Considering
the thermal boundary conditions inside and outside the cylinder,
and applying the continuity of the temperature and the heat flux
between the layers, the Fourier–Legendre coefficients are obtained.
The Thomas algorithm is used to obtain the solution of the set of
equations related to the temperature distribution coefficients. To
our knowledge, this general analytical solution for spherical
reinforced composite is the first one in this field. The ability of cur-
rent solution is examined via two industrial examples consist of a
composite vessel and a composite shell. The effect of composite
thermal design parameters, i.e. fiber’s direction and composite
material of each layer, are investigated in details.

2. Conduction in spherical composites

In this section, the equations of conductive heat transfer in
spherical composite materials are presented. The Fourier equation
of orthotropic material in spherical coordinate system is as follows
[32]:
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where k is the conductive heat transfer coefficient, T and q are tem-
perature and heat flux, respectively. According to thermodynamic
reciprocity, the tensor of conductive heat coefficients should be
symmetric:

kij ¼ kji ð2aÞ

On the other hand, the second law of thermodynamics caused that
the diametric elements of this tensor are positive so the following
relation must be satisfied [32–34]:

kiikjj > kij for i – j ð2bÞ

Using the Clausius_Duhem inequality, the following inequalities for
the conductive coefficients of orthotropic materials are achieved:

kðiiÞ P 0 ð2cÞ
1
2
ðkðiiÞkðjjÞ � kðjiÞkðijÞÞP 0 ð2dÞ

eijkkð1jÞkð2jÞkð3jÞP0 ð2eÞ

where kij represents the symmetric part of tensor:

kðijÞ ¼ kðjiÞ ¼
kij þ kji

2
ð2fÞ

These relations are valid in all coordinate systems. Two separate
coordinate systems must be considered to investigate heat transfer
problems in composite laminates: ‘‘on-axis’’ coordinate system (x1,
x2, x3) and ‘‘off-axis’’ coordinate system (r, /, h) [35]. The direction of
the ‘‘on axis’’ coordinate depends on the fibers’ orientation in each
layer: x1 is parallel to fiber, x2 is perpendicular to fiber in layer and
x3 is perpendicular to layer. Since composite materials are generally
fabricated by laying layers on top of each other, the fiber orientation
may differ between layers. We need to define an off axis coordinate
system to study the physical properties in unique directions. Thus,
there is an angular deviation between the on axis and off axis coor-
dinates. The Fourier equation in on-axis coordinate will be [36]:
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The off-axis conductivity tensor ½�k� is obtained by applying the rota-
tion h to the on-axis conductivity tensor [k]:

½�k� ¼ TðhÞ½k�Tð�hÞ ð4Þ

where T(h) is the rotation tensor [28]:

TðhÞ ¼
cosðhÞ � sinðhÞ 0
sinðhÞ cosðhÞ 0

0 0 1

2
64

3
75 ð5Þ

The heat conduction coefficients can be directly obtained from
experimental measurements or be calculated based on the theoret-
ical models [36–46].

3. Modeling and Formulations

In this section, governing equation of heat conduction in spher-
ical composite is presented and general boundary conditions used
in this study are introduced. Fibers’ direction can be varied in each
layer (see Fig. 1) and (r, /, h) are the off-axis coordinates. Applying
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the balance of energy in element of sphere which has shown in
Fig. 2, the following equation will be achieved:
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Surface areas and volume of sphere element are as follows:

dAr ¼ r2 sin hd/dh

dAh ¼ r sin hd/dh

dA/ ¼ rdhdr

dv ¼ r2 sin hdrd/dh

ð8Þ

Quantities q and cp in Eq. (7) are the density and specific heat
capacity at constant pressure, respectively. Substituting Eq. (1)
and Eq. (8) into Eq. (7) will be resulted in:
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Here, steady-state conductive heat transfer in the r and h directions
are considered. Thus, Eq. (9) can be simplified to
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The off-axis component of conductivity tensor (�k11 and �k22) are ob-
tained by substituting Eq. (5) into Eq. (4):

k11
� ¼ k22

k22
� ¼ m2

l k11 þ n2
l k22; ml ¼ cos Wi; nl ¼ sin Wi

�
ð11Þ

where W is the angle between the tangent line to fibers and h direc-
tion as shown schematically in Fig. 1. Substituting the determined
off-axis coefficients (Eq. (11)) into energy equation (Eq. (10))
results:

1
r2

@

@r
r2 @T
@r

� �
þ 1

l2
i

1
r2 sin h

@

@h
sin h

@T
@h

� �
¼ 0 ð12Þ
Fig. 2. Schematic of heat fluxes on a spherical element.
where parameter li is given by:

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k22
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s
ð13Þ

It is important to mention that li can be changed layer by layer and
so the energy equation will be change in each layer; this fact leads
to different temperature distribution in layers. In order to connect
the different temperature distributions in each layer, continuity of
temperature and heat flux in margin of each pair of layers must
be considered as follows:

TðiÞ � Tðiþ1Þ ¼ 0 ð14aÞ

kðiÞ22
@TðiÞ
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22
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¼ 0 ð14bÞ

The general linear boundary conditions inside and outside of the
sphere are in the following forms which can covers wide range of
applicable thermal conditions:

a1Tðr0; hÞ þ b1
@T
@r
ðr0; hÞ ¼ f1ðhÞ ð15aÞ

a2Tðrnl; hÞ þ b2
@T
@r
ðrnl; hÞ ¼ f2ðhÞ ð15bÞ

Note that f1(h), f2(h) are the arbitrary functions, the constant a1, a2

have the same dimension as convection coefficient and b1, b2 have
the same dimension as conduction coefficient.

4. Analytical solution under general boundary conditions

In this section, the analytical solution of steady temperature
distribution under generalized linear boundary conditions is pre-
sented based on separation of variables method. By applying the
separation of variables method on Eq. (12), the temperature distri-
bution could be separated as two independent functions R(r) and
H(h):

Tðr; hÞ ¼ RðrÞHðhÞ ð16Þ

Substituting Eq. (16) into the Eq. (12), heat conduction equation has
been separated as:
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where k is a constant. By supposing x = sinh, the separated equation
in h direction can be solved as a Legendre equation:
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The solution of Eq. (18) is as follows [47]:

HðhÞ ¼
X1
n¼0

AnPnðcos hÞ ð19Þ

where Pn indicates the Legendre function of degree n and order one,
and An is the coefficient of Legendre series. Comparing Eqs. (17) and
(18), k will be achieved as follows:

k ¼ nðnþ 1Þ
l2 ð20Þ

According to Eq. (17), the separated equation in r direction is an Eu-
ler equation with the underneath solution:

RnðrÞ ¼ Bnr
n
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B0 ln r þ C0 for n ¼ 0

(
ð21Þ

The temperature distribution in each layer will be:
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TðiÞðr; hÞ ¼ aðiÞ0 ln
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where index i refer to the number of layers and the following rela-
tions are existed for coefficients of above temperature distribution:

aðiÞv ¼ AðiÞv BðiÞv

bðiÞv ¼ AðiÞv CðiÞv
v ¼ 0;n ð23Þ

Finally, by applying the inside and outside boundary conditions in
the direction of r and applying the continuity of temperature and
heat flux at the boundary located between layers, the coefficients
a0, b0, an, bn are obtained as follows:

� By applying boundary condition inside and outside of sphere
Eqs. (15a) and (15b), we have:
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� The following equations could be expressed by applying the
temperature and the heat flux continuity at the boundary
located between the layer i and i + 1 (Eqs. (14a) and (14b)):
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Using the existing relations for orthogonal Legendre functions
[47,48] and rearranging the Eqs. (24a) to (24d), the unknown coef-
ficients will be achieved.
� Resorting Eq. (24a) results:
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Eqs. (25a), (25b), (25d) and (25e) should be solved to determine
the coefficients aðiÞn and bðiÞn . The coefficients of this set of equations
form a five diagonal matrix. In this study, Thomas algorithm is
used to find these coefficients analytically. According to this algo-
rithm, the reciprocity relations for calculating aðiÞn and bðiÞn are given
as follows:
bðnlÞ
v ¼ c2nl

aðiÞv ¼ c2i�1 � bðiÞv bi

bði�1Þ
v ¼ c2i�2 � aðiÞv ai

8<
: i ¼ nl;nl � 1; . . . ;2

að1Þv ¼ c1 � bð1Þv b1

ð26Þ

The index v could be 0 or n to cover all unknown coefficients. The
relations related to a, b and c in each value of v are available in
appendix.

