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Foreword

As its name implies, the theory of fuzzy sets is, basically, a theory of graded con
cepts-a theory in which everything is a matter of degree or, to put it figuratively,
everything has elasticity.

In the two decades since its inception, the theory has matured into a wide
ranging collection of concepts and techniques for dealing with complex phe
nomena that do not lend themselves to analysis by classical methods based on
probability theory and bivalent logic. Nevertheless, a question that is frequently
raised by the skeptics is: Are there, in fact, any significant problem-areas in which
the use of the theory of fuzzy sets leads to results that could not be obtained by
classical methods?

Professor Zimmermann's treatise provides an affirmative answer to this ques
tion. His comprehensive exposition of both the theory and its applications
explains in clear terms the basic concepts that underlie the theory and how they
relate to their classical counterparts. He shows through a wealth of examples the
ways in which the theory can be applied to the solution of realistic problems, par
ticularly in the realm of decision analysis, and motivates the theory by applica
tions in which fuzzy sets play an essential role.

An important issue in the theory of fuzzy sets that does not have a counterpart
in the theory of crisp sets relates to the combination of fuzzy sets through disjunc
tion and conjunction or, equivalently, union and intersection. Professor Zimmer
mann and his associates at the Technical University of Aachen have made many
important contributions to this problem and were the first to introduce the concept
of a parametric family of connectives that can be chosen to fit a particular applica
tion. In recent years, this issue has given rise to an extensive literature dealing with
t-norms and related concepts that link some aspects of the theory of fuzzy sets to
the theory of probabilistic metric spaces developed by Karl Menger.



xvi FOREWORD

Another important issue addressed in Professor Zimmermann's treatise relates
to the distinction between the concepts of probability and possibility, with the
latter concept having a close connection with that of membership in a fuzzy set.
The concept of possibility plays a particularly important role in the representa
tion of meaning, in the management of uncertainty in expert systems, and in appli
cations of the theory of fuzzy sets to decision analysis.

As one of the leading contributors to and practitioners of the use of fuzzy sets
in decision analysis, Professor Zimmermann is uniquely qualified to address
the complex issues arising in fuzzy optimization problems and, especially,
fuzzy mathematical programming and multicriterion decision making in a fuzzy
environment. His treatment of these topics is comprehensive, up-to-date, and
illuminating.

In sum, Professor Zimmermann's treatise is a major contribution to the liter
ature of fuzzy sets and decision analysis. It presents many original results and
incisive analyses. And, most importantly, it succeeds in providing an excellent
introduction to the theory of fuzzy sets-an introduction that makes it possible
for an uninitiated reader to obtain a clear view of the theory and learn about its
applications in a wide variety of fields.

The writing of this book was a difficult undertaking. Professor Zimmermann
deserves to be congratulated on his outstanding accomplishment and thanked for
contributing so much over the past decade to the advancement of the theory of
fuzzy sets as a scientist, educator, administrator, and organizer.

L.A. Zadeh



Preface

Since its inception 20 years ago, the theory of fuzzy sets has advanced in a variety
of ways and in many disciplines. Applications of this theory can be found, for
example, in artificial intelligence, computer science, control engineering, deci
sion theory, expert systems, logic, management science, operations research,
pattern recognition , and robotics. Theoretical advances have been made in many
directions . In fact it is extremely difficult for a newcomer to the field or for some
body who wants to apply fuzzy set theory to his problems to recognize properly
the present "state of the art." Therefore, many applications use fuzzy set theory
on a much more elementary level than appropriate and necessary. On the other
hand, theoretical publications are already so specialized and assume such a back
ground in fuzzy set theory that they are hard to understand . The more than 4,000
publications that exist in the field are widely scattered over many areas and in
many journals. Existing books are edited volumes containing specialized contri
butions or monographs that focus only on specific areas of fuzzy sets, such as
pattern recognition [Bezdek 1981], switching functions [Kandel and Lee 1979],
or decision making [Kickert 1978]. Even the excellent survey book by Dubois
and Prade [1980a] is primarily intended as a research compendium for insiders
rather than an introduction to fuzzy set theory or a textbook. This lack of a com
prehensive and modem text is particularly recognized by newcomers to the field
and by those who want to teach fuzzy set theory and its applications .

The primary goal of this book is to help to close this gap-to provide a
textbook for courses in fuzzy set theory and a book that can be used as an
introduction.

One of the areas in which fuzzy sets have been applied most extensively is in
modeling for managerial decision making. Therefore, this area has been selected
for more detailed consideration . The information has been divided into two
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volumes. The first volume contains the basic theory of fuzzy sets and some areas
of application. It is intended to provide extensive coverage of the theoretical and
applicational approaches to fuzzy sets. Sophisticated formalisms have not been
included. I have tried to present the basic theory and its extensions in enough
detail to be comprehended by those who have not been exposed to fuzzy set
theory. Examples and exercises serve to illustrate the concepts even more clearly.
For the interested or more advanced reader, numerous references to recent liter
ature are included that should facilitate studies of specific areas in more detail
and on a more advanced level.

The second volume is dedicated to the application of fuzzy set theory to the
area of human decision making. It is self-contained in the sense that all concepts
used are properly introduced and defined. Obviously this cannot be done in the
same breadth as in the first volume. Also the coverage of fuzzy concepts in the
second volume is restricted to those that are directly used in the models of deci
sion making.

It is advantageous but not absolutely necessary to go through the first volume
before studying the second. The material in both volumes has served as texts in
teaching classes in fuzzy set theory and decision making in the United States and
in Germany. Each time the material was used, refinements were made, but the
author welcomes suggestions for further improvements.

The target groups were students in business administration, management
science, operations research, engineering, and computer science. Even though no
specific mathematical background is necessary to understand the books, it is
assumed that the students have some background in calculus, set theory, opera
tions research, and decision theory.

I would like to acknowledge the help and encouragement of all the students,
particularly those at the Naval Postgraduate School in Monterey and at the Insti
tute of Technology in Aachen (ER.G.), who improved the manuscripts before
they became textbooks. I also thank Mr. Hintz, who helped to modify the differ
ent versions of the book, worked out the examples, and helped to make the text
as understandable as possible. Ms. Grefen typed the manuscript several times
without losing her patience. I am also indebted to Kluwer Academic Publishers
for making the publication of this book possible.

H.-i. Zimmermann



Preface for the Revised Edition

Since this book was first published in 1985, Fuzzy Set Theory has had an unex
pected growth . It was further developed theoretically and it was applied to new
areas. A number of very good books have appeared , primarily dedicated to special
areas such as Possibility Theory [Dubois and Prade 1988a], Fuzzy Control
[Sugeno 1985a; Pedrycz 1989], Behavioral and Social Sciences [Smithson 1987],
and others have been published. Many new edited volumes, either dedicated to
special areas or with a much wider scope, have been added to the existing ones .
Thousands of articles have been published on fuzzy sets in various journals. Suc
cessful real applications of fuzzy set theory have also increased in number and
in quality. In particular, applications of fuzzy control , fuzzy computers, expert
system shells with capabilities to process fuzzy information, and fuzzy decision
support systems have become known and have partly already proven their supe
riority over more traditional tools.

One thing, however, does not seem to have changed since 1985: access to the
area has not become easier for newcomers. I do not know of any introductory yet
comprehensive book or textbook that will facilitate entering into the area of fuzzy
sets or that can be used in classwork.

I am, therefore, very grateful to Kluwer Academic Publishers for having
agreed to publish a revised edition of the book, which four times has already been
printed without improvement. In this revised edition all typing and other errors
have been eliminated. All chapters have been updated. The chapters on possibil
ity theory (8), on fuzzy logic and approximate reasoning (9), on expert systems
and fuzzy control (10), on decision making (12), and on fuzzy set models in oper
ations research (13) have been restructured and rewritten. Exercises have been
added to almost all chapters and a teacher's manual is available on request.

The intention of the book, however, has not changed: While the second volume



xx PREFACE FOR THE REVISED EDITION

[Zimmermann 1987] focuses on decision making and expert systems and intro
duces fuzzy set theory only where and to the extent that it is needed, this book
tries to offer a didactically prepared text which requires hardly any special math
ematical background of the reader. It tries to introduce fuzzy set theory as com
prehensively as possible, without delving into very theoretical areas or presenting
any mathematical proofs which do not contribute to a better understanding. It
rather offers numerical examples wherever possible. I would like to thank very
much Mr. C. von Altrock, Ms. B. Lelke, Mr. R. Weber, and Dr. B. Wemers for
their active participation in preparing this revised edition. Mr. Andree and Mr.
Lehmann kindly prepared the figures. Ms. Oed typed and retyped manuscripts
over and over again and helped us to arrive at the final manuscript of the book.
We are all obliged to Kluwer Academic Publishers for the opportunity to publish
this volume and for the good cooperation in preparing it.

H.-f. Zimmermann



Preface to the Third Edition

The development of fuzzy set theory to fuzzy technology during the first half of
the 1990s has been very fast. More than 16,000 publications have appeared since
1965. Most of them have advanced the theory in many areas. Quite a number of
these publications describe, however, applications of fuzzy set theory to existing
methodology or to real problems. In addition, the transition from fuzzy set theory
to fuzzy technology has been achieved by providing numerous software and hard
ware tools that considerably improve the design of fuzzy systems and make them
more applicable in practice. Since 1994, fuzzy set theory, artificial neural nets,
and genetic algorithms have also moved closer together and are now normally
called "computational intelligence." All these changes have made this technol
ogy more powerful but also more complicated and have raised the "entrance
barrier" even higher. This is particularly regrettable since more and more uni
versities and other educational institutions are including fuzzy set theory in their
programs. In some countries, a large number of introductory books have been
published; in Germany, for instance, 25 such books were published in 1993 and
1994. English textbooks, however, are still very much lacking.

Therefore, I appreciate very much that Kluwer Academic Publishers has
agreed to publish a third edition of this book, which updates the second revised
edition.

New developments, to the extent that they are relevant for a basic textbook ,
have been included . All chapters have been updated. Chapters 9, 10, II, and 12
have been completely rewritten. Nevertheless, I have tried not to let the book
grow beyond a basic textbook. To reconcile the conflict between the nature of a
textbook and the fast growth of the area, many references have been added to
facilitate deeper insights for the interested reader.

I would like to thank Mr. Tore Grunert for his active participation and contri-
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butions, particularly to chapter 11, and all my coworkers for helping to proofread
the book and to prepare new figures. We all hope that this third edition will benefit
future students and accelerate the broader acceptance of fuzzy set theory.

Aachen, April 1995

Hi-J. Zimmermann



Preface to the Fourth Edition

The new Millennium starts with over 30,000 publications in the area of "com
putational intelligence" or "soft computing" . These are terms which have been
coined in the first half of the 90s, when fuzzy set theory, neural networks and
evolutionary computing joined forces because they felt that there were strong syn
ergies between these areas. This is certainly true, in spite of the fact, that evolu
tionary computing has its strength in optimization, neural nets are particularly
strong in pattern recognition and automatic learning, whereas fuzzy set theory
has its strength in modeling, interfacing humans with computers and modeling
certain uncertainties. Particularly between fuzzy set theory and neural nets the
synergies have been used to develop hybrid models and methods, that combine
the strengths of both of these areas.

Nevertheless, all three areas are continuing to develop new approaches in
their own areas. For a textbook it would be inadequate to cover the basics
of fuzzy set theory and also the vast area of computational intelligence or
hybrid fuzzy-neuro methods or it would have to do this on a very superficial
level. Hence, this book is restricted to the theory and application of fuzzy set
theory only.

Apart from the convergence of above mentioned three areas two main devel
opments can probably be observed for fuzzy sets:

1. There is a widening gap between the mathematics of fuzzy set theory and
fuzzy technology, as the more applied version of fuzzy set theory. The still
very strong activities in the theoretical direction lead to more and more very
specific mathematical developments, which is natural, legitimate and cer
tainly also important. The applicational relevance of these research results,
however, is often not obvious and only perceivable by very advanced and
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specialized theoreticians. New developments in fuzzy technology follow
more the needs of a changed industrial environment.

2. One of the major changes in the industrial environment since the early 90s is,
that we have moved from a situation of a lack of (electronically readable) data
to one ofan abundance of such data . Together with the dramatic increase in the
power of electronic data processing and web-technology this has lead in fuzzy
technology from a focus in modeling to a concentration in complexity reduc
tion, i.e. pattern recognition, data mining and automatic knowledge discovery.
This situation is mirrored in this edition of the book by an extension of the
chapter on data mining and a new chapter on fuzzy sets in data bases.

The following figure indicates the development of fuzzy set theory from another
point of view:
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As shown there, the time lag between theory, application, and the development
of a fuzzy technology (with efficient CASE-tools for the development of fuzzy
systems), was, roughly speaking , ten years each.

This was valid until the first "fuzzy booms" occurred in the first half of the 90s.
Until then the development of applications and technology centered very much
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around fuzzy control, a concept that was very applicable, easy to understand, and,
therefore, attractive to many industrial practitioners and the broad public.

Since the start of computational intelligence theoretical as well as application
oriented developments have become much more diversified and clear lead-times
between theoretical development and application can no longer be recognized.

I have used the opportunity of a fourth edition of this textbook, for which I
am very grateful to Kluwer Academic Publishers, to adapt the book to the new
developments, without exceeding the scope of a basic textbook, as follows:

All chapters have been up-dated . The scope of part I has only been extended
with respect to t-norms, other operators and uncertainty modeling because I am
convinced that chapters 2 to 7 are still sufficient as a mathematical basis to under
stand all new developments in this area and also for part II of the book, where
the major changes and extensions of this edition can be found:

In chapter lathe modeling of uncertainty in expert systems was extended
because this component has gained importance in practice .

In chapter II primarily a section for defuzzification has been added for the
same reason.

Chapter 12 has been added because the application of fuzzy technology in
information processing is already important and will certainly increase in impor
tance in the future.

Chapter 13 has been extended by explaining new methodological develop
ments in dynamic fuzzy data analysis, which will also be of growing importance
in the future.

Eventually applications in chapter 15 have been completely restructured by
deleting some, adding others and classifying all of them differently. This was nec
essary because the focus of applications here changed, for reasons explained in
this chapter, strongly from "engineering intelligence" to "business intelligence".

Of course, the index and the references have also been updated and extended.
This time I would like to thank again Kluwer Academic Publishers for giving

me the chance of a fourth edition and Dr. Angstenberger for her excellent research
cooperation and for letting me use one application from her book.

In particular, I would like to thank Ms. Katja Palczynski for her outstanding
help to get the manuscripts ready for the publisher.

I hope that this new edition of my textbook will help to keep respective courses
in universities and elsewhere up-to-date and challenging and motivating for stu
dents as well as professors. It may also be useful for practitioners that want to
up-date their knowledge of fuzzy technology and look for new applications in
their area.

Aachen, April 2001
H.-i. Zimmermann



1 INTRODUCTION TO
FUZZY SETS

1.1 Crispness, Vagueness, Fuzziness, Uncertainty

Most of our traditional tools for formal modeling, reasoning, and computing are
crisp, deterministic, and precise in character. By crisp we mean dichotomous, that
is, yes-or-no-type rather than more-or-less type. In conventional dual logic, for
instance, a statement can be true or false-and nothing in between. In set theory,
an element can either belong to a set or not; and in optimization, a solution is
either feasible or not. Precision assumes that the parameters of a model represent
exactly either our perception of the phenomenon modeled or the features of the
real system that has been modeled. Generally, precision also implies that the
model is unequivocal, that is, that it contains no ambiguities.

Certainty eventually indicates that we assume the structures and parameters
of the model to be definitely known, and that there are no doubts about their
values or their occurrence. If the model under consideration is a formal model
[Zimmermann 1980, p. 127], that is, if it does not pretend to model reality ade
quately, then the model assumptions are in a sense arbitrary, that is, the model
builder can freely decide which model characteristics he chooses. If, however,
the model or theory asserts factuality [Popper 1959; Zimmermann 1980], that is,
if conclusions drawn from these models have a bearing on reality and are

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001



2 FUZZY SET THEORY-AND ITS APPLICATIONS

supposed to model reality adequately, then the modeling language has to be suited
to model the characteristics of the situation under study appropriately.

The utter importance of the modeling language is recognized by Apostel, when
he says:

The relationship between formal languages and domains in which they have models
must in the empirical sciences necessarily be guided by two considerations that are by
no means as important in the formal sciences:
(a) The relationship between the language and the domain must be closer because they

are in a sense produced through and for each other;
(b) extensions of formalisms and models must necessarily be considered because

everything introduced is introduced to make progress in the description of the
objects studied. Therefore we should say that the formalization of the concept of
approximate constructive necessary satisfaction is the main task of semantic study
of models in the empirical sciences. [Apostel 1961, p. 26]

Because we request that a modeling language be unequivocal and nonredun
dant on one hand and, at the same time, catch semantically in its terms all that
is important and relevant for the model, we seem to have the following problem.
Human thinking and feeling, in which ideas, pictures, images, and value systems
are formed, first of all certainly has more concepts or comprehensions than our
daily language has words. If one considers, in addition , that for a number of
notions we use several words (synonyms) , then it becomes quite obvious that the
power (in a set-theoretic sense) of our thinking and feeling is much higher than
the power of a living language. If in tum we compare the power of a living lan
guage with the logical language, then we will find that logic is even poorer. There
fore it seems to be impossible to guarantee a one-to-one mapping of problems
and systems in our imagination and in a model using a mathematical or logical
language .

One might object that logical symbols can arbitrarily be filled with semantic
contents and that by doing so the logical language becomes much richer. It will
be shown that it is very often extremely difficult to appropriately assign seman
tic contents to logical symbols.

The usefulness of the mathematical language for modeling purposes is undis
puted. However, there are limits to the usefulness and the possibility of using
classical mathematical language, based on the dichotomous character of set
theory, to model particular systems and phenomena in the social sciences: "There
is no idea or proposition in the field, which can not be put into mathematical lan
guage, although the utility of doing so can very well be doubted" [Brand 1961].
Schwarz [1962] brings up another argument against the nonreflective use of math
ematics when he states: "An argument, which is only convincing if it is precise
loses all its force if the assumptions on which it is based are slightly changed,
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while an argument, which is convincing but imprecise may well be stable under
small perturbations of its underlying axioms." For factual models or modeling
languages, two major complications arise:

I. Real situations are very often not crisp and deterministic, and they cannot be
described precisely.

2. The complete description of a real system often would require far more
detailed data than a human being could ever recognize simultaneously,
process, and understand.

This situation has already been recognized by thinkers in the past. In 1923 the
philosopher B. Russell [1923] referred to the first point when he wrote:

All traditional logic habitually assumes that precise symbols are being employed.
It is therefore not applicable to this terrestrial life but only to an imagined
celestial existence.

L. Zadeh referred to the second point when he wrote, "As the complexity of
a system increases, our ability to make precise and yet significant statements
about its behaviour diminishes until a threshold is reached beyond which preci
sion and significance (or relevance) become almost mutually exclusive charac
teristics." [Zadeh 1973a]

Let us consider characteristic features of real-world systems again: Real
situations are very often uncertain or vague in a number of ways. Due to lack of
information, the future state of the system might not be known completely. This
type of uncertainty (stochastic character) has long been handled appropriately by
probability theory and statistics. This Kolmogoroff-type probability is essentially
frequentistic and is based on set-theoretic considerations. Koopman 's probability
refers to the truth of statements and therefore is based on logic. In both types of
probabilistic approaches, however, it is assumed that the events (elements of sets)
or the statements, respectively, are well defined. We shall call this type of uncer
tainty or vagueness stochastic uncertainty in contrast to the vagueness con
cerning the description of the semantic meaning of the events, phenomena, or
statements themselves , which we shall calljUzziness.

Fuzziness can be found in many areas of daily life, such as in engineering [see,
for instance, Blockley 1980], medicine [see Vila and Delgado 1983], meteorol
ogy [Cao and Chen 1983], manufacturing [Mamdani 1981], and others. It is
particularly frequent, however, in all areas in which human judgment, evaluation ,
and decisions are important. These are the areas of decision making, reasoning,
learning, and so on. Some reasons for this fuzziness have already been mentioned .
Others are that most of our daily communication uses "natural languages," and
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a good part of our thinking is done in it. In these natural languages, the meaning
of words is very often vague. The meaning of a word might even be well defined,
but when using the word as a label for a set, the boundaries within which objects
do or do not belong to the set become fuzzy or vague. Examples are words such
as "birds" (how about penguins, bats, etc.?) or "red roses," but also terms such
as "tall men," "beautiful women," and "creditworthy customers ." In this context
we can probably distinguish two kinds of fuzziness with respect to their origins:
intrinsic fuzziness and informational fuzziness. The former is the fuzziness
to which Russell's remark referred, and it is illustrated by "tall men." This term
is fuzzy because the meaning of tall is fuzzy and dependent on the context (height
of observer, culture, etc.). An example of the latter is the term "creditworthy
customers" : A creditworthy customer can possibly be described completely
and crisply if we use a large number of descriptors. These descriptors are
more, however, than a human being could handle simultaneously. Therefore
the term, which in psychology is called a "subjective category," becomes fuzzy.
One could imagine that the subjective category "creditworthiness" is decomposed
into two smaller subjective categories, each of which needs fewer descriptors
to be completely described. This process of decomposition could be continued
until the descriptions of the subjective categories generated are reasonably
defined. On the other hand, the notion "creditworthiness" could be constructed
by starting with the smallest subjective subcategories and aggregating them
hierarchically.

For creditworthiness the concept structure shown in figure 1-1, which has
a symmetrical structure, was developed in consultation with 50 credit clerks
of banks.

Credit experts distinguish between the financial basis and the personality of
an applicant. "Financial basis" comprises all realities, movables, assets, liquid
funds, and others. The evaluation of the economic situation depends on the actual
securities, that is, the difference between property and debts, and on the liquid
ity, that is, the continuous difference between income and expenses.

On the other hand, "personality" denotes the collection of traits by which a
potent and serious person is distinguished. The achievement potential is based on
mental and physical capacity as well as on the individual's motivation. The busi
ness conduct includes economical standards. While the former means the setting
of realistic goals, reasonable planning, and criteria of economic success, the latter
is directed toward the applicant's disposition to obey business laws and mutual
agreements. Hence a credit-worthy person lives in secure circumstances and guar
antees a successful, profit-oriented cooperation (see figure 1-1).

Before turning to fuzzy set theory it should, however, be stressed that uncer
tainty is a multi-facetted phenomenon and that the modeling of it in application
oriented models requires considerable investigations before we start the modeling
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Figure 1-1. Concept hierarchy of creditworthiness.

process. Also the available modeling tools do not only include probability theory
and fuzzy set theory. We shall consider this fact in more detail in chapter 8.

In chapter 16 we will return to this figure and elaborate on the type
of aggregation.

1.2 Fuzzy Set Theory

The first publications in fuzzy set theory by Zadeh [1965] and Goguen [1967,
1969] show the intention of the authors to generalize the classical notion of a set
and a proposition [statement] to accommodate fuzziness in the sense described
in section 1.1.

Zadeh [1965, p. 339] writes, "The notion of a fuzzy set provides a convenient
point of departure for the construction of a conceptual frame-work which paral
lels in many respects the framework used in the case of ordinary sets, but is more
general than the latter and, potentially, may prove to have a much wider scope
of applicability, particularly in the fields of pattern classification and information
processing. Essentially, such a framework provides a natural way of dealing with
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problems in which the source of imprecision is the absence of sharply defined
criteria of class membership rather than the presence of random variables ."

"Imprecision" here is meant in the sense of vagueness rather than the lack of
knowledge about the value of a parameter (as in tolerance analysis) . Fuzzy set
theory provides a strict mathematical framework (there is nothing fuzzy about
fuzzy set theory!) in which vague conceptual phenomena can be precisely and
rigorously studied . It can also be considered as a modeling language well suited
for situations in which fuzzy relations, criteria, and phenomena exist.

Fuzziness has so far not been defined uniquely semantically, and probably
never will be. It will mean different things, depending on the application area and
the way it is measured. In the meantime, numerous authors have contributed to
this theory. In 1984, as many as 4,000 publications have already existed and in
2000 there were already more than 30,000.

The specialization of those publications conceivably increases, making it more
and more difficult for newcomers to this area to find a good entry and to under
stand and appreciate the philosophy, formalism, and applications potential of this
theory. Roughly speaking, fuzzy set theory in the last two decades has developed
along two lines:

1. As a formal theory that, when maturing, became more sophisticated and spec
ified and was enlarged by original ideas and concepts as well as by "embrac
ing" classical mathematical areas such as algebra, graph theory, topology,
and so on by generalizing (fuzzifying) them.

2. As an application-oriented "fuzzy technology", i.e. as a tool for modeling,
problem solving and data mining that has proven superior to existing methods
in many cases and as an attractive "add-on" to classical approaches in other
cases.

In this context it may be useful to cite and comment the major goals of this tech
nology briefly and to correct the still very common view that fuzzy set theory or
fuzzy technology is exclusively or primarily useful to model uncertainty:

a) Modeling of uncertainty

This is certainly the best known and oldest goal. I am not sure, however, whether
it can (still) be considered to be the most important goal of fuzzy set theory.
Uncertainty has been a very important topic for several centuries. There are
numerous methods and theories which claim to be the only proper tool to model
uncertainties. In general, however, they do not even define sufficiently or only in
a very specific and limited sense what is meant by "uncertainty". I believe that
uncertainty, if considered as a subjective phenomenon, can and ought to be
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modeled by very different theories, depending on the causes of uncertainty, the
type and quantity of available information, the requirements of the observer etc.
In this sense fuzzy set theory is certainly also one of the theories which can be
used to model specific types of uncertainty under specific types of circumstances.
It might then compete with other theories, but it might also be the most appro
priate way to model this phenomenon for well-specified situations. It would
certainly exceed the scope of this article to discuss this question in detail here
[Zimmermann 1997].

b) Relaxation

Classical models and methods are normally based on dual logic. They, therefore,
distinguish between feasible and infeasible, belonging to a cluster or not, optimal
or suboptimal etc. Often this view does not capture reality adequately. Fuzzy set
theory has been used extensively to relax or generalize classical methods from a
dichotomous to a gradual character. Examples of this are fuzzy mathematical pro
gramming [Zimmermann 1996], fuzzy clustering [Bezdek and Pal 1992], fuzzy
Petri Nets [Lipp et al. 1989], fuzzy multi criteria analysis [Zimmermann 1986].

c) Compactification

Due to the limited capacity of the human short term memory or of technical
systems it is often not possible to either store all relevant data, or to present
masses of data to a human observer in such a way, that he or she can perceive
the information contained in these data. Fuzzy technology has been used to reduce
the complexity of data to an acceptably degree usually either via linguistic vari
ables or via fuzzy data analysis (fuzzy clustering etc.).

d) Meaning Preserving Reasoning

Expert system technology has already been used since two decades and has led
in many cases to disappointment. One of the reasons for this might be, that expert
systems in their inference engines, when they are based on dual logic, perform
symbol processing (truth values true or false) rather than knowledge processing.
In approximate reasoning meanings are attached to words and sentences via lin
guistic variables. Inference engines then have to be able to process meaningful
linguistic expressions, rather than symbols, and arrive at membership functions
of fuzzy sets, which can then be retranslated into words and sentences via
linguistic approximation.
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e) Efficient Determination ofApproximate Solutions

Already in the 70s Prof. Zadeh expressed his intention to have fuzzy set theory
considered as a tool to determine approximate solutions of real problems in an
efficient or affordable way. This goal has never really been achieved successfully.
In the recent past, however, cases have become known which are very good
examples for this goal. Bardossy [1996], for instance, showed in the context of
water flow modeling that it can be much more efficient to use fuzzy rule based
systems to solve the problems than systems of differential equations. Comparing
the results achieved by these two alternative approaches showed that the accu
racy of the results was almost the same for all practical purposes. This is partic
ularly true if one considers the inaccuracies and uncertainties contained in the
input data.

It seems desirable that an introductory textbook be available to help students
get started and find their way around. Obviously, such a textbook cannot cover
the entire body of the theory in appropriate detail. The present book will there
fore proceed as follows:

Part I of this book, containing chapters 2 to 8, will develop the formal frame
work of fuzzy mathematics. Due to space limitations and for didactical reasons,
two restrictions will be observed:

I. Topics that are of high mathematical interest but require a very solid math
ematical background and those that are not of obvious relevance to applica
tions will not be discussed.

2. Most of the discussion will proceed along the lines of the early concepts of
fuzzy set theory. At appropriate times, however, the additional potential of
fuzzy set theory that arises by using other axiomatic frameworks resulting in
other operators will be indicated or described. The character of these chap
ters will obviously have to be formal.

Part II of the book, chapters 9 to 16, will then survey the most interesting
applications of fuzzy set theory. At that stage the student should be in a position
to recognize possible extensions and improvements of the applications presented.



I FUZZY MATHEMATICS

This first part of this book is devoted to the formal framework of the theory of
fuzzy sets. Chapter 2 provides basic definitions of fuzzy sets and algebraic oper
ations that will then serve for further considerations . Even though we shall use
one version of terminology and one set of symbols consistently throughout the
book, alternative ways of denoting fuzzy sets will be mentioned because they
have become common. Chapter 3 extends the basic theory of fuzzy sets by intro
ducing additional concepts and alternative operators. Chapter 4 is devoted to
fuzzy measures, measures of fuzziness, and other important measures that are
needed for applications presented either in Part II of this book or in the second
volume on decision making in a fuzzy environment. Chapter 5 introduces the
extension principle, which will be very useful for the following chapters and
covers fuzzy arithmetic. Chapters 6 and 7 will then treat fuzzy relations, graphs,
and functions. Chapter 8 focuses on uncertainty modeling and some special
topics, such as the relationship between fuzzy set theory, probability theory, and
other classical areas.



2

2.1 Basic Definitions

FUZZY SETS-BASIC
DEFINITIONS

A classical (crisp) set is normally defined as a collection of elements or objects
x E X that can be finite, countable, or overcountable. Each single element can
either belong to or not belong to a set A, A s X. In the former case, the
statement "x belongs to A" is true, whereas in the latter case this statement is
false.

Such a classical set can be described in different ways: one can either enu
merate (list) the elements that belong to the set; describe the set analytically, for
instance, by stating conditions for membership (A = {xix:::; 5}); or define the
member elements by using the characteristic function, in which I indicates mem
bership and 0 nonmembership. For a fuzzy set, the characteristic function allows
various degrees of membership for the elements of a given set.

Definition 2-1

If X is a collection of objects denoted generically by x, then e fuzz y set Ain X is
a set of ordered pairs:

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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A= {(x, J.!A (x))l x EX}

J.!A(X) is called the membership function or grade of membership (also degree of
compatibility or degree of truth) of x in A that maps X to the membership space
M (When M contains only the two points °and 1, A is nonfuzzy and J.!A(X) is
identical to the characteristic function of a nonfuzzy set). The range of the mem
bership function is a subset of the nonnegative real numbers whose supremum is
finite. Elements with a zero degree of membership are normally not listed.

Example 2-1a

A realtor wants to classify the house he offers to his clients. One indicator of
comfort of these houses is the number of bedrooms in it. Let X = {I, 2, 3,4, . . . ,
10} be the set of available types of houses described by x = number of bedrooms
in a house. Then the fuzzy set "comfortable type of house for a four-person
family" may be described as

A={(l, .2), (2, .5), (3, .8), (4, 1), (5, .7), (6, .3)}

In the literature one finds different ways of denoting fuzzy sets:

1. A fuzzy set is denoted by an ordered set of pairs, the first element of which
denotes the element and the second the degree of membership (as in definition
2-1).

Example 2-1b

A= "real numbers considerably larger than 10"

A= {(x, J.!A (x))l XE X}

where

{
O, x::; 10

J.! -(x) =
A (l +(x -1O)-2r', x> 10

Example 2-1c

A= "real numbers close to 10"

See figure 2-1.

2. A fuzzy set is represented solely by stating its membership function [for
instance, Negoita and Ralescu 1975].
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Figure 2-1 . Real numbers close to 10.

3.
n

A=IJ-A (XI)/ XI +IJ-A (X2)/X2 . •. =L.IJ-A (X;)/ Xi
;=1

or LIJ-A(~)/X

Example 2-1d

A = "integers close to 10"

A= 0.1/7 + 0.5/8+0.8/9+ 1/10+0.8/11 + 0.5/12 + O.1/13

Example 2-1e

A= "real numbers close to 10"

It has already been mentioned that the membership function is not limited to
values between 0 and I. If SUpxIJ-A(X) = I, the fuzzy set A is called normal. A non
empty fuzzy set Acan always be normalized by dividing IJ-A(X) by SUpxIJ-A(X): As
a matter of convenience, we will generally assume that fuzzy sets are normal
ized. For the representation of fuzzy sets, we will use the notation I illustrated
in examples 2-lb and 2-lc, respectively.

A fuzzy set is obviously a generalization of a classical set and the member
ship function a generalization of the characteristic function. Since we are gener
ally referring to a universal (crisp) set X, some elements of a fuzzy set may have
the degree of membership zero. Often it is appropriate to consider those elements
of the universe that have a nonzero degree of membership in a fuzzy set.
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Definition 2-2

The support of a fuzzy set A, S(,1), is the crisp set of all x E X such that
IlA(X) > O.

Example 2-2

Let us consider example 2-1a again: The support of S(,1)= {1, 2, 3, 4, 5, 6}. The
elements (types of houses) {7, 8, 9, 1O} are not part of the support of A!

A more general and even more useful notion is that of an a-level set.

Definition 2-3

The (crisp) set of elements that belong to the fuzzy set Aat least to the degree a
is called the a-level set:

Au ={xEXIIlA(x)2:a}

A~ = {x E X IIlA(x) > a} is called "strong a-level set" or "strong a-cut."

Example 2-3

We refer again to example 2-1a and list possible a -level sets:

A.2 = {I, 2, 3, 4, 5, 6}

A.s ={2, 3, 4, 5}

A.&= {3, 4}

AI ={4}

The strong a-level set for a =.8 is N& = {4}.

Convexity also plays a role in fuzzy set theory. By contrast to classical set theory,
however, convexity conditions are defined with reference to the membership
function rather than the support of the fuzzy set.

Definition 2-4

A fuzzy set A is convex if

Ilti(I"x, +(1- A)X2)2:min{llti (XI), Ilti(X2)},X),X2 E X, AE [0, I]

Alternatively, a fuzzy set is convex if all a -level sets are convex.
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Figure 2-2a. Convex fuzzy set.
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Figure 2-2b. Nonconvex fuzzy set.
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Example 2-4

Figure 2- 2a depicts a convex fuzzy set, whereas figure 2-2b illustrates a non
convex fuzzy set.

One final feature of a fuzzy set, which we will use frequently in later chap
ters, is its cardinality or "power" [Zadeh 1981c).
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Definition 2-5

For a finite fuzzy set A, the cardinality IAI is defined as

IAI= L/lA(X)
xeX

IIAII = II~II is called the relative cardinality of A.
Obviously, the relative cardinality of a fuzzy set depends on the cardinality of the
universe . So you have to choose the same universe if you want to compare fuzzy
sets by their relative cardinality.

Example 2-5

For the fuzzy set "comfortable type of house for a four-person family" from
example 2-1 a, the cardinality is

IAI =.2 + .5 + .8 + 1 + .7 + .3 = 3.5

Its relative cardinality is

- 35IIAII =-' =0.35
10

The relative cardinality can be interpreted as the fraction of elements of X being
in A, weighted by their degrees of membership in A. For infinite X, the cardinal
ity is defined by IAI = fx/l..i(x) dx. Of course, IAI does not always exist.

2.2 Basic Set-Theoretic Operations for Fuzzy Sets

The membership function is obviously the crucial component of a fuzzy set. It is
therefore not surprising that operations with fuzzy sets are defined via their mem
bership function s. We shall first present the concepts suggested by Zadeh in 1965
[Zadeh 1965, p. 310]. They constitute a consistent framework for the theory of
fuzzy sets. They are, however, not the only possible way to extend classical set
theory consistently. Zadeh and other authors have suggested alternative or addi
tional definitions for set-theoretic operations, which will be discussed in chapter 3.

Definition 2-6

The membership function /lc(x) of the intersection C=A n Bis pointwise defined by

/lcCx)= min{/lA(x), /lii(X)}, x E X



FUZZY SETS-BASIC DEFINITIONS 17

Definition 2-7

The membership function 1l6(X) of the union fj = A u iJ is pointwise defined by

Ilb(X) = max[u, (x) , Ilb(X)}, x E X

Definition 2-8

The membership function of the complement of a normalized fuzzy set A, /l¢A(X)
is defined by

Example 2-6

Let Abe the fuzzy set "comfortable type of house for a four-person family" from
example 2-1a and iJ be the fuzzy set "large type of house" defined as

iJ = {(3, .2), (4, .4), (5, .6), (6, .8), (7, I), (8, l)}

The intersection C= A n iJ is then

C= {(3, .2), (4, .4), (5, .6), (6, .3)}

The union fj =A u iJ is

b = {(l , .2), (2, .5), (3, .8), (4, I), (5, .7), (6, .8), (7, I), (8, l)}

The complement ¢iJ, which might be interpreted as "not large type of house," is

¢iJ = {(l, I), (2, I), (3, .8), (4, .6), (5, .4), (6, .2), (9, I), (l0, l)}

Example 2-7

Let us assume that

~ = "x is considerable larger than 10," and
B ~ "x is approximately 11," characterized by

A= {(x, IlA(x»lx E X}

where
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o+ ----==__L.- ,;::!!!!!!!!II. _

5 10 11 x

Figure 2-3. Union and intersection of fuzzy sets.

and

where

Then

__ ( )_{ffiin[(1+(x-IO) -2)-I,(I+(X-11)4) -I] for x>1O
f!AnB X - o for x$; 10

(x is considerably larger than 10 and approximately 11)

f!AUi/(X) = max[(l +(x -10) -2) -I, (I+(x -11)4) -1], x E X

Figure 2-3 depicts the above.

It has already been mentioned that min and max are not the only operators that
could have been chosen to model the intersection or union, respectively, of fuzzy
sets. The question arises, why those and not others? Bellman and Giertz addressed
this question axiomatically in 1973 [Bellman and Giertz 1973, p. 151]. They
argued from a logical point of view, interpreting the intersection as "logical and,"
the union as "logical or," and the fuzzy set A as the statement "The element x
belongs to set A," which can be accepted as more or less true. It is very instruc
tive to follow their line of argument, which is an excellent example for an
axiomatic justification of specific mathematical models. We shall therefore sketch
their reasoning: Consider two statements, Sand T, for which the truth values are
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J!s and J!r. respectively, J!s, J!T E [0, I]. The truth value of the "and" and "or"
combination of these statements, J!(S and T) and J!(S or T), both from the inter
val [0, I] , are interpreted as the values of the membership functions of the inter
section and union , respectively, of Sand T. We are now looking for two
real-valued functions j and g such that

J!SandT = j(J! s , J!T)

J!SorT = g(J!s, J!T)

Bellman and Giertz feel that the following restrictions are reasonably imposed
onjand g:

I. j and g are nondecreasing and continuous in J!s and J!T.
ii. j and g are symmetric, that is,

j(J! S, J!T) = j(J!T, J!s)

g(J!s, J!T)= g(J!T , J!s)

iii. f(J! s, J!s) and g(J!s, J!s) are strictly increasing in J!s·
IV. j(J!s, J!T) ::;min (J!s, J!T) and g(J!s, J!T) ~ max (J!s, J!T). This implies that accept

ing the truth of the statement "S and T" requires more, and accepting the
truth of the statement "S or T" less than accepting S or T alone as true.

v. j(l, 1) = 1 and g(O, 0) =O.
VI. Logically equivalent statements must have equal truth values, and fuzzy sets

with the same contents must have the same membership functions, that is,

is equivalent to

(St and Sz) or(St and S3)

and therefore must be equally true.

Bellman and Giertz now formalize the above assumptions as follows : Using
the symbols /\ for "and" (= intersection) and v for "or" (= union), these assump
tions amount to the following seven restrictions, to be imposed on the two com
mutative (see (ii) and associative (see (vi» binary compositions /\ and v on the
closed interval [0, 1], which are mutually distributive (see (vi» with respect to
one another.

1. J!s /\ J!T = J!T/\ J!s
J!s V J!T= J!T V J!s

2. (J!s /\ J!T) /\ J!u = J!s /\ (J!T/\ J!u)
(J!s v J!T) v J!u = J!s V (J!T V J!u)
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3. ~s /\ (~T V ~u) = (~s /\ ~T) V (~s /\ ~u)

~s V (~T /\ ~u) = (~s V ~T) /\ (~s V ~u)

4. ~s /\ ~T and ~s v ~T are continuous and nondecreasing in each component
5. ~s /\ ~s and ~s v ~s are strictly increasing in ~s (see (iii»
6. ~s /\ ~T :::; min (~s, ~T)

~s V ~T 2: max (~s, ~T) (see (ivj)
7. 1 /\ 1 = 1

ov 0 = 0 (see (v»

Bellman and Giertz then prove mathematically [see Bellman and Giertz 1973,
p. 154] that

~SAT =min(~s, ~T ) and ~SvT =max(~s, ~T )

For the complement, it would be reasonable to assume that if statement "S" is
true, its complement "non S" is false, or if ~s = 1 then ~nonS =0 and vice versa.
The function h (as complement in analogy ofjand g for intersection and union)
should also be continuous and monotonically decreasing, and we would like the
complement of the complement to be the original statement (in order to be in line
with traditional logic and set theory). These requirements, however, are not
enough to determine uniquely the mathematical form of the complement.
Bellman and Giertz require in addition that ~s(1/2) = 1/2. Other assumptions are
certainly possible and plausible.

Exercises

1. Model the following expressions as fuzzy sets :
a. Large integers
b. Very small numbers
c. Medium-sized men
d. Numbers approximately between 10 and 20
e. High speeds for racing cars

2. Determine all a-level sets and all strong a-level sets for the following fuzzy
sets:
a. A= {(3, 1), (4, .2), (5, .3), (6, .4), (7, .6), (8, .8), (10, 1), (12, .8), (14,

.6) }
b. B= {(x, ~B(X) =(l + (x - 1O)2r 1

) }

for a = .3, .5, .8
c. C= {(x, ~c(x»lx E R}

where ~c(x) = 0 for x:::; 10
~c (x) = (1 + (x - IOr2r1 for x > 10



FUZZY SETS-BASIC DEFINITIONS 21

3. Which of the fuzzy sets of exercise 2 are convex and which are not?
4. Let X = { 1, 2, .. . , 1O}. Determine the cardinalities and relative cardinalities

of the following fuzzy sets:
a. A from exercise 2a
b. E= {(2, .4), (3, .6), (4, .8), (5, 1), (6, .8) , (7, .6), (8, .4)}
c. C= {(2, .4), (4, .8), (5, 1), (7, .6)}

5. Determine the intersections and unions of the following fuzzy sets:
a. The fuzzy sets A, E, and Cfrom exercise 4
b. Eand Cfrom exercise 2

6. Determine the intersection and the union of the complements of fuzzy sets
Eand Cfrom exercise 4.



3.1 Types of Fuzzy Sets

3 EXTENSIONS

In chapter 2, the basic definition of a fuzzy set was given and the original set
theoretic operations were discussed. The membership space was assumed to be
the space of real numbers, membership functions were crisp functions, and the
operations corresponded essentially to the operations of dual logic or Boolean
algebra.

Different extensions of the basic concept discussed in chapter 2 are possible.
They may concern the definition of a fuzzy set or they may concern the opera
tions with fuzzy sets. With respect to the definition of a fuzzy set, different struc
tures may be imposed on the membership space and different assumptions may
be made concerning the membership function. These extensions will be treated
in section 3.1.

It was assumed in chapter 2 that the logical "and" corresponds to the set
theoretic intersection, which in turn is modeled by the min-operator. The
same type of relationship was assumed for the logical "or," the union, and the
max-operator. Departing from the well-established systems of dual logic and
Boolean algebra, alternative and additional definitions for terms such as
intersection and union, for their interpretation as "and" and "or," and for their

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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mathematical models can be conceived. These concepts will be discussed in
section 3.2.

So far we have considered fuzzy sets with crisply defined membership func
tions or degrees of membership . It is doubtful whether, for instance, human beings
have or can have a crisp image of membership functions in their minds. Zadeh
[1973a, p. 52] therefore suggested the notion of a fuzzy set whose membership
function itself is a fuzzy set. If we call fuzzy sets, such as those considered so
far, type 1 fuzzy sets, then a type 2 fuzzy set can be defined as follows.

Definition 3-1

A type 2 fuzzy set is a fuzzy set whose membership values are type 1 fuzzy sets
on [0, 1].

The operations intersection, union, and complement defined so far are no longer
adequate for type 2 fuzzy sets. We will, however, postpone the discussions for
adequate operators until section 5.2, that is, until we have presented the exten
sion principle, which shall prove very useful for this purpose. By the same token
by which we introduced type 2 fuzzy sets, it could be argued that there is no
obvious reason why the membership functions of type 2 fuzzy sets should be
crisp. A natural extension of these type 2 fuzzy sets is therefore the definition of
type m fuzzy sets.

Definition 3-2

A type m fuzzy set is a fuzzy set in X whose membership values are type m - 1,
m> I fuzzy sets on [0, 1].

From a practical point of view, such type m fuzzy sets for large m (even for
m ~ 3) are hard to deal with, and it will be extremely difficult or even impos
sible to measure them or to visualize them. We will, therefore, not even try to
define the usual operations on them.

There have been other attempts to include vagueness that goes beyond the
fuzziness of ordinary type 1 fuzzy sets. One example is the "stochastic fuzzy
model" of Norwich and Turksen [1981, 1984]. Those authors were mainly con
cerned with the measurement and the scale level of membership functions. They
view a fuzzy set as a family of random variables whose density functions are esti
mated by that stochasticity [Norwich and Turksen 1984, p. 21].

Hirota [1981] also considers fuzzy sets for which the "value of membership
functions is a random variable."
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Definition 3-3 [Hirota 1981, p. 35]

A probabilistic set A on X is defined by a defining function 11M

IlA: X x n3 (x, 0) ~ IlA(X, 0) Ene

25

where IlA(X, .) is the (B, Bd-measurable function for each fixed x E X.
For Hirota, a probabilistic set A with the defining function IlA(X, 0) is con

tained in a probabilistic set B with IlB(X, 0) if for each x E X there exists an E E

B that satisfies P(E) = 1 and IlA(X, 0) ::; IlB(X, 0) for all 0) E E. (n, B, P) is called
the parameter space.

One of the main advantages of the notion of probabilistic sets in modeling fuzzy
and stochastic features of a system is asserted to be the applicability of moment
analysis, that is, the possibility of computing moments such as expectation and
variance. Figure 3-1 indicates the difference between the appearance of fuzzy
sets and probabilistic sets [Hirota 1981, p. 33]. Of course, the mathematical pro
perties of probabilistic sets differ from those of fuzzy sets, and so do the math
ematical models for intersection, union, and so on.

A more general definition of a fuzzy set than is given in definition 2-1 is that
of an L-fuzzy set [Goguen 1967; De Luca and Termini 1972]. In contrast to the
above definition, the membership function of an L-fuzzy set maps into a partially
ordered set, L. Since the interval [0, 1] is a poset (partially ordered set), the fuzzy
set in definition 2-1 is a special L-fuzzy set.

Further attempts at representing vague and uncertain data with different types
of fuzzy sets were made by Atanassov and Stoeva [Atanassov and Stoeva 1983;
Atanassov 1986], who defined a generalization of the notion of fuzzy sets
the intuitonistic fuzzy sets-and by Pawlak [Pawlak 1982], who developed the
theory of rough sets, where grades of membership are expressed by a concept of
approximation.

Definition 3-4 [Atanassov and Stoeva 1983]

Given an underlying set X of objects, an intuitonistic fuzzy set (IFS) A is a set of
ordered triples,

A = {(x, IlA(x), VA (x»lx E X}

where IlA(X) and VA(X) are functions mapping from X into [0, 1]. For each x E X,
IlA(X) represents the degree of membership of the element x to the subset A of X,
and VA(X) gives the degree of nonmembership. For the functions IlA(X) and VA(X)
mapping into [0, 1], the condition °::; IlA(X) + VA(X) ::; 1 holds.
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Ordinary fuzzy sets over X may be viewed as special intuitonistic fuzzy sets
with the nonmembership function VA(X) = I - ~A(X). In the same way as fuzzy
sets, intuitonistic L-fuzzy sets were defined by mapping the membership func
tions into a partially ordered set L [Atanassov and Stoeva 1984].

Definition 3-5 [Pawlak 1985, p. 99; Pawlak et al. 1988]

Let U denote a set of objects called universe and let R c U x U be an equiva
lence relation on U. The pair A = (U, R) is called an approximation space. For u,
v E U and (u, v) E R, u and v belong to the same equivalence class, and we say
that they are indistinguishable in A. Therefore the relation R is called an indis
cernibility relation . Let [X]R denote an equivalence class (elementary set of A) of
R containing element x; then lower and upper approximations for a subset X s
U in A-denoted d(X) and A(X), respectively-are defined as follows:

!1(X) = {x E UI[X]R C X}

A(X) = {x E UI[X]R n Xi:- S}

If an object x belongs to the lower approximation space of X in A, then "x surely
belongs to X in A," x E A (X) means that "x possibly belongs to X in A."

For the subset X s U representing a concept of interest, the approximation
space A = (U, R) can be characterized by three distinct regions of X in A: the so
called positive region d(X), the boundary region A(X) - d(X), and the negative
region U - A (X).

The characterization of objects in X by the indiscernibility relation R is not
precise enough if the boundary region A(X) - d(X) is not empty. For this case it
may be impossible to say whether an object belongs to X or not, and so the set
X is said to be nondefinable in A, and X is a rough set.

Pawlak [1985] shows that the concept of approximation given by the equivalence
relation R and the approximation space may not, in general, be replaced by a
membership function similar to that introduced by Zadeh.

In order to take probabilistic informations crucial to nondetermini stic classi
fication problems into account, a natural probabilistic extension of the rough-set
model has been proposed [Pawlak et al. 1988].

3.2 Further Operations on Fuzzy Sets

For the time being we return to ordinary fuzzy sets (type 1 fuzzy sets) and con
sider additional operations on them that have been defined in the literature and
that will be useful or even necessary for later chapters .
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3.2. 1 Algebraic Operations

FUZZY SET THEORY-AND ITS APPLICATIONS

Definition 3-6

The Cartesian product of fuzzy sets is defined as follows: Let AI, • • • , An be fuzzy
sets in XI. ... , Xn• The Cartesian product is then a fuzzy set in the product space
XI x ... X K; with the membership function

Il(Alx ..xAn>(x) =min{Il..i; (Xi )Ix=(Xl, .. . Xn ) , Xi E Xi}
I

Definition 3-7

The mth power of a fuzzy set A is a fuzzy set with the membership function

IlAm(x) = [J1A(X)r, X E X

Additional algebraic operations are defined as follows:

Definition 3-8

The algebraic sum (probabilistic sum) C= A+ i3 is defined as

C= {(x, IlA+b(X))lx E X}

where

Definition 3-9

The bounded sum C=AEEl i3 is defined as

C= {(x , IlA(f)b(X))!X E X}

where

Definition 3-10

The bounded difference C= Ae i3 is defined as

C= {(x, IlAeil(x))lx E X}

where
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~Aeil(X) = max{O, ~A (x) +~B(X) -I}

Definition 3-11

The algebraic product of two fuzzy sets C= A.B is defined as

C= {(x, ~A (x) · ~B(x))lx E X}

Example 3-1

Let A(x) = {(3, .5), (5, 1), (7, .6) }
B(x) = {(3, 1), (5, .6) }

The above definitions are then illustrated by the following results:

Ax B = {[(3; 3), .5], [(5;3), 1], [(7;3), .6]

[(3;5), .5], [(5;5), .6], [(7;5), .6]}

A2 = {(3,.25), (5,1), (7, .36)}

A +B = {(3, 1), (5,1), (7, .6)}

AEB B= {(3, I), (5, I), (7, .6)}

Ae B= {(3, .5), (5, .6)}

A.B = {(3, .5), (5, .6)}

3.2.2 Set-Theoretic Operations

29

In chapter 2 the intersection of fuzzy sets, interpreted as the logical "and," was
modeled as the min-operator and the union, interpreted as "or," as the max
operator. Other operators have also been suggested. These suggestions vary
with respect to the generality or adaptibility of the operators as well as to the
degree to which and how they are justified. Justification ranges from intuitive
argumentation to empirical or axiomatic justification. Adaptability ranges
from uniquely defined (for example, nonadaptable) concepts via parameterized
"families" of operators to general classes of operators that satisfy certain
properties.

We shall investigate the two basic classes of operators: operators for the inter
section and union of fuzzy sets- referred to as triangular norms and conorms
and the class of averaging operators, which model connectives for fuzzy sets
between t-norms and t-conorms. Each class contains parameterized as well as
nonparameterized operators.
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t-norms, T-norms were initiated in 1942 with the paper "Statistical metrics"
[Menger 1942]. Menger intended to construct metric spaces where probability
distributions rather than numbers are used in order to describe the distance
between two elements in the respective space. Berthold Schweizer and Abe Sklar
[Schweizer and Sklar 1961] provided the axioms of t-norms as they are used
today.

The mathematical aspects of t-norms are excellently presented in the book by
Klement, Mesiar and Pap [Klement et al. 2000]. The use oft-norms and t-conorms
for modeling the intersection and union of fuzzy sets goes back to the 70s, see
e.g. [Kruse et al. 1994]. Another source is basic psycho-linguistic research that
tried to model quantitatively the linguistic "and" and "or" [Zimmermann and
Zysno 1980, 1982, 1983, Thole, Zimmermann and Zysno 1979]. In the follow
ing we shall concentrate on those t-norms and t-conorms which are most common
in fuzzy set theory. For mathematical derivations, proofs and other t-norms the
reader is referred to the above-mentioned book by [Klement et al. 1994].

Let us first tum to basic definitions:

Definition 3-12 [Dubois and Prade 1980a, p. 17]

t-norms are two-valued functions from [0, 1] x [0, 1] that satisfy the following
conditions:

1. teO, 0) = 0; t(Il,.i(x), 1) = t(1, Il,.i(x)) = Il,.i(x), x E X
2. t(ll,.i (x), Iln(X)) ~ t(llc(X), 1l6(X))

if Il,.i(x) ~ Ilc(x) and Iln(x) ~ 1l6(X)
3. t(Il,.i(x), Iln(x)) = t(lln(x), Il,.i(x))
4. t(Il,.i(x), t(lln(x), IlAx))) = t(t(Il,.i(x), Iln(x)), Ilc(x))

(monotonicity)
(commutativity)

(associativity)

The functions t define a general class of intersection operators for fuzzy sets. The
operators belonging to this class of r-norms are, in particular, associative (see
condition 4), and therefore it is possible to compute the membership values for
the intersection of more than two fuzzy sets by recursively applying at-norm
operator [Bonissone and Decker 1986, p. 220].

t-conorms (or s-norms). For the union of fuzzy sets, the max-operator, the
algebraic sum [Zadeh 1965], and the "bold union" [Giles 1976]-modeled by the
"bounded sum"-have been suggested.

Corresponding to the class of intersection operators, a general class of aggre
gation operators for the union of fuzzy sets called triangular conorms or t
conorms (sometimes referred to as s-norms) is defined analogously [Dubois and
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Prade 1985, p. 90; Mizumoto 1989, p. 221]. The max-operator, algebraic sum,
and bounded sum considered above belong to this class.

Definition 3-13 [Dubois and Prade 1985, p. 90]

t-conorms or s-norms are associative, commutative, and monotonic two-placed
functions S that map from [0, I] x [0, I] into [0, I]. These properties are formu
lated with the following conditions:

1. s(l, I) = I; s(Il..i(x), 0) = s(O, Il..i(x» = Il..i(x), x E X
2. s(Il..i(x), Ilo(x» :::; s(llc{x), Ilb(X))

if Il..i(x) :::; Ilc{x) and Ilo(x):::; Ilb(X)

3. s(Il..i(x), Ilo(x» = s(llo(x), Il..i(x»
4. s(Il..i(x), s(llo(x), Ilc(x))) = s(s(Il..i(x), Ilo(x», Ilc(x))

(monotonicity)
(commutativity)

(associativity)

t-norms and t-conorms are related in a sense of logical duality. Alsina [Alsina
1985] defined a z-conorm as a two-placed function S mapping from [0, I] x
[0, I] in [0, I] such that the function t, defined as

t(IlA (x), llii(X» = 1-s(I -IlA (x), 1-llii(X»

is a r-norm. So any t-conorm S can be generated from at-norm t through this
transformation. More generally, Bonissone and Decker [1986] showed that for
suitable negation operators like the complement operator for fuzzy sets---defined
as n(Il..i(x» = I -Il..i(x) (see chapter 2)-pairs of t-norms t and t-conorms S satisfy
the following generalization of DeMorgan's law [Bonissone and Decker 1986,
p. 220]:

S(IlA(x), llii(X» = n(t(n(IlA (x», n(llii(x»))) and

t(IlA (x), llii(X» = n(s(n(IlA (x», n(llii(x»))), x E X

Typical dual pairs of nonparameterized t-norms and z-conorms are compiled
below [Bonissone and Decker 1986, p. 221; Mizumoto 1989, p. 220]:

( _( ) _( »_{min{IlA(x),llii(X)}ifmax{IlA(x),llii(X)}=1
tw IlA x , IlB X - o otherwise

( _() _( » _ {maX{IlA(x), llii(X)} if min{IlA (x), llii(X)} = 0
Sw IlA X , IlB X -

1 otherwise

t l (IlA (x), llii(X» = max{O, IlA (x) + llii(X)-1}

drastic

product

drastic

sum

bounded

difference
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St(~A (X), ~B(X)) = min{I , ~A (X)+~B(X)}

tI.5(~A (x), ~B(X)) = ~A (x)· ~B(X)
2 - [~A (x) +~B(X) - ~A (x) · ~B(X)]

~A (x) +~B(X)
SI.5(~A(X),~B(X)) = 1 () ()

+~A X ' ~ B X

t2(~A (x), ~B(X)) = ~A (x) · ~ii(X)

These operators are ordered as follows:

t; s tl s tl.5 s t2 s t2.5 s t3

S3s S2.5 s S2 s SI.5 s SI ~ Sw

bounded

sum

Einstein

product

Einstein

sum

algebraic

product

algebraic

sum

Hamacher

product

Hamacher

sum

minimum

maximum

We notice that this order implies that for any fuzzy sets Aand jj in X with mem
bership values between 0 and 1, any intersection operator that is a t-norm is
bounded by the min-operator and the operator twoA t-conorm is bounded by the
max-operator and the operator sw, respectively [Dubois and Prade 1982a, p. 42] :

tW(~A (x), ~B(X)) ~ t(~A (x), ~B(X)) ~ minju, (x), ~B(X)}

maxju, (x), ~B(X)} ~ S(~A (x), ~ii(X)) ~ SW (~A (x), ~ii(X)), X E X

It may be desirable to extend the range of the previously described operators in
order to adapt them to the context in which they are used . To this end, different
authors suggested parameterized families of z-norms and r-conorms, often main
taining the associativity property,

For illustration purposes, we review some interesting parameterized operators.
Some of these operators and their equivalence to the logical "and" and "or,"
respectively, have been justified axiomatically. We shall sketch the axioms on
which the Hamacher-operator rests in order to give the reader the opportunity to
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compare the axiomatic system of Bellman and Giertz (min/max) on the one hand
with that of the Hamacher-operator (which is essentially a family of product oper
ators) on the other.

Definition 3-14 [Hamacher 1978]

The intersection of two fuzzy sets Aand B is defined as

AnB= {(x, IlAnii(X»lx E X}

where

IlAnii(X) = IlA (X)llii(X) , Y2:0
Y+ (1- Y)(IlA (x) + llii(X) - IlA (X)llii(X»

Hamacher wants to derive a mathematical model for the "and" operator. His basic
axioms are as follows:

AI. The operator 1\ is associative, that is, A 1\ (B 1\ C) = (A 1\ B) 1\ C.
A2. The operator 1\ is continuous.
A3. The operator 1\ is injective in each argument, that is,

(A 1\ B) =(A 1\ C) => B=C
(A 1\ B) =(C 1\ B) => A=C

(this is the essential difference between the Hamacher-operator and the
Bellman-Giertz axioms).

A4. Il,i(x) = 1 => Il,i",i(x) = 1

He then proves that a function [: R ~ [0, I] exists with

IlA"s(X) = f(r'(IlA(x) +r' (llii(X)))

If f is a rational function in Il,i(x) and llii(X), then the only possible operator
is that shown in definition 3-14. (For Y = 1, this reduces to the algebraic
product!)

Notice that the Hamacher-operator is the only If-strict t-norm that can be
expressed as a rational function [Mizumoto 1989, p. 223].

Definition 3-15 [Hamacher 1978]

The union of two fuzzy sets A and B is defined as

AU B= {(x, IlAuii(X»lx E X}
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__ ( )- (y'-l)IlA(X)llb(X)+IlA(X)+llb(X) '>-1
IlAuB x - l' () () , y-+Y IlA X Ilb x

For Y' = 0 the Hamacher-union-operator reduces to the algebraic sum.
Yager [1980] defined another triangular family of operators.

Definition 3-16 [Yager 1980]

The intersection of fuzzy sets A and jj is defined as

An jj = {(x, IlAnb(X))lx E X}

where

{ ( P p)l/P}
IlAnb(x)=l-min 1, (l-IlA(x)) +(l-llb(X)) , p2:1

The union of fuzzy sets is defined as

AU jj = {(x, IlAub(X))lx E X}

where

• {( P p)l/P}
IlAub(X) = mm 1, IlA (x) +Ilb(X) , P 2:1

His intersection-operator converges to the min-operator for p ~ 00 and his union
operator to the max-operator for p ~ 00.

For p = 1 the Yager-intersection becomes the "bold-intersection" of definition
3-10. The union operator converges to the maximum-operator for p ~ 00 and
to the bold union for p = 1. Both operators satisfy the DeMorgan laws and
are commutative, associative for all p, and monotonically nondecreasing in Il(x);
they also include the classical cases of dual logic. They are, however, not
distributive.

Dubois and Prade [1980c, 1982a] also proposed a commutative and associa
tive parameterized family of aggregation operators :

Definition 3-17 [Dubois and Prade 1980c, 1982a]

The intersection of two fuzzy sets A and jj is defined as

An jj = {(x, IlAnb(X))lx E X}

where
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( ) IlA (X) · Ilb(X) a E [0, 1]
IlAnb X = { ,

max IlA (x), Ilb(X), a}
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for IlA (x), llii(X) E [0, a]

This intersection-operator is decreasing with respect to a and lies between min
(Il..i(x), Ilo(x)} (which is the resulting operation for a = 0) and the algebraic
product Il..i(x),Ilo(x) (for a = 1). The parameter a is a kind of threshold, since the
following relationships hold for the defined intersection operation [Dubois and
Prade 1982a, p. 47]:

IlAnb(X)= min{IlA(x), Ilb(X)} for IlA(x), Ilb(X) E [a, 1]

()
IlA (x)· Ilb(X)

IlAnii X =
a

Definition 3-18 [Dubois and Prade 1980c, 1982a]

For the union of two fuzzy sets A and B, defined as

AU B= {(x, IlAub(X))lx E X}

Dubois and Prade suggested the following operation, where a E [0, 1]:

()
IlA (x) +Ilb(X) - IlA(x)· Ilb(X) - minWA(x), Ilb(X), (I -a)}

IlAub x =
max{(l- IlA(x)), (I - llii(X)), a}

All the operators mentioned so far include the case of dual logic as a special
case. The question may arise: Why are there unique definitions for intersection
(= and) and union (= or) in dual logic and traditional set theory and so many sug
gested definitions in fuzzy set theory? The answer is simply that many operators
(for instance, product and min-operator) perform in exactly the same way if the
degrees of membership are restricted to the values 0 or 1. If this restriction is no
longer required, the operators lead to different results.

This triggers yet another question: Are the only ways to "combine" or aggre
gate fuzzy sets the intersection or union-or the logical "and" or "or"-respec
tively? Or are there other possibilities of aggregation ? The answer to this
latter question is definitely yes. There are other ways of combining fuzzy sets
and fuzzy statements ; "and" and "or" are only limiting special cases. General
ized models for the logical "and" and "or" are given by the "fuzzy and" and
"fuzzy or" [Wemers 1984]. Furthermore, a number of authors have suggested
general connectives, which are (so far) of particular importance for decision
analysis and for other applications of fuzzy set theory. These operators are general
in the sense that they do not distinguish between the intersection and union of
fuzzy sets.
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Here we shall only mention some of these general connectives. A detailed
discussion of them and the description of still others can be found in volume
2 in the context of decision making in fuzzy environments.

Averaging Operators. A straightforward approach for aggregating fuzzy sets
(for instance, in the context of decision making) would be to use the aggregating
procedures frequently used in utility theory or multicriteria decision theory. These
procedures realize the idea of trade-offs between conflicting goals when com
pensation is allowed, and the resulting trade-offs lie between the most optimistic
lower bound and the most pessimistic upper bound, that is, they map between the
minimum and the maximum degree of membership of the aggregated sets. There
fore they are called averaging operators. Operators such as the weighted and
unweighted arithmetic or geometric mean are examples of nonparametric aver
aging operators. In fact, they are adequate models for human aggregation pro
cedures in decision environments and have empirically performed quite well
[Thole, Zimmermann, and Zysno 1979]. Procedures and results of empirical
research done in the context of human decision making are investigated in section
14.3.

The fuzzy aggregation operators "fuzzy and" and "fuzzy or" suggested by
Wemers [1984] combine the minimum and maximum operator, respectively, with
the arithmetic mean. The combination of these operators leads to very good
results with respect to empirical data [Zimmermann and Zysno 1983] and allows
compensation between the membership values of the aggregated sets.

Definition 3-19 [Wemers 1988, p. 297]

The "fuzzy and" operator is defined as

. (I -Y)(Il Aex) +1l1l(x))
lland(IlAex), Ilii(x)) = Y. rmn{IlA(X),1l1lex)}+ 2

x E X, Y E [0, 1]

The "fuzzy or" operator is defined as

. (I-Y)(Il A(X)+IlS(x»)
IlOr (IlA(X), llii(X)) = y . mm {Il..i(x), 1l1l(x)}+ 2

x E X, Y E [0, 1]

The parameter Yindicates the degree of nearness to the strict logical meaning of
"and" and "or," respectively. For Y= 1, the "fuzzy and" becomes the minimum
operator, and the "fuzzy or" reduces to the maximum operator. Y= °yields for
both the arithmetic mean.



EXTENSIONS 37

Additional averaging aggregation procedures are symmetric summation opera
tors, which, like the arithmetic or geometric mean operators, indicate some degree
of compensation but in contrast to the latter are not associative. Examples of sym
metric summation operators are the operators Ml> M z, and Nl> Nz, known as sym
metric summations and symmetric differences, respectively. Here the aggregation
of two fuzzy sets A and jj is pointwise defined as follows:

M ( _() _( »_ I1A(x)+l1ii(x)-I1A(x) 'l1ii(x)
I I1A x , 118 X -

1+ I1A (x)+ 11 ii (x) - 211A(x) ' l1ii(x )

M ( _() (x) _ I1A (x) ' l1ii(x )
z l1A x, l1ii x -

1+ I1A (x) -l1 ii(x) +211A(x) ' l1ii(x )

N ( _() _( » _ maxU-tA (x) , l1ii(X)}
I I1A x ,118 X -

1+ lilA (x) -l1ii(x)1

N ( _() _( » _ min{I1A (x) , l1ii(x)}
zl1Ax,118 x -

1+ lilA (x) -l1ii(x)1

A detailed description of the properties of nonparametric averaging operators
is reported by Dubois and Prade [1984]. For further details of symmetric sum
mation operators, the reader is referred to Silvert [1979].

The above-mentioned averaging operators indicate a "fix" compensation
between the logical "and" and the logical "or." In order to describe a variety of
phenomena in decision situations , several operators with different compensations
are necessary. An operator that is more general in the sense that the compen
sation between intersection and union is expressed by a parameter y was sug
gested and empirically tested by Zimmermann and Zysno [1980] under the name
"compensatory and."

Definition 3-20 [Zimmermann and Zysno 1980]

The "compensatory and" operator is defined as follows:

This "y-operator" is obviously a combination of the algebraic product (modeling
the logical "and") and the algebraic sum (modeling the "or"). It is pointwise injec
tive (except at zero and one), continuous, monotonous, and commutative. It also
satisfies the DeMorgan laws and is in accordance with the truth tables of dual
logic. The parameter indicates where the actual operator is located between the
logical "and" and "or."
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Other operators following the idea of parameterized compensation are defined
by taking linear convex combinations of noncompensatory operators modeling
the logical "and" and "or." The aggregation of two fuzzy sets A and 13 by the
convex combination between the min- and max-operator is defined as

f!1 (f!..i (x), f!b(X» = 't : minju, (x), f!b(X)} +(I - y). maxju., (x), f!b(X)}
Y E [0, 1]

Combining the algebraic product and algebraic sum, we obtain the following
operation :

f!2 (f!..i (x), f!b(X» =y f!..i (x) . f!b(X) +(I - y) . ij,L..i (x)+ f!b(X) - f!..i (x) . f!b(x)]
Y E [0, 1]

This class of operators is again in accordance with the dual logic truth tables. But
Zimmermann and Zysno showed that the "compensatory and" operator is more
adequate in human decision making than are these operators [Zimmermann and
Zysno 1980, p. 50].

The relationships between different aggregation operators for aggregating two
fuzzy sets A and 13 with respect to the three classes of t-norms, t-conorms, and
averaging operators are represented in figure 3-2.

A taxonomy with respect to the compensatory property of distinguishing oper
ators, which differentiate between the intersection and union of fuzzy sets, and
general operators is presented in table 3-1. Table 3-2 summarizes the classes of
aggregation operators for fuzzy sets reported in this chapter and compiles some
references. Table 3-3 represents the relationship between parameterized families

averaging
operators

t-norms

t-conorms

fLAt;<)

fLiit;<)

1-k:::----------------------=_
fL;'~

x

Figure 3-2. Mapping of t-norms, t-conorms, and averaging operators.
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Table 3-1 . Classification of compensatory and noncompensatory operators.
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Compen satory

Noncompensatory

Distinguishing
operators

fuzzy and
fuzzy or

t-norm s
t-conorm s
min
max

General
operators

compensatory and
convex combinations of min and max
symmetric summations
mean operators

of operators and the presented r-norms and r-conorms with respect to special
values of their parameters.

Ordered Weighted Averaging (OWA) Operators. Yager [Yager 1988] intro
duced a family of aggregation operators, so-called OWA operators, which belong
into the class of mean operators. They are especially suited-and intended-to
aggregations of (weighted) criteria in multi criteria decision making that will be
discussed in chapter 13. Yager uses the same idea that is behind definition 3-20,
i.e, that for the aggregation of criteria an "operator" between the "logical and"
and the "logical inclusive or" seems to be suitable. By contrast to the "compen
satory and", defined in 3-20, Yager derives his suggestions by formal arguments
rather than by scientific empirical tests:

Definition 3-21 [Yager 1993]

An OWA-operator is defined as follows :

1l0WA (x) = L Wjll j(x)
J

where: w = [w., W2, .. • wn } is a vector of weights w, with

wjE[O,l] and

LWj=1

Il/X) is the jlh largest membership value for an element x for which the (aggre
gated) degree of membership shall be determined.

The rationale beh ind this operator is again the observation, that for an
"and" aggregation (modeled i.e. by the min-operator) the smallest degree of
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membership is crucial while for an "or" aggregation (modeled by "max") the
largest degree of membership of an element in all fuzzy sets is to be aggregated.

Therefore, a basic aspect of this operator is the re-ordering step. In particular,
the degree of membership of an element in a fuzzy set is not associated with a
particular weight.

Rather a weight is associated with a particular ordered position of a degree of
membership in the ordered set of relevant degrees of membership.

Example 3-2

Let us consider the aggregation of the degrees of membership of an element x,
which is contained in 10 fuzzy sets J.!.(x) to J.!lO(X).

The OWA-weighting vector be:

w = (0.3, 0.20, 0.15,0.12,0.06,0.05,0.04,0.03,0.02,0.02)

The degrees of membership of x in the 10 fuzzy sets J.!i(X) are:

u = (0.2 , 0.3, 0.5, 0.8,1,0.6,0.5,0.4,0.3,0.2)

Recording the Jl;(x) according to their values yields:

u' = (1, 0.8 , 0.6 , 0.5 , 0.5 , 0.4 , 0.3 , 0.3, 0.2, 0.2)

J.! OWA(x) = (0.3) (I) +(0.2) (0.8) + (0.15) (0.6) + (0.12) (0.5) +(0.06) (0.5)

+ (0.05) (0.4) + (0.04) (0.3) + (0.03) (0.03) + (0.02) (0.2)+ (0.02) (0.2)

=0.689

Special vectors w correspond to typical aggregation operators. For instance:

w = (1 , 0, 0, , 0) = max-operator

w =(0, 0, , 0, I) =min-operator

w = (~.-!-,....-!-) = ~L J.!;(x) = arith . mean
n n n n ;

Yager also defines a number of measures, two of which quantify the position of
this operator between the "logical and" and the "logical or":

He defines the "orness" as

1 n

omess( w) = --L(n - i)w;
n-l ;= !

and "andness" as
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andness(w) = 1- omess(w)
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and suggests that values of less than .5 for these measures indicate a bias to "and"
or "or" respectively (compare with definition 3-19!).

Yager also proposes other families of OWA-operators in [Yager 1993].
Finally it shall be mentioned that some authors also suggest the fuzzy integral

as aggregation operator [Grabisch 1998].

3.2.3 Criteria for Selecting Appropriate Aggregation Operators

The variety of operators for the aggregation of fuzzy sets might be confusing and
might make it difficult to decide which one to use in a specific model or situa
tion. Which rules can be used for such a decision?

The following eight important criteria according to which operators can be
classified are not quite disjunct; hopefully they may be helpful in selecting the
appropriate connective.

1. Axiomatic Strength. We have listed the axioms that Bellman-Giertz and
Hamacher, respectively, wanted their operators to satisfy. Obviously, every
thing else being equal, an operator is the better the less limiting the axioms
are it satisfies.

2. Empirical Fit. If fuzzy set theory is used as a modeling language for real
situations or systems, it is not only important that the operators satisfy certain
axioms or have certain formal qualities (such as associativity, commutativ
ity), which are certainly of importance from a mathematical point of view,
but also the operators must be appropriate models of real-system behavior;
and this can normally be proven only by empirical testing.