5. Results and discussion

In this section, the ability of the presented analytical solution is
examined by applying it to solving two industrial applications: a
multilayer spherical composite vessel under varying sun heat flux
and a multi-layer composite spherical shell with varying inside



Table 1
Composite polymer properties [49].

Material number Filler Matrix k11 (W/mK) k22 (W/mK) Density (g/cc) Wt. (%) filler

1 Thermal Graph DKD X Lexan HF 110-11 N 11.4 0.74 1.46 40
2 Thermal Graph DKD X Lexan HF 110-11 N 8 0.6 1.38 30
3 Thermocarb CF300 Zytel 110 NC010 1.1 0.4 1.17 5

Fig. 4. Geometry and boundary conditions of composite spherical vessel.

Table 2
Geometry and boundary conditions of composite spherical vessel.

Inner diameter (cm) 100
Outer diameter (cm) 130
Thickness of each layer (cm) 5
Ambient temperature (K) 310
Internal temperature (K) 300
Convective coefficient (W/m2 K) 100
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temperature. Thermal properties of composite materials which are
used in this study are presented in Table 1. In order to investigate
the effects of fibers’ angle on heat conduction and temperature dis-
tribution of laminates, four common arrangements of fibers in lam-
inate have been considered:

� Isotropic: Fibers in whole of laminate are in / direction. (Fibers’
angles in each laminas are equal to 90�). The composite lami-
nate is in form of an isotropic spherical laminate with conduc-
tive coefficients krr = khh = k22.
� Orthotropic: Fibers in whole of laminate are in h direction.

(Fibers’ angles in each laminas are equal to zero). The composite
laminate is such as a block orthotropic material with conductive
coefficients khh = k11 and krr = k22.
� Cross-ply: Fibers’ angle is [0�, 90�, 0�, 90�, . . .].
� [0�, 45�, 90�, 135�, . . .]: An intermediate arrangement that the

fibers’ angle change 45� in each layer.

An analytical solution for two-dimension steady heat conduc-
tion in a single layer isotropic spherical laminate has been pre-
sented by Arpaci [47]. Arpaci solution is simple part of current
research that the angle of fibers’ in a single-layer laminate is equal
to. The result of Arpaci solution is used to investigate the validation
of present analytical solution. As shown in Fig. 3, the result for the
current solution agrees completely with the analytical solution of
Arpaci [47]. Here, because of the strong convergence of the temper-
ature Fourier series, calculating the first ten terms of them is
sufficient.

� Case 1: Multi-layer spherical composite vessel

Heat conduction in a three-layer vessel with varying heat flux at
outside has been considered. It is considered that sun radiation
heat flux varied as q00 = q�(1 + cos(h/2)), where q� is average of
sun heat flux on earth and is considered equal to 1357 W/m2

[50]. It is assumed that the vessel is cooled with air. Fig. 4 shows
the geometry and boundary conditions of this vessel. Table 2 pre-
sents the properties of this vessel. The inner surface temperature is
assumed to be constant.
Fig. 3. Temperature distribution of an isotropic sphere in radial direction
(Tout = 500 K, rout = 1 m, h = 45�).

Fig. 5. Geometry and boundary conditions of composite spherical shell.

Table 3
Geometry and boundary conditions of composite spherical shell.

Inner diameter (cm) 50
Outer diameter (cm) 62
Thickness of each layer (cm) 1
Ambient temperature (K) 283
Convective coefficient (W/m2 K) 500
� Case 2: Multi-layer spherical composite shell

Heat conduction through a composite spherical shell is consid-
ered as the second example. This laminate is used for storing
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radioactive wastes in oceanic waters [51]. It is supposed that this
spherical shell is made of a five-layer composite with a stainless
steel layer outside of sphere. The inner temperature of sphere is
considered to vary in the form of T(h) = 300(1 + cos(h)) for more
complexity of boundary conditions. Convective heat transfer has
been applied as the second radial boundary condition. The geome-
try and boundary conditions of tank are presented in Fig. 5 and
Table 3.
Fig. 6. Mean temperature of laminates for composite spherical vessel and shell
cases.

Fig. 7. Contours of temperature distribution in r and h directions at different
arrangements of fibers for the composite spherical vessel case.
Fig. 6 shows the variation of mean temperature of laminate ver-
sus fibers’ angle for two mentioned cases. It is supposed that the
fibers’ angle in all laminates is similar and vary with each other.
For the first case, mean temperature of laminate has been
increased with growth of cone angle from 0� to 90�. Unlike the
Fig. 8. Contours of temperature distribution in r and h directions at different
arrangements of fibers for the composite spherical shell case.