3. Adaptability. It is rather unlikely that the type of aggregation is indepen
dent of the context and semantic interpretation, that is, whether the aggre
gation of fuzzy sets models a human decision, a fuzzy controller, a medical
diagnostic system, or a specific inference rule in fuzzy logic. If one wants to
use a very small number of operators to model many situations, then these
operators have to be adaptable to the specific context. This can, for instance,
be achieved by parameterization. Thus min- and max-operators cannot be
adapted at all. They are acceptable in situations in which they fit and under
no other circumstances. (Of course, they have other advantages, such as
numerical efficiency.) By contrast, Yager's operators or the y-operator can be
adapted to certain contexts by setting the p's or y's appropriately, and OWA
operators by chaosing appropriate weight vectors.
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4. Computational Efficiency. If one compares the min-operator with, for
instance, Yager's intersection operator or the y-operator, it becomes quite
obvious that the latter two require considerably more computational effort
than the former. In practice, this might be quite important, in particular when
large problems have to be solved.

5. Compensation. The logical "and" does not allow for compensation at all;
that is, an element of the intersection of two sets cannot compensate for a
low degree of belonging to one of the intersected sets by a higher degree of
belonging to another of them. In (dual) logic, one cannot compensate by the
higher truth of one statement for the lower truth of another statement when
combining them by "and." By compensation, in the context of aggregation
operators for fuzzy sets, we mean the following : Given that the degree of
membership to the aggregated fuzzy set is

lis compensatory if ~Agg(Xk) = k is obtainable for a different ~A(Xk) by a change
in ~B(Xk). Thus the min-operator is not compensatory, while the product oper
ator, the y-operator, and so forth, are.

6. Range of Compensation. If one would use a convex combination of min
and max-operator, a compensation could obviously occur in the range
between min and max. The product operator allows compensation in the open
interval (0, 1). In general, the larger the range of compensation, the better
the compensatory operator.

7. Aggregating Behavior. If one considers normal or subnormal fuzzy sets,
the degree of membership in the aggregated set depends very frequently on
the number of sets combined. Ifone combines fuzzy sets by the product oper
ator, for instance, each additional fuzzy set "added" will normally decrease
the resulting aggregate degrees of membership. This might be a desirable
feature; it might, however, also be inadequate. Goguen, for instance, argues
that for formal reasons the resulting degree of membership should be
nonincreasing [Goguen 1967].

8. Required Scale Level of Membership Functions. The scale level
(nominal, interval, ratio, or absolute) on which membership information can
be obtained depends on a number of factors. Different operators may require
different scale levels of membership information to be admissible. (For
instance, the min-operator is still admissible for ordinal information, while
the product operator, strictly speaking, is not!) In general, again all else being
equal, the operator that requires the lowest scale level is the most preferable
from the point of view of information gathering.
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Exercises
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1. The product and the bounded difference have both been suggested as models
for the intersection . Compute the intersection of fuzzy sets jj and C from
exercise 4 of chapter 2 and compare the three alternative models for the inter
section: Minimum, product, and bounded difference.

2. The bounded sum and the algebraic sum have been suggested as alternative
models for the union of fuzzy sets. Compute the union of the fuzzy sets
jj and Cof exercise 4 of chapter 2 using the above-mentioned models, and
compare the result with the result of exercise 4 of chapter 2.

3. Determine the intersection of jj and C in exercise 4 of chapter 2 by
using the
a. Hamacher operator with y = .25; .5; .75
b. Yager operator with p = 1, 5, 10.

4. Which of the intersection operators mentioned in chapter 3 are compensatory
and which not? Are the "compensatory" operators compensatory for the
entire range [0, 1] and for the entire domain of their parameters (y, p, etc.)?
If not, what are the limits of compensation?

5. Prove that the following properties are satisfied by Yager's union operator:
a. ~A UB(X) = ~A(X) for ~B(X) = 0
b. ~AUB(X) = 1 for ~B(X) = 1
c. ~AUB(X);;::: ~A(X) for ~A(X) = ~B(X)

d. For p ~ 0, the Yager union operator reduces to Sw (drastic sum).
6. Show for the parameterized families of fuzzy union defined by Hamacher,

Yager, and Dubois that the defining functions of these operators decrease with
any increase in the parameter.



4 FUZZY MEASURES AND

MEASURES OF FUZZINESS

4.1 Fuzzy Measures

In order to prevent confusion about fuzzy measures and measures of fuzzines s,
we shall first briefly describe the meaning and features of fuzzy measures. In the
late 1970s, Sugeno defined a fuzzy measure as follows :

Sugeno [1977] : ~ is a Borel field of the arbitrary set (universe) X.

Definition 4-1

A set function g defined on ~ that has the following properties is called a fuzzy
measure:

1. g(O) = 0, g(X) = 1.
2. If A, B E ~ and A c B, then g(A) ::;g(B).
3. If An E ~, AI k: A2 k: . . . , then lim g(An) = g(lim An)'

n~oo n ---700

Sugeno 's measure differs from the classical measure essentially by relaxing the
additivity property [Murofushi and Sugeno 1989, p. 201]. A different approach,

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
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however, is used by Klement and Schwyhla [1982]. The interested reader is
referred to their article.

Banon [1981] shows that very many measures with finite universe, such as
probability measures, belief functions, plausibility measures, and so on, are fuzzy
measures in the sense of Sugeno. For this book, one measure-possibility-is of
particular interest [see Dubois and Prade 1988a, p. 7].

In the framework of fuzzy set theory, Zadeh introduced the notion of a possi
bility distribution and the concept of a possibility measure, which is a special
type of the fuzzy measure proposed by Sugeno. A possibility measure is defined
as follows [Zadeh 1978; Higashi and Klir 1982]:

Definition 4-2

Let P(X) be the power set of a set X.
A possibility measure is a function TI: P(X) -7 [0, I] with the properties

l. TI(O) =0, TI(X) = I
2. A ~ B => TI(A) S; TI(B)
3. TI (U A;) = sup TI(A;) with an index set I.

ie/ ie J

It can be uniquely determined by a possibility distribution function ! X -7 [0, I]
by TI(A) =sUPxeAfix), A c X. It follows directly thatfis defined by fix) =TI({x}r'dx

E X [Klir and Folger 1988, p. 122].
A possibility is not always a fuzzy measure [Puri and Ralescu 1982]. It is,

however, a fuzzy measure if X is finite and if the possibil ity distribution is
normal-that is, a mapping into [0, 1].

Example 4-1

Let X = {O, 1, ... , 1O} .
TI({x}) : = Possibility that x is close to 8.

x 0 1 2 3 4 5 6 7 8 9 10

TI({x}) .0 .0 .0 .0 .0 .1 .5 .8 I .8 .5

TI(A): = Possibility that A contains an integer close to 8.

A eX=> TI(A) = sup TI({x})
xeA
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For A = {2, 5, 9} we compute:

n(A) = sup n({x})
xeA

= sup{n({2}), n({5}), n({9})}

= sup{O, .1, .8}

=.8

4.2 Measures of Fuzziness
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Measures of fuzziness, in contrast to fuzzy measures, try to indicate the degree
of fuzziness of a fuzzy set. A number of approaches to this end have become
known . Some authors, strongly influenced by the Shannon entropy as a measure
of information, and following de Luca and Termini [1972], consider a measure
of fuzziness as a mapping d from the power set P(X) to [0, -too] that satisfies a
number of conditions. Others [Kaufmann 1975] suggested an index of fuzziness
as a normalized distance, and others [Yager 1979; Higashi and Klir 1982] base
their concept of a measure of fuzziness on the degree of distinction between the
fuzzy set and its complement.

We shall, as an illustration, discuss two of those measures. Suppose for both
cases that the support of A is finite.

The first is as follows : Let IlA(X) be the membership function of the fuzzy set
A for x E X, X finite. It seems plausible that the measure of fuzziness d(A) should
then have the following properties [de Luca and Termini 1972]:

1. d(A) = 0 if A is a crisp set in X.
2. d(A) assumes a unique maximum if IlA(X) = tVx E X.
3. d(A) ~ d(A') if A' is "crisper" than A, i.e. , if IlA' (x) s IlA(X) for IlA(X) s t and

IlA'(X) ~ IlA(X) for IlA(X) ~ t.
4. d(¢A) = d(A) where ¢A is the complement of A.

De Luca and Termini suggested as a measure of fuzziness the "entropy" of a
fuzzy set [de Luca and Termini 1972, p. 305], which they defined as follows :

Definition 4-3a

The entropy as a measure of a fuzzy set A= {(x, Ilti(x)} is defined as

1 Also employed in thermodynamics, information theory, and statistics [Capocelli and de Luca
1973).
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dCA) = RCA) + RCqA), x EX
n

RCA) = - KLIlA Cx;)lnCIlA Cx;)
;=1 _

where n is the number of elements in the support of A and K is a positive
constant.

Using Shannon's function S(x)= -x lnx - (1 - x) In(1 - x), de Luca and Termini
simplify the expression in definition 4-3a to arrive at the following definition.

Definition 4-3b

The entropy d as a measure offuzziness of a fuzzy set A= {x, Il,i(x)} is defined
as

dCA) =Kf,S(IlA (x;» .
;=1

Example 4-2

Let A= "integers close to 10" (see example 2-1d)

A= {(7, .1), (8, .5), (9, .8), (10, 1),(11, .8), (12, .5), (13,.l)}

Let K = 1, so

dCA) =.325 + .693 + .501+ 0 + .50 1+ .693 + .611+ .325 =3.038

Furthermore, let iJ ="integers quite close to 10"

B= {(6, .1), (7, .3), (8, .4), (9, .7), (10, 1),(11,.8), (12, .5), (13, .3), (14, .nl

deB) =.325 + .6 11+ .673 + .611+ 0 + .501+ .693 + .6 11+ .325 =4.35

The second measure is as follows : Knopfmacher [1975], Loo [1977], Gottwald
[1979b], and others based their contributions on the Luca and Termini's sugges
tion in some respects.

If A is a fuzzy set in X and ¢A is its complement, then in contrast to crisp sets,
it is not necessarily true that

AU ¢A=X

An¢A=0

This means that fuzzy sets do not always satisfy the law of the excluded middle,
which is one of their major distinctions from traditional crisp sets. Some authors
[Yager 1979; Higashi and Klir 1982] consider the relationship between Aand ¢A
to be the essence of fuzziness.
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Yager [1979] notes that the requirement of distinction between A and ¢A is
not satisfied by fuzzy sets. He therefore suggests that any measure of fuzziness
should be a measure of the lack of distnction between A and ¢A or Il,j(x) and
!l¢4(x),

As a possible metric to measure the distance between a fuzzy set and its com
plement, Yager suggests:

Definition 4-4

[

n ]I/P
Dp(A, ¢A) = ~IIlA (x;) - Il<lA (x;)I

P
P =1,2, 3, ...

Let S =supp(A): Dp(S, ¢S) =Ilsll'/P

Definition 4-5 [Yager 1979]

A measure of the fuzziness of Acan be defined as

- Dp(A, <tA)
fp(A) = 1- Ilsupp(A)11

SoJ;,(A) E [0, 1]. This measure also satisfies properties 1 to 4 required by de Luca
and Termini (see above).

For p = 1, Dp(A, ¢A) yields the Hamming metric

n

D.(A, ¢A) = LillA (x.) - 11<1,1 (x;)l
i=l

Because !l¢4(x) = 1 - Il,j(x), this becomes

n

D,(A, ¢A) = LI2IlA(X;) -11
;=1

For p = 2, we arrive at the Euclidean metric

and for !l¢4(x) = 1 - Il,j(x), we have

(

n )1/2
D2 (A, ¢A) = ~ (211,1 (x;) - 1)2
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Example 4-3

Let A= "integers close to 10" and
R= "integers quite close to 10" be defined as in example 4-2.

Applying the above derived formula, we compute for p = 1:

D)(A, <tA) = .8 + 0 + .6 + 1+ .6 + 0 + .8

=3.8

IlsuppCA)11 = 7

Analogously,

o; (R, <tR) = 4.6

IlsuppCR)11 = 9

- 4.6
so fi (B) = 1-9 = 0.489.

Similarly, for p = 2, we obtain

D2(A,<tA) = 1.73

IlsuppCA)11 = 2.65

- 1.73
so !2(A) = 1- - =0.347, and

2.65

D2 (R, <tR) = 1.78

IlsuppCR)11 = 1

- 1.78
so !2(B) = 1- -3- = 0.407.

The reader should realize that the complement of a fuzzy set is not uniquely
defined [see Bellman and Giertz 1973; Dubois and Prade 1982a; Lowen 1978].
It is therefore not surprising that for other definitions of the complement and for
other measures of distance, other measures of fuzziness will result , even though
they all focus on the distinction between a fuzzy set and its complement [see, for
example, Klir 1987, p. 141]. Those variations, as well as extension of measures
of fuzziness to nonfinite supports, will not be considered here; neither will the
approaches that define fuzzy measures of fuzzy sets [Yager 1979].
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Exercises
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1. Let Abe defined as in example 4-2.
i1' = (8, .5), (9, .9), (10, 1), (11, .8), (12, .5)}
C' = (6, .1), (7, .1), (8, .5), (9, .8), (10, I), (11, .8), (12, .5), (13, .1) ,
(14, I)}
Is Acrisper than iJ (or C)?
Compute as measures of fuzziness:
a. the entropy (with K = 1)
b. fi
c. 12 for all three sets.
Compare the results.

2. Determine the maximum of the entropy of d(A) in dependence of the cardi
nality of the support of A.

3. Consider A as in exercise 1. Determine A n <tA and A U <tA. For which
(special) fuzzy sets does the equality hold?

4. Consider example 4-1. Compute the possibilities of the following sets :

AI = {I , 2, 3,4,5, 6},A 2 ={I, 5, 8, 9},A3 ={7, 9}
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5.1 The Extension Principle

THE EXTENSION
PRINCIPLE AND
APPLICATIONS

One of the most basic concepts of fuzzy set theory that can be used to general
ize crisp mathematical concepts to fuzzy sets is the extension principle. In its ele
mentary form, it was already implied in Zadeh's first contribution [1965]. In the
meantime, modifications have been suggested [Zadeh 1973a; Zadeh et al. 1975;
Jain 1976]. Following Zadeh [1973a] and Dubois and Prade [1980a] , we define
the extension principle as follows:

Definition 5-1

Lex X be a Cartesian product of universes X = XIX . . . xX" and Ab ••• , Ar be r

fuzzy sets in Xb . • • , X" respectively.j' is a mapping from X to a universe Y, y =
!(Xb ' . . , xr) . Then the extension principle allows us to define ajuzzy set iJ in Y
by

where

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
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{

SUP min{J.!AJx.), .. ..J.!A,(x,)} if r l (y) :t:9
J.!B(y) = (x , •.. .• x,)erl( y)

o otherwise

where I I is the inverse off.
For r = 1. the extension principle. of course. reduces to

B = f(A) = {(y, J.!B(y»ly = [ix) , x E X}

where

Example 5-1

Let A= {(-I • .5), (0• .8), (1, 1). (2. A)}
f(x) = J?
Then by applying the extension principle, we obtain

B=f(A) ={(O, .8). (1,1), (4, A)}

Figure 5-1 illustrates the relationship.

The extension principle as stated in definition 5-1 can and has been modified by
using the algebraic sum (definition 3-8) rather than sup, and the product rather
than min [Dubois and Prade 1980a). Since, however, it is generally used as defined
in definition 5-1, we will restrict our considerations to this "classical" version.

5.2 Operations for Type 2 Fuzzy Sets

The extension principle can be used to define set-theoretic operations for type 2
fuzzy sets as defined in definition 3-1.

We shall consider only fuzzy sets of type 2 with discrete domains. Let two
fuzzy sets of type 2 be defined by

A(x) ={(x. J.! ti(x»} and B(x) ={(x . J.!jj(x»}

where

J.!ti (x) = {(u;, J.!u;(x»lx E X, u., J.!ui(X) E [0, I]}

J.!B(X) = {(Vj, J.! vj(x»lx E X, vi- J.!Vj(x) E [0, l]}
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4 4

3 3

2 2

1 1

0 0

-1 -1

S(A) S(B)

Figure 5-1. The extension principle.
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The u, and Vj are degrees of membership of type 1 fuzzy sets and the Iluj(x) and
Ilvix), respectively, their membership functions. Using the extension principle, the
set-theoretic operations can be defined as follows [Mizumoto and Tanaka 1976]:

Definition 5-2

Let two fuzzy sets of type 2 be defined as above. The membership function of
their union is then defined by

IlAUS(X) = IlA (x) U Ils(x)

= {(w, IlAus(w))lw = maxjn., Vj}, u., Vj E [0, I]}

where

IlAUS(W) = sup min {IlUj (x), IlVj(x)}
w=max{UI ,Vj}

Their intersection is defined by

J!Ans(X) = IlA (x) n Ils(x)

= {(w, IlAns(w))lw = min{uj, Vj}, u., Vj E [0, I]}
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where
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IlAn8(W)= w=~~tj } m in{llu,(x) ,IlVj(x)}

and the complement of Aby

I1¢ A(x) = {[(1- u;), IlA(u;)]}

Example 5-2

Let X = 1, . . . , 10, A= small integers
jj = integers close to 4

defined by

A= {(x , IlA(x»}

jj = {(x , ll ii(X»}

where, for x = 3,

IlA(3) ={(Uj, lluj(3»!i=1, . . . , 3}

= {(.8, 1),(.7, .5), (.6, .4)}

118(3) ={(Vj , Ilvj(3»lj =1, . . . , 3}

= {(I, 1),(.8, .5), (.7, .3)}

Compute IlAnii:

u, Vj W =minlu, Vj} llul3) llvj(3) min Illul3), llvi3)}

.8 1 .8 1 1 1

.8 .8 .8 1 .5 .5

.8 .7 .7 1 .3 .3

.7 1 .7 .5 1 .5

.7 .8 .7 .5 .5 .5

.7 .7 .7 .5 .3 .3

.6 1 .6 .4 1 .4

.6 .8 .6 .4 .5 .4

.6 .7 .6 .4 .3 .3

Next, compute the supremum of the degrees of membership of all pairs (u; v)
that yield w as minimum:

sup {I, .5} = 1
.8=min{u, ,Vj }
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sup {.3, .5, .5, .3} = .5
.7=min lUi ,Vj }

sup {.4, .4, .3} = .4
.6=min { Ui ,Vj}

So we obtain the membership function of x = 3 as the fuzzy set

IlAnli(3) = {(.8, I), (.7, .5), (.6, 4)}

59

Mizumoto and Tanaka [1976, p. 318] show that type 2 fuzzy sets as defined above
are idempotent, commutative, and associative and satisfy the DeMorgan laws.
They are, however, not distributive and do not satisfy the absorbtion laws , the
identity laws, or the complement laws.

Example 5-2 is a good indication of the computational effort involved in oper
ations with type 2 fuzzy sets. The reader should realize that in this example the
degrees of membership of only one element of the type 2 fuzzy set is computed.
For all other elements, such as x = 4, x = 5, . . . etc . of the sets A*B, the corre
sponding calculations would be necessary. Here "* " can be any set-theoretic
operation mentioned so far.

5.3 Algebraic Operations with Fuzzy Numbers

Definition 5-3

Afuzzy number it is a convex normalized fuzzy set it of the real line IR such that

I. I~ exists exactly one Xo E IR with Il,w(xo) = I (xo is called the mean value of
M).

2. Il,w(x) is piecewise continuous.

Nowadays, definition 5-3 is very often modified. For the sake of computational
efficiency and ease of data acquisition, trapezoidal membership functions are
often used , Figure 5-2 shows such a fuzzy set, which could be called "approxi
mately 5" and which would normally be defined as the quadrupel (3 , 4, 6, 7},
Strictly speaking, it is a fuzzy interval (see section 5.3.2). A triangular fuzzy
number is, of course, a special case of this .

Definition 5-4

A fuzzy number it is called positive (negative) if its membership function is such
that Il,w(x) = 0, 'rfx < °('rfx> 0).
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,..,,<x}

1

10 X987654321
O+---+---+-~--t---+---+---+--+---i--t--

o

Figure 5-2. Trapezoidal ''fuzzy number."

Example 5-3

The following fuzzy sets are fuzzy numbers:

approximately 5 = {(3, .2), (4, .6), (5, 1), (6, .7), (7, .1)}

appro ximatel y 10 = {(8, .3), (9, .7), (10,1 ), (11, .7), (12, .3) }

But {(3, .8), (4,1), (5, I), (6, .7) } is not a fuzzy number because 1l(4 ) and also
1l(5 ) = 1.

We are all familiar with algebraic operations with crisp numbers. If we want to
use fuzzy sets in appli cations, we will have to deal with fuzzy numbers, and the
extension principle is one way to extend algebraic operations from crisp to fuzzy
numbers.

We need a few more definitions: Let F (IR) be the set of real fuzzy numbers
and X = Xl X X2• We can define the following properties of binary operations:

Definition 5-5

A binary operation * in IR is called increasing (decreasing) if

for Xl > YI and X2 > Y2

Xl * X2 > YI * Y2 (Xl * X2 < Yl * Y2)
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Example 5-4
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f(x, y) = x + y is an increasing operation.

f(x, y) = x . y is an increasing operation on IR+.

f(x, y) = -(x + y) is a decreasing operation.

If the normal algebraic operations +, -, ., : are extended to operations on fuzzy
numbers, they shall be denoted by ED, e, 0,(:).

Theorem 5-1 [See Dubois and Prade 1980a, p. 44]

If M and Nare fuzzy numbers whose membership functions are continuous and
surjective from IR to [0, 1] and * is a continuous increasing (decreasing) binary
operation, then M® Nis a fuzzy number whose membership function is con
tinuous and surjective from IR to [0, 1].

Dubois and Prade [1980a] present procedures to determine the membership
functions /l";@N on the basis of /l,.; and /IN.

Theorem 5-2

If M, NE F(IR) with /lNCx) and /l";(x) continuous membership functions, then by
application of the extension principle for the binary operation *: IR ® IR ~ R
the membership funct ion of the fuzzy number M® N is given by

/lM@N(Z) = sup min{/lM (x), /IN(y)}
z=x·y

Properties of the extended operation ®

Remark 5-1 [Dubois and Prade 1980a, p. 45]

1. For any commutative operation *, the extended operation ® is also
commutative.

2. For any associative operation *, the extended operation® is also associative.

5.3. 1 Special Extended Operations

For unary operations f X ~ Y, X = XI (see definitions 5-1), the extension
principle reduces for all M E F(IR) to
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~f(if) (Z) = SUp ~M(X)
x er l(z)

Example 5-5

1. For f(x ) = - x , the opposite of a fuzzy number M is given by -M = { (x ,

~-M(x))1x E X}, where Il-M(X) = ~M(-X).

2. If .f(x) =+, then the inverse of a fuzzy number M is given by M-1 =
{(x, ~ii (x))1x E X}, where ~ii (x) = ~M(+)'

3. For A E IR\{O} and f (x ) = A'x, then the scalar multiplication of a fuzzy
number is given by AM = {(x, ~AM(x))1x E X}, where ~AM(X) =~M(A ' x) .

In the following, we shall apply the extension principle to binary operations. A
generalization to n-ary operations is straightforward.

Extended Addition. Since addition is an increasing operation according to
theorem 5-1, we get for the extended addition EB of fuzzy numbers that f(N,M)
= NEEl M,N,M E F(IR) is a fuzzy number-that is, NEEl M E F(IR).

Properties of EB

I. 8(M EB iI) = (eM) EB (eil).
2. EEl is commutative.
3. EB is associative.
4. 0 E IR ~ F(IR) is the neutral element for EB, that is, M EB 0 = M,VM E F(IR).
5. For EB there does not exist an invers e element, that is, VM E F(IR)\IR: M EB

(eM) i:- OE R

One of the consequences [Yager 1980] is that fuzzy equ ations are very difficult
to solve because the variables cannot be eliminated as usual.

Extended Product. Multiplication is an increasing operation on IR+ and a
decreasing operation on IR-. Hence, according to theorem 5-1, the product of
positive fuzzy numbers or of negative fuzzy numbers results in a positive fuzzy
number. Let M be a positive and Na negative fuzzy number. Then 8M is also
negative and M 0 N= 8(eM 0 iI) results in a negative fuzzy number.

Properties of 0

1. (eM) 0 N= e(M 0 iI).
2. 0 is commutative.
3. 0 is associative.
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4. M 0 1 = M, 1 E ~ ~ F(~) is the neutral element for 0 , that is, M 0 1 =
M, VM E F(~) .

5. For 0 there does not exist an inverse element, that is, VM E F(~)\~ : M 0
M-I =F- 1.

Theorem 5-3 [for the proof, see Dubois and Prade 1980a, p. 51]

If Mis either a positive or a negative fuzzy number and Nand Pare both either
positive or negative fuzzy numbers, then

Extended Subtraction. Subtraction is neither an increasing nor a decreasing
operation. Therefore theorem 5-1 is not immediately applicable. The operation
M8 Ncan, however, always be written as M8 N= M EB (8N).

Applying the extension principle [Dubois and Prade 1979] yields

z=x-y

z=x+y

= sup minCll if (x), I·LN(Y»
z=x+y

Thus M8 Nis a fuzzy number whenever M and Nare.

Extended Division. Division is also neither an increasing nor a decreas
ing operation. If M and N are strictly positive fuzzy numbers, however (that
is, llM(x) = 0 and llNCx) = 0 Vx ::; 0), we obtain in analogy to the extended
subtraction

llifGlN(z) = ~~h min(ll if (x), llN(Y»

=~~E min(llif(x),IlN(;-))

=sup min(llif(x),IlR'(y»
Z=XY

N-I is a positive fuzzy number. Hence theorem 5-1 can now be applied. The same
is true if M and Nare both strictly negative fuzzy numbers.

Similar results can be obtained by using other than the min-max operations
for instance , those of definitions 3-7 through 3-11.
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Extended operations with fuzzy numbers involve rather extensive computa
tions as long as no restrictions are put on the type of membership functions
allowed. Dubois and Prade [1979] propose a general algorithm for perform
ing extended operations . For practical purposes, however, it will generally be
more appropriate to resort to specific kinds of fuzzy numbers, as they are
described in the next section. The generality is not limited considerably by
limiting extended operations to fuzzy numbers in LR-representation or even to
triangular fuzzy numbers [van Laarhoven and Pedrycz 1983], and the com
putational effort is very much decreased. The reader should also realize that
extended operations on the basis of min-max cannot be directly applied to "fuzzy
numbers" with discrete supports. As illustrated by example 5-6, the resulting
fuzzy sets may no longer be convex and therefore no longer considered as fuzzy
numbers.

Example 5-6

Let M= {(I, .3), (2, 1), (3, .4)}
N= {(2, .7), (3 , I), (4, .2)}

Then

M0 N= {(2, .3), (3, .3), (4, .7), (6,1), (8, .2), (9, .4) , (12, .2) }

5.3.2 Extended Operations for LR-Representation of Fuzzy Sets

Computational efficiency is of particular importance when using fuzzy set theory
to solve real problems, that is, problems of realistic size. In the following, there
fore, we shall consider in detail the LR-representation of fuzzy sets, which
increases computational efficiency without limiting the generality beyond ac
ceptable limits.

Dubois and Prade [1979] suggest a special type of representation for fuzzy
numbers of the following type: They call L (and R), which map IR+ ~ [0, 1], and
are decreasing, shape fun ctions if L(O) = I, L(x) < I for Vx > 0; L(x) >°for Vx
< I ; L(l) =°or [L(x) > 0, Vx and L(+oo) =0].

Definition 5-6

Afuzzy number M is of LR-type if there exist reference functions L (for left), R
(for right), and scalars a > 0, ~ > °with



THE EXTENSION PRINCIPLE AND APPLICATIONS 65

5

Figure 5-3. LR-representation of fuzzy numbers.

10 x

JlM(X){L( m~ x) for x~m
R( x~m) for x:?m

m, called the mean value of it, is a real number, and a and ~ are called the left
and right spreads, respectively. Symbolically, it is denoted by (m, a, ~)LR' (See
figure 5-3.)

For L(z), different functions can be chosen. Dubois and Prade [1988a, p. 50]
mention, for instance, L(x) = max (0, 1 - x)P, L(x) = max (0, I - xP) , with p > 0
and L(x) = e-x or L(x) = e-x

' . These examples already give an impression of the
wide scope of L(z). One problem, of course, is to find the appropriate function in
a specific context.

Example 5-7

Let

I
L(x)=-

1+x 2

I
R(x)=--

1+21xl
a = 2, ~ = 3, m = 5
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Then
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~5;X) = C- X)' for x~5
1+ --

~M(X)= 2

,X;5)= 1+12(~3-5)1 for x>5

If the m is not a real number but an interval [m, iii], then the fuzzy set if is
not a fuzzy number but a fuzzy interval. Accordingly, a fuzzy interval in LR
representation can be defined as follows:

Definition 5-6a [Dubois and Prade 1988a, p. 48]

Afuzzy interval if is of LR-type if there exist shape functions Land R and four
parameters tm. iii) E 1R2 U {-oo, +00 }, o, ~ and the membership function of if is

l~~~X) for x~m

~M(X) = 1 for m~x~iii

R( X~iii) for x:?m

The fuzzy interval is then denoted by

if = (rr!, iii, u, ~)LR

This definition is very general and allows quantification of quite different types
of information ; for instance, if if is supposed to be a real crisp number for m
E IR,

M=(m,m,O,O)LR' "dL, "dR

If if is a crisp interval,

M= (a, b, 0, O)LR' "dL, v«
and if if is a "trapezoidal fuzzy number" (see definition 5-3), L(x) =R(x) =max
(0, 1 - x) is implied.

For LR fuzzy numbers, the computations necessary for the above-mentioned
operations are considerably simplified: Dubois and Prade [1979] showed that
exact formulas can be given for EB and 8. They also suggested approximate
expressions for 0 and G) [Dubois and Prade 1979], which approximate better
when the spreads are smaller compared to the mean values.
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Theorem 5-4

Let if, Nbe two fuzzy numbers of LR-type:

M= (m, a, ~)LR' N= (n, 't, o)LR

Then

1. (m, a, P)LR EB (n, y, O)LR = (m + n, a + y, ~ + o)LR'

2. -(m, a, ~b = (-m, ~, a)LR'
3. (m, a, ~)LR e (n, y, O)LR = (m - n, a + 0, ~ + y)LR'

Example 5-8

1
L(x) = R(x) = -

I +x2

M= 0, .5, .8)LR

N= (2, .6, .2)LR

M$ N= (3, 1.1, l)LR

8 = (2, .6, .2)LR

e 8 = (-2, .2, .6)LR

Me 8 = (-1, .7, 1.4)LR

Theorem 5-5 [Dubois and Prade 1980a, p. 55]

Let if, Nbe fuzzy numbers as in definition 5-3; then

(m, a, ~)LR 0 (n, y, o)LR '" (mn, my+ no;mo + n~)LR

for if, Npositive;

(m, a, ~)LR 0 (n, 't . O)LR '" (mn, na-mo, n~ -mY)LR

for Npositive, if negative, and

(m, a, ~)LR 0 (n, y, o)LR '" (mn, -n~ -mo, na-mY)LR

for if, Nnegative.

The following example shows an application of theorem 5-5.

Example 5-9

Let M =(2, .2, .l)LR

N= (3, .1, .3)LR
be fuzzy numbers of LR-type with reference functions

67



68 FUZZY SET THEORY-AND ITS APPLICATIONS

else

2-x x-2
- I ::; -- ::; I and - I ::; -- ::; I

.2 .1

( ) () {
I - I s zs I

Lz=Rz=
Geise

If we are interested in the LR-representation of if 0 N, we prove the conditions
of theorem 5-5 and apply it. Thus, with

{
(2-X)LT x::;2

~M(X) = ,X - 2)
-- x~2

.1

={~
= {~

it follows that if is positive .

1.9::;x::; 2.1

else

else

2.9::; X::; 3.1

{
(3- X)L - .1- x::;3

~N(X)= (X-3)
R -- x ~ 3

.3

={~
shows that Nis positive.

Following theorem 5-5 for the case in which if and Nare positive, we obtain

it 0 N se (2·3, 2· .1+3·.2, 2· .3+3 ·.I)LR = (6, .8, .9) LR

Exercises

1. Let X = f\J x f\J
AI = {(I, .6), (2, .8), (3, I) , (4, .6)}
A2 = {(G, .5), (I, .7), (2, .9), (3, I), (4, A)}
j : f\J x f\J ~ f\J be defined by

j(x, y) = z, X E AI , Y E A2

Determine the image j(A I x A2) by the extension principle.
2. Compute ~Auii and Il4A for A, iJ as in example 5-2.
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3. Which of the following fuzzy sets are fuzzy numbers?
a. A=(X,IlA(X»~E IR}
where
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b. B= (x, IlB(X»~ E IR+}
where

IlB(X) = { ~
3-x

X E [0, I]

x E [1,2]

x E [2, 3]

c. C= (0, .4), (1, I), (2, .7)}
4. Which of the following functions are reference functions for x E IR?

a. !I(x) = Ix + II
I

b. !l(X)=--2
I +x

I
-x+1 xE[-2,0]
2

c. ]3(x)= -2x+1 XE[O,~]

o else

I
d. /4(x)= p~1

I + a IxlP

5. Let M, L(x), R(x) be defined as in example 5-8. N= (-4, .1, .6)LR' Compute
MeN.

6. Let M,Nbe defined as in example 5-8. Compute MON.
7. Develop an approximate formula to compute M C) N, M= (m, ex, ~)LR' N=

(n, y, CJ)LR' (Remember how the formula was derived for the general extended
division.)



6 FUZZY RELATIONS

AND FUZZY GRAPHS

6.1 Fuzzy Relations on Sets and Fuzzy Sets

Fuzzy relations are fuzzy subsets of X x Y, that is, mappings from X~ Y. They
have been studied by a number of authors, in particular by Zadeh [1965, 1971],
Kaufmann [1975], and Rosenfeld [1975]. Applications of fuzzy relations are
widespread and important. We shall consider some of them and point to more
possible uses at the end of this chapter. We shall exemplarily consider only binary
relations . A generali zation to n-ary relations is straightforward.

Definition 6-1

Let X, Y ~ ~ be universal sets; then

R= {«x, y), llii(X, y»l(x, y) E X X Y}

is called a fu zzy relation on X x Y.

Example 6-1

Let X = Y = ~ and R: = "considerably larger than." The membership function of
the fuzzy relation, which is, of course, a fuzzy set on X x Y, can then be

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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{

o for x:5: Y

~ii(X,y)= (x-y) fory<x:5:11y
lOy

1 for x> lly

A different membership function for this relation could be

{
o for x:5:y

~ii(X, y) = z -I

(1+ (y - xr ) for x > y

For discrete supports, fuzzy relations can also be defined by matrixes .

Example 6-2

Let X = {XI. xz, X3} and Y = {YI. Yz, Y3 , Y4}

Yz

R= "x considerably larger than y": Xz

.8 I .1 .7

0 .8 0 0

.9 I .7 .8

and

yz

XI

i = "y very close to x" : Xz

.4 0 .9 .6

.9 .4 .5 .7

.3 0 .8 .5

In definition 6-1 it was assumed that ~R was a mapping from X x Y to [0, 1]; that
is, the definition assigns to each pair (x, y) a degree of membership in the unit
interval. In some instances, such as in graph theory, it is useful to consider fuzzy
relations that map from fuzzy sets contained in the universal sets into the unit
interval. Then definition 6-1 has to be generalized [Rosenfeld 1975].
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Definition 6-2

Let X, Y k ~ and
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A= {(x, IlA(x»lx EX},

B= {(y, Ilii(y»!y E Y} , two fuzzy sets.

Then R = {[(x, y), IlR(X, Y)]I(x, y) E X X Y} is a j uzzy relation on Aand Bif

Ilk(X, y)::; IlA (x), V (x, y) E X X Y

and

Ilk(X, y) ::;Ilii(y), V(x, y) E X X Y.

This definition will be particularly useful when defining fuzzy graphs : Let the
elements of the fuzzy relation of definition 6-2 be the nodes of a fuzzy graph that
is represented by this fuzzy relation. The degrees of membership of the elements
of the related fuzzy sets define the "strength" of or the flow in the respective
nodes of the graph, while the degrees of membership of the corresponding pairs
in the relation are the "flows" or "capacities" of the edges. The additional require
ment of definition 6-2 (llii(X, y)::; min {Il,.i(x), Illi(Y)}) then ensures that the "flows"
in the edges of the graph can never exceed the flows in the respective nodes.

Fuzzy relations are obviously fuzzy sets in product spaces. Therefore set
theoretic and algebraic operations can be defined for them in analogy to the def
initions in chapters 2 and 3 by utilizing the extension principle.

Definition 6-3

Let Rand Z be two fuzzy relations in the same product space. The union/inter
section of R with Z is then defined by

lliiuZ(X, y) = max{llk(x, y), Ilz(x, y)}, (x, y) E X X Y

Ilknz(x, y) = min{llk(x, y), Ilz(x, y)}, (x, y) E X X Y

Example 6-3

Let Rand Zbe the two fuzzy relations defined in example 6-2. The union of R
and Z, which can be interpreted as "x considerably larger or very close to y," is
then given by
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R U Z : Xz
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yz

.8 1 .9 .7

.9 .8 .5 .7

.9 1 .8 .8

The intersection of Rand i is represented by

YI Yz

R n z. Xz

.4 0 .1 .6

0 .4 0 0

.3 0 .7 .5

So far, "min" and "max" have been used to define intersection and union. Since
fuzzy relations are fuzzy sets, operations can also be defined using the alterna
tive definitions in section 3.2. Some additional concepts, such as the projection
and the cylindrical extension of fuzzy relations, have been shown to be useful.

Definition~

Let R= {[(x, y), ~R(X, y)] I (x, y) E X X Y} be a fuzzy binary relation . The first
projection of R is then defined as

R<I) = {(x, max~Rex, y»lex,y) E X X Y}
y

The second projection is defined as

R<Z) = {(y , maxuj t,e, y»lex, y) E X X Y}
.r

and the total projection as

R(T) = max maxlusfx, y)lex, y) E X X Y}
x x

Example~

Let Rbe a fuzzy relation defined by the following relational matrix . The first,
second , and total projections are then shown at the appropriate places below.
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Y3 Ys

First projection
[IlR(1)(X)]
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.1 .2 .4 .8 I .8

.2 .4 .8 I .8 .6

.4 .8 I .8 .4 .2

Second projection:

.4 .8 .8 I
Total projection

The relation resulting from applying an operation of projection to another rela
tion is also called a "shadow" [Zadeh 1973a]. Let us now consider a more general
space, namely, X = XI x ... X Xn ; and let Rq be a projection on Xii x ... X Xi"
where (i" .. . , h) is a subsequence of (l, . .. , n). It is obvious that distinct fuzzy
relations in the same universe can have the same projection. There must, however,
be a uniquely defined largest relation RqL (XI> .. . ,Xn ) with IlRqL (XiI' . .. ,Xi,) for
each projection. This largest relation is called the cylindrical extension ofthe pro
jection relation.

Definition 6-5

RqL k X is the largest relation in X of which the projection is Rq, RqL is then called
the cylindrical extension of Rq and Rq is the base of RqL•

Example 6-5

The cylindrical extension of R(2) (example ~) is

Ys

.4 .8 I I I .8

.4 .8 I I I .8

.4 .8 I I I .8
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Definition 6-6
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- - -
Let R be a fuzzy relation on X = X I X ..• X X; and R I and R 2 be two fuzzy pro-
jections on X I x . .. X X , and X, x . .. X X n, respectively, with s ~ r + I and RIL,

Ru their respective cylindrical extens ions.
_ The meet of RI and R2 is then defined as RI L n Ru. and their join as RIL U

«:

6. 1.1 Compositions of Fuzzy Relations

Fuzzy relations in different product spaces can be combined with each other by
the operation "composition." Different versions of "composition" have been sug
gested, which differ in their results and also with respect to their mathematical
properties. The max-min composition has become the best known and the most
frequently used one . However, often the so-called max-product or max-average
compositions lead to results that are more appealing.

Definition 6-7
- -

Max-min composition: Let R I(x, y), (x, y) E X X Yapd R2(y, z), 0', z) E Y X Z
be two fuzzy relations. The max-min composition R I max-min R 2 is then the
fuzzy set

RI 0 R2 = {[(x , z), maxlrninju j, (x, y), flii 2(y, z)}}]lx EX, y E Y, z E Z}
y

flR,oR2 is again the membership function of a fuzzy relation on fuzzy sets (defini
tion 6-2).

A more general definition of composition is the "max-* composition."

Definition 6-8

~et RI and R2 be defined as in definition 6-7. The max-" composition of RI and
R 2 is then defined as

RI ~ R2 = {[(x, z), max(fl ii, (x , y) * flii 2(y , z))]lx E X, y E Y, z E Z}
y

If * is an associative operation that is monotonically nondecreasing in each argu
ment, then the max- * composition corresponds essentially to the max-min com
position. Two special cases of the max-* composition are propo sed in the next
definition.
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Definition 6-9

[Rosenfeld 1975]: Let R, and Rz, respectively, be defined as in definition 6-7.
The max-prod composition R, ? Rz and the max-QV composition R. a~ Rz are then
defined as follows:

R, ? Rz(x,z) = max[jl RI (x, y) ' IlR2(y , z)lxE X , Y E Y, z E Z]
y

R, a~ Rz(x, z) = +.max[jlRI(x , y ) ' IlR2 (y , z)lxE X, Y E Y, z E Z]
1

Example 6-6
- -

Let R I (x, y) and R z(y, z) be defined by the following relational matrixes
[Kaufmann 1975, p. 62]:

Ys

.1 .2 0 1 .7

.3 .5 0 .2 I

.8 0 1 .4 .3

Ys

.9 0 .3 .4

.2 1 .8 0

.8 0 .7 1

.4 .2 .3 0

0 1 0 .8

We shall first compute the min-max-composition R, 0 Rz(x, z). We shall show in
detail the determination for x = x l s z = z, and leave it to the reader to verify the
total results shown in the matrix at the end of the detailed computations. We first
perform the min operation in the minor brackets of definition 6-7:

Let x = x l s z = zl s and Y = Yi, i = 1, . . . , 5:

min{ll iiI (x" Yt), IlR2(Y" z,n= min{.I , .9} =.1

min{ll iiI (x" yz ), IlR2 (yz, zln = min{.2 , .2} =.2

min{ll iiI (XI, Y3), Il ~ (Y3,z,n = min{O, .8} = 0

min{ll iiJ (x" Y4), IlR2(Y4, zl n= min{I ,.4} = 4

min{ll iiJ (x" Ys), IlR2(Ys, z,n = min{.7, O} = 0

RI 0 Rz(x" z.) = «x" z,), IlR,oR2( X I , z,»
= «x" z.), max{.I , .2, 0, .4, O}) = «x" z.), .4)
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In analogy to the above computation we now determine the grades of member
ship for all pairs (Xj, 2), i = 1, ... , 3, j = 1, . .. , 4 and arrive at

2z

.4 .7 .3 .7

.3 1 .5 .8

.8 .3 .7 1

For the max-prod, we obtain

x = x., 2 = 2., Y = Yi, i = 1, . . . , 5:

IlRI (Xl, YI) ' Il R2(YI, 21) = .1· .9 = .09

IlRI (XI, yz) ' Il R2(yz, 21) =.2· .2 = .04

IlRI (XI, Y3)'IlR2 (Y3, 21) =0 ·.8 =0

IlRI (XI, Y4) 'IlR2 (Y4, 21) = 1·.4 = 4

IlRI (XI, Y5) ' Il R2(Y5, 21) = .7 ·0 = 0

Hence

R, ? k,(XI, 21) = «XI, 21), (IlRl oR2 (X" 21»)

= «XI, 21), max{.09, .04, 0,.4, O})

= «XI, 21)'.4)

After performing the remaining computations, we obtain

2z

.4 .7 .3 .56

.27 1 .4 .8

.8 .3 .7 1

The max-av composition finally yields
----------

Il(X., yJ + Il(y j, 2,)

1 1
2 .4
3 .8
4 1.4
5 .7
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Hence

X'max{llk, (Xl>y;) +11hz (Yi, Zl )} = X'(1.4) = .7
y

Zz
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.7 .85 .65 .75

.6 I .65 .9

.9 .65 .85 I

6. 1.2 Properties of the Min-Max Composition

(For proofs and more details see, for instance, Rosenfeld 1975.)

Associativity. The max-min composition is associative, that is,

(R3 0 Rz) 0 R1 = R3 0 (Rz 0 R,).

Hence RIo RI oRI = R~, and the third power of a fuzzy relation is defined .

Reflexivity

Definition 6-10

Let R be a fuzzy relation in X x X.

1. R is called reflexive [Zadeh 1971] if

llk(x, x) = 1VX E X

2. R is called e-reflective [Yeh 1975] if

llk(x, x) ~ E VX E X

3. R is called weakly reflexive [Yeh 1975] if

llk(x, y) s llk(x, x)} \-I X
v X,YE .

llk(Y, x) ~ 11k (x, x)

Example 6-7

Let X = {X., XZ, X3, X4} and Y = {y., Yz, Y3, Y4}'
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The following relation "y is close to x" is reflexive:

Yz

R: Xz

I 0 .2 .3

0 I .1 I

.2 .7 I .4

0 I .4 I

IfRI and k, are reflexive fuzzy relat ions, then the max-min composition RI oRz
is also reflexive.

Symmetry

Definition 6-11

A fuzzy relation R is called symmetric if R(x, y) = R(y, x) 'ifx, y E X.

Definition 6-12

A relation is called antisymmetric if for

x * y either IlR(X, y) *IlR(y, x ) }
'if X,Y E X

or IlR(X,y) = IlR(X, x) = 0

[Kaufmann 1975, p. 105].
A relation is called perfectly antisymmetric if for x * y whenever

IlR(X, y) > 0 then IlR(y, x) = 0 'if x, Y E X

[Zadeh 1971].

Example 6-8

Xz

.4 0 .1 .8

.8 I 0 0

0 .6 .7 0

0 .2 0 0
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.4 0 .7 0

0 I .9 .6

.8 .4 .7 .4

0 .1 0 0

.4 .8 .1 .8

.8 I .0 .2

.1 .6 .7 .1

0 .2 0 0

81

RI is a perfectly antisymmetric relation, while R2 is an antisymmetric, but not
perfectly antisymmetric relation. R3 is a nonsymmetric relation, that is, there exist
x, y E X with IlR(X, y) ;t IlR(y, x), which is not antisymmetric and therefore also
not perfectly antisymmetric.

One could certainly define other concepts, such as an n-antisymmetry (1IlR(x, y)
- IlR(y, x)1 ~ a Vx, y E X). These concepts would probably be more in line with
the basic ideas of fuzzy set theory. Since we will not need this type of definition
for our further considerations, we will abstain from any further definition in this
direction .

Example 6-9

Let X and Y be defined as in example 6-8. The following relation is then a sym
metric relation:

R(x, y): X2

0 .1 0 .1

.1 1 .2 .3

0 .2 .8 .8

.1 .3 .8 1
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Remark 6-1
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For max-min compositions, the following properties hold:

1. It RI ~s refle~ive and R2 is an arbitrary fuzzy relation, then RIo R2 :2 R2 and
R 2oR 1 :2R2•

2. If R is reflexive, then Rs R° R.
3. IfRI and R2 are reflexive relations, so is RIo R2•

4. If R1 and R2 are symmetric, then RIo R2 is symmetric if RIo R2 =R2 ° RI •

5. If R is symmetric, so is each power of R.

Transitivity

Definition 6-13

A fuzzy relation R is called (max-min) transitive if

Example 6-10

Let the fuzzy relation Rbe defined as

X2

R: X2

.2 1 .4 .4

0 .6 .3 0

0 1 .3 0

.1 1 1 .1

Then R ° R is

X2

X2

.2 .6 .4 .2

0 .6 .3 0

0 .6 .3 0

.1 1 .3 .1



FUZZY RELATIONS AND FUZZY GRAPHS

Now one can easily see that lliioii(X, y) ~ llii(X, y) holds for all x, y E X.

Remark 6-2
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Combinations of the above properties give some interesting results for max-min
compositions :

1. If R is symmetric and transitive, then llii(X, y) ~ llii(X, x) for all x, y E X.
2. If Ris reflexive and transitive, then R 0 R= R.
3. If RI and R2 are transitive and RIo R2= R2 0 RI> then RIo R2 is transitive.

The properties mentioned in remarks 6-1 and 6-2 hold for the max-min compo
sition. For the max-prod composition, property 3 of remark 6-2 is also true but
not properties 1 and 3 of remark 6-1 or property 1 of remark 6-2. For the max
av composition, properties 1 and 3 of remark 6-1 hold as well as properties 1 and
3 of remark 6-2. Property 5 of remark 6-1 is true for any commutative operator.

6.2 Fuzzy Graphs

It was already mentioned that definitions 6-1 and 6-2 of a fuzzy relation can also
be interpreted as defining a fuzzy graph. In order to stay in line with the termi
nology of traditional graph theory we shall use the following definition of a fuzzy
graph.

Definition 6-14

Let E be the (crisp) set of nodes. Ajuzzy graph is then defined by

G(Xj, Xj) = {(Xi> Xj), ll e(Xj, Xj»I(X j, Xj) E E x E}

If if is a fuzzy set, a fuzzy graph would have to be defined in analogy to defini
tion 6-2.

Example 6-11

a. Let E = {A, B, C} .
Considering only three possible degrees of membership, graphs could be
described as shown in figure 6-1.

b. Let E = {XI> X2, X3, X4}; then a fuzzy graph could be described as
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A a c
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Figure 6-1 . Fuzzy graphs.

G(Xi' XJ = {[(x" X2), .3], [(Xl> X3), .6], [(Xl> Xl), 1],

[(X2'Xl), .4], [(X3' XI)' .2], [(X3' X2), .5],

[(X4'X3), .8]}

Example 6-11 a shows directed fuzzy binary graphs. Graphs can, of course, also
be defined in higher-dimension product spaces. We shall, however, focus our
attention on finite undirected binary graphs; that is, we shall assume in the fol
lowing that the fuzzy relation representing a graph is symmetric. The arcs can
then be considered as unordered pairs of nodes. In analogy to traditional graph
theory, fuzzy graph theoretic concepts can be defined.

Definition 6-15

H(Xi' Xj) is ajuzzy subgraph of G(Xi' Xj) if

Illi(X i' Xj) S;Il{; (Xi, xJV(Xi' Xj) E Ex E

H(Xi' x) spans graph G(Xi' Xj) if the node sets of H(Xi' Xj) and G(Xi' y) are equal,
that is, if they differ only in their arc weights.

Example 6-12

Let G(Xi' Xj) be defined as in example 6-11 b. A spanning subgraph of G(Xi' Xj) is
then

H(Xi' Xj) = {[(x" X2), .2], [(Xl> X3), .4], [(X3' X2), .4],

[(X4 ' X3), .7]}
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Definition 6-16

A path in a fuzzy graph G(Xi' Xj) is a sequence of distinct nodes, Xo, x], . .. , x.,

such that for all (Xi, Xi+I), JlG(Xi' Xi+') > O. The strength of the path is min {Jl G(Xi,

Xi+')} for all nodes contained in the path. The length of a path n > 0 is the number
of nodes contained in the path. Each pair of nodes (Xi, Xi+')' Jl(Xi' Xi+') > 0 is called
an edge (arc) of the graph. A path is called a cycle if Xo = Xn and n :?: 3.

It would be straightforward to call the length of the shortest path between two
nodes of the graph the distance between these nodes. This definition, however,
has some disadvantages. It is therefore more reasonable to define the distance
between two nodes as follows [Rosenfeld 1975, p. 58]:

Definition 6-17

The Jl-length of a path p = Xo, .. . , z, is equal to

n 1
L(p)=L--

i=1 Il(Xi' Xi+')

The u-distance dix; Xj ) between two nodes Xi' Xj is the smallest u-length of any
path from Xi to Xj, Xi, Xj E G.

It can then be shown [see Rosenfeld 1975, p. 88] that dix; x) is a metric (in
undirected graphs!) .

Definition 6-18

Two nodes that are joined by a path are called connected nodes.

Connectedness is a relation that is also transitive.

Definition 6-19

A fuzzy graph is «forest if it has no cycles; that is, it is an acyclic fuzzy graph.
If the fuzzy forest is connected, it is called a tree. (A fuzzy graph that is a forest
has to be distinguished from a fuzzy graph that is a fuzzy forest.) The latter shall
not be discussed here [see Rosenfeld 1975, p. 92].

Example 6-13

The fuzzy graphs shown in figure 6-2 are forests. The graphs shown in figure
6-3 are not.
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Figure 6-2. Fuzzy forests.
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1/2 1/2

Figure 6-3. Graphs that are not forests.

6.3 Special Fuzzy Relations

Relations that are of particular interest to us are fuzzy relations that pertain to the
similarity of fuzzy sets and those that order fuzzy sets. All of the relations dis
cussed below are reflexive, that is, IlR(X, x) = 1 Vx E X [Zadeh 1971], and they
are max-min transitive , that is, R 0 R~ Ror IlR(X, z);;:: min {IlR(X, y), IlR(Y, z)}
Vx, y, Z E X. It should be noted that other kinds of transitivities have been defined
[see Bezdek and Harris 1978]. These , however, will not be discussed here. The
main difference between similarity relations and order relations is the property
of symmetry or antisymmetry, respectively.
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Definition 6-20
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A similarity relation is a fuzzy relation Ils0 that is reflexive, symmetrical, and
max-min transitive.

Example 6-14

The following relation is a similarity relation [Zadeh 1971]:

I .2 1 .6 .2 .6

.2 1 .2 .2 .8 .2

1 .2 1 .6 .2 .6

.6 .2 .6 1 .2 .8

.2 .8 .2 .2 1 .2

.6 .2 .6 .8 .2 1

A similarity relation of a finite number of elements can also be represented by a
similarity tree, similar to a dendogram. In this tree, each level represents an a
cut (a-level set) of the similarity relation . For the above similarity relation, the
similarity tree is shown below. The sets of elements on specific a-levels can be
considered as similarity classes of a-level.

The properties of a similarity relation as defined in definition 6-20 are rather
restrictive and not quite in accordance with fuzzy set thinking: Reflexitivity could
be considered as being too restrictive and hence weakened by substituting these
requirements by s-refiexitivity or weak reflexitivity (cf. definition 6-10). The
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max-min transitivity can be replaced by any max-* transitivity listed in defini
tion 6-10 or in remark 6-1.

We shall now tum to fuzzy order relations: As already mentioned, similarity
relations and order relations are primarily distinguished by their degree of sym
metry. Roughly speaking, similarity relations are fuzzy relations that are reflex
ive, (max-min) transitive, and symmetrical; order relations, however, are not
symmetrical. To be more precise, even different kinds of fuzzy order relations
differ by their degree of symmetry.

Definition 6-21

A fuzzy relation that is (max-min) transitive and reflexive is called a fuzzy pre
order relation.

Definition 6-22

A fuzzy relation that is (min-max) transitive, reflexive, and antisymmetric is
called a fuzzy order relation. If the relation is perfectly antisymmetrical, it is
called a perfect fuzzy order relation [Kaufmann 1975, p. 113]. It is also called a
fuzzy partial order relation [Zadeh 1971].

Definition 6-23

A total fuz zy order relation [Kaufmann 1975, p. 112] or afuzzy linear ordering
[Dubois and Prade 1980a, p. 82; Zadeh 1971] is a fuzzy order relation such that
'Vx, y E X; x -:I- y either IlIi(X, y) > 0 or 1l1i(Y, x) > O.

Any a-cut of a fuzzy linear order is a crisp linear order.

Example 6-15

.7 .4 .8 .8

0 1 0 .2

0 .6 0 .4

0 0 0 .7
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R is a total fuzzy order relation.
Fuzzy order relations play a very important role in models for decision maki ng

in fuzzy environments. We will therefore elaborate on some particularly inter
esting properties in the second volume, and we shall also discuss some addi tional
concepts in this context. Some of the properties of the special fuzzy relations
defined in this chapter are summarized in table 6-1 .

Ta ble 6-1 . Properties of fuzzy relations.

Perfect
Anti- anti-

Reflexivity Transitivity symmetry symmetry Linearity Symmetry

Fuzzy
preorder x x

Similarity
relation x x x

Fuzzy order
relation x x x

Perfect fuzzy
order x x x
relation

Total
(linear) x x x x
fuzzy
order
relation

Exercises

I. Given an example for the membership function o! the fuzzy relat ion R:=
"considerable smaller than" in R x R. Restrict R to the first ten natural
numbers and define the resulting matrix.

2. Let the two fuzzy sets Aand Bbe defined as

A= {(O, .2), (I, .3), (2, .4), (3, .5)}

B= {(O, .5), (I, .4), (2, .3), (3, .O)}.

Is the following set a fuzzy relation on Aand B?
{«O,0), .2), «0,2), .2), «2, 0), .2)}
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Give an example of a fuzzy relation on Aand E.
3. Consider the following matrix defining a fuzzy relation Ron Ax E.

Ys

.5 0 I .9 .9

I .4 .5 .3 .1

.7 .8 0 .2 .6

.1 .3 .7 I 0

Given the first and the second projection with IlJi(l)(x ) and IlJiI21(y) and the
cylindrical extensions of the projection relations with IlJi ' I ILand IlJi'2IL•

4. Compose the following two fuzzy relations RI and Rz by using the
= max-min composition,
= max-prod. composition , and
= max-avocomposition .

Y3

XI .3 0 .7 .3

Xz 0 I .2 0

YI I 0 I

Yz 0 .5 .4

Y3 .7 .9 .6

Y4 0 0 0

5. Discuss the reflexivity properties of the following fuzzy relation:

R

X I I .7 .3

Xz .4 .5 .8

X3 .7 .5 I

6. Give an example for a reflexive transitive relat ion and verify remark 6-2.2.
7. Consider the following fuzzy graph G:
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0.25

x,

x,
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Give an example for a spanning subgraph of G!
Give all paths from XI to X4 and determine their strengths and their u lengths.
Is the above graph a forest or a tree?

8. In example 6-2, two relations are defined without specifying for which
numerical values of [x.}, {y;} the relations are good interpretations of the
verbal relations . ~ive ex~mples of numerical vectors for {x;} and {y;} such
that the relations Rand Z, respectively (in the matrixes), would express the
verbal description.
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7.1 Fuzzy Functions on Fuzzy Sets

A fuzzy function is a generalization of the concept of a classical function. A clas
sical functionJis a mapping (correspondence) from the domain D of definition
of the function into a space S;f(D) s;;;; S is called the range off Different features
of the classical concept of a function can be considered to be fuzzy rather than
crisp. Therefore different "degrees" of fuzzification of the classical notion of a
function are conceivable.

1. There can be a crisp mapping from a fuzzy set that carries along the fuzzi
ness of the domain and therefore generates a fuzzy set. The image of a crisp
argument would again be crisp.

2. The mapping itself can be fuzzy, thus blurring the image of a crisp argument.
This we shall call a fuzzy Junction . These are called "fuzzifying functions"
by Dubois and Prade [1980a, p. 106].

3. Ordinary functions can have fuzzy properties or be constrained by fuzzy
constraints.

Naturally, hybrid types can be considered. We shall focus our considerations,
however, only on frequently used pure cases.

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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Definition 7-1 [Dubois and Prade 1980a; Negoita and Ralescu 1975]

A classical function f. X~ Y maps from a fuz zy domain A in X into a fuzzy range
iJ in Yiff

Vx E X, Ila(j(x» ~ IlA(X)

Given a classical function f. X ~ Y and a fuzzy domain A in X, the extension
principle (chapter 5.1) yields the fuzzy range iJ with the membership function

lla(Y) = sup IlA (x)
XErl( y)

Hence f is a function according to definition 7-1.

Example 7-1

Let X be the set of temperatures, Y the possible demands for energy of house
holds, A the fuzzy set "low temperatures," and iJ the fuzzy set "high energy
demands." The assignment "low temperatures" ~ "high energy demands" is then
a fuzzy function, and the additional constraint in definition 7-1 means "the lower
the temperatures, the higher the energy demands."

The correspondence between a fuzzy function and a fuzzy relation becomes
even more obvious when looking at the following definition.

Definition 7-2

Let X and Y be universes and P(f) the set of all fuzzy sets in Y (power set).

]: X~ PeY) is a mapping

f is a fuzzy function iff

Ilj (x)(Y) = Ilk(X, y), V (r, y) E X X Y

where IIp(x, y) is the membership function of a fuzzy relation.

Example 7-2

a. Let X be the set of all workers of a plant,1the daily output , and Y the number
of processed work pieces . A fuzzy function could then be

lex) = Y

b. a, bE ,;e (IR)
X=IR
]: x ~ ax EB bis a fuzzy function.
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c. X = set of all one-mile runners.
! = possible record times.
!(x) = {yly: achieved record times}.

7.2 Extrema of Fuzzy Functions
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Traditionally, an extremum (maximum or minimum) of a crisp function f over a
given domain D is attained at a precise point xo. If the function f happens to be
the objective function of a decision model, possibly constrained by a set of other
functions, then the point Xo at which the function attains the optimum is gener
ally called the optimal decision ; that is, in classical theory there is an almost
unique relationship between the extremum of the objective function and the
notion of the optimal decision of a decision model.

In models in which fuzziness is involved, this unique relationship no longer
exists. The extremum of a function or the optimum of a decision model can be
interpreted in a number of ways: In decision models the "optimal decision" is
often considered to be the crisp set, Di; that contains those elements of the fuzzy
set "decision" attaining the maximum degree of membership [Bellman and Zadeh
1970, p. 150]. We shall discuss this concept in more detail in chapter 13.

The notion of an "optimal decision" as mentioned above corresponds to the
concept of a "maximizing set" when considering functions in general.

Definition 7-3 [Zadeh 1972]

Letfbe a real-valued function in X. Letfbe bounded from below by inf(f) and
from above by sup(f). The fuzzy set Nt = {(x, ~M(X)}, x E X with

~M(X) = f(x)-inf(f)
sup(f) - inf{f)

is then called the maximizing set (see figure 7-1).

Example 7-3

f(x) =sinx
_( ) _ sinx-inf(sin) = sin x-(-l)

~M x - sup(sin) _ inf(sin) 1-(-I)

sinx+ I I . I
= =-Slnx+-
222
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-1

n

-1

Figure 7-1. Maximizing set.

2n

2n

In definition 7-3, f is a crisp real-valued function , similar to the membership
function of the fuzzy set "decision," and the maximizing set provides informa
tion about the neighborhood of the extremum of the function f, the domain of
which is also crisp. The case in which the domain off is also fuzzy will be con
sidered in chapter 13.

Let us now consider the extrema of fuzzy functions according to definition 7-2,
in which they are defined over a crisp domain : Since a fuzzy function fix) is a fuzzy
set, say in IR, the maximum will generally not be a point in IR but also a fuzzy set,
which we shall call the "fuzzy maximum offix)." A straightforward approach is to
define an extended max operation in analogy to the other extended operations
defined in chapter 5. Max and min are increasing operations in IR. The maximum
or minimum, respectively, of n fuzzy numbers, denoted by max (Mh • . . , Mn) and
min (Mh ..• , Mn) , is again a fuzzy number. Dubois and Prade [1980a, p. 58]
present rules for computing max and min and also comment on the properties of
max and min. The reader is referred to the above reference for further details .

Definition 7-4

Letj(x) be a fuzzy function from X to IR, defined over a crisp and finite domain
D. The fu zzy maximum of j(x) is then defined as
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o

Figure 7-2. A fuzzy function.

M=max j'(x) ={(sup j(x), 1l,if(X»IXED}
xeD

For IDI = n, the membership function of maxj(x) is given by

Il,if(x) = min 1l1(xj)(](x)), f(x) ED
J=l . .. . •n

x
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Example 7-4 [Dubois and Prade 1980a, p. 105]

Let j(x) be a fuzzy function from IR to IR such that, for any x, j(x) is a triangu
lar fuzzy number. The domain D = {x], X2, X3' X4, xs}. Figure 7-2 sketches such
a function by showing for the domain D "level curves" ofj(x):fl is the curve for
which 1l1(x)(fI(x» = 1, and for f~ andf~, respectively,

1l1(x)(f~(x») = 1l1(x)(f~(x») = a

The triangular fuzzy numbers representing the function j(x) at x = x], X2, X3, X4,

and Xs are shown in figure 7-3.
We can make the following observation: Since the level curves in figure 7-2

are not parallel to each other, their maxima are attained at different Xi: max
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1

o

FUZ Z Y SET THEORY-AND ITS APPLI CATIONS

IR

Figure 7-3. Triangular fuzzy numbers representing a fuzzy function.

f~ =f~(x4)' max j; (x ) =j;(X3), and maxf~(x) =f~(x2). Thus X I and Xs do certainly
not "belong" to the maximum of fix) . We can easily determine the fuzzy set
"maximum of ](x)" as defined in definition 7-4 by looking at figure 7-4 and
observing that, for

a E [0, a -]:F(X2) ~ f~(xJVi

a E [a- ,1]:F (X3)~ f~(xJ Vi

a E [a+, 1]: r (X3 )~ f~(xJ Vi

a E [0, o ."]:r (X4)~ f~ (xJ Vi

with a- and o: such that f~(x2) =f~(x3) andf~(x4) =f~(x3) ' respectively.
The maximum of ](x) is therefore

Nt = {(X2'«), (X3, 1), (X4 ' a +)}

This set is indicated in figure 7-4 by the dashed line.
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a

a

o

r \' t i'-- ------ ------------------------------------

max f(Xj)
1=1, . . . ,5

Figure 7-4. The maximum of a fuzzy function.

IR

Dubois and Prade [1980a, p. IO1] suggest additional possible interpretations
of fuzzy extrema, which might be very appropriate in certain situations, However,
we shall not discuss them here and rather shall proceed to consider possible
notions of the integral of a fuzzy set or a fuzzy function .

7.3 Integration of Fuzzy Functions

Quite different suggestions have been made to define fuzzy integrals, integrals of
fuzzy functions , and integrals of crisp functions over fuzzy domains or with fuzzy
ranges.

One of the first concepts of a fuzzy integral was put forward by Sugeno [1972,
1977], who considered fuzzy measures and suggested a definition of a fuzzy inte
gral that is a generalization of Lebesque integrals: "From the viewpoint of func
tionals, fuzzy integrals are merely a kind of nonlinear functionals (precisely



100 FUZZY SET THEORY-AND ITS APPLICATIONS

speaking, monotonous functionals), while Lebesque integrals are linear ones"
[Sugeno 1977, p. 92].

We shall focus our attention on approaches along the line of Riemann inte
grals. The main references for the following are Dubois and Prade [1980a,
1982b], Aumann [1965], and Nguyen [1978].

The classical concept of integration of a real-valued function over a closed
interval can be generalized in four ways: The function can be a fuzzy function
that is to be integrated over a crisp interval, or it can be integrated over a fuzzy
interval (that is, an interval with fuzzy foundations) . Alternatively, we may con
sider integrating a fuzzy function as defined in definitions 7-1 or 7-2 over a crisp
or a fuzzy interval.

7.3.1 Integration of a Fuzzy Function over a Crisp Interval

We shall now consider a fuzzy functionj', according to definition 7-2, which shall
be integrated over the crisp interval [a, b). The fuzzy functionj'(x) is supposed to
be a fuzzy number, that is, a piecewise continuous convex normalized fuzzy set on R

We shall further assume that the a-level curves (see definition 2.3) !lj(x)(Y) =
a for all a E [0, 1] and a and x as parameters have exactly two continuous solu
tions, y =f~(x) and y =f-;.(x), for a ;= 1 and only one for a = 1.f~ and r: are
defined such that

for all a' ~ a .
The integral of any continuous a-level curve ofj over [a, b) always exists.
One may now define the integral [(a, b) of j(x) over [a, b) as a fuzzy set in

which the degree of membership a is assigned to the integral of any a-level curve
ofj(x) over [a, b).

Definition 7-5

Letfix) be a fuzzy function from [a, b) ~ IR to IR such that "Ix E = [a, b) j(x)
is a fuzzy number andf-;'(x) andf~(x) are a-level curves as defined above. The
integral of j(x) over [a, b) is then defined to be the fuzzy set

[(a , b) = {(J: f ;;(x) dx +J: f~(x) dx,an
This definition is consistent with the extension principle according to which

"r (y) = sup inf !l ! (x )(g(x», y E IR
a! gey x e [a,b 1

y=jgg
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where y = {g: [a, b] -t ~Ig integrable} see Dubois and Prade [1980a, p. 107;
1982, p. 5]) .

The determination of the integral 1(a, b) becomes somewhat easier if the fuzzy
function is assumed to be of the LR type (see definition 5-6). We shalI therefore
assume thatl(x) = (f(x), sex), t(X»/l1 is a fuzzy number in LR representation for
alI x E [a, b].f, s, and t are assumed to be positive integrable functions on [a, b].
Dubois and Prade [1980a, p. 109] have shown that under these conditions

lea, b) = (J: f(x)dx, J: s(x)dx, J: t(x)dxt

It is then sufficient to integrate the mean value and the spread functions of lex)
over [a, b], and the result will again be an LR fuzzy number.

Example 7-5

Consider the fuzzy function lex) = (f(x), sex), t(X»LR with the mean function
f(x) =r, the spread functions sex) =x/4, and

x
t(x) =

2

1
L(x)=--

1+x2

1
R(x) = I I

1+2 x

Determine the integral from a = 1 to b = 4, that is, compute rf.
According to the above formula, we compute I

J: f(x)dx =f x
2

dx =21

fb 5,4 x
s(x)dx = -dx =1.875

a I 4

fb 5,4 X
t(x)dx = -dx =3.75

a I 2

This yields the fuzzy number lea, b) = (21, 1.875, 3.75)LR as the value of the
fuzzy integral.

Some Properties of Integrals of Fuzzy Functions. Let Aa be the a-level set
of the fuzzy set A. The support SeA) of A is then SeA) = U An. The fuzzy set
Acan now be written as ae[O ,I]



102

where

FUZZY SET THEORY-AND ITS APPLICATIONS

A = U aAu = U {(x, /-laAa (x)lx E Au)}
aE[O,I] aE[O,1]

(x ) = {a for x E Au
/-laA" ° c >1lor xli: F'<J.

(see Nguyen [1978, p, 369]).
Let Arepresent a fuzzy integral, that is,

A= f)
then

J ] = U a(J])
I a E[O,I] I 0.

= U a(f]a)
aE[O,I] I

Definition 7-6 [Dubois and Prade 1982a, p, 6]

L] satisfies the commutativity condition

iff Va E [0, l](f]) =f]a
I 0. I

Dubois and Prade [1982a, p. 6] have proved the following properties of fuzzy
integrals, which are partly a straightforward analogy of crisp analysis,

Theorem 7-1

Let] be a fuzzy function; then

f - fb- r.f= f=- f
I a b

where the fuzzy integrals are fuzzy sets with the membership functions

/-l fb (u) = "r (-u) Vu
- a f a f

Theorem 7-2

Let I and l' be two adjacent intervals I = [a, b], I' = [b, c] and a fuzzy function
1: [a, c] ~ P(~). Then
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where EB denotes the extended addition of fuzzy sets, which is defined in analogy
to the subtraction of fuzzy numbers (see chapter 5).

Let j and gbe fuzzy functions. Then j EB g is pointwise defined by

(] EB g)(u) = j(u) EB g(u), U E X

(This is a straightforward application of the extension principle from chapter 5.1.)

Theorem -7-3

Let j and gbe fuzzy functions whose supports are bounded. Then

f/j EB g) d f,J EB Lg

L(]EBg)= f,JEB Lg

iff the commutativity condition is satisfied for f j and Lg.

7.3.2 Integration of a (Crisp) Real-Valued Function over a Fuzzy
Interval

(7.1)

(7.2)

We now consider a case for which Dubois and Prade [1982a, p. 106] proposed a
quite interesting solution: A fuzzy domain ;g; of the real line ~ is assumed to be
bounded by two normalized convex fuzzy sets, the membership functions of
which are J.la(x) and J.lb(X), respectively. (See figure 7-5.) J.la(x) and J.lb(X) can be
interpreted as the degrees (of confidence) to which x can be considered a lower
or upper bound of;g; . If ao and bo are the lower/upper limits of the supports of ii
or b, then ao or bo are related to each other by ao = inf S(ii) ~ sup S(b) = boo

Definition 7-7

Letfbe a real-valued function that is integrable in the interval J = [ao, bo]; then
according to the extension principle, the membership function of the integral
f :9'f is given by

J.lWt(z) = sup mintu, (x), J.lb(y»
x ,yeJ

z=ff
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l+-------::ll"'r------------,.,.---

IR
O......._~--------Jl-----~"------~-

Figure 7-5. Fuzzily bounded interval.

Let F(x) =rfey) dy, C E J (F is the antiderivative of f). Then, using the exten

sion principle again, the membership function of F(ii), ii E Pc~), is given by

~f(a)(Z) = sup ~a(x)
x:z=F(x l

Proposition 7-1 [Dubois and Prade 1982b, p. 106]

J2iJ f = F(b) e F(ii)

where e denotes the extended subtraction of fuzzy sets.
Proofs of proposition 7-1 and of the following propositions can be found in

Dubois and Prade [1982b, pp. 107-109].
A possible interpretation of proposition 7-1 is as follows: If ii and bare

normalized convex fuzzy sets, then J2iJ j is the interval between "worst" and

"best" values for different levels of confidence indicated by the respective degrees
of membership (see also Dubois and Prade [1988a, pp. 34-36]).

Example 7-6

Let

ii = {(4, .8), (5, I), (6, A)}

b= {(6, .7), (7, I), (8, .2)}

f(x) = 2, xE[ao,bo]=[4,8]
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Then

f~ f(x) dx = f: 2dx = 2x I ~

The detailed computational results are:

(a, b) J:2dx min (~x(a) , ~x(b))

(4,6) 4 .7
(4,7) 6 .8
(4,8) 8 .2
(5,6) 2 .7
(5, 7) 4 1.0
(5, 8) 6 .2
(6,6) 0 .4
(6, 7) 2 .4
(6,8) 4 .2
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Hence choosing the maximum of the membership values for each value of the

integral yields f~f= {(a, .4), (2, .7), (4, 1), (6, .8), (8, .2)}.

Some properties of the integral discussed above are listed in propositions 7-2
to 7-4 below. Their proofs, as well as descriptions of other approaches to "fuzzy
integration," can again be found in Dubois and Prade [1982a, pp. 107-108].

Proposition 7-2

Let f and g be two functions f, g: I -) Iffi, integrable on I. Then

f: (f + g) c f: f EB f: g

where EB denotes the extended addition (see chapter 5).

Example 7-7

Let

f(x)=2x-3

g(x) = -2x + 3

a= {(I, .8), (2, 1), (3, .4)}

fj = ({3, .7), (4, I), (5, .3)}
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So

FUZZY SET THEORY-AND ITS APPLICATIONS

fb b
a f(x)dx = [X2- 3xt

fb b
ag(x)dx =[_X2+5xt

fb b
a f(x) +g(x)dx = [2x]a

In analogy to example 7-6, we obtain

f:f = {(O, .4), (2, .7), (4, .4), (6, 1),(10, .3), (12, .3)}

f:g = {(-6, .3), (-4, .3), (-2, .1), (0, .8), (2, .7)}

Applying the formula for the extended addition according to the extension prin
ciple (see section 5.3) yield s

f:f +f:g ={(-6, .3), (-4, .3), (-2, .4), (0, .7), (2, .7), (4, .1), (6, .8),

(8, .7), (10, .3), (I2, .3), (I4, .3)}

Similarly to example 7-6, we compute

f:(j + g) = {(O, .4), (2, .7), (4, 1), (6, .8), (8, .3)

Now we can easily verify that

f:f EB f:g ~ f:(j + g)

Proposition 7-3

If f, g: I ~ I?'" or f, g: I ~ K,
then equality holds:

Proposition 7-4

Let ~ = (ii, b) , ~' = (ii, C), and ~" = (c, b). Then the following relationships
hold:

f~J s f~ fi EB f~.Ii

f~J = f~ fi EB f~J2 iff CE IR

(7.3)

(7.4)
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7.4 Fuzzy Differentiation
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In analogy to integration, differentiation can be extended to fuzzy mathematical
structures.

The results will, of course, depend on the type of function considered. In terms
of section 7.1, we will focus our attention on functions that are not fuzzy them
selves but that only "carry" the possible fuzziness of their arguments. Differen
tiation of fuzzy functions is considered by Dubois and Prade [1980a, p. 116;
1982b, p. 227].

Here we shall consider only differentiation of a differentiable function f
IR ~ [a, b] -; IR at a "fuzzy point." A "fuzzy point" Xo [Dubois and Prade
1982b, p. 225] is a convex fuzzy subset of the real line IR (see definition 2-4).

In the following, fuzzy points will be considered for which the support is con
tained in the interval [a, b], that is, S(x) ~ [a, b] .

Such a fuzzy point can be interpreted as the possibility distribution of a point
x whose precise location is only approximately known.

The uncertainty of the knowledge about the precise location of the point
induces an uncertainty about the derivative j'(x) of a function fix) at this point.
The derivative might be the same for several x belonging to [a, b] . The possibil
ity ofj'(Xo) is therefore defined [Zadeh 1078] to be the supremum of the values
of the possibilities ofj'(x) = t, x E [a, b].

The "derivative" of a real-valued function at a fuzzy point can be interpreted
as the fuzzy setj'(Xo), the membership function of which expresses the degree
to which a specificj'(x) is the first derivative of a functionfat point Xo.

Definition 7-8

The membership function of the fuzzy set "derivative of a real-valued function
at a fuzzy point Xo" is defined by the extension principle as

1lj'(Xo)(Y) = sup Ilio(x)
x e j' - ' (y )

where Xo is the fuzzy number that characterizes the fuzzy location.

Example 7-8

Let

f(x) = x 3

x; = {(-I, .4), (0, 1), (1, .6)}

be a fuzzy location .
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Because of f'(x) x 3r, we obtain f'(Xo) = {(O, I), (3, .6)} as derivative of a
real-valued function at the fuzzy point Xo.

Proposition 7-5

The extended sum EB of the derivatives of two real-valued functions f and g at
the fuzzy point Xo is defined by

!!u '+g'xxo)(Y) = sup !!xo (x)
xy=j'(x)+g'(x)

Hence

Proposition 7-6 [Dubois and Prade 1982b, p. 227]

Iff and g' are continuous and both are nondecreasing or nonincreasing, then

Proposition 7-7 (Chain rule of differentiat ion)

1. (f.g)'(Xo) = (f'g + fg') (Xo) k [f'(Xo) 0 g(Xo)] EB [flXo) 0 g'(Xo)]
2. Iff, g,f, and g' are continuous,f and g are both positive, and f' and g' are

both nondecreasing (f, g is negative andf', g' is nondecreasing) then

(j . g)' (Xo) = (j'(Xo) 0 g(Xo)]EB [f(Xo) 0 g'(Xo)]

Exercises

1. Determine the maximizing set of

f(x) = {2
5

X
2

- 3 - 2 ;5; x;5; 2
else

2. Show that computing !!J: hi according to the extension principle yields the

usual integral if j is a crisp function.
3. Letj(x) = (j(x), s(x), t(x))LR with
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f (x) = nx

1
s(x) = - -

Ixl+l
I

t(x)=--
I+sin 2x
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1
L(x ) = 3

1+21xl
1

L(x) = --1/-2
l+ x

Determine j (x) explicitly for x = .5, x = 1, and x = 2. Compute the integral
i (a, b).

4. Letfix) =~ + (x - 1)2,

Xo = {(-I, .5), (0, .8), (1 , 1),(2, .6), (3, A)}

Computer!'(Xo). Verify that propo sition 7-6 hold s.
5. Let (Xo) = {(-I, A), (0, I), (1, .6) },

f(x) =x 3 + 2 g(x) =2x + 3

Compute!'(Xo). Verify that propo sition 7-6 holds.



8 UNCERTAINTY MODELING

8.1 Application-oriented Modeling of Uncertainty

As already mentioned in section 1.1, the type of uncertainty modeling chosen is
entirely up to the modeler if and when a formal model is under consideration
which does not pretend to model reality correctl y.

If, however, the modeler is faced with a real application, then he still has a
certain freedom of choice but he is also limited by the character of the piece of
reality he wants to model.

The modeler of such a problem will have to decide whether he wants to
consider uncertainty--defined in whatever way-explicitly in his model or not.
He might , for instance, prefer to approximate the uncertain phenomenon by a
certain (deterministic) model. Alternatively he might include as much "slack" in
his model that he is "on the safe side" concerning uncertainty, or he might prefer
a "wait and see" solution by waiting with a decision until in the pass of time
uncertainty has almost disappeared. This would amount to reducing the influence
of uncertainty by reducing its causes which, of course, have to be known in this
case. In either of the above cases the modeler does not have to choose any
specific method for modeling uncertainty. In the rest of the chapter we shall focus
on those cases in which the modeler decides to model uncertainty explicitly.

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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Until the 1960s probability theories and statistics were the only methods to
model uncertainty which has always been considered by scientists as a rather dis
turbing feature of some scientific statements, of systems, phenomena or even in
philosophy. Since the 1960s additional theories have been suggested as tools
to model uncertainty. Some of these theories or their supporters even claim to
be the only proper tool for modeling uncertainty, even though the notion of
uncertainty has never been defined uniquely.

It has been defined in specific contexts-mainly formal theories-but then the
semantic interpretation is generally restricted to this field. In decision logic , for
instance, "decisions under uncertainty" are defined as acts of choice for which
the state of the nature that will occur is unknown. Unluckily, as Schneider already
observed in 1979, those situations occur in practice very seldomly, if at all
[Schneider 1979].

One would expect to find an appropriate definition of uncertainty either in
lexica or in scholarly books on "uncertainty" modeling [Goodman and Nguyen
1985, Klir and Folger 1988, Klir 1987]. Surprisingly enough I have not been
successful to find any general definition for it.

The first question one should probably ask is whether uncertainty is a
phenomenon, a feature of real world systems, a state of mind or a label for a
situation in which a human being wants to make statements about phenomena
(i.e, reality, models, theories) . One can also ask whether "uncertainty" is an
objective fact or just a subjective impression which is closely related to
individual persons.

Whether uncertainty is an objective feature of physical real systems seems to
be a philosophical question. In the following we shall not consider these "objec
tive uncertainties" if they exist, but we shall focus on the human-related, sub
jective interpretation of "uncertainty" which depends on the quantity and quality
of information which is available to a human being about a system or its
behavior that the human being wants to describe, predict or prescribe.

In this respect it shall not matter whether the information is inadequate due
to the specific individuum or whether it is due to the present state of knowledge,
i.e. whether the information is not available at present to anybody. Figure 8-1
depicts our view of uncertainty used in this chapter.

In this figure the "system" denotes the phenomenon about which judgments
are to be made . This can be parts of the physical reality, socio-economic systems,
man-made systems or any other type of phenomena. Information or data emitted
by the system might be impul ses, visible or measurable properties (noise, tem
perature etc.) . Theses data or information are, however, very often not consid
ered directly by the "observer". They are rather the input to an uncertainty theory
(e.g. probability theory), which processes this information in specified ways and
supplies the observer with certain "measures of uncertainty" (e.g. mean values,
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I •
Informatian Uncertaintv

I I Model
Informatio~System - - --

• •
Data Informatior

I I Processing

o
(human)
observer

___ J L _

Phenomenon Perception

Figure 8-1 . Uncertainty as situational property.

variances etc.) or descriptions of uncertainty (e.g. probability distributions etc.).
Hence, the observer does not perceive the information about the phenomenon
directly but only after it has been "filtered" by the uncertainty theory used.

The most important aspects of this view are:

1. "Causes" of uncertainty influence the information flow between the observed
system and the uncertainty model (paradigm chosen by the observer).

2. A selected uncertainty model or theory has to be appropriate to the available
quantity and quality of input information.

3. A chosen uncertainty theory also determines the type of information
processing applied to available data or information.

4. For pragmatic reasons the information offered to the observer (human or
other) by the uncertainty model should be in an adequate language.

5. Hence, the choice of an appropriate "uncertainty" calculus may depend on
• the causes of uncertainty,
• quantity and quality of information available,
• type of information processing required by the respective "uncertainty"

calculus and
• language required by the final observer.

Even this notion of uncertainty is rather vague, has many different appearances
and many different causes. It is, therefore, difficult to define it properly and in
sufficient generality. Any definition of uncertainty is in a way arbitrary and
subjective. It can be more or less extreme with respect to the situation. Here we
chose a rather broad definition for uncertainty in order to include a large number
of possible situations which can be considered "uncertain".
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Definition 8-1: A proposed definition of uncertainty

Uncertainty implies that in a certain situation a person does not dispose about
information which quantitatively and qualitatively is appropriate to describe,
prescribe or predict deterministically and numerically a system, its behavior or
other characteristica.

"Situation" in the context of this definition includes features of the system as
well as expectations or needs of the observer. The need to describe a phenome
non numerically was included because most of the known measures of uncer
tainty require a numerical description. In some situations a symbolic description
of the phenomenon may be sufficient for the human observer to judge the situa
tion (e.g. the color of the traffic lights at a road intersection) . But in this case he
knows in addition to the color the meaning of the color and he will not be in a
position to make statements about the traffic behavior at an intersection without
involving numbers.

It seems that a lot of misunderstandings have been caused by confusing
the "type of uncertainty" with the "cause of uncertainty" or with the theory
which is used to model uncertainty. I shall, therefore, attempt to describe in the
following these three aspects of uncertainty separately in order to arrive at a
certain taxonomy of uncertainty, the classes of which may neither be disjunct
nor exhaustive.

8. 1. 1 Causes of Uncertainty

Lack of Information. Lack of information is probably the most frequent cause
for uncertainty. In decision logic, for instance, one calls "decisions under uncer
tainty" the situation in which a decision maker does not have any information
about which of the possible states of nature will occur. This would obviously be
a quantitative lack of information. With "decision making under risk" one nor
mally describes a situation in which the decision maker knows the probabilities
for the occurrence of various states. This could be called a qualitative lack of
information . Since information about the occurrence is available, it can also be
considered complete in the sense of the availability of a complete probability
function. But the kind of the available information is not sufficient to describe
the situation deterministically. Another situation characterized by a lack of infor
mation might be called "approximation". Here one does not have or one does not
want to gather sufficient information to make an exact description, even though
this might be possible . In some cases the description of the system is explicitly
called an "approximation", in other situations this is hidden and probably not
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visible to the normal observer. Examples for the latter case can be found in math
ematics where symbols are used rather than real numbers because a description
by real numbers is not feasible (for instance the "number" 1t, sin and cosine
functions, or any complex or transcendental numbers). In this context the scale
level on which numerical information is available also has to be considered. The
situation of "certainty" normally assumes an absolute or at least a cardinal scale
level of the information available. If only information on a ratio, ordinal or
nominal scale level is available, this would also be called a "qualitative lack of
information" in our view.

A transition from a situation of uncertainty caused by a lack of information to
a situation of certainty can obviously only be achieved by gathering more or better
information . Whether this is possible or desirable obviously depends on the
situation and the goal of modeling.

Abundance of Information (Complexity). This type of uncertainty is due to
the limited ability of human beings to perceive and process simultaneously large
amounts of data [Newell and Simon 1972]. This situation is exemplified by real
world situations in which more data is objectively available to human beings than
they can "digest" or by situations in which human beings communicate about
phenomena which are defined or described by a large number of features or prop
erties. What people do in these situations is normally, that they transform the
available data into perceivable information by using a coarser grid or a rougher
"granularity" or by focusing their attention on those features which seem to them
most important and neglecting all other information or data. If such a situation
occurs in scientific activities, very often some kind of "scaling" is used to the
same end. It is obvious that in these situations a transfer to "certainty" cannot be
achieved by gathering even more data, but rather by transforming available data
to appropriate information.

Conflicting Evidence. Uncertainty might also be due to conflicting evidence,
i.e. there might be considerable information available pointing to a certain behav
ior of a system and additionally there might also be information available point
ing to another behavior of the system. If the two classes of available information
are conflicting, then an increase of information might not reduce uncertainty at
all, but rather increase the conflict. The reason for this conflict of evidence can
certainly be different. It can be due to the fact that some of the information avail
able is wrong (but not identifiable as wrong information by the system), it can
also be that information of non-relevant features of the system is being used,
it might be that the model which the observer has of the system is wrong etc.
In this case a transition to a situation of certainty might call for checking the
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available information again with respect to the correctness rather than gathering
more information or putting the information on a rougher grid. In some cases,
however, deleting some pieces of information might reduce the conflict and move
the situation closer in the direction of certainty.

Ambiguity. By ambiguity we mean a situation in which certain linguistic
information, for instance, has entirely different meanings or in which-mathe
matically speaking-we have a one-to-many mapping. All languages contain
certain words which for several reasons have different meanings in different
contexts. A human observer can normally easily interpret the word correctly
semantically if he knows the context of the word. In so far this type of uncer
tainty could also be classified under "lack of information" because in this case
adding more information about the context to the word may move us from
uncertainty to certainty.

Measurement. The term "measurement" also has very different interpreta
tions in different areas [Zimmermann and Zysno 1980]. In the context of this
chapter we mean "measurement" in the sense of "engineering measurement", i.e.
of measuring devices to measure physical features, such as weight, temperature,
length etc.

The quality of our measuring technology has increased with time and the
further this technology improves, the more exactly it can determine properties of
physical systems. As long, however, as an "imagined" exact property cannot yet
be measured perfectly, we have some uncertainty about the real measure and we
only know the indicated measure. This is certainly also some type of uncertainty
which could also be considered as a "lack of information". It is only considered
to be a separate class in this paper due to the particular importance of this type
of uncertainty to engineering.

Belief. Eventually, we would like to mention as cause of uncertainty situations
in which all information available to the observer is subjective as a kind of belief
in a certain situation. This situation is probably most disputable and it could also
be considered as "lack of information" in the objective sense.

A possible interpretation of this situation is, however, also that a human being
develops on the basis of available (objective) data and in a way which is unknown
to us (subjective) beliefs which he afterwards considers as information about a
system that he wants to describe or prescribe. The distinction of this class from
the classes mentioned above is actually that, so far, we always have considered
"objective" information and now we are moving to "subjective" information.
Whether this distinction can and should be upheld at all is a matter for
further discussion.
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8.1.2 Type of Available Information
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So far we have discussed causes of uncertainty which in most cases depend on
the quality or quantity of available information. As already mentioned, however,
we will have to consider the type of available information in a situation which
we want to judge with respect to uncertainty in more detail: the information
which is available for a system under consideration can, roughly speaking, be
numerical, linguistic, interval-valued or symbolic .

Numerical Information. In our definition of certainty we requested that a
system can be described numerically. This normally requires that the information
about the system is also available numerically. Since this numerical information
can come from quite a variety of sources, it is not sufficient to require just that
the information is given in numbers, but we also have to determine the scale level
on which this information is provided [Sneath and Sokal 1973]. This determines
the type of information processing (mathematical operation) which we can apply
to this information legitimately without pretending information which is not
available. There is quite a number of taxonomies for scale levels, such as, for
instance, distinguishing between nominal scale level, ordinal scale level, ratio
scale level, interval scale level and absolute scale level. For our purposes we refer
the reader to table 16-1 .

Roughly speaking, a nominal scale level indicates that the information pro
vided (even though in numerical form) only has the function of a name (such as
the number on the back of a football player or a license plate of a car), that numer
ical information on an ordinal scale level provides information of an ordering
type and information on a cardinal scale level also indicates information about
the differences between the ordered quantities , i.e. contains a metric.

Interval-Information. In this case information is available , but not as precise
in the sense of a real-valued number as above. If we want to process this infor
mation properly, we will have to use interval arithmetic and the outcome will
again be interval-valued information. It should be clear, however, that this infor
mation is also "exact" or "dichotomous" in the sense that the boundaries of the
intervals, no matter how they have been determined, are "crisp", "dichotomous",
or "exact".

Linguistic Information. By linguistic information we mean that the informa
tion provided is given in a natural language and not in a formal language [Bellman
and Zadeh 1970]. The properties of the type of information obviously differ from
those of either numerical information or of information in a formal language.
Natural languages develop over time, they depend on cultural backgrounds, they
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depend on educational backgrounds of the persons using this language and on
many other things. One also has to distinguish between a word as a label and the
meaning of a word. Very often there is neither a one-to -one relationship between
these two nor are the meanings of words defined in a crisp and a context
independent way. By contrast to numerical information there are also hardly any
measures of quality of information for natural languages (e.g. there are no defined
scale levels for linguistic information). Linguistic information has developed as
a means of communication between human beings and the "inference engines"
are the minds of people about which is still much too little known .

Symbolic Information. Very often information is provided in the form of
symbols . This is obvious when numbers, letters or pictures are being used as
symbols. This is often not as obvious if words are being used as symbols because
sometimes it seems to be suggested or assumed that words have natural meanings
while symbols do not. Hence, if symbolic information is provided, the information
is as valuable as the definitions of the symbols are and the type of information
processing also has to be symbolic and neither numerical nor linguistic .

8.1.3 Uncertainty Methods

As depicted in figure 8-1, information of the uncertain phenomenon is filtered
by an uncertainty method before it is offered to the observer. By "uncertainty
methods" we mean any of the probability theories, fuzzy set theory, rough set
theory, evidence theory etc. These theories build on certain axioms with respect
to the uncertainty to be modeled and they propose generally a mathematical
framework to arrive at measures of uncertainty [Dubois and Prade 1989]. The
mathematical models or methods suggested require a certain scale level of numer
ical information. Hence, a specific uncertainty method should not be used if its
mathematical operations require a higher scale level than that on which the
available information is provided. This is very often neglected when applying
those theories. Rather one assumes, without checking, that numerical informa
tion is available on a cardinal or absolute scale level for which all mathematical
operations would be legitimate.

To an increasing degree, moreover, uncertain information or information about
"uncertainties" is also processed in knowledge-based systems [Zimmermann
1988, Kandel and Langholz 1992, Klein and Methlie 1995, Turban 1988] which
can either be systems which essentially perform symbol processing (classical
expert system technology) or they perform meaning preserving inference .
Obviously, for these systems different requirements exist and different types of
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information are offered at the end. Eventually, information can be processed
heuristically, i.e. according to well-defined procedures which can also require
other types of languages.

To model, i.e. describe, prescribe or predict, a system or the behavior of a
system normally serves a certain purpose. It could serve a human observer, it
could be the input to another mechanical or electronic system, it could be used
for other mathematical algorithms etc. In figure 8-1 a human observer was con
sidered as the recipient of the information . In this case the information does not
only have to be "readable" by the recipient, but it may have to meet additional
requirements, depending on what it is intended for. If the observer wants to rec
ognize certain patterns, a nominal scale level of the received information might
already be sufficient. If he wants to evaluate or order phenomena, information
will have to be at least on an ordinal scale level, etc. Hence, the information
about the uncertain system will have to be provided in a suitable language , i.e.
either numerical, in the form of intervals, linguistically or symbolically, and on
an appropriate scale level.

8.1.4 Uncertainty Theories as Transformers of Information

Sections 8.1.1 to 8.1.3 of this chapter focused on informational features of
the uncertain phenomenon. The uncertainty calculus, theory or method used to
describe this phenomenon should obviously be compatible with the features of
the phenomenon, i.e. not require information on a higher level than provided, not
make any axiomatic assumptions about the cause of uncertainty etc. which are
not satisfied by the real situation.

This certainly contradicts views that, for instance, any uncertainty can be
modeled by probabilities, or by fuzzy sets, or by possibilities, or by any other
single method. We do not believe that there exists any single method which is
able to model all types of uncertainty equally well.

Most of the established theories and methods for uncertainty modeling are
focused either on specific "types of uncertainty" defined by their causes or they
at least imply certain causes and they also require specific types or qualities of
information depending on the type of information processing they use. One could
consider these uncertainty methods and their paradigms as glasses through which
we consider uncertain situations or with other words: there is no "probabilistic
uncertainty" as distinct from "possibilistic uncertainty". One is rather looking at
an uncertain situation with the properties that were specified before and one tries
to model this uncertain situation by means of probability theory or by means of
possibility theory. Hence, the theory which is appropriate to model a specific
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uncertainty situation should be determined by the properties of this situation as
specified above and by the requirements of the observer. At present there exist
numerous uncertainty theories, such as: various probability theories, evidence
theory [Shafer 1976], possibility theory [Dubois and Prade 1988], fuzzy set
theory, grey set theory, intuitonistic set theory [Atanassov 1986], rough set theory
[Pawlak 1985], interval arithmetic, convex modeling [Ben-Haim and Elishakoff
1990], etc. Some of these theories are contained in other theories which shall not
be investigated here.

We would like to point to one fact, however, which is sometimes overlooked:
uncertainty theories are often not homogeneous with respect to their information
processing or requirements as to the quality of information. Fuzzy set theory, for
instance, claims to process linguistic information. The formal presentation of
this information can be quite different. If singletons are used, this corresponds to
symbol processing. If linguistic variables are used, the membership functions of
the terms are processed . They can be on various scale levels and will, therefore,
determine which operators, i.e. mathematical operations, may be used and
which not.

Whether an uncertainty theory uses mathematical , heuristic or knowl
edge-based information processing or inference will also influence the type of
required input information and the quality of the information offered to the
observer.

8.1.5 Matching Uncertainty Theory and Uncertain Phenomena

Considering uncertainty as an informational feature of a situation or a phenom
enon, it can be described by a 4-component vector. In this vector the four
components describe the four dimensions which are roughly sketched in
table 8-1.

Essentially each uncertainty theory can also be characterized by such a vector
or profile. Optimally the profile of the theory should match the profile of the
situation it is applied to.

For the most common frequentistic probability theory (Kolmogoroff) it is
rather simple to define its profile, which is:

{a; a; c; a}.

In addition, some other properties, i.e. that the events have to be dichotomous
etc., have to be assumed. For other probability theories it is already more diffi
cult to determine an appropriate profile. For Fuzzy set theory the profile vector
will certainly depend on the operators used, on the type of membership function
assumed, on the scale level of the membership function etc. Or, putting it the
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Table 8-1 . Rough taxonomy of uncertainty properties.
Rough taxonomy of uncertainty models (not exhaustive, not disjunct).
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1. Causes of (subj.) uncertainty
(a) Lack of information
(b) Abundance of information
(c) Conflicting evidence
(d) Ambiguity (complexity)
(e) Measurement
(f) Belief

2. Available Information (Input)
(a) Numerical
(b) Set- or interval-valued
(c) Linguistic
(d) Symbolic

3. Scale Level ofNumerical Information
(a) Nominal
(b) Ordinal
(c) Cardinal

4. Required Information (Output)
(a) Numerical
(b) Set- or interval-valued
(c) Linguistic
(d) Symbolic

other way around, after the "uncertainty profile" of the uncertain situation has
been determined that version of fuzzy set theory that matches the profile of the
situation has to be found.

In the following we shall compare to a certain degree three formal theories
that have been developed either to model uncertainty (e.g. probability) or which
are recommended amongst other goals for uncertainty modeling: probability
theory, possibility theory and fuzzy set theory. We will also consider some
"hybrid" notions, i.e. terms in which two (formal) theories have been combined.
Since L. Zadeh proposed the concept of a fuzzy set in 1965, the relationships
between probability theory and fuzzy set theory have been further discussed. Both
theories seem to be similar in the sense that both are concerned with some type
of uncertainty and both use the [0, 1] interval for their measures as the range of
their respective functions (At least as long as one considers normalized fuzzy sets
only!) . Other uncertainty measures, which were already mentioned in chapter 4,
also focus on uncertainty and could therefore be included in such a discussion.
The comparison between probability theory and fuzzy set theory is difficult
primarily for two reasons:

1. The comparison could be made on very different levels, that is,
mathematically, semantically, linguistically, and so on.

2. Fuzzy set theory is not or is no longer a uniquely defined mathematical struc
ture, such as Boolean algebra or dual logic. It is rather a very general family
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of theories (consider, for instance, all the possible operations defined in
chapter 3 or the different types of membership functions). In this respect,
fuzzy set theory could rather be compared with the different existing
theories of multivalued logic.

Further, there does not yet exist and probably never will exist a unique context
independent definition of what fuzziness really means. On the other hand, neither
is probability theory uniquely defined. There are different definitions and
different linguistic appearances of "probability."

In recent years, some specific interpretations of fuzzy set theory have been
suggested. One of them, possibility theory, used to correspond, roughly speak
ing, to the min-max version of fuzzy set theory-that is, to fuzzy set theory in
which the intersection is modeled by the min-operator and the union by the max
operator. This interpretation of possibility theory, however, is no longer correct.
Rather, it has been developed into a well-founded and comprehensive theory.
After the basic articles by L. Zadeh [1978, 1981], most of the advances in
possibility theory have been due to Dubois and Prade . See, for instance, their
excellent book on this topic [Dubois and Prade 1988].

We shall first describe the essentials of possibility theory and then compare it
with other theories of uncertainty.

8.2 Possibility Theory

8.2. 1 Fuzzy Sets and Possibility Distributions

Possibility theory focuses primarily on imprecision, which is intrinsic in natural
languages and is assumed to be "possibilistic" rather than probabilistic. There
fore the term variable is very often used in a more linguistic sense than in a
strictly mathematical one. This is one reason why the terminology and the sym
bolism of possibility theory differ in some respects from those of fuzzy set theory.
In order to facilitate the study of possibility theory, we will therefore use the
common possibilistic terminology but will always show the correspondence to
fuzzy set theory.

Suppose, for instance, we want to consider the proposition "X is i: where X
is the name of an object, a variable, or a proposition. For instance, in "X is a small
integer," X is the name of a variable. In "John is young," John is the name of an
object. fr(i.e., "small integer" or "young") is a fuzzy set characterized by its mem
bership function I1F'

One of the central concepts of possibility theory is that of a possibility distri-
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bution (as opposed to a probability distribution). In order to define a possibility
distribution, it is convenient first to introduce the notion of a fuzzy restriction. To
visualize a fuzzy restriction, the reader should imagine an elastic suitcase that
acts on the possible volume of its contents as a constraint. For a hardcover suit
case, the volume is a crisp number. For a soft valise, the volume of its contents
depends to a certain degree on the strength that is used to stretch it. The variable
in this case would be the volume of the valise; the values this variable can assume
may be u E U, and the degree to which the variable (X) can assume different
values of u is expressed by /lieU). Zadeh [Zadeh et al. 1975, p. 2; Zadeh 1978,
p. 5] defines these relationships as follows.

Definition 8-2

Let Fbe a fuzzy set of the universe U characterized by a membership function
/l ieU). Fis ajuzzy restriction on the variable X if Facts as an elastic constraint
on the values that may be assigned to X, in the sense that the assignment of the
values u to X has the form

X = u: /lp(u)

/l i(U) is the degree to which the constraint represented by F is satisfied when u
is assigned to X. Equivalently, this implies that 1 - /li(U) is the degree to which
the constraint has to be stretched in order to allow the assignment of the values
u to the variable X.

Whether a fuzzy set can be considered as a fuzzy restriction or not obviously
depends on its interpretation: This is only the case if it acts as a constraint on
the values of a variable, which might take the form of a linguistic term or a
classical variable.

Letj?(X) b~ a fuzzy restriction associated with X, as defined in definition 8-1.
Then R(X) = F is called a relational assignment equation, which assigns the fuzzy
set F to the fuzzy restriction R(X).

Let us now assume that A(X) is an implied attribute of the variable X-for
instance, A(X) = "age of Jack," and F is the fuzzy set "young." The proposition
"Jack is young" (or better "the age of Jack is young") can then be expressed as

R(A(X» = F

Example 8-1 [Zadeh 1978, p. 5]

Let p be the proposition "John is young," in which "young" is a fuzzy set of the
universe U = [0, 100] characterized by the membership function
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~young (u) = Stu; 20, 30, 40)

where u is the numerical age and the S-function is defined by

1 for u<a

(u-a y for a~u~~1-2--
Siu;a,~ , y)=

y-a

2(~y for ~<u~y
y-a

0 for u>y

In this case, the implied attribute A(X) is Age (John), and the translation of "John
is young" has the form

John is young~ R(Age(John» = young

Zadeh [1978] related the concept of a fuzzy restriction to that of a possibility
distribution as follows:

Consider a numerical age, say u = 28, whose grade of membership in the fuzzy set
"young" is approximately 0.7. First we interpret 0.7 as the degree of compatibility of
28 with the concept labelled young. Then we postulate that the proposition "John is
young" converts the meaning of 0.7 from the degree of compatibility of 28 with young
to the degree of possibility that John is 28 given the proposition "John is young." In
short, the compatibility of a value of u with young becomes converted into the possi
bility of that value of u given "John is young" [Zadeh 1978, p. 6].

The concept of a possibility distribution can now be defined as follows:

Definition 8-3 [Zadeh 1978, p. 6]

Let i be a fuzzy set in a universe of discourse U that is characterized by its mem
bership function ~F(U) , which is interpreted as the compatibility of u E U with
the concept labeled F.

Let X be a variable taking values in U, and let F act as a fuzzy restriction,
R(X) , associated with X. Then the proposition "X is i ," which translates into
R(X) = i ,_associates a possibility distribution, 1tx , with X that is postulated to be
equal to R(X) .

The possibility distribution function, 1tiu), characterizing the possibility
distribution 1tx is defined to be numerically equal to the membership function
~F(U) of i; that is,



UNCERTAINTY MODELING 125

The symbol ~ will always stand for "denotes" or "is defined to be." In order
to stay in line with the common symbol of possibility theory, we will denote
a possibility distribution with 1tx rather than with it", even though it is a fuzzy
set.

Example 8-2 [Zadeh 1978, p. 7]

Let U be the universe of positive integers, and let F be the fuzzy set of small
integers defined by

F= {(I, 1),(2, 1),(3, .8), (4, .6), (5, .4), (6, .2)}

Then the proposition "X is a small integer" associates with X the possibility
distribution

1tx = F

in which a term such as (3, .8) signifies that the possibility that X is 3, given that
X is small integer, is .8.

Even though definition 8-3 does not assert that our intuition of what we mean
by possibility agrees with the min-max fuzzy set theory, it might help to realize
their common origin. It might also make more obvious the difference between
possibility distribution and probability distribution.

Zadeh [1978, p. 8] illustrates this difference by a simple but impressive
example.

Example 8-3

Consider the statement "Hans ate X eggs for breakfast," X = {I, 2, . . .}. A pos
sibility distribution as well as a probability distribution may be associated with
X. The possibility distribution 1txCu) can be interpreted as the degree of ease with
which Hans can eat u eggs while the probability distribution might have been
determined by observing Hans at breakfast for 100 days . The values of 1txCu) and
PxCu) might be as shown in the following table :

u

PxCu)

1

.1

2

.8

3

.1

4

1

o

5

.8

o

6

.6

o

7

.4

o

8

.2

o



126 FUZZY SET THEORY-AND ITS APPLICATIONS

We observe that a high degree of possibility does not imply a high degree of prob
ability. If, however, an event is not possible, it is also improbable. Thus, in a way,
the possibility is an upper bound for the probability. A more detailed discussion
of this "possibility/probability consistency principle" can be found in Zadeh
[1978].

This principle is not intended as a crisp principle, from which exact probabil
ities or possibilities can be computed, but rather as a heuristic principle, express
ing the principle relationship between possibilities and probabilities.

8.2.2 Possibility and Necessity Measures

In chapter 4, a possibility measure was already defined (definition 4-2) for the
case in which A is a crisp set. If A is a fuzzy set, a more general definition of a
possibility measure has to be given [Zadeh 1978, p. 9] .

Definition 8-4

Let A be a fuzzy set in the universe U, and let 7tx be a possibility distribution
associated with a variable X that takes values in U. The possibility measure, 7tiA),
of A is then defined by

poss{X is A} ~ 7t(A)

~ sup min{Il A(u), 7t x (u)}
ue U

Example 8-4 [Zadeh 1978]

Let us consider the possibility distribution induced by the proposition "X is a
small integer" (see example 8-2):

n, = {(l, 1),(2, 1), (3, .8), (4, .6), (5, .4), (6, .2)}

and the crisp set A = {3, 4, 5}.
The possibility measure 7t(A) is then

7t(A) = max (.8, .6,.4) =.8

IfA,on the other hand, is assumed to be the fuzzy set "integers which are not
small," defined as

A= {(3, .2),(4, .4), (5, .6), (6, .8), (7,1) , . . .}
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then the possibility measure of "X is not a small integer" is

poss(X is not a small integer) =max{.2, A, A, .2} =A

Similar to probability theory, conditional possibilities also exist. Such a con
ditional possibility distribution can be defined as follows [Zadeh 1981b, p. 81].

Definition 8-5

Let X and Y be variables in the universes U and V, respectively. The conditional
possibility distribution of X given Y is then induced by a proposition of the form
"If X is F, then Y is C;" and is denoted by 1t(YIxlv/u).

Proposition 8-1

Let 1t(YIX) be the conditional possibility distribution functions of X and Y,
respectively. The joint possibility distribution function of X and Y, 1t(X,I'), is then
given by

1t(X,Y)(u, v) = min{1t x(u) , 1t(y/X) (v/u)}

Not quite settled yet seems to be the question of how to derive the conditional
possibility distribution functions from the joint possibility distribution function .
Different views on this question are presented by Zadeh [1981b, p. 82], Hisdal
[1978], and Nguyen [1978].

Fuzzy measures as defined in definition 4-2 express the degree to which a
certain subset of a universe, Q , or an event is possible. Hence, we have

g(O) =0 and g(Q) =1

As a consequence of condition 2 of definition 4-2, that is,

A ~ B ==> g(A) S;g(B)

we have

g(A U B) ~ max(g(A), g(B» and

g(A n B) ~ min(g(A), g(B» for A, B c Q

Possibility measures (definition 4-2) are defined for the limiting cases:

1t(AU B) = max (1t(A),1t(B)

1t(An B) = min (1t(A),1t(B)

(8.1)

(8.2)

(8.3)

(804)
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Table 8-2. Possibility functions.

FUZZY SET THEORY-AND ITS APPLICATIONS

Grade

Student A B C D E

1 .8 1 .7 0 0
2 1 .8 .6 .1 0
3 .6 .7 .9 .1 0
4 0 .8 .9 .5 0
5 0 0 .3 1 .2
6 .3 1 .3 0 0

If etA is the complement of A in n, then

n(A U etA) = max(n(A), n(etA)) = 1 (8.5)

which expresses the fact that either A or etA is completely possible.
In possibility theory, an additional measure is defined that uses the conjunc

tive relationship and, in a sense, is dual to the possibility measure:

N(A n B) =min(N(A), N(B» (8.6)

N is called then necessity measure . N(A) = 1 indicates that A is necessarily true
(A is sure) . The dual relationship of possibility and necessity requires that

n(A) = 1 - N(etA) ; VA k n
Necessity measures satisfy the condition

min(N(A), N(etA)) = 0

(8.7)

(8.8)

The relationships between possibility measures and necessity measures satisfy
the following conditions [Dobois and Prade 1988, p. 10]:

n(A) ~ N(A), VAk n
N(A) > 0 => n(A) = 1

n(A) < 1=> N(A) = 0

Here n is always assumed to be finite.

(8.9)

(8.10)

Example 8-5

Let us assume that we know, from past experience, the performance of six stu
dents in written examinations. Table 8-1 exhibits the possibility functions for the
grades A through E and students 1 through 6.
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First we observe that the membership function for the grades of student 4 is
not a possibility function, since g(Q) =1= 1.

We can now ask different questions:

1. How reliable is the statement of student 1 that he will obtain a B in his next
exam?
In this case, "A" is {B} and "etA" is {A , C, D, E} .
Hence, 1t(A) = 1

N(A) = min {l-1t;}

= min{.2, .3, 1,1}= .2.

Hence, the possibility of student 1 getting a B is 1t= 1, the necessity N = 0.2.
2. If we want to know the truth of the statement "Either student 1 or 2 will

achieve an A or a B," our Q has to be defined differently. It now contains the
elements of the first two rows. The result would be

1t(A) = 1t(student 1 A or B or Student 2 A or B) = 1

N(A) =.3

3. Let us finally determine the credibility of the statement "student 1will get a c."
In this case

1t(A) = .7

N(A) =0.

8.3 Probability of Fuzzy Events

By now it should have become clear that possibility is not a substitute for prob
ability, but rather another kind of uncertainty.

Let us now assume that an event is not crisply defined except by a possibility
distribution (a fuzzy set) and that we are in a classical situation of stochastic
uncertainty, that is, that the happening of this (fuzzily described) event is
not certain and that we want to express the probability of its occurence. Two
views on this probability can be adopted: Either this probability should be a scalar
(measure) or this probability can be considered as a fuzzy set also. We shall
consider both views briefly.

8.3.1 Probability of a Fuzzy Event as a Scalar

In classical probability theory, an event A is a member of an a-field a of subsets
of a sample space Q. A probability measure P is a normalized measure over a
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measurable space (0, a)-that is, P is a real-valued function that assigns to every
A in a a probability peA) such that

1. P(A);::: aA E a
2. P(O) = 1
3. If Ai E a, i E leN, pairwise disjoint, then

p(u Ai) = Ip(Ai)
iet ie J

If 0 is, for instance, a Euclidean n-space and a the a-field of Borel sets in ~n,

then the probability of A can be expressed as

P(A) = LdP

If IlA(X) denotes the characteristic function of a crisp set of A and Ep(IlA) the expec
tation of IlA(X), then

rpeA) = R" (x)dP =Ep (IlA)

If IlA(X) does not denote the characteristic function of a crisp set but rather the
membership function of a fuzzy set, the basic definition of the probability of A
should not change . Zadeh [1968] therefore defined the probability of a fuzzy
event A (Le., a fuzzy set A with membership function 1lA:(x» as follows.

Definition 8-6

Let (~n, a, P) be a probability space in which a is the a-field of Borel sets in ~n

and P is a probability measure over ~n. Then afuzzy event in ~n is a fuzzy set A
in ~n whose membership function 1lA:(x) is Borel measurable.

The probability of a fuz zy event A is then defined by the Lebesque-Stieltjes
integral

In Zadeh [1968] the similarity of the probability of fuzzy events and the proba
bility of crisp events is illustrated. His suggestions, though very plausible, were
not yet axiomatically justified in 1968. Smets [1982] showed, however, that an
axiomatic justification can be given for the case of crisp probabilities of fuzzy
events within nonfuzzy environments. Other authors consider other cases, such
as fuzzy probabilities, which we will not investigate in this book.

We shall rather tum to the definition of the probability of a fuzzy event as a
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fuzzy set, which corresponds quite well to some approaches we have discussed,
for example, for fuzzy integrals.

8.3.2 Probability of a Fuzzy Event as a Fuzzy Set

In the following we shall consider sets with a finite number of elements. Let us
assume that there exists a probability measure P defined on the set of all crisp
subsets of (the universe) X, the Borel set. P(Xi) shall denote the probability of
element Xi E X.

Let A= {(x, !lA(X)!x E X) be a fuzzy set representing a fuzzy event. The degree
of membership of element Xi E A is denoted by !lA(X;). a-level sets or a-cuts as
already defined in definition 2-3 shall be denoted by Au.

Yager [1979, 1984] suggests that it is quite natural to define the probability of
an a-level set as P(Au) = LXEAaP(X), On the basis of this, the probability of a fuzzy
event is defined as follows [Yager 1984].

Definition 8-7

Let Au be the a-level set of a fuzzy set A representing a fuzzy event. Then the
probability offuzzy event A can be defined as

Py(A)= {(P(Aa), a)la E [0, I]}

with the interpretation "the probability of at least an a degree of satisfaction to
the condition A."

The subscript Y of P; indicates that P, is a definition of probability due to
Yager that differs from Zadeh's definition, which is denoted by P. It should be
very clear that Yager considers a, which is used as the degree of membership of
the probabilities P(Au) in the fuzzy set Py(A), as a kind of significance level for
the probability of a fuzzy event.

On the basis of private communication with Klement, Yager also suggests
another definition for the probability of a fuzzy event, which is derived as follows.

Definition 8-8

The truth of the proposition "the probability A is at least w" is defined as the
fuzzy set Pj(A) with the membership function

P;(A)(w) = sup{aIP(Aa)~ w}, WE [0, 1]
u
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The reader should realize that now the "indicator" of significance of the proba
bility measure is wand no longer a! The reader should also be aware of the fact
that we have used Yager's terminology denoting the values of the membership
function by Pj(A)(w). This will facilitate reading Yager's work [1984] .

If we denote the complement of A by <tA = {(x, 1 - IlA(x))lx E X) and
the a-level sets of <tA by (<tA )a, then P~(<tA)(w) = sup; {aIP(<tA )a ~ w}, and
w E [0, 1] can be interpreted as the truth of the proposition "the probability of
not A is at least w."

Let us define Pj(A) = 1 - P~(<tA ). If P~(A)(w) is interpreted as the truth of
the proposition "probability of A is at most w," then we can argue as follows :
The "and" combination of "the probability of A is at least w" and "the probabi
lity of A is at most w" might be considered as "the probability of A is exactly w."
If P~(A) and P~(A) are considered as possibility distributions, then their con
junction is their intersection (modeled by applying the min-operator to the res
pective membership functions). Hence the following definition [Yager 1984]:

Definition 8-9 [Yager 1984]

Let P~(A) and P~(A) be defined as above. The possibility distribution associated
with the proposition "the probability of A is exactly w" can be defined as

Pr(A)(w) = min{P;(A)(w), P;(A)(w)}

Example 8-6

Let A = {(Xl> 1), (X2' .7), (X3' .6), (X4' .2)} be a fuzzy event with the probability
defined for the generic elements: PI =.1, P2 =.4, P3 =.3, and P4 =.2; P{X2} is
.4, where the element X2 belongs to the fuzzy event A with a degree of .7.

First we compute P~(A). We start by determining the a-level sets Aa for all a
E [0, 1]. Then we compute the probability of the crisp events Aa and give the
intervals of w for which P(Aa ) ~ w. We finally obtain P j(A) as the respective
supremum of a.

The computing is summarized in the following table :

a Aa peA) w P~(A) = sup a

[0, .2] {Xl> X2, X3' X4} [.8, 1] .2

[.2, .6] {Xl> X2, X3} .8 [.5, .8] .6

[.6, .7] {Xl> X2} .5 [.1, .5] .7

[.7, 1] {xd .1 [0, .1]
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Analogously, we obtain for P~(A) = 1 - p~(etA ),
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(etA)" p(etA)" w p~(etA) PiA) = 1 - P/etA)

° {x], X2, X3, X4} [.9, 1] ° .1

[0, .3] {X2, X3, X4} .9 [.5, .9] .3 .7

[.3, A] {X3' X4} .5 [.2, .5] A .6

[A, .8] {X4} .2 [0, .2] .8 .2

[.8, 1] ° ° ° °
The probability P/A) of the fuzzy even A is now determined by the intersec

tion of the fuzzy sets p~(A) and p~(A) modeled by the min-operator as in
definition 8-9:

{

a,
~(A)(w) = .2,

.6,

.2,

w=o
WE[O,.2]

WE [.2, .8]

WE [.8,1]

Figure 8-2 illustrates the fuzzy sets p~(A)(w), p~(A) and py(A)(w).

8.4 Possibility vs. Probability

Questions concerning the relationship between fuzzy set theory and probability
theory are very frequently raised, particularly by "newcomers" to the area of
fuzzy sets. There are probably two major reasons for this. On the one hand, there
are certain formal similarities between fuzzy set theory (in particular when using
normalized fuzzy sets) and probability theory; on the other hand, in the past
probabilities have been the only means for expressing "uncertainty." It seems
appropriate and helpful, therefore, to shed some more light on this question.

In the introduction to this chapter, it was already mentioned that such a com
parison is difficult because of the lack of unique definitions of fuzzy sets. This
lack of a unique definition is due in part to the variety of suggested possibilities
for mathematically defining fuzzy sets as well as operations on them, as indicated
in chapters 2 and 3. It is also due to the many different kinds of fuzziness that
can be modeled with fuzzy sets, as described in chapter 1.

Another problem is the selection of the aspects with respect to which these
theories shall be compared (see the introduction to this chapter!).
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Figure 8-2. Probability of a fuzzy event.

In section 8.2, possibility theory was briefly explained. There it was mentioned
that possibility theory is more than the min-max version of fuzzy set theory. It
was also shown that the "uncertainty measures" used in possibility theory are the
possibility measure and the necessity measure, two measures that in a certain
sense are dual to each other. In comparing possibility theory with probability
theory, we shall first consider only possibility functions-and measures (neglect
ing the existence of dual measures)-of possibility theory. At the end of the
chapter, we shall investigate the relationship between possibility theory and prob
ability theory.
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Let us now tum to probabilities and try to characterize and classify available
notions of probabilities . Three aspects shall be of main concern:

I . The linguistic expression of probability.
2. The different information context of different types of probabilities.
3. The semantic interpretation of probabilities and its axiomatic and mathe

matical consequences.

Linguistically, we can distinguish explicit from implicit formulations of proba
bility. With respect to the information content, we can distinguish between prob
abilities that are classificatory (given E, H is probable), comparative (given E, H
is more probable than K), partial (given E, the probability of K is in the interval
[0, b]), and quantitative (given E, the probability of H is b).

Finally, the interpretation of a probability can vary considerably. Let us con
sider two very important and common interpretations of quantitative probabili
ties. Koopman [1940, pp. 269-292] and Camap and Stegmtiller [1959] interpret
(subjective) probabilities essentially as degrees of truth of statements in dual
logic. Axiomatically, Koopman derives a concept of probability, q, which math
ematically is a Boolean ring.

Kolmogoroff [1950] interprets probabilities "statistically." He considers a
set Q and an associated a-algebra '!:F , the elements of which are interpreted as
events. On the basis of measurement theory, he defines a (probability) function
P: '!:F ~ [0, 1] with the following properties:

P:/~ [0, 1]

P(Q) = I

V(X;)E '!:F(Vi,j E N: i"l= j ~ Xi n x, =(il) p(U Xi) =LP(X;)
lEN ie N

From these properties, the following relationships can easily be derived:

X, <tx E '!:F ~ P(<tx) = 1 - P(x)

~YE'!:F~~Xun=~~+~n-~xnn

(8.1I)

(8.12)

(8.13)

(8.14)

(8.15)

where <tXdenotes the complement of X.
Table 8-3 illustrates the difference between Koopman's and Kolmogoroff's

concept of probability, taking into account the different linguistic and informa
tional possibilities mentioned above.

Now we are ready to compare "fuzzy sets" with "probabilities," or at least one
certain version of fuzzy set theory with one of probability theory. Implicit prob
abilities re not comparable to fuzzy sets, since fuzzy set models try particularly
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Table 8-3. Koopman's vs. Kolmogoroff's probabilities.

Koopman Kolmogoroff

D, D', H, H' are statements of dual
logic , Q is a nonnegative real number
(generally Q E [0, I])

Classificatory :
I . Implicit: D supports H
2. Explicit: H is probable on the basis

of D

Comparative:
I . Implicit : D supports H more than D'

supports H'
2. H is more probable given D than H'

is, given D'.

Quantitative:
I . The degree of support for H on the

basis of D is G.
2. The probability for H given D is Q.

W is a set of events, WI are subsets of W.

I . WI is a nonempty subset of W
2. If one throws the dice W times,

probably no WI is empty.

I. For W times one throws the dice,
WI is of equal size as w,.

2. If one throws a coin W times, WI is
as probable as Wj'

I. The ratio of the number of events in
WI and Wis Q.

2. The probability that the result of
throwing a dice is I when throwing
the dice M times is Q,.

to model uncertainty explicitly. Comparative and partial probabilities are more
comparable to probabilistic statements using "linguistic variables," which we will
cover in chapter 9.

Hence, the most frequently used versions we shall compare now are quanti
tative, explicit Kolmogoroff probabilities with possibilities.

Table 8-4 depicts some of the main mathematical differences between three
areas that are similar in many respects.

Let us now return to the "duality" aspect of possibility measures and neces
sity measures .

A probability measure, peA), satisfies the additivity axiom, that is, 'itA, B k Q
for which A n B =0:

peA U B) = peA) +P(B) (8.16)

This measure is monotonic in the sense of condition 2 of definition 4-2. Equa
tion (8.12) is the probabilistic equivalent to (8.1) and (8.2).

The possibility theory conditions (8.5) and (8.8) imply

N(A) + N(ttA) :5: 1 (8.17)
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Table 8-4. Relationship between Boolean algebra, probabilities, and possibilities.

Probabilities
Boolean (quantitative
algebra explicit) Possibilities

Domain Set of (logic) a-algebra Any universe X
statements

Range of values 10, I} [0,1] [0, 1]
membership fuzzy: °< I.l. < 00 real

Special constraints Lp(u) = I
Q

Union (independent, max L max
noninteracti ve)

Intersection min n min

Conditional yes no often
equal to joint?

What can be used conditional conditional conditional,
for inference? or joint often joint

1t(A) +1t(<tA) ~ I

which is less stringent than the equivalent relation

P(A) + P(<tA) = I

(8.18)

(8.19)

of probability theory.
In this sense, possibility corresponds more to evidence theory [Shafer 1976]

than to classical probability theory, in which the probabilities of an element (a
subset) are uniquely related to the probability of the contrary element (comple
ment). In Shafer's theory, which is probabilistic in nature, this relationship is
also relaxed by introducing an "upper probability" and a "lower probability,"
which are as "dual" to each other as are possibility and necessity.

In fact, possibility and necessity measures can be considered as limiting cases
of probability measures in the sense of Shafer, that is,

N(A) s peA) s 1t(A) \fA ~ Q (8.20)

This in tum links intuitively again with Zadeh's "possibility/probability consis
tency principle" mentioned in section 8.2.1.

Concerning the theories considered in this chapter, we can conclude the fol-
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lowing. Fuzzy set theory, possibility theory, and probability theory are no sub
stitutes, but they complement each other. While fuzzy set theory has quite a
number of "degrees of freedom" with respect to intersection and union operators,
kinds of fuzzy sets (membership functions), etc., the latter two theories are well
developed and uniquely defined with respect to operation and structure. Fuzzy
set theory seems to be more adaptable to different contexts. This, of course,
also implies the need to adapt the theory to a context if one wants it to be an
appropriate modeling tool.

Exercises

1. Let U and Fbe defined as in example 8-2. Determine the possibility distri
bution associated with the statement "X is not a small integer."

2. Define a probability distribution and a possibility distribution that could be
associated with the proposition "cars drive X mph on American freeways."

3. Computer the possibility measures (definition 8--4) for the following possi
bility distributions:

A = {6, 7, . . . , 13, I4}

"X is an integer close to 10"

It,.i = {(8, .6), (9 , .8), (10, 1),(1 1, .8), (12, .6)}

or alternatively,

ltil = {(6, A), (7, .5), (8, .6), (9, .8), (10,1), (11,.8), (12, .6), (13,.5), (14, A)}

Discuss the results.
4. Discuss the relationships between general measures, fuzzy measures, prob

ability measures, and possibility measures .
5. Determine Yager's probability of a fuzzy event for the event "X is an integer

close to 10" as defined in exercise 3 above.
6. List examples for each of the kinds of probabili stic statements given in table

8-3 .
7. Analyze and discuss the assertion that p~(A)(w) can be interpreted as the

truth of the proposition "the probability of A is at most w."



II APPLICATIONS OF
FUZZY SET THEORY

Applications of fuzzy set theory can already be found in many different areas .
One could probably classify those applications as follows:

1. Applications to mathematics, that is, generalizations of traditional mathe
matics such as topology, graph theory, algebra, logic, and so on.

2. Applications to algorithms such as clustering methods, control algorithms,
mathematical programming, and so on.

3. Applications to standard models such as "the transportation model," "inven-
tory control models," "maintenance models," and so on.

4. Finally, applications to real-world problems of different kinds.

In this book, the first type of "applications" will be covered by looking at fuzzy
logic and approximate reasoning. The second type of applications will be illus
trated by considering fuzzy clustering, fuzzy linear programming, and fuzzy
dynamic programming. The third type will be covered by looking at fuzzy ver
sions of standard operations research models and at multicriteria approaches. The
fourth type, eventually, will be illustrated on the one hand by describing opera
tions research (OR) models as well as empirical research in chapter 15. On the
other hand, chapter 10 has entirely been devoted to fuzzy control and expert
systems, the area in which fuzzy set theory has probably been applied to the
largest extent and also which is closest to real applications.
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9.1 Linguistic Variables

FUZZY LOGIC
AND APPROXIMATE

REASONING

In retreating from precision in the face of overpowering complexity, it is natural
to explore the use of what might be called linguistic variables, that is, variables whose
values are not numbers but words or sentences in a natural or artificial language.

The motivation for the use of words or sentences rather than numbers is that lin
guistic characterizations are, in general, less specific than numerical ones [Zadeh
1973a, p. 3].

This quotation presents in a nutshell the motivation and justification for fuzzy
logic and approximate reasoning . Another quotation might be added, which is
much older. The philosopher B. Russell noted:

All traditional logic habitually assumes that precise symbols are being employed. It is
therefore not applicable to this terrestrial life but only to an imagined celestial exis
tence [Russell 1923].

One of the basic tools for fuzzy logic and approximate reasoning is the notion of
a linguistic variable that in 1973 was called a variable ofhigher order rather than
a fuzzy variable and defined as follows [Zadeh 1973a, p. 75].

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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Definition 9-1

A linguistic variable is characterized by a quintuple (x, T(x), U, G, M) in which
x is the name of the variable; T(x) (or simply T) denotes the term set of x, that
is, the set of names of linguistic values of x, with each value being a fuzzy vari
able denoted generically by X and ranging over a universe of discourse U that is
associated with the base variable u; G is a syntactic rule (which usually has the
form of a grammar) for generating the name, X, of values of x; and M is a seman
tic rule for associating with each X its meaning, M(X), which is a fuzzy subset
of U. A particular X-that is, a name generated by G-is called a term. It should
be noted that the base variable u can also be vector valued.

In order to facilitate the symbolism in what follows, some symbols will have
two meanings wherever clarity allows this: x will denote the name of the vari
able ("the label") and the generic name of its values. The same will be true for
X and M(X).

Example 9-1 [Zadeh 1973a, p. 77]

Let X be a linguistic variable with the label "Age" (i.e., the label of this variable
is "Age," and the values of it will also be called "Age") with U = [0, 100].
Terms of this linguistic variable, which are again fuzzy sets, could be called
"old," "young," "very old," and so on. The base-variable u is the age in years
of life. M(X) is the rule that assigns a meaning, that is, a fuzzy set, to the
terms:

M(old) = {(u, flold (u»lu E [0, lOOn

where

T(x) will define the term set of the variable x, for instance, in the case

T(Age) = (old, very old, not so old, more or less young,
quite young, very young}

where G(x) is a rule that generates the (labels of) terms in the term set.
Figure 9-1 sketches another way to represent the linguistic variable "age".
Two linguistic variables of particular interest in fuzzy logic and in (fuzzy)

probability theory are the two linguistic variables 'Truth" and "Probability." The
linguistic variable "Probability" is depicted exemplarily in figure 9-2.
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Figure 9-3. Linguistic variable "Truth."

The term set of the linguistic variable "Truth" has been defined differently by
different authors. Baldwin [1979, p. 316] defines some of the terms as shown in
figure 9-3. Here,

2
~verytruc(V) = (~truc(V)) VE [0, 1]

1/ 2

~fairIYtrue(V) = (~true(V)) VE [0, 1]

and so on. Zadeh [1973a, p. 99] suggests for the term true the membership function

0 for O~ V~ a

2{v-ay for
a+l

~true(v)=
a~v~--

I-a 2

(V-lY for
a+l

1-2 · -- --~v~1
I-a 2
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II

TRUE

FALSE

aI-aI-a
T

L-__-L.__~ """"__...L. oL_ ....._y

0.5

Figure 9-4. Terms ''True'' and "False ."

where v = (l + a)12 is called the crossover point, and a E [0, 1] is a parameter
that indicates the subjective judgment about the minimum value of v in order to
consider a statement as "true" at all.

The membership function of "false" is considered as the mirror image of
"true," that is,

~false(V) = ~true(l- v) 0 ~ v ~ 1

Figure 9-4 [Zadeh 1973a, p. 99] shows the terms true andfalse.
Of course, the membership functions of true and false, respectively, can also

be chosen from the finite universe of truth values. The term set of the linguistic
variable "Truth" is then defined as [Zadeh 1973a, p. 99]

T(Truth) = {true, not true, very true, not very true, .. . , false, not false,
very false, . . . , not very true and not very false, ... }

The fuzzy sets (possibility distribution) of those terms can essentially be deter
mined from the term true or the termfalse by applying appropriately the below
mentioned modifiers (hedges).
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Definition 9-2

A linguistic variable x is called structured if the term set T(x) and the meaning
M(x) can be characterized algorithmically. For a structured linguistic variable,
M(x) and T(x) can be regarded as algorithms that generate the terms of the term
set and associate meanings with them.

Before we illustrate this by an example, we need to define what we mean by
a "hedge" or a "modifier."

Definition 9-3

A linguistic hedge or a modifier is an operation that modifies the meaning of a
term or, more generally, of a fuzzy set. If A is a fuzzy set, then the modifier m
generates the (composite) term iJ = meA).

Mathematical models frequently used for modifiers are as follows:

concentration: IlconC,i)(u)=(IlA(U»2

dilation: Ildil(A)(U) =(IlA(u)i!2

contrast intensification:

{
2C1lA(U» 2 for Ilti(u)e[O,.5]

ll intW(U) = 2

1- 2(l-llti (u» otherwise

Generally the following linguistic hedges (modifiers) are associated with above
mentioned mathematical operators:

IfAis a term (a fuzzy set), then

very A = conCA)
more or less A= dil(A)

plus A=,4t.25
slightly A= int [plus Aand not (very A)]

where "and" is interpreted possibilistically.

Example 9-2 [Zadeh 1973a, p. 83]

Let us reconsider from example 9-1 the linguistic variable "Age." The term set
shall be assumed to be

T(Age) = {old, very old, very very old, .. . }

The term set can now be generated recursively by using the following rule
(algorithm):
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that is,
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TO =(1)

T1 = {old}

T 2 = {old, very old}

T 3 = {old, very old, very very old}

For the semantic rule, we only need to know the meaning of "old" and the
meaning of the modifier "very" in order to determine the meaning of an arbitrary
term of the term set. If one defines "very" as the concentration, then the terms of
the term set of the structured linguistic variable "Age" can be determined, given
that the membership function of the term "old" is known.

Definition 9-4 [Zadeh 1973a, p. 87]

A Boolean linguistic variable is a linguistic variable whose terms, X, are Boolean
expressions in variables of the form Xp, m(Xp) where Xp is a primary term and m
is a modifier. m(Xp) is a fuzzy set resulting from acting with m on Xp•

Example 9-3

Let "Age" be a Boolean linguistic variable with the term set

T(Age) ={young, not young, old, not old, very young,
not young, and not old, young or old, . . . }

Identifying " 'and" with the intersection, "or" with the union, "not" with the com
plementation, and "very" with the concentration, we can derive the meaning of
different terms of the term set as follows:

M(not young) = -, young
- 2

M(not very young) = -, (young)

M(young or old) = young U old etc.

Given the two fuzzy sets (primary terms)

M(young) = {(u, ~young (u)~u E [0, lOO]}

where



FUZZY LOGIC AND APPROXIMATE REASONING 149

U E [0, 2S]

U E (2S, 100]

and

M(old) = {(u, ~old (u))lu E [0, WOn

where

then the membership function of the term "young or old" would, for instance, be

I if uE[0,2S]

(1+( U -

S
2S) 2) -1

if U E (2S, SO]

~~, or o,,(u) = maX{(1 +(U ~25)')',
(I +(

U -SSO)-2)-I} if U E (SO, 100]

9.2 Fuzzy Logic

9.2. 1 Classical Logics Revisited

Logics as bases for reasoning can be distinguished essentially by their three topic
neutral (context-independent) items: truth values, vocabulary (operators), and
reasoning procedure (tautologies, syllogisms).

In Boolean logic, truth values can be 0 (false) or 1 (true), and by means of
these truth values, the vocabulary (operators) is defined via truth tables.

Let us consider two statements, A and E, either of which can be true or
false, that is, have the truth value 1 or O. We can construct the following truth
tables:
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A B /\ V xv => <=> ?

1 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1
0 1 0 1 1 1 0 0
0 0 0 0 0 1 1 0

There are 222 = 16 truth tables, each defining an operator. Assigning meanings
(words) to these operators is not difficult for the first 4 or 5 columns: the first
obviously characterizes the "and," the second the "inclusive or," the third the
"exclusive or," and the fourth and fifth the implication and the equivalence. We
will have difficulties, however, interpreting the remaining nine columns in terms
of our language. If we have three statements rather than two, this task of assign
ing meanings to truth tables becomes even more difficult.

So far it has been assumed that each statement, A and B, could clearly be clas
sified as true or false. If this is no longer true, then additional truth values, such
as "undecided" or a similar description, can and have to be introduced, which
leads to the many existing systems of multivalued logic. It is not difficult to see
how the above-mentioned problems of two-valued logic in "calling" truth tables
or operators increase as we move to multivalued logic. For only two statements
and three possible truth values, there are already 332 = 729 truth tables! The
uniqueness of interpretation of truth tables, which is so convenient in Boolean
logic, disappears immediately because many truth tables in three-valued logic
look very much alike .

The third topic-neutral item of logical systems is the reasoning procedure
itself, which is generally based on tautologies such as

modus ponens:
modus tollens:
syllogism:
contraposition :

(A /\ (A ==} B» ==} B
«A ==} B) /\ -, B) ==} -,A

«A ==} B) /\ (B ==} C» ==} (A ==} C)
(A ==} B) ==} (-,B ==} -,A)

Let us consider the modus ponens, which could be interpreted as: "IfA is true
and if the statement 'If A is true then B is true' is also true, then B is true."

The term true is used at different places and in two different senses: All but
the last "trues" are material trues, that is, they are taken as a matter of fact, while
the last 'true" is a topic-neutral logical "true ." In Boolean logic, however, these
"trues" are all treated the same way [see Mamdani and Gaines 1981, p. xv]. A
distinction between material and logical (necessary) truth is made in so-called
extended logics: Modal logic [Hughes and Cresswell 1968] distinguishes between
necessary and possible truth, and tense logic between statements that were true
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in the past and those that will be true in the future. Epistemic logic deals with
knowledge and belief and deontic logic with what ought to be done and what
is permitted to be true. Modal logic, in particular, might be a very good basis
for applying different measures and theories of uncertainty, as indicated in
chapter 4.

Another extension of Boolean logic is predicate calculus, which is a set theo
retic logic using quantifiers (all, etc.) and predicates in addition to the operators
of Boolean logic.

Fuzzy logic [Zadeh 1973a, p. 101] is an extension of set-theoretic multival
ued logic in which the truth values are linguistic variables (or terms of the lin
guistic variable truth).

Since operators, like v, /-; -', => in fuzzy logic are also defined by using truth
tables, the extension principle can be applied to derive definitions of the opera
tors. So far, possibility theory (see section 8.1) has primarily been used in order
to define operators in fuzzy logic, even though other operators have also been
investigated (see, for instance, Mizumoto and Zimmermann [1982]), and could
also be used. In this book, we will limit considerations to possibilistic interpre
tations of linguistic variables, and we will also stick to the original proposals of
Zadeh [1973a]. To the interested reader, however, we suggest supplemental study
of alternative approaches such as those by Baldwin [1979], Baldwin and
Pilsworth [1980], Giles [1979, 1980], and others.

If v(A) is a point in V = [0, I], representing the truth value of the proposition
"u is A" or simply A, then the truth value of not A is given by

v(not A) = 1-v(A)

Definition 9-5

If v(A) is a normalized fuzzy set, v(A) = {(Vi, IlJli = 1, . .. , n, Vi E [0, I]),
then by applying the extension principle, the truth value of v(not A) is defined
as

v(not A) = {(l- Vi, IlJi = 1,... , n, Vi E [0, In
In particular, "false" is interpreted as "not true," that is,

v(false) = {(l- Vi' IlJi = 1, . . . , n, Vi E [0, I])

Example 9-4

Let us consider the terms true and false , respectively, defined as the following
possibility distributions :
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v(true) = {(.5, .6), (.6, .7), (.7, .8), (.8, .9), (.9, 1), (1, 1)}
v(false) =v(not true) ={(.5, .6), (.4, .7), (.3, .8), (.2, .9), (.1, 1), (0, I)}

Then

v(very true) = {(.5, .36), (.6, .49), (.7, .64), (.8, .81), (.9, 1), (1, I)}
v(very false) = {(.5, .36), (.4, .49), (.3, .64) , (.2, .81), (.1, 1), (0, I)}

It has already been mentioned that fuzzy logic is essentially considered as an
application of possibility theory to logic. Hence the logical operators "and," "or,"
and "not" are defined accordingly.

Definition 9-6

For numerical truth values v(A) and v(B), the logical operations and, or, not, and
implied are defined as

v(A) 1\ v(E) = v(A 1\ E) = min{ v(A), v(B)}

v(A) v v(B) = v(A v B) =max{yeA), v(B)}

....,v(A) = 1- yeA)}

YeA) => v(E) = v(A => B) = ....,v(A) v v(E)

= max{I - yeA), v(B)}

If

yeA) ={(Vi, Ui)}, U i E [0,1], v, E [0,1]

v(B) = {(Wj,P j)}, Pi E[O,I],ffi j E[O,I]

i = 1,. . . , n; j = 1,. .. , m

then

v(A and B) = v(A) 1\ v(B) = {(u = min{v., Wj},

i =1, .. . , n; j =1,... , m}
(This is equivalent to the intersection of two type 2 fuzzy sets.) The other oper
ators are defined accordingly.

Example 9-5

Let v(A) = true = {(.5, .6), (.6, .7), (.7, .8), (.8, .9), (.9, 1), (1, I)}.
Then
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--.,ii(A) = {(O, 1), (.1, 1), (.2, 1), (.3, 1), (.4, 1), (.5, .4), (.6, .3), (.7, .2),
(.8, .1) }

9.2.2 Linguistic Truth Tables
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As mentioned at the beginning of this section, binary connectives (operators) in
classical two- and many-valued logics are normally defined by the tabulation of
truth values in truth tables. In fuzzy logic, the number of truth values is, in
general, infinite. Hence tabulation of the truth values for operators is not possi
ble. We can, however, tabulate truth values, that is, terms of the linguistic vari
able "Truth," for a finite number of terms, such as true, not true, very true, false,
more or less true, and so on.

Zadeh [1973a, p. 109] suggests truth tables for the determination of truth
values for operators using a four-valued logic including the truth values true,
false, undecided, and unknown. "Unknown" is then interpreted as "true or false"
(T + F), and "undecided" is denoted bye.

Extending the normal Boolean logic with truth values true (I) and false (0) to
a (fuzzy) three-valued logic (true = T, false = F, unknown = T + F), with a uni
verse of truth values being two-valued (true and false), we obtain the following
truth tables, in which the first column contains the truth values for a statement A
and the first row those for a statement B [Zadeh 1973a, p. 116]:

1\ T F T+F
T T F T+F
F F F F

T+F T+F F T+F

Truth table for "and"

v T F T+F
T T F T
F T F T+F

T+F T T+F T+F

Truth table for "or"

1tT F

F T

T+F T+F

Truth table for "not"
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If the number of truth values (terms of the linguistic variable truth) increases,
one can still "tabulate" the truth table for operators by using definition 9-6 as
follows: Let us assume that the z<h row of the table represents "not true" and the
l' column "more or less true." The (i,jyh entry in the truth table for "and" would
then contain the entry for "not true /\ more or less true." The resulting fuzzy set
would, however, most likely not correspond to any fuzzy set assigned to the terms
of the term set of "truth ." In this case, one could try to find the fuzzy set of the
term that is most similar to the fuzzy set resulting from the computations. Such
a term would then be called linguistic approximation. This is an analogy to sta
tistics, where empirical distribution functions are often approximated by well
known standard distribution functions.

Example 9-6

Let V = {O, .1, .2, .. . , I } be the universe,
true = {(.8, .9), (.9, 1), (1, I)},
more or less true = {(.6, .2), (.7, .4), (.8, .7), (.9, I), (1, I)}, and
almost true = {(.8, .9), (.9, 1), (1, .8)}.

Let "more or less true" be the jlh row and "almost true" the lh column of the
truth table for "or."

Then "more or less true v almost true" is the (i, j)th entry in the table:

more or less true v almost true
= {(.6, .2), (.7, .4), (.8, .7), (.9,1), (1, I)} v {(.8, .9), (.9,1), (1, .8)}
= {(.6, .2), (.7, .4) , (.8, .9), (.9, 1), (1, I)}

Now we can approximate the right-hand side of this equation by

true = {(.8, .9), (.9, 1), (1, I)}

This yields

"more or less true v almost true" '" "true."

Baldwin [1979] suggests another version of fuzzy logic-fuzzy truth tables, and
their determination: The truth values on which he bases his suggestions were
shown graphically in figure 9-3. They were defined as

true = {(v, ).ltrue(v) = v)lvE [0, I]}

false = {(v, ).lfalse(V) = 1- ).ltrue(v»!vE [0, I]}

very true = {(v, ().ltrue(v»2)lv E [0, Il}

fairly true = {(v, ().l true(v» !/2)lv E [0, l]}
undecided = {(v, l)lv E [0, lj]
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Very false and fairly false were defined correspondingly, and

absolutely true = {(v, 11at (v))lv E [0, I])

{
I for v = 1

with Ilat(v) -
- 0 otherwise

absolutely false = {(v, Ila/(v))/v E [0, l])

{
I for v = 0

with Ila/(v) = o otherwise

Hence
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k
(very) true ~ absolutely true as k ~ 00

k
(very) false ~ absolutely false as k~ 00

(fairlyl'true ~ undecided as k~ 00

(fairlyl'false ~ undecided as k ~ 00

Using figure 9-3 and the interpretations of "and" and "or" as minimum and
maximum, respectively, the following truth table results [Baldwin 1979, p. 318]:

yep) v(Q) v(P and Q) «r or Q)

false false false false
true false false true
true true true true
undecided false false undecided
undecided true undecided true
undecided undecided undecided undecided
true very true true very true
true fairly true fairly true true

Some more considerations and assumptions are needed to derive the truth table
for the implication. Baldwin considers his fuzzy logic to rest on two pillars : the
denumberably infinite multivalued logic system of Lukasiewicz logic and fuzzy
set theory :

Implication statements are treated by a composition of fuzzy truth value restrictions
with a Lukasiewicz logic implication relation on a fuzzy truth space. Set theoretic con
siderations are used to obtain fuzzy truth value restrictions from conditional fuzzy lin
guistic statements using an inverse truth functional modification procedure. Finally true
functions modification is used to obtain the final conclusion [Baldwin 1979, p. 309].
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9.3 Approximate and Plausible Reasoning

We already mentioned that in traditional logic the main tools of reasoning are
tautologies, such as, for instance, the modus ponens-that is (A /\ (A => B» =>
B or

Premise
Implication

Conclusion

A is true
If A then B

B is true

Here A and B are crisply defined statements or propositions; the A's in the premise
and the implication are identical, and so are the B's in the implication and con
clusion. The "implication" is defined via truth tables, as shown in section 9.2 .1.

Approximate and plausible reasoning are ways of drawing conclusions from
hypotheses. They relax even more stringent assumptions of dual logic than fuzzy
logic does and try to approach human reasoning even more closely.

Three natural generalizations of the classical modus ponens are

1. To modify the definition of the "implication,"
2. To allow statements that are no longer crisp but contain a fuzzy set, such as

linguistic variables, and
3. To relax the identity of the A's and B's in the premise rule and conclusion

by substituting for "identical" the term "similar."

Relaxations of point 2 lead to "approximate reasoning," and relaxations of points
2 and 3 lead to "plausible reasoning."

We shall first briefly consider point 1 and then tum to points 2 and 3.
The rule "ifA then B" is often written as A ~ B. The symbol "~" is then often

interpreted as implication, whose meaning is formally defined in logic. Obviously,
there are two "translations" between the three different levels involved: the lin
guistic level (rule), the symbolic level (~), and the formal logical level.

The relationship between the linguistic expression "if A then Boo and the
respective mathematical description cannot be derived formally, but only em
pirically. This problem belongs in the area of psycholinguistics, and empirical
research in this direction is still very rare [Spiess 1989].

If "A ~ Boo is interpreted as material implication, in which A is called the
premise and B the consequence, then the truth values v(A), v(B) , and v(A ~ B)
can in dual logic be either 0 or 1. As shown in the truth table in section 9.2.1, the
truth value of v(A ~ B) is 0 if A is true and B is false; otherwise, its truth value
is 1. This corresponds to the view that the implication is true whenever the con
sequence is at least as true as the premise. In Boolean logic, A ~ B is equiva
lent to -,A v (A /\ B) (not A or (A and B».
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On the bases of these basic relationships, various implication operators have
been defined. Ruan [1991] has investigated 18 of these definitions, which are all
restricted to the min-max theory. We only show a selection of them in the next
table. x denotes the degree of truth (or degree of membership) of the premise, y
the respective values for the consequence, and I the resulting degree of truth for
the implication.

Name

Early Zadeh
Lukasiewicz
Minimum (Mamdani)

Standard Star (Godel)

Kleene-Dienes

Gaines

Yager

Definition of Implication Operator

Im(x, y) = max(l - x, min(x, y»
Iix, y) =min(l , 1 - x + y)

Iix, y) =min(x, y)

I (x ) = {I x:S; y
g ,y y elsewhere

Ib(x, y) = max(l - x, y)

I( ) {IX:S;y
A x, Y = y/z elsewhere

Ib, y) =y'

The "quality" of these implication operators could again be evaluated either
empirically or axiomatically. For the latter, a well-accepted axiomatic system
such as that of Smets and Magrez [1987] can be used. The authors assume that
the implication operator is truth functional, i.e., that the truth of "A ~ B" only
depends on the truth of A and B. They have formulated the following axioms:

1. v(A ~ B) =v(-,B ~-,,4)

(contrapositive symmetry)
2. v(A ~ (B ~ C)) =v(B ~ (A ~ C))

(exchange principle)
3. v(A ~ B) ~ v(C ~ D) if

v(A) ::;; v(C) and/or v(B) ~ v(D)
(monotonicity)

4. v(A ~ B) = 1 if v(A) ::;; v(B)
(boundary condition)

5. v(T~ A) = v(A), where T stands for tautology
(neutrality principle)

6. v(A ~ B) is continuous in its arguments
(continuity)

Table 9-1 shows which of the implication operators satisfy (Y) or violate (N) the
above axioms.
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Table 9-1. Formal quality of implication operators.

t; t, t, t, t, I IB

Al N Y N N Y N N
Contraposition
A2 N Y Y Y Y N Y
Exchange
Principle
A3 N Y N Y Y Y Y
Monotonicity
A4 N Y N Y N Y N
Boundary
Condition
AS y Y Y Y Y Y Y
Neutrality
Principle
A6 y Y Y N Y N N
Continuity

If one uses the fraction of the axioms that are satisfied by the various impli
cations as their degree of membership in the fuzzy set "good implication opera
tors," then one would obtain the following fuzzy set:

Good Implication Operators

For approximate and plausible reasoning as defined above, the modus ponens is
extended to the "generalized modus ponens" [Zadeh 1973a, p. 56; Mizumoto et
al. 1979; Mamdani 1977a].

Example 9-7

Let A, A' , B, if be fuzzy statements ; then the generalized modus ponens reads

Premise : x is A'
Implication: If x is A, then y is B
Conclusion: y is B'
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Premise: This tomato is very red.
Implication: If a tomato is red then the tomato is ripe.

Conclusion: This tomato is very ripe .

It should be mentioned, however, that the generalized modus ponens alone does
not allow us to obtain conclusions from unequal premises. Such an inference pre
supposes or necessitates knowledge about modifications of the premises and their
consequences (for example, knowledge that an increase in "redness" indicates an
increase in "ripeness" [Dubois and Prade 1984b, p. 325].

In 1973, Zadeh suggested the compositional rule of inference for the above
mentioned type of fuzzy conditional inference. In the meantime, other authors
(for instance, Baldwin [1979]; Baldwin and Pilsworth [1980]; Baldwin and Guild
[1980]; Mizumoto et al. [1979]; Mizumoto and Zimmermann [1982]; Tsukamoto
[1979]), have suggested different methods and have also investigated the modus
tollens, syllogism, and contraposition. In this book, however, we shall restrict
considerations to Zadeh's compositional rule of inference.

Definition 9-7 [Zadeh 1973a, p. 148]
- - -

Let R(x), Rtx, y), and R(y), x E X, Y E Y, be fuzzy relations in X, X x Y, and Y,
respectively, that act as fuzzy restrictions on x, (x, y) , and y, respectively. Let A
and 8 denote particular fuzzy sets in X and X x Y. Then the compositional rule
of inference asserts that the solution of the relational assignment equations (see
definition 8-1) R(x) =A and R(x, y) = 8 is given by R(y) = A 0 8, where A 0 8 is
the composition of Aand 8.

Example 9-8

Let the universe be X = {I, 2, 3, 4}.
A= little = {(1, 1), (2, .6), (3, .2), (4, O)} .
R= "approximately equal" be a fuzzy relation defined by

2 3 4

R: 2

3

4

1 .5 0 0

.5 1 5 0

0 .5 1 .5

0 0 .5 1
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For the formal inference, denote

R(x) = X, R(x, y) = E, and R(y) = X0 E

Applying the max-min composition for computing RCy) = X0 Eyields

R(y) = max min{l!A (x), l!k(x, y)}

= {(l, 1), (2, .6), (3, .5), (4, .2)}

A possible interpretation of the inference may be the following:

x is little
x and y are approximately equal

y is more or less little

A direct application of approximate reasoning is the fuzzy algorithm (an
ordered sequence of instructions in which some of the instructions may contain
labels of fuzzy sets) and the fuzzy flow chart. We shall consider both in more
detail in chapter 10. Here, however, we shall briefly describe fuzzy (formal)
languages.

9.4 Fuzzy Languages

Fuzzy languages are formal languages based on fuzzy logic and approximate rea
soning. Several of them have been developed by now, such as LPL [Adamo
1980], FLIP [Giles 1980], Fuzzy Planner [Kling 1973], and others. They are based
on LP1, FORTRAN, LISP, and other programming languages and differ in their
content as well as their aims. Here we shall sketch a meaning-representation lan
guage developed by Zadeh [Zadeh 1981a].

PRUF (acronym for Possibilistic Relational Universal Fuzzy) is a meaning
representation language for natural languages and is based on possibility theory.
PRUF may be employed as a language for the presentation of imprecise knowl
edge and as a means of making precise the fuzzy propositions expressed in a
natural language. In essence, PRUF bears the same relationship to fuzzy logic
that predicate calculus does to two-valued logic. Thus it serves to translate a set
of premises expressed in natural language into expressions in PRUF to which the
rules of inference of fuzzy logic or approximate reasoning may be applied. This
yields other expressions in PRUF that can then be retranslated into natural lan
guage and become the conclusions inferred from the original premises.

The main constituents of PRUF are

1. a collection of translation rules, and
2. a set of rules of inference.
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The latter corresponds essentially to fuzzy logic and approximate reasoning , as
described in sections 9.2 and 9.3. The former will be described in more detail
after the kind of representation in PRUF has been described and some more def
initions introduced .

In definition 8-2, the relational assignment equation was defined. In PRUF, a
possibility distribution 1tx is assigned via the

possiblility assignment equation (PAE): 1tx == F
to the fuzzy set F. The PAE corresponds to a proposition of the form "N is P'
where N is the name of a variable, a fuzzy set, a proposition, or an object. For
simplicity, the PAE will be written as in chapter 8 as

Example 9-9

Let N be the proposition "Peter is old"; then N (the variable) is called "Peter,"
X E [0, 100] is the linguistic variable "Age," "old" is, for instance, a term of the
term set of "Age," and

Peter is old~ 1t Age( Peter) = old

where ~ stands for "translates into."
There are two special types of possibility distributions that will be needed later.

Definition 9-8

The possibility distributions 1t[ with

1t[(u)=1 for UEU

is called the unity possibility distribution 1t[, and with

1t-t(v)=v for vE[O,I]

is defined the unitary possibility distribution function [Zadeh 1981a, p. 10].
In chapter 6 (definition 6-4), the projection of a binary fuzzy relation was

defined. This definition holds not only for binary relations and numerical values
of the related variables but also for linguistic variables.

Different fuzzy relations in a product space U I x Us X .•. X U; can have iden
tical projections on Ui, x ... X Uik• Given a fuzzy relation Rq in Ui; x . . . X Ui"
there exists, however, a unique relation RqL that contains all other relations whose
projection on Ui, x . . . X Ui, is Rq• RqL is then called the cylindrical extension of
Rq; the latter is the basis of RqL (see definitions 6-4, 6-5).
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In PRUF, the operation "particularization" is also important: "By the particularization
of a fuzzy relation or a possibility distribution which is associated with a variable X==
(Xt. . . . , Xn), is meant the effect of specification of the possibility distributions of one
or more subvariables (terms) of X. Particularization in PRUF J1!ay be viewed !ls the
result of forming the conjunction of a proposition of the form "X}s F," wh:,re X is an
n-ary variable with partic~larizin.$ propositions of the form "X, =G," where X, is a sub
variable (term) of X and F and G, respectively, are fuzzy sets in VI x V2 X ••• U; and
Vi, X .. . X Vi" respectively" [Zadeh 1981a, p. 13].

Definition 9-9 [Zadeh 1981a, p. 13]

Let itx == it(X1 • • • Xn) = F and ~x == rt..(Xij • • • ,_Xi» = f; be possibility distributions
induced by the propositions "X is F' and "X, is G," respectively. The particu
larization of itx by i; = Gis denoted by itx(itxs = G) and is defined as the inter
section of F and G, that is,

itAfts = G) = Fn G'
where G' is the cylindrical extension of G.

Example 9-10

Consider the proposition "Porsche is an attractive car," where attractiveness of a
car as a function of mileage and top speed is defined in the following table.

Top speed Mileage
Attractive cars (mph) (mpg) 11

60 30 .4
60 35 .5
60 40 .6
70 30 .7
85 25 .7
90 25 .8
95 25 .9

100 20 1.0
lID 15 1.0

A particularizing proposition is "Porsche is a fast car," in which "fast" is defined
in the following table:
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Fast cars
Top speed

(mph)

60
70
85
90
95
100
110

.4

.6

.7

.8

.9

.95
1.0

"Porsche is an attractive car" can equivalently be written as "Porsche is a fast
car," that is, "Top speed (Porsche) is high" and "mileage (Porsche) is high."

Using definition 9-9, the particularized relation attractive (1tspeed = Fast) can
readily be computed, as shown in the next table:

Attra ctive cars Top speed Mileage J.l

60 30 .4
60 35 .4
60 40 .4
70 30 .6
85 25 .7
90 25 .8
95 25 .9

100 20 0.95
110 15 1

Translation Rules in PRUF. The following types of fuzzy expressions will be
considered:

I. Fuzzy propositions such as "All students are young," "X is much larger than
Y," and "If Hans is healthy then Biggi is happy."

2. Fuzzy descriptors such as tall men, rich people, small integers, most, several,
or few.

3. Fuzzy questions.

Fuzzy questions are reformulated in such a way that additional translation rules
for questions are unnecessary. Questions such as "How A is B?" will be expressed
in the form "B is ?A," where B is the body of the question and "?A" indicates the
form of an admissible answer, which can be a possibility distribution (indicated
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as 1t); a truth value (indicated as r): a probability value (indicated as A.); or a
possibility value (indicated as (0).

The question "How tall is Paul?" to which a possibility distribution is expected
as an answer, is phrased "Paul is 'Itt" (rather than "How tall is Paul ?1t). "Is it
true that Katrin is pretty?" would then be expressed as "Katrin is pretty ?t" and
"Where is the car ?w" as "The car is ?w."

PRUF is an intentional language, that is, an expression in PRUF is supposed
to convey the intended rather than the literal meaning of the corresponding
expression in a natural language. Transformations of expressions are also intended
to be meaning-preserving. Translation rules are applied singly or in combination
to yield an expression, E, in PRUF that is a translation of a given expression, e,
in a natural language.

The most important basic categories of translation rules in PRUF are

Type I
Type II
Type III
Type IV

Rules pertaining to modification
Rules pertaining to composition
Rules pertaining to quantification
Rules pertaining to qualification

Examples of propositions to which these rules apply are the following [Zadeh
1981a, p. 29]:

Type I X is very small.
X is much larger than Y.
Eleanor was very upset.
The man with the blond hair is very tall.

Type II X is small and Y is large. (conjunctive composition)
X is small or Y is large. (disjunctive composition)
If X is small, then Y is large . (conditional composition)
If X is small, then f is large else (conditional and conjunctive
Y is very large. lcomposition)

Type III Most Swedes are tall.
Many men are much taller than most men.
Most tall men are very intelligent.

Type IV Abe is young is not very true. (truth qualification)
Abe is young is quite probable. (probability qualification)
Abe is young is almost impossible. (possibility qualification)

Rules of Type I

Type I rules concern the modification of fuzzy sets representing propositions by
means of hedges or modifiers (see definition 9-3).
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If the proposition

P==Nis i
translates into the possibility assignment equation

1t -F(Xt . .. . . xn) -

then the translation of the modified proposition

P+ ==N is mFis

1t - F+(Xt . .. . . xn) -

165

where i+ is a modification of i by the modifier m. As mentioned in chapter 9.1,
the modifier "very" is defined to be the squaring operation, "more or less" the
dilation, and so on.

Example 9-11

Let p be the proposition "Hans is old," where "old" may be the fuzzy set defined
in example 9-1. The translation of p+ == "Hans is very old," assuming "very" to
be modeled by squaring, would then be

1tAge(Hans) =(0Id)2 ={(u ,fl(Old)2(u))lu E [0, 100])

where

U E[O,50]

U E (50, 100]

Rules of Type II

Rules of type II translate compound statements of the type

p=q*r

where * denotes a logical connective-for example, and (conjunction) or (dis
junction), if ... then (implication), and so on. Here, essentially the definitions of
connectives defined in section 9.1 and 9.2 are used in PRUF.

If the statements q and r are
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q == M is F~ 1t(x\, ,Xn) =F

r==N is G~1t(ij , ,Yn)=G

then

(M is F)and(N is G)~1t(XI , ...,Xn, ij,...,Yn) = F x G

where

Fx G= {«u, v), IltxG(U' v))lu E U, v E V}

and

IltXG(U, v) = min{IlF(u), Ildv)}

"If Mis i, then N is G" ~ 1t(x\,... ,Xn,YI, ... ,Yn)= if. EB Gf. where Ff. and Gf. are the
cylindrical extensions of F and Gand EB is the bounded sum defined in defini
tion 3-9, Hence

1lfL.$GI.(u, v) = min{I, Ilt(u) +Ildv)}

Example 9-12 [Zadeh 198Ia, pp. 32-33]

Assume that U =v = 1, 2, 3 and M == X, N == Y, and

F== small == {(l, 1), (2, .6), (3, . I)}

G== 1arg e == {(l, .1), (2, .6), (3, I)}

Then X is small and Y is large ~

1t(x, y) = {[(I, 1), .1], [(1,2), .6], [(1,3), 1], [(2, 1), .1], [(2, 2), .6],
[(2,3), .6], [(3, 1), .1], [(3,2), .1], [(3, 3), . I]}

X is small or Y is large ~

1t(x, y) = {[(1, 1), 1], [(1, 2), 1], [(1, 3), 1], [(2, 1), .6], [(2,2), .6],
[(2,3), 1], [(3, 1), .1], [(3,2), .6], [(3,3), .1]}

If X is small, then Y is large ~

1t(x,y) = {[(I , 1), 1], [(1, 2), .6], [(1, 3), 1], [(2, 1), .5], [(2, 2), I],
[(2,3), 1], [(3, 1), 1], [(3,2), 1], [(3,3), I]}

Translation rules of type II can, of course, also be applied to propositions con
taining linguistic variables. In some applications, it is convenient to represent
fuzzy relations as tables (such as those shown in section 6. I). These tables can
also be processed in PRUF.
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Rules of Type III

Type III translation rules pertain to the translation of propositions of the form

p== QN are F

where N may also be a fuzzy set and Q is a so-called quantifier, for example, a
term such as most, many, few, some, and so on. Examples are

Most children are cheerful.
Few lazy boys are successful.
Some men are much richer than most men.

A quantifier, Q, is in general a fuzzy set of which the universe is either the set of
integers, the unit interval, or the real line.

Some quantifiers , such as most, many, and so on, refer to propositions of sets
that may either be crisp or fuzzy. In this case, the definition of a quantifier makes
use of the cardinality or the relative cardinality, as defined in definition 2-5 .

In PRUF, the notation prop (FIG) is used to express the proportion of Fin G
where

( -j -) count(in G) lin GI
prop F G = - = -

count G IGI
where "count" corresponds to the above-mentioned cardinality. The quantifier
"most" may then be a fuzzy set

Q= {[prop (FjG), !lmos((u, v)]lu E i; v E G}

Example 9-13

The quantifier "several" could, for instance, be represented by

Q== several == {(3, .3), (4, .6), (5,1), (6, .8), (7, .6), (8,.3)}

Rules of Type IV

In PRUF, the concept of truth serves to make statements about the relative truth of
a proposition p with respect to another reference proposition (and not with respect
to reality!) . Truth is taken to be a linguistic variable, as defined in section 9.1.
Truth is then interpreted as the consistency of proposition p with proposition q. If

p == N is F -HCp = F.
q == N is G ~ 1tq = G
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then the consistency of p with q is given as

cons{N is FIN is G} == poss{N is FIN is G}

= sup{min(llt(u), Il a(u))}
ueU

Example 9-14

Let

p == N is a small integer
q == N is not a small integer

where

small integer == {(O, 1),0, 1),(2, .8), (3, .6), (4, .5), (5, .4), (6, .2)}

Then

cons{p Iq} = sup{[O, 0, .2, .4, .5, .4, .2]}

= .5

More in line with fuzzy set theory is the consideration of the truth of a propo
sition as a fuzzy number. Therefore Zadeh defines in the context of PRUF truth
as follows:

Definition 9-10 [Zadeh 198Ia, p. 42]

Let p be a proposition of the form "N is F," and let r be a reference proposition,
r == N is G, where F and Gare subsets of U. Then the truth, r, of p relative to r
is defined as the compatibility of r with p, that is,

r == Tr(N is FIN is G) == comp(N is GIN is F)

== Ilt(G)

== {('t, Ilt(G)~'t E [0 , I]}

with

Il t(G) = inf W t(u), Il a(u)}, U E U
te[O ,I)

The rule for truth qualification in PRUF can now be stated as follows [Zadeh
1981a, p. 44] : Let p be a proposition of the form

p== N is F
and let q be a truth-qualified version of p expressed as
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q == N is F is r

where r is a linguistic truth value. q is semantically equivalent to the reference
proposition, that is,

N is F is 't ~ N is G
where F, G, and r are related by

't = ~F(G)

In analogy to truth qualification, translation rules for probability qualification
and possibility qualification have been developed in PRUF.

Example 9-15

Let

v =No = {O, 1, 2, .. . }, N E No
p = N is small
r = N is approximately 4

where

small = {(O, 1), (l, 1), (2, .8), (3, .6), (4, .4), (5, .2)}
approximately 4 = {(l, .1), (2, .2), (3, .5), (4, 1), (5, .5), (6, .2), (7, .1)}

Then

't = Tr(N is smalllN is approximately 4)

= comp(N is approximately 41N is small)

= {(~small (u), ~4 (u»lu E V}

= {(O, .2), (.2, .5), (.4, 1), (.6, .5), (.8, .2), 0, .1)}

9.5 Support Logic Programming and Fril

9.5.1 Introduction

Fri1 is a logic programming style implementation of support logic programming
[Baldwin 1986, 1987, 1993]. It is a complete programming system with an incre
mental compiler, on-line help, a step-by-step debugger, modular code develop
ment, and optimization [Baldwin, Martin, and Pilsworth 1995]. It is written in C
and is a Prolog system if no uncertainties are used . The style of programming
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can include the object-oriented paradigm by introducing the concept of a fuzzy
object. A menu-driven window environment with dialogue boxes can be written
in Fril to provide the intelligent systems application with a friendly front end.
Fril can also be linked to Mathematica [Wolfram 1993], allowing mathematical
equations to be solved as part of the inference process . Mathematical commands
can be sent from Fril directly to Mathematica, and answers received by Fril can
act as data for part of some inference process .

Fril is an ideal language for soft computing, since it is an efficient general
logic programming language with special structures to handle uncertainty and
imprecision. Four types of rules are allowed in Fril:

1. Prolog style rule
2. Probabilistic fuzzy rule
3. Causal relational rule
4. Evidential logic rule

The popularity and success of fuzzy control, which uses simple IF .. . THEN
rules, should motivate knowledge engineers to investigate the use of Fril and
fuzzy methods for intelligent systems. We would expect areas of application
such as expert systems for large-scale engineering systems, vision-understanding
systems, planning, robotics , military systems, medical and engineering diagnosis,
economic planning, human interface systems, and data compression to benefit
from this more general modeling approach.

The fuzzy sets representing possible feature values and the importance given
to these features can be automatically derived from a data set of examples. The
rules derived in this way provide a generalization of the specific instances given
in the data set. This, along with the Fril inference rules, provides a theory of
generalization and decision suitable for machine intelligence.

9.5.2 Fril Rules

The three Fril rules are of the form:

<head> IF <body> : <list of support pairs>

where the head of the rule can contain a fuzzy set. In the case of rules of types
II and III, the body of the rule can be a conjunction of terms, a disjunction of
terms, or a mixture of the two, and each term can contain a fuzzy set. The body
of the fourth rule is a list of weighted features , where a feature is simply a con
dition that may contain a fuzzy set or the head of another rule. The list of support
pairs provides intervals containing conditional probabilities of some instantiation
of the head given some instantiation of the body.

An example of each type of rule is as follows :
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Example 9-16: Rule of Type 11

«suitability place X for sports stadium Y is high)
(access X from other parts of city is easy) (costjo build Y at X is fairly
cheap»: [0.9, 1]

This rule states that there is a high probability that any place X is highly suitable
to build a sports stadium Y if X is easily accessed and Y can be built fairly cheaply
at X.

Example 9-17: Rules of Type 111

(tshoe..size man X is large)
«height X is tall) (height X is average) (height X is small»: [0.8, 1]
[0.5, 0.6] [0, 0.1]

This rule states that the probability of a tall man wearing large shoes is greater
than 0.8. The probability that a man of average height wears large shoes is
between 0.5 and 0.6. The probability that a small man wears large shoes is less
than 0.1.

We can think of the rule as representing the relationship between two vari
ables, Sand H, where S is shoe size and H is height of man . S is instantiated
to large, while H has three instantiations in the body of the rule. The rule
expresses Pr(S is largeiH is hi) where hi is a particular fuzzy instantiation of H.
This type of rule is useful to represent fuzzy causal nets and many other types of
applications.

Example 9-18: Rules of Type IV

«suitability_as_secretary person X is good)
(evlog most«readability handwriting of X, high) 0.1

(neatness(X,fairly good» 0.1
(qualifications X, applicable) 0.2
(concentration X, long) 0.1
(typingskills X, very good) 0.3
(shorthand X, adequate) 0.2»): [I, 1] [0,0]

This rule says that a person's suitability as a secretary is good if most of the
weighted features in the body of the rule are satisfied. The term "most" is a fuzzy
set that is chosen to provide optimism for those persons who satisfy the criteria
well and pessimism for those who satisfy the criteria badly. Type III rules are
evidential logic rules and can be used for vision understanding, classification,
and case-based reasoning. The satisfaction of features such as (qualifications X



172 FUZZY SET THEORY-AND ITS APPLICATIONS

applicable) is determined from another rule with satisfaction as head. Methods
can be used to determine near optimal weights and the fuzzy sets in the body of
the rules from a data set of examples [Baldwin 1994]. These are discussed below.

Meta Rules

Types III and IV rules can be written in terms of types I and II rules. Other rules,
which we can call meta rules, can be similarly defined in Fril.

9.5.3 Inference Methods in Fril

Consider a statement such as

most tall persons wear large shoes

The words printed in italics are fuzzy sets representing the vagueness of the
definitions of these concepts.

This sentence can be replaced by the equivalent statement

Pr(a person X wears large shoeslX is tall) ~ 0.95

if we interpret "most" as the fuzzy set "greatecthan_95%." We can simplify
further if we replace the fuzzy set "greatecthan_95%" with the support pair
[0.95, 1], where a support pair is an interval containing a probability.

This could be written as a Fril rule:

(t shoesize of X large)
(height of X tall)): [0.95, 1]

The discrete fuzzy set large defined on the size domain and the continuous
fuzzy set tall defined on the height are represented as list structures in Fril. For
example,

set (height domain (4 8))
set (size_domain (4 5 67 89 10 11 12 13))
(tall [5.8: 0, 6: 1] height domain)
(large {9: 0.3, 10: 0.5, 11 : 0.9, 12: 1, 13: 1) size_domain)

The height domain is all heights in the range [4 ft, 8 ft], and the size domain
is the list of shoe sizes {4 5 6 7 8 9 10 11 12 13). The membership of elements
in the discrete fuzzy set are given to the right of the colon. For the continuous
fuzzy set, the membership is 0 for all heights in the height domain smaller
than 5.8 and 1 for all heights in the height domain larger than 6, and linear inter-
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polation is used to determine the membership value for heights in the range
[5.8, 6].

Assume we know the facts

«height of John average»

where the fuzzy set average is defined using the Fril statement

(average [5.8: 0,5.9: 1, 6: 0] height domain)

Then we should be able to conclude something like shoe_size of John is
more_ocless_fairly_large. We would like to be able to provide an estimate from
the fuzzy set conclusion for the size of John's shoes. This corresponds to defuzzi
fying the fuzzy set conclusion. We would only defuzzify if asked for a precise
value.

How can we determine the fuzzy set I for the conclusion
«shoe_size of XI»

and how can we defuzzify this conclusion to give us the conclusion
«shoe_size of John s)

corresponding to defuzzified value s?

The term in the body of the rule (height of X tall) is matched to (height of John
tall) with X instantiated to John. There is only a partial match because average
only partially matches the term "tall." The mass assignment theory allows us to
determine an interval containing the conditional probability

Pr{ (height of John talljlfheight of John average)}

This interval can be denoted by [x" X2]' The process of determining this interval
is called interval semantic unification. Fril automatically determines this interval.
There is also a point-version semantic unification in which a point value is deter
mined by intelligent filling in for unknown information. A query can be asked in
Fril such that point semantic unification is used. In this case, Fril returns

Pr{ (height of John talljltheight of John average)} = x

We now know that the body of the rule is satisfied with a beliefor probability given
by the support pair [x" X2] or point value x. XI gives the necessary support for the
body of the rule, and X2 gives the possible support for the body of the rule . 1 - X2

gives the necessary support against the body of the rule being satisfied. We can
now use an interval version of Jeffrey's rule of inference to determine a support
pair for the consequence of the rule [Baldwin 1991]. Jeffrey's rule is of the form

N

Pr'(h) =I, Pr(hlbj)Pr'(bj)
j=1
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where {Pr(hlb;} represent conditional probabilities determined from a population
of objects and (P'r(b;)} are probabilities or beliefs about a given object from the
population. These primed probabilities are not determined with reference to the
population of objects. The primed probabilities are specific to the one object under
investigation. To make this more clear, consider the following example. From past
observations and examination results, it is known that in a given school 90% of
hardworking students obtain good passes in their final examinations. The proba
bility Pr(good passlhardworking) is obtained from population considerations.
Consider a new boy to the school. By interviewing the body and from references,
we estimate a belief that this boy will be hardworking, say, 0.7. The probability
p'r(new boy hardworking) = 0.7 is specific to the new boy and is not related to the
Pr(hardworking) , which would be the proportion of boys in the school who are
hardworking. Jeffrey's rule is similar to the theorem of total probabilities but with
a mixture of population-estimated probabilities and specific beliefs .

In terms of the above example, Jeffrey 's rule is

Pr{ (shoe_size of John large)} =
Pr{ (shoe_size of John largejkheight of John tall) }Pr{ (height of John tall)}
+ Pr{ (shoe_size of John large)I-,(height of John tall)}Pr{ (height of John tall)}

We know

Pr{ (height of John tall)} is contained in the interval [XI> X2].

From this we can deduce

Pr{(shoe_size of John large)} is contained in the interval [Y, 1]
where y = 0.95xl

since we know

Pr{ (shoe_size of John Iargejkheight of John tall)} E [0.95, I]

and

Pr{ (shoe_size of John large)I-,(height of John tall)} E [0, 1].

We must now convert this to a statement containing only a fuzzy set but no
probabilities.

From the basic concept of a support pair, we can state

Pr{ (shoe_size of John large)} = y
Pr{(shoe_size of John -slargej] = 1 - 1 = 0
Pr{ (shoe_size of John any_possible_size)} = 1 - y

We use these three conclusions to determine a membership function for the fuzzy
set f in the statement
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(shoe_size of Johnj)

by calculating j as the expected fuzzy set. Thus

l!/(s)=xl!,arge(s)+(l-x) foralls

We can defuzzify this fuzzy set, as described later. Briefly, we use the fuzzy set
j to determine a least prejudiced probability distribution over the shoe_size
domain and choose the size with the highest probability. If the domain for
shoe_size had been a continuous domain, then we would defuzzify by choosing
the mean of the distribution.

If point semantic unification is used rather than the interval semantic unifica
tion, then Fril would give the above solution but with y = O.95x.

9.5.4 Fril Inference for a Single Rule

Consider the inference for a single Fril rule of the form

«h)«b,» ...«bn»»: «UI v, )(un vn »
when the following facts are given:

«bJ): (u ; PJ; all i

More generally, the facts will not completely match the terms in the rule and the
support pair (o, Pi); and i will be determined using semantic unification. A gen
eralized Jeffrey 's rule for support pairs is the basic inference rule of Fril, as dis
cussed above, so that h: (z, Z2) where

z, = minI,uiS; where «, :::; S; :::; Pi

Z2 = maxI, ViS ; where «, :::; Si s Pi

These are trivial optimization problems.
Each b, can be a conjunction of terms, a disjunction, and a mixture of the two.

A calculus based on probability theory is used to compute the support pair for
any b, with respect to the support pairs of its individual terms.

The inference rule for the basic rule is a special case of this, since the basic
rule is equivalent to
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For the evidential logic rule of the form

«h)))(evlog 1
(cl WI)' " (c, wn )))

: (Xl YI)(X2 Y2»

with facts

«.» (o, ~;)

the support pair given to the body of the rule is

The basic inference rule is then used to give the final support pair for the head
(h).

The point semantic unification case is only a special case of this where the
supports (ai, ~i) are replaced with point values.

9.5.5 Multiple Rule Case

More generally, Fril can use several rules with the same head predicate to deter
mine a given inference. Consider, for example, the fuzzy logic rules

«y value is ft) (XI value is gl) (X2 value is hI))
«y value is12) (XI value is g2) (X2 value is h2))
«y value is j,,) (Xl value is gn) (X2 value is hn))

for determining the value of y given values for Xl and X2. {f;}, {gil, and {h;} are
fuzzy sets defined on the domains for y, XI. and X2, respectively. If we provide
the facts,

«XI is aboutjz)
«X2 is aboucb»

where aboutjz is a fuzzy set defined on the domain for Xl and aboutjr a fuzzy
set defined on the domain for X2 ' Then Fril uses each rule to obtain

(y value is ft): (XlYl)
(y value is fi): (X2 Y2)
(y value is j,,): (xnYn)
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Fril then determines
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(y value is fal)
(y value is f az)
(y value is fan)

where fak is an expected fuzzy set determined as described previously. These are
intersected to give the final solution

(y value is f a)

where fa = fal n faz n .. . n fan and n is fuzzy intersection.
For multiple rules with the same head where the heads do not contain fuzzy

sets, then the support pairs are intersected.

9.5.6 Interval and Point Semantic Unification

We will first explain the concepts involved in the Fril semantic unification using
a simple example . This explanation will be in terms of discrete fuzzy sets. Fril
handles both discrete and continuous fuzzy sets, and the algorithm is optimized
for computational efficiency.

Consider the Fril program:

set (dice_dom (1, 2, 3,4,5, 6))
(small 11:1,2:1, 3:0.3} dice_dom)
(abouc2 I 1:0.3, 2: I, 3:0.3} dice_dom)
«dice shows small))

If we ask the query

qs«dice shows abouC2))

which asks for the support that the dice shows abouc2, then Fril returns

«dice shows abouC2)): (0.3 I)

The point semantic query

qs_p«dice shows abouC2))

returns

«dice shows abouC2)): 0.615

In other words, Fril calculates Prl (dice shows abouc2)I(dice shows small)} E

[0.3, I] for interval semantic unification and Prl (dice shows abouc2) I (dice
shows small)} = 0.615 for point semantic unification. How is this done?
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The fuzzy sets small and abouC2 can be written as mass assignments [Baldwin
1992], namely,

m small = {I, 2}: 0.7, {l, 2, 3}: 0.3
mabouU = {2}: 0.7, {I, 2, 3}: 0.3

where a mass assignment is equivalent in this case to a Dempster/Shafer basic
probability assignment. We can depict these graphically as in the table below. The
given information is depicted at the top of the table. In each cell we can denote
the truth of the left-hand set given the top set. This truth value will be t, f, or u,
representing true, false, or uncertain, respectively. For example, the truth of {2}
given {I, 2} is uncertain since if the dice shows 1, then {2} will be false, while
if it shows 2, then {2} will be true. What mass should we associate with each of
the cells? Baldwin's theory of semantic unification states that the masses in the
cells should satisfy the following row and column constraints: The column cell
masses should sum to the column mass, and the row cell masses should sum to
the corresponding row mass.

0.7
{1,2}

0.3
{I, 2, 3}

Thus

0.7
{2}

0.3
{I, 2, 3}

u u
mil ml2

t t
m21 m22

[0.3, 1]

mll + ml2 = 0.7
m21 + m22 = 0.3
mIl + m21 = 0.7
ml2 + m22 = 0.3

This will not provide a unique solution. One solution is to multiply the column
and row masses to obtain the corresponding cell mass. This procedure can be
thought of as assuming independence of the mass assignment in the Fril program
and of that given in the query. Fril uses this multiplication model, giving

mIl =0.49, ml2 =0.21, m21 = 0.21, and m22 = 0.09.

Thus we have the truth mass assignment



FUZZY LOGIC AND APPROXIMATE REASONING 179

t: 0.3, (t,fl : 0.7

so that the support for Pr(abouc2Ismall) = [0.3, 1].
A point semantic solution is obtained in the same way, but mIl and m12 are

modified to give their contributions to true, assuming an equally likely probabil
ity distribution for dice values for the given information. Therefore we modify
mll to 0.5mll and m12 to (1/3)mI2, since {2} is true if 1 of {l , 2} is given and
false otherwise, and {2} is true if I of {1, 2, 3} is true and false otherwise. This
provides the modified table below:

0.7 0.3
{I, 2} {I, 2, 3}

0.7
0.245 0.07{2}

0.3
0.21 0.21

{I, 2, 3}

0.615

If there are cells with anfentry, then the upper support for interval semantic uni
fication will be less than I.

The point semantic unification satisfies the normalization condition and the
Dubois/Prade consistency condition, i.e.,

Pr(jlg) + Pr(fclg) = 1

Pr(Alg):S; OCAlg)

where f and g are fuzzy sets defined on the same domain, fc is the complement
of f, A is any subset of the domain, and Il is Zadeh's possibility measure. The
multiplication model arises from relative entropy considerations discussed by
Baldwin [1991], as does the use of Jeffrey's rule for inference. It should be noted
that if the prior on the domain elements is different to equally likely distribution,
then this will be taken into account when the point semantic unification is per
formed. Suppose in the above dice example it was known that the dice was
weighted and had the prior {I: 1/9,2:2/9,3: 1/9,4:2/9,5: 1/9, 6:2/9}; then

Pr(abouC2Ismall) = (0.49)2/3 + (0.07)1/2 + 0.3 = 0.6617

9.5.7 Least Prejudiced Distribution and Learning

The fuzzy sets occurring in the various Fril rules can be determined automati
cally from a database of examples. For example, suppose we have a database of
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values of y = F(x) for a range of values of x and we want to approximate the
function using the fuzzy logic rules

((y has value inDex has value in gi)) for i = 1, ... , n

where U;} and {gd are fuzzy sets defined on the X and Y domains, respectively.
Suppose further that we choose the U;} to be triangular fuzzy sets on the Y
domain. How should we choose {gi} to provide a good approximation to the func
tion? The inference method for a given input for X is that described in sections
4 and 5. Defuzzification using the mean of the least prejudiced distribution is
used as the estimate for F(x).

In this section, we will define what is meant by the least prejudiced distri
bution, outline the method used to determine the fuzzy sets {gd, and indicate
how this can be extended to the case of the evidential logic rule. The theory is
described by Baldwin [1994].

Consider a discrete fuzzy set small for the dice problem above. The statement
(dice score is small) provides a possibility distribution over the dice domain
where 7t(i) = ~small(i), i = 1, . . . , 6.

According to Baldwin's theory of mass assignments , this is equivalent to a
family of probability distributions given by the mass assignment

m small = {I, 2}: 0.7, {I, 2, 3}: 0.3

The mass 0.7 can be distributed among the elements 1 and 2 in any way and the
mass 0.3 among 1,2,3 in any way. This gives the family of probability distrib
utions. The least prejudiced distribution is the one given by allocating a mass
equally among the elements with which it is associated. Thus the least prejudiced
distribution for the fuzzy set small is

Ipdsmall = 1:0.35 + 0.1,2 :0.35 + 0.1,3 :0.1

giving

Ipdsmall = 1:0.45, 2: 0.45, 3 :0.1

Fril extends this to the continuous case and provides a least prejudiced distribu
tion for any fuzzy set.

Defuzzification instantiates the value to the mean value of this least prejudiced
distribution.

Suppose we have a frequency distribution fix) for values of the attribute X
determined from a set of examples. Fril determines the appropriate fuzzy set for
F by ensuring that the least prejudiced distribution for this fuzzy set is f. If the
classification is fuzzy, as in the above rules for function approximation, then Fril
takes into account the fact that for some examples the classification will have a
membership in several rule heads.
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If we have a set of examples and for each example we are provided with
attribute values for attributes Fi, .. . , F; and a given classification (c, say), we
can use the above method to derive the fuzzy sets occurring as feature values in
the evidential logic rule. Fril can also determine near optimal weights for the rule
using a specialized discrimination algorithm.

This approach has been used for function approximation; several
classification-type problems, such as handwriting character recognition and
underwater sound recognition from acoustic spectra; and deriving fuzzy control
rules. The method is an alternative approach to neural supervised learning and
can be used for similar types of problems.

9.5.8 Applications of Fril

The Fril language is an uncertainty logic programming system that can be used
for fuzzy control, evidential logic reasoning, causal reasoning, classification, and
other AI applications that require reasoning with missing information, vague
information, or uncertain information.

It can be used to build expert systems, decision support systems, vision under
standing systems, fuzzy databases, and other AI knowledge engineering applica
tions [Baldwin and Martin 1993].

For example, Fril has been used to implement an intelligent data browser.
A window-environment front end is provided that allows the user to enter a
database or link to an existing database in Oracle, input rules, and ask any
relevant queries concerning the database. The required evidential logic and
other rules required to answer a particular query will automatically be con
structed. The user can ask for an explanation and can investigate the sensitiv
ity of any new rules formed. Queries can be asked about any attribute of the
database when given information concerning other attributes of the database.
The given information need not be precise and can be in the form of fuzzy sets
or intervals or sets of values. The user can contribute to the establishment of
the required rules in various ways-for example, choosing the type of rule, the
features in the body of a rule, the weights in an evidential logic rule, or the
fuzzy sets in a rule. These decisions can be made by the intelligent browser
automatically, but the user can then make any changes if required. Rules
formed are retained for future use. When appropriate, the accuracy of a new
rule can be tested by using the database as test cases for which the answers
are known.

This type of module has many applications from scientific, engineering, finan
cial, and business fields. The system can be used to provide a summary of large
amounts of data, interpolate between database instances, provide approximate
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reasoning, derive classifiers, perform case-based reasoning, derive causal nets,
derive probabilistic fuzzy rules, and derive fuzzy controllers.

In the case of classification, for example, the classification could be the suit
ability of a house for a given customer and the features would be the various
qualities of the house such as size of garden, number of bedrooms, size of lounge,
etc. A representative number of examples of suitable houses would be chosen
by the customer. A new house on the market could then be tested to see for which
customers it would be suitable. The database could be the classification of
creditworthiness of persons. The classification of creditworthiness could be
{very~ood, good, average, poor, very_poor} . The database would consist of past
customers with their details as features and subjective creditworthiness
estimated. Another example might be a classification of change in interest
rate with features representing economic measurable conditions. Classes of
{verygood, good, average, poor, very_poor} for the potential for oil at a given
place with geological measurement and other features is another obvious
example.

Fril has been successfully used to build an expert system for designing air
craft structures using composite materials . This expert system calls various analy
sis programs in different languages to help with the design and evaluation. Fril
has also been used for command and control studies, a dental expert system for
planning orthodontic treatment, design of a client administration expert system,
to produce a modeling tool for representing the behavior of aircrew in aircrew
and fixe wing operations, to build an intelligent manual for safety studies in the
disposal of nuclear waste, software dependability studies, and conceptual graph
implementation .

Exercises

1. Consider the linguistic variable "Age ." Let the term "old" be defined by

{

o if xE[O,40]

llo1d(X)= (1+(X~40fr if xE(40,lOO]

Determine the membership functions of the terms "very old," "not very old,"
"more or less old."

2. Let the term "true" of the linguistic variable "Truth" be characterized by the
membership function
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0 if vS;a

2(V-ay if as;vs;~

T(v; a,~ , y)=
y-a

(V-yy1-2 -- if ~s;vS;y
y-a

1 if vs;y

Draw the membership function of "true." Determine the membership func
tions of "rather true" and "very true." What is the membership function of
"false" = not "true" and what of "very false"?

3. What is the essential difference between Baldwin's definition of "true" and
Zadeh's definition?

4. Let the primary terms "young" and "old" be defined as in example 9-3.
Determine the secondary terms "young and old," "very young," and "not
very old."

5. Let "true" and "false" be defined as in example 9-4. Find the membership
function of "very very true." Compare the fuzzy sets "false" and "not true."

6. Let the universe X = {I, 2, 3, 4, 5} and "small integers" be defined as Ii =
{(l , 1), (2, .5), (3, .4), (4, .2)}. Let the fuzzy relation "almost equal" be
defined as follows:

2 3 4

2

R: 3

4

1 .8 0 0

.8 1 .8 0

0 .8 1 .8

0 0 .8 1

What is the membership function of the fuzzy set B = "rather small integers"
if it is interpreted as the composition Ii 0 in

7. What is the relationship between a relational assignment equation and a pos
sibility assignment equation?

8. Which of the definitions of "true" amounts to unity possibility distributions
and which other important linguistic variables are represented by unity pos
sibility distribution?

9. Consider examples 9-10 and make propositions about cars like Mercedes,
Volvo, Chevy, and Rolls Royce.



10 FUZZY SETS AND
EXPERT SYSTEMS

10.1 Introduction to Expert Systems

During the last three decades, the potential of electronic data processing (EDP)
has been used to an increasing degree to support human decision making in dif
ferent ways. In the 1960s, the management information systems (MISs) created
probably exaggerated hopes for managers. Since the late 1970s and early 1980s,
decision support systems (DSSs) found their way into management and
engineering. The youngest offspring of these developments are the so-called
knowledge-based expert systems or short expert systems, which have been
applied since the mid-1980s to solve management problems [Zimmermann 1987,
p. 310]. It is generally assumed that expert systems will increasingly influence
decision-making processes in business in the future.

If one interprets decisions rather generally, that is, including evaluation,
diagnosis, prediction, etc ., then all three types could be classified as deci
sion support systems that differ gradually with respect to the following
properties:

1. Does the system "optimize" or just provide information?
2. Is it usable generally or just for specific purposes and areas?

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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3. Is it self-contained with respect to procedures and algorithms, or does it
"learn" and "derive" inference and decision-making rules from knowledge
that is inquired from a human (expert) and analyzed within the system?

It can be expected that in the future these decision support systems will contain
to an increasing degree features of all three types of the above-mentioned
systems. Even though fuzzy set theory can be used in all three "prototypes," we
shall concentrate on "expert systems" only because the need and problem of
managing uncertainty of many kinds is most apparent there; and hence the appli
cation of fuzzy set theory is most promising and, in fact, most advanced. In oper
ations research (OR), the modeling of problems is normally being done by the
OR specialist. The user then provides input data, and the mathematical model
provides the solution to the problem by means of algorithms selected by the OR
specialist.

In expert systems, the domain knowledge is typically emphasized over formal
reasoning methods:

In attempting to match the performance of human experts, the key to solving the
problem often lies more in specific knowledge of how to use the relevant facts than in
generating a solution from some general logical principles. "Human experts achieve
outstanding performance because they are knowledgeable" [Kastner and Hong 1984].

Conventional software engineering is based on procedural programming lan
guages. The tasks to be programmed have to be well understood , the global flow
of the procedure has to be determined, and the algorithmic details of each subtask
have to be known before actual programming may proceed. Debugging often
represents a huge investment of time, and there is little hope of automatically
explaining how the results are derived. Later modification or improvement of a
program becomes very difficult.

Most of the human activities concerning planning, designing, analyzing, or consulting
have not been considered practical for being programmed in conventional software.
Such tasks require processing of symbols and meanings rather than numbers. But more
importantly, it is extremely difficult to describe such tasks as a step-by-step process.
When asked, an expert usually cannot procedurally describe the entire process of
problem solving. However, an expert can state a general number of pieces of knowl
edge, without a coherent global sequence, under persistent and trained interrogation.
Early AI research concentrated on how one processes relevant relations that hold true
in a specific domain to solve a given problem. Important foundations have been devel
oped that enable, in principle, any and all logical consequences to be generated from
a given set of declared facts. Such general purpose problem solving techniques,
however, usually become impractical as the toy world used for demonstration is
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replaced by even a simple real one. The realization that knowledge of how to solve
problems in the specific domain should be a part of the basis from which inferences
are drawn contributed heavily to making expert systems technology practical [Kastner
and Hong 1984].

While the typical OR model or software package normally supports the expert,
an expert system is supposed to model an expert and make his or her expert
knowledge available to nonexperts for purposes of decision making, consulting,
diagnosis, learning, or research.

The character of an expert system might become more apparent if we quote
some of the system characteristics considered to be attributes of expert systems
[Konopasek and Jayaraman 1984]. Attributes of expert systems include:

The expert system has separate domain-specific knowledge and problem-solving
methodology and includes the concepts of the knowledge base and the inference
engine.

The expert system should think the way the human expert does.

Its dynamic knowledge base should be expandable and modifiable and should
facilitate "plugging in" different knowledge modules.

The interactive knowledge transfer should minimize the time needed to transfer
the expert's knowledge to the knowledge base.

The expert system should interact with the language "natural" to the domain
expert; it should allow the user to think in problem-oriented terms. The system
should adapt to the user and not the other way around. The user should be insu
lated from the details of the implementation .

The principal bottleneck in the transfer of expertise-the knowledge engineer
should be eliminated .

The control strategy should be simple and user-transparent; the user should be
able to understand and predict the effect of adding new items to the knowledge
base. At the same time, the strategy should be powerful enough to solve complex
problems.

There should be an inexpensive framework for building and experimenting with
expert systems.

The expert system should be able to reason under conditions of uncertainty and
insufficient information and should be capable of probabilistic reasoning .

An expert system should be able to explain "why" a fact is needed to complete
the line of reasoning and "how" a conclusion was arrived at.
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Expert systems should be capable of learning from experience.

Cutting a long story short, Kastner and Hong [1984] provide this definition:

An expert system is a computer program that solves problems that heretofore required
significant human expertise by using explicitly represented domain knowledge and
computational decision procedures [Kastner and Hong 1984].

A sample of some other definitions of an expert system can be found in the work
of Fordyce et al. [1989, p. 66]. The general structure of an expert system is shown
in figure 10-1 (see also Zimmermann [1987, p. 262]). In the following, the five
components of such a system are explained in more detail. The knowledge acqui
sition module supports the building of an expert system 's knowledge base.

The subject of knowledge acquisition for knowledge-based systems falls conveniently
into two parts depending on whether the knowledge is elicited from the experts by
knowledge engineers or whether that knowledge is acquired automatically by the com
puter using some form of automatic learning strategy and algorithms [Graham and
Jones 1988, p. 279].

A module that aids the knowledge engineer during the process of knowledge
elicitation could consist of a user-friendly rule editor, an "automatic error
checking when rules are being put in, and good online help facilities" [Ford 1987,
p. 162]. (See also Buchanan et al. [1983, p. 129]). AQUINAS is such a system;
it is presented by Boose [1989, p. 7].

Another way to acquire domain-dependent knowledge is the application of
machine learning techniques to automatically generate a part of the knowledge
base. It is expected that rapid improvements will take place in the field of auto
matic knowledge acquisition in the future. The interested reader is referred to
Michalski et al. [1986, p. 3] and Morik [1989, p. 107].

The knowledge base contains all the knowledge about a certain domain that
has been entered via the above-mentioned knowledge acquisition module. Apart
from special storage requirements and system-dependent structures, the knowl
edge base can be exchanged in some expert systems. That means that there can
be several knowledge bases, each covering a different domain, which can be
"plugged into" the "shell" of the remaining expert system.

There are basically two types of knowledge that will need to be represented in the
system; declarative knowledge and procedural knowledge . The declarative part of the
knowledge base describes "what" the objects (facts, terms, concepts, . . .) are that are
used by the expert (and the expert system). It also describes the relationships between
these objects. This part of the knowledge base is sometimes referred to as the "data
base" or "facts base ."
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Figure 10-1 . Structure of an expert system.
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The procedural part of the knowledge base contains information on how these
objects can be used to infer new conclusions and ultimately arrive at a solution. Since
this "how-to" knowledge is usually expressed as (heuristic or other) rules, it is gener
ally known as the rule-base [Rijckaert et al. 1988, p. 493].

A number of techniques for representing the expert knowledge have been
developed. These are described by Barr and Feigenbaum [1981/82] in greater
detail. The four methods most frequently used in expert systems are production
rules, semantic nets, frames, and predicate calculus (see Zimmermann [1987,
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p. 266]). While we will investigate here the first three of these, the reader is
referred to Nilsson [1980, p. 132] for the latter.

Production Rules. Production rules are by far the most frequently used method
for representing procedural knowledge in an expert system. They are usually of
the form: "If a set of conditions is satisfied, then a set of consequences can be
produced."

Production rules are used to capture the expert's rule of thumb or heuristic as well as
useful relations among the facts in the domain. These if-then rules provide the bulk of
the domain-dependent knowledge in rule-based expert systems and a separate control
strategy is used to manipulate the rules.

If the car won't start and
the car lights are dim

then the battery may be dead.

Many experts have found rules a convenient way to express their domain knowl
edge. Also, rule bases are easily augmented by simple adding more rules. The ability
to incrementally develop an expert system's expertise is a major advantage of rule
based schemes [Kastner and Hong 1984].

Semantic Nets. One method of encoding declarative knowledge is a semantic
net. Concepts, categories, or phenomena are presented by a number of nodes asso
ciated with one another by links (edges). These links may represent causation,
similarity, propositional assertions, and the like. On the basis of these networks,
insight into structures can be gained, inferences can be made, and classifications
can be obtained. In figure 1()""'2, a semantic net is used to represent declarative
knowledge about the structure of some vehicles.

Frames. The concept of a frame for representing knowledge in an expert
system is introduced by Minsky [1975]: "A frame is a structure that collects
together knowledge about a particular concept and provides expectations and
default knowledge about that concept." Typically, the frame is represented in the
computer as a group of slots and associated values. The values may themselves
be other frames.

Frame:
classes
wheels
propelled by

vehicle
passenger, motorcycle, truck, bus, bicycle, ...
(integer)
motor, human feet. .. .
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is-a

Figure 10-2. Semantic net.

is-a has-part

Frame:
is-a
wheels
capacity

bicycle
vehicle
2 (default)
1 person (default)

[Kastner and Hong 1984]

New concepts can often be represented by adding frames or by putting new
information in "slots" of existing frames. Slots in frames may also be used for
inference rules and empty slots might indicate missing information.

The inclusion of procedures in frames joins together in a single representational strat
egy two complementary (and, historically, competing) ways to state and store facts:
procedural and declarative representations [Harmon and King 1985, p. 44].

The inference engine is a mechanism for manipulating the encoded knowledge
from the knowledge base and to form inferences and draw conclusions. The
conclusions can be deduced in a number of ways that depend on the structure of
the engine and the method used to represent the knowledge. In the case of
production rules for knowledge encoding, different control strategies have been
used that direct input and output and select which rules to evaluate. Two very
popular strategies are "forward chaining" and "backward chaining." In the
former, data-driven rules are evaluated for which the conditional parts are satis
fied. The latter strategy (goal-driven) selects a special rule for evaluation. The



192

Table 10-1 . Expert systems.

Name

CADIAG-2
[Adlassnig et al. 1985]
DENDRAL
[Lindsay et al. 1980]
EMERGE
[Hudson and Cohen 1988]
ESP
[Zimmermann 1989]
EXPERT
[Weiss and Kulikowski 1981]
FAULT
[Whalen et al. 1987]
MYCIN
[Buchanan and Shortliffe 1984]
OPAL
[Bensana et al. 1988]
PROSPECTOR
[Benson 1986]
RIIXCON
[McDennott 1982]
SPERIL
[Ishizuka et al. 1982]

* Includes fuzzy logic.

FUZZY SET THEORY-AND ITS APPLICATIONS

Domain of expertise Major technique

internal medicine rules*

molecular structure rules
elucidation

chest pain analysis rules*

strategic planning rules*

rheumatology, rules*
ophthalmology hierarchies

financial accounting rules*

infectious disease rules
diagnosis and treatment

job shop scheduling rules*

mineral exploration inference network

computer configuration rules

earthquake engineering rules*

"goal" is to satisfy the conditional part of this rule. If this cannot be achieved
directly, then subgoals are established on the basis of which a chain of rules can
be established such that eventually the conditional part of the first rule can be
satisfied. Further information about inference strategies has been described by
Waterman [1986].

The above-mentioned approaches can, of course, be combined. In addition to
these techniques, expert systems may also contain rather sophisticated mathe
matical algorithms, such as cluster algorithms and optimization and search
techniques like tabu search (see Glover and Greenberg [1989, p. 119]). This
development is actually already in the direction of decision support systems, but
in many cases it will make the expert system more efficient and even more user
friendly. Table 10-1 gives some indication in which area expert systems are
already available and what techniques they use. By no means does this table claim
to be exhaustive .
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10.2 Uncertainty Modeling in Expert Systems

There are three main reasons for the use fuzzy set theory in expert systems:
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1. The interfaces of the expert system on the expert side as well as on the user
side are with human beings. Therefore communication in a "natural" way
seems to be the most appropriate ; and "natural" means, generally, in the lan
guage of the expert or user. This suggests the use of linguistic variables as
they were described in chapter 9.

2. The knowledge base of an expert system is a repository of human knowl
edge, and since much of human knowledge is imprecise in nature, it is usually
the case that the knowledge base of an expert system is a collection of rules
and facts that, for the most part, are neither totally certain nor totally con
sistent [Zadeh 1983a, p. 200]. The storage of this vague and uncertain portion
of the knowledge by using fuzzy sets seems much more appropriate than the
use of crisp concepts and symbolism.

3. As a consequence of what has been said in point 2, the "management of
uncertainty" plays a particularly important role. Uncertainty of information
in the knowledge base induces uncertainty in the conclusions, and therefore
the inference engine has to be equipped with computational capabilities to
analyze the transmission of uncertainty from the premises to the conclusions
and to associate the conclusion with some measure of uncertainty that is
understandable and properly interpretable by the user. The reader should also
recall from chapter 1 that imprecision in human thinking and communica
tion is often a consequence of abundance of information , that is, the fact that
humans can often process the required amount of information efficiently only
by using aggregated (generic) information. This efficiency of human think
ing, when modeled in expert systems, might also increase efficiency, that is,
decrease answering time and so on.

Most of the expert systems existing so far contain an inference engine on the
basis of dual logic. The uncertainty is taken care of by Bayesian probability
theory. The conclusions are normally associated with a certainty or uncertainty
factor expressing stochastic uncertainty, confidence, likelihood, evidence, or
belief. Only recently have the designers of expert systems become aware of the
fact that all of the types of uncertainty mentioned above cannot be treated the
same way and that a factor of, for example, .8 to express the uncertainty of a con
clusion does not mean very much to the user. The expert systems marked with
an asterisk in table 10-1 are already using fuzzy set approaches in different ways.
We shall illustrate some of them later. Inaddition, proposals have been published
on how fuzzy set theory could be used meaningfully in expert systems.



194 FUZZY SET THEORY-AND ITS APPLICATIONS

The most relevant approaches in fuzzy set theory are fuzzy logic and approx
imate reasoning for the inference engine [Lesmo et al. 1982; Sanchez 1979]; the
presentation of conditions , indicators, or symptoms by fuzzy sets, especially lin
guistic variables, to arrive at judgements about secondary phenomena [Esogbue
and Elder 1979; Moon et al. 1977; etc.]; the use of fuzzy clustering for diagno
sis [Fordon and Bezdek 1979; Esogbue and Elder 1983]; and combinations of
fuzzy set theory with other approaches, for example, Dempster's theory of evi
dence [Ishizuka et al. 1982], to obtain justifiable and interpretable measures of
uncertainty.

In chapter 9 we have already discussed fuzzy logic and its relationship to
classical dual logic. Here we shall additionally focus on the if-then relationship,
which is generally assumed to be deterministic . If this is not the case, we have
to "qualify" its character.

We shall distinguish three kinds of qualifications: truth qualification, proba
bility qualification, and possibility qualification. Qualifications of statements
are possible or even necessary, independent of whether the statement or phe
nomenon is crisp or fuzzy. The kind of modeling, however, will have to be
different.

There is a difference between the truth of a part of a statement, a fact, or an
antecedent and the truth of a compound statement. While the former depends on
the antecedent's conformity or compatibility with reality, the latter depends, in
addition, on the type of connectives used to build the compound statement from
its parts. We will discuss the former under "matching"; the latter will be consid
ered when discussing uncertainty in the process of inference. The reader is
referred to the first part of this chapter with respect to truth qualification in fuzzy
logic and approximate reasoning, and also to the section about possibility quali
fication further on.

Probability Qualification. It is not surprising that probability qualifications are
still the most common way to characterize uncertainty with respect to the occur
rence of an event (which might be the real occurrence of the predicted-"true"
outcome of a conclusion). Probability theory has long been the only way to model
uncertainty and therefore, is still the most accepted method. Of course, proba
bility has often been abused to model all kinds of uncertainty!

In the following we shall briefly discuss probability qualifications as point esti
mates, intervals , and (possibility) distributions . These approaches assume crisply
defined events . For models of the probability of fuzzy events, the reader is
referred to chapter 8 of this book [Dubois and Prade 1980a, pp. 141-144 ; Yager
1984, pp. 273-283].

Let us consider the rule
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If A then C
A is true

Then C is true

(antecedent)

(conclusion)
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In the most frequently applied Bayesian approach, the Bayes inversion theorem
is used:

Pr(C)
Pr(C/A) =-(-)Pr(A/C)

Pr A
(l0.1)

Hence, Pr(C/A) is the probability of C given A, Pr(C) the probability of C, etc.
If the antecedent has the possible states A, and the conclusion has the possible
states c, then (l 0.1) becomes

(10.2)

(Determination of probabilities of conclusions in larger inference systems shall
not be discussed here, because textbooks on probability theory exist in
abundance. )

Objections against this approach are, first of all, that aspects of uncertainty
that are nonprobabilistic in nature may be included . Computationally this
approach becomes prohibitive if the events (antecedent, conclusion) are consid
ered to be fuzzy-represented as fuzzy sets. A second criticism is the need to
identify point values for the probabilities of events that may by far be overstate
ments of our actual knowledge of the likelihood of occurrence of that particular
event.

The criticism has lead Dempster [1967] to suggest the concept of upper and
lower probabilities and Shafer [1976] to present his theory ofevidence. The basic
concept of this theory is that instead of representing the probability of an event
A by a point value, Pr(A) , it may be bounded by the subinterval [Pr(A), Pr(A)] of
[0,1]. This theory has some connections to the theory of fuzzy sets and shall,
therefore, be discussed in some more detail. Rather than following a purely prob
abilistic line of argument, see e.g. [Dubois and Prade 1982, p. 171; Goodman and
Nguyen 1985] we shall follow Zadeh's line of argument [Zadeh 1984], which
seems easier to comprehend and closer to "fuzzy thinking". After an introduction
to the basic ideas of Dempster and Shafer, we will return to the more common
representation of their theory.

Let us consider the following introductionary example :
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Table 10-2. A crisp data base.

Emp 1 Name No. of children

I 1
2 3
3 5
4 2
5 4

Table 10-3. An extended data base.

Between 3 and 5
Emp2 Name No. of children children?

I 1,2 impossible
2 I impossible
3 4,5 certain
4 5,6 possible
5 6 impossible

Example 10-1

Let us assume we have a data base in which the (atomic) elements are related to
each other by first-order relations . One of these may be as shown in table 10-2.
In a simple range query of the type "what portion of the employees in the data
base have between 1 and 3 children?" we would get, from table 10-2, the answer
3/5, which may be interpreted as the probability of an employee (contained in
the data base) having between I and 3 children.

Let us now assume that our knowledge is less precise and that we only know
the second-order relation shown in table 10-3. We now put the query: "What
portion of the employees has between 3 and 5 children?". This is obviously pos
sible for employees 3 and 4. It is not possible for employees 1, 2, and 5! There
fore, the statement "he has between 4 and 5 children" is certainly true for
employee 3; it is possibly true for employee 4; and it is certainly not true for
employees 1, 2, and 5.

In the Dempster-Shafer theory the portion of the intervals for which the state
ment is certainly true is called lower probability. In our example this is 1/5. As
the upper probability they consider the portion of the elements (intervals) for
which the statement can (possibly) be true (i.e. 1 minus the portion for which the
statement cannot be true). In example 10-1 this is (1 - 3/5 = 2/5).
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The lower probability is also called measure ofbeliefand the upper probabil
ity is called measure of plausibility. It should be noted that in our example the
employees were considered as atomic elements (all equal probabilities !). If this
is not the case, the different probabilities of the intervals will have to be
taken into consideration when determining lower and upper probabilities. Shafer
calls the sets of attributes (number of children) assigned to the elements focal
elements and their probabilities of occurrence basic probability assignment.
In example 10-1 the answer to the question "what is the probability of an
employee having between 3 and 5 children?" would be: the lower probability
(degree of belief) is 1/5 and the upper probability (plausibility) (degree of belief)
is 2/5.

Example 10-1 was a rather intuitive example. Let us now define the uncer
tainty measures of the theory of evidence properly.

Definition 10-1 [Dubois and Prade 1982a, 1985b; Prade 1985; Goodman and
Nguyen 1985, p. 32]

Let X be a finite set equipped with a probability measure Pr defined on the set
P(X) of subsets of X. Consider a point-to-set mapping I' from X to some set S.
That is, v, E X,r(x) is a subset of S. Letfk; S (f= focal element) and the mapping
m from P(S) to [0,1] (basic probability assignment) be defined as follows:

m(0)=0

m(f) = Pr({x E X, r(x) = fn 0
I-Pr({xEX,nx)=0}) vrcs.r-

Then the upper probability or plausibility measure is defined as

Pr*(Q) =PL(Q) = L m(f)
f nQ#O

(l0.3)

The lower probability, belieffunction, or credibility measure (Dubois and Prade)
is defined as

Pr* (Q) =Bel(Q) =Cr(Q) L m(f)
f~Q

(10.4)

In analogy to these measures of uncertainty, doubt or commonality measures and
disbelief or incredibility measures have been defined [Goodman and Nguyen
1985, p. 321].

Remark: Plausibility and belief are, of course, not unrelated. The following
properties hold:
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PL(Q) =Bel(Q) =1

PL(Q) =Bel(Q) =0

PL(Q) = 1- Bel(-,Q)

PL(A n B) s PL(A)+PL(B)-PL(A U B)

Bel(A U B) ~ Bel(A) +Bel(B) - Bel(A n B)

(10-5) relates to the normalization condition

Lm(j)=l
fEF

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

which may lead to some problems [Zadeh 1984, pp. 6-10].
While Bel (Q) obviously considers evidence supporting Q, PL(Q) focuses on

the evidence supporting the contrary. If F contains only singletons, then PL(Q)
= Bel(Q); that is, these measures reduce to normal probabilities. So far we have
looked at scalar measures (probabilities) and interval measures (belief, plausibil
ity). If we consider probability as a linguistic variable, then a measure for the
probability of an event is a term of the linguistic variable "probability"-a fuzzy
set characterized by its membership function. The notions of plausibility and
belief have also been extended from crisp event (as considered here) to fuzzy
event. The reader is referred to [Dubois and Prade 1985a, p. 553; Smets 1981].

Possibility Qualification. We now return to example 10-1 and assume that in
table 10-3 the number of children of the various employees are described by pos
sibility distributions, see e.g. [Zadeh 1983b].

To review, a possibility distribution can formally be described by a fuzzy set.
One difference between a possibility distribution and a fuzzy set, however, is that
in a fuzzy set the elements of the support belong to the fuzzy set to various
degrees while in a possibility distribution the possibilities indicate the degree of
possibility with which a variable can adopt various values. A discrete possibility
distribution shall be denoted by

Then 10-3 and 10-4 respectively, satisfy the following axioms [Shafer 1976]:

PL(A U B) = max{PL(A), PL(B)}

Bel(A n B) = min{Bel(A), Bel(B)}

(10.11)

(10.12)

A plausibility measure which satisfies (10-11) is called a possibility measure (0),
and a belief measure which satisfies (10-12) is called a necessity measure (N)
[Prade 1985; Zadeh 1984]. (The latter is called a "consonant belief function" by
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Shafer.) In contrast to (10-5) through (10-10), possibility measures (Il) and
necessity measures (N) have the following properties :

min{N(Q), N(-,Q)} = 0

max{ncQ), Il(-,Q)} = I

ncQ) < I=> NCQ) = 0

NCQ) > 0 =>Il(Q) = I

(10.13)

(10.14)

(10.15)

(10.16)

Example 10-2

Let us now assume that the information available concerning the number of chil
dren of our employees is not as in table 10-3, but as in table 10-4. Let us now
ask "how possible is it that an employee has 3 or 4 children?".

If we consider the possibility of 3 or 4 children as

11 = max (11;) = max{.6} =.6
Qnf,, 0

the necessity as

N = max (1- 11;)= min{.2,0,0,0,.2,0,0} = 0
Qnf = 0

then our answer would have to be:
"The possibility of an employee having 3 to 4 children is .6, the necessity is 0."
It should be noted that other interpretations and definitions of "necessity" and
"possibility" measures exist, see e.g. [Dubois and Prade 1985a; Prade 1985].

Quantification. In human communication and therefore, also in knowledge
transfer, statements include quantifiers other than the two quantifiers available
in dual logic or classical mathematics. Often these quantifiers are implicit rather
than explicit. An assertion of the type "Frenchmen are very charming" often

Table 10-4. A possibilistic data base.

Emp 3 Name

1
2
3
4
5

Poss. of having x children

{(1,.8),(2,1) }
{(l , I)}
{(4,.6),(5 ,1) }
{(5,.8),(6, I)}
{(6,l)}



200 FUZZY SET THEORY-AND ITS APPLICATIONS

really means "most (or almost all) Frenchmen are charming". Likewise the pro
position "Hans is never late" would normally be interpreted as "Hans is late very
rarely".

To model this and other types of quantifiers, fuzzy set theory includes fuzzy
quantifiers. We shall view a fuzzy quantifier as "a fuzzy number which provides
a fuzzy characterization of the absolute or relative cardinality of one or more
fuzzy or nonfuzzy sets" [Zadeh 1982, p. 5]. Zadeh distinguishes between fuzzy
quantifiers of the first kind (referring to absolute counts), and quantifiers of the
second kind (referring to relative counts) . Examples of the former are: several,
few, many, etc. Examples of the latter kind are most, many, often, a large frac
tion, etc. Quantifiers of the third kind are ratios of quantifiers of the second kind
(see also in chapter 9).

Scalar quantifiers are normally modeled using their cardinality or sigma count
Let us consider the proposition "Vickie has several close friends" [Zadeh 1982,
p. 11]. The fuzzy set "close friends of Vickie" may be represented by

F= {(Enrique, I), (Ramon, .8), (Elie, .7), (Sergei, .9), (Ron, .7)}

Then the sigma count (cardinality) of

F=(l +.8 +.7 + .8 +.7) =4

If "several" plays the role of a specified subset of integers I, . . . , 10, in which
4 is assumed to be compatible with the meaning of "several" to the degree .8, the
above proposition may be modeled as

PossfCounuclose friendsfVickie) = 4} =.8

In some cases it might not be appropriate or desirable to express the cardinality
of a fuzzy set as a number, rather as a fuzzy set. Zadeh proposed three notions
of fuzzy counts based on the concept of a-level cuts :

Definition 10-2 [Zadeh 1982, p. 15]

Let F be a (discrete) fuzzy set and Fa an a-level cut of fuzzy set F. Carda
represents the cardinality (count) of the elements of an a-level cut.

The FG-count is then defined to be the fuzzy set

FG = (Carda" supu]c ICarda ~ i}) i = 0, . .. , n

The FL-count is defined as

FL = {(Carda, sUPa{a}Carda ~ n -i}) i = I, ... , n}

The FE-count is the fuzzy set
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FE ={(Carda, min{~FG(a;), ~FL(a;)}) i =1,. .. , n}

The counts of definition 10-2 may be interpreted as follows : The FG-count is the
truth value of the proposition "F contains at least i elements", FL the truth of
"F contains at most i elements" and the FE-count of "F contains exactly i
elements".

Example 10-3 [Zadeh 1982, pp. 15-16]

Let

The a -level sets are listed in table 10-5 . The various counts are

FG(F) = {(O, I), (I, I), (2, .9), (3, .7), (4, .6), (5, .3)}

FL(F) = {[(2, .1), (3, .3), (4 , .4), (5, .7), (6 , 1)]-l}

= {(2, .1), (2, .3), (3, .4), (4, .7), (5, l)}

FE(F) = {(I, .1), (2, .3), (3, .4), (4, .6), (5, .3)}

The normal sigma count would be

IFI = 'I-count(F) = 'I-~i(a) = 3.5
i

Matching. By match ing problem we mean the approximation of real evidence
by assumed structures or of computational results by communication languages .
In expert systems this problem occurs twice; whenever knowledge (relations
between facts) contained in the knowledge base has to be used on the basis of
observed facts that do not quite coincide with the "models of facts" in the knowl
edge base, or when it cannot be decided whether it coincides or not.

Table 10-5. a-level sets.

a

1.
.9
.7
.6
.3

{X3}

{X 2' X3}

(X 2, X3, X4}

{XI. X2, X3, X4}

[x., X2, X3, X4, xs}
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The first case is represented by example 9-7 in which the knowledge base con
tains only the "fact" red tomatoes while the observed fact is "very red tomato".
For the second case, consider the rule "if the rod is hot, stop the heating process".
The observed fact could be "the rod has a temperature of 150aC". The question
then is "is that rod hot or not hot?".

Let us call these two types of problems input matching and discuss methods
for their solution further down. Another matching problem occurs when the result
of the inference process has been obtained-e.g., as the membership function of
a fuzzy set. The user of the system, however, does not want the answer as a func
tion but in a language close to his own. The problem is then to search for a term
of a linguistic variable whose membership function is very close to the one
obtained by the system. This is, of course, a problem of output interpretation and
we shall call it output matching.

The input-matching problem is obviously already reduced if the knowledge
base contains descriptions in the form of fuzzy sets rather than only crisp models.
Also, it has been suggested that in addition to using similarity relations, truth and
certainty values be used to model the degree of compatibility of reality and model
and to introduce it into the inference process. Another promising approach is the
suggestion by Cayrol , Farrency, and Prace [1982] to use pattern matching where
possibility measures and necessity measures are employed, in order to evaluate
the semantic similarities between patterns (models) and data.

Output matching is more a psycholinguistic problem. It occurs primarily if
approximate or plausible reasoning methods or other fuzzy approaches are used
in which membership functions (of linguistic variables, for instance) are used.
Even if at the input level the semantic meaning of data and formal knowledge
representation coincides satisfactorily, the process of inference may yield mem
bership functions that do not fit the membership functions of linguistic variables
or their terms, as defined beforehand, well enough to communicate the results
effectively to the user of an expert system.

Certainty factors or degrees of truth do not relay a missing correspondence
well enough . Another approach, which seems to be promising but not yet well
enough developed to be used efficiently, is the linguistic approximation men
tioned in example 9-6.

We shall describe some more recent attempts to apply fuzzy set theory to
knowledge representation and inference mechanisms in expert systems.

Although, in a precise environment, production rules are adequate to represent
procedural knowledge (as was seen in section 10.1), this is no longer true in a fuzzy
environment. One way to deal with imprecision is to use fu zzy production rules,
where the conditional part and/or the conclusions part contains linguistic variables
(see chapter 9). An application of this knowledge-representation technique in the
area of job-shop scheduling has been given by Dubois [1989, p. 83]. Negoita
[1985, p. 80] gives a basic introduction into fuzzy production rules.
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While little work has been done in the field of "fuzzy semantic nets," sug
gestions to fuzzify frames to represent uncertain declarative knowledge, and an
illustrative example, stem from Graham and Jones [1988, p. 67]. The two main
generalizations for arriving at a fuzzy frame are

1. allowing slots to contain fuzzy sets as values, in addition to text, list, and
numeric values,

2. allowing partial inheritance through is-a slots.

As a consequence of the representation of imprecise and uncertain knowledge,
it is necessary to develop adequate reasoning methods. Since 1973, when Zadeh
suggested the compositional rule of inference, a lot of work has been done in the
field of fuzzy inference mechanisms [Dubois and Prade 1988a, p. 67; Zimmer
mann 1988, p. 736].

Nevertheless, there does not yet exist-and probably never will-a generally
usable expert system shell that can be applied to all possible contexts. One of the
reasons is that human reasoning depends on the context, i.e., the person with a
specific educational background and the situation in which a problem has to be
solved. The selection of existing models for the "implication" in chapter 9 is one
indication of this. There are essentially two ways to circumvent this difficulty:
Either a fuzzy expert system shell has to be designed for a small subset of con
texts (i.e., medical diagnosis problems, technical diagnosis, or management plan
ning problems) or such a shell will be a toolbox including various ways of
reasoning, uncertainty representations, linguistic approximation, etc., from which
the appropriate approaches have to be selected in a certain context. Since the
second version does not yet exist, we shall tum towards considering exemplarily
some more dedicated expert systems.

10.3 Applications

We shall now illustrate the use of fuzzy set theory in expert systems by sketch
ing some example "cases" (existing expert systems and published approaches that
could be used in systems).

Case 10-1: Linguistic Description of Human Judgments [Freksa 1982]

Freksa presents empirical results that suggest that more natural, especially lin
guistic representations of cognitive observations yield more informative and reli
able interpretations than do traditional arithmomorphic representations. He starts
from the following assumed chain of cognitive transformations.



204 FUZZY SET THEORY-AND ITS APPLICATIONS

object
J,

percept
J,

mental representation
J,

verbal description
J,

formal description
J,

interpretation .

The suggested representation system for "soft observations" is supposed to have
the following properties [Freksa 1982, p. 302]:

1. The resolution of the representation should be flexible to account for varying
precision of individual observations.

2. The boundaries of the representing objects should not necessarily be sharp
and should be allowed to overlap with other representing objects.

3. Comparison between different levels of resolution of representation