Fig. 9. Temperature distribution of laminates in r direction under different cone
angle for composite spherical vessel and shell cases.



Fig. 10. Contours of temperature distribution in r and h directions at different arrangements of composite materials for the composite spherical vessel case.
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second case, increasing cone angle results decreasing of mean
temperature; this contrast is because of different outside/inside
thermal boundary conditions.

Contours 7 and 8 depicted the temperature distribution in
different fiber arrangements of spherical composite laminates for
case 1 and case 2, respectively. According to the figures, fiber
arrangement has a significant effect on temperature distribution
pattern in both cases. Respect to application and thermal condi-
tions of design, the best arrangement of fibers in laminate should
be selected (see Fig. 7 and 8).

Fig. 9 shows the variation of temperature in radial direction in a
specific cone angle for case 1 and case 2, respectively. Here, it is
assumed that the fibers’ angle is equal in whole of laminate.
According to the figure, when the cone angle, W, is 90�, the temper-
ature’s gradient is as an isotropic material. On the other hand,
when cone angle far from 90� and near to 0�, the thermal behavior
of composite changed more and more until orthotropic behavior
appears in W = 0�.

Fig. 10 shows the effect of layer material arrangements on
temperature distribution for case 1. According to the figure, the
sequence of composite materials in laminate could change the
temperature distribution pattern in laminate greatly and should
be considered as an important factor in multilayer composite
materials.

6. Conclusions

In present paper, an exact analytical solution for steady conduc-
tive heat transfer in spherical laminates is presented as the first
time. The solution is obtained under general linear boundary con-
ditions so it could be applied simplicity for various conditions
including combinations of conduction, convection, and radiation
both inside and outside of the sphere. The results of present study
is useful for analyzing of thermal fracture, controlling directional
heat transfer through laminates and fiber placement in production
processes of spherical vessels. Here, we examined the capability of
the present solution by applying it on two industrial applications
for different fiber arrangement of multilayer spherical laminates.
The analytical solution indicated that the temperature distribution
for any arbitrary fiber arrangement will be intermediate between
those in single-layer laminates with fiber angles of 0% and 90%.
The authors suggest that the future works could be focused on un-
steady and non-Fourier heat conduction in spherical laminates.
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Appendix A. The coefficients of temperature distribution

In this section, the relations of coefficients of temperature dis-
tribution of any lamina are presented:

b1 ¼
B0
v

A0
v

c1 ¼ F0
v � b1

8<
: ðA1Þ

aiþ1 ¼
�Aiþ1

v þBiþ1
v �ðniÞ

ðBi
vþBiþ1

v �ðsiÞ�Ai
v�biÞ

c2i ¼ �c2i�1 � Ai
v � aiþ1

8><
>: i ¼ 1;2;3; . . . ;nl � 1 ðA2Þ

biþ1 ¼ 1
ðniÞ�aiþ1�ðsiÞ

c2iþ1 ¼ �c2i � B0iv � biþ1

(
i ¼ 1;2;3; . . . ;nl � 1 ðA3Þ
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Coefficients ni and si are defined for simplicity:

ni ¼
A0iv�Aiþ1

v �Ai
v�A0iþ1

v

A0iv�Biþ1
v �Ai

v�B0iþ1
v

si ¼
�A0iv�Bi

vþAi
v�B0iv

A0iv�Biþ1
v �Ai

v�B0iþ1
v

8>>><
>>>:

i ¼ 1;2;3; . . . ;nl � 1 ðA4Þ

The values of coefficients Av and Bv related to each pair of coeffi-
cients are as follows (the coefficients A0v and B0v are the derivative
of Av and Bv, respectively):

A0
0 ¼ a1 ln r0

rnl

� �
þb1

1
r0

� �
;A0

n ¼ a1r
n

l2
m

0 þb1
n
l2

0
r

n
l2

0

�1

0

B0
0 ¼ a1;B

0
1n ¼ a2r

�ðnþ1Þ
l2

0
0 þb2

�ðnþ1Þ
l2

0
r
�ðnþ1Þ

l2
0

�1

0

Ai
0 ¼ ln ri

rnl
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ri
rnl

� � n
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i
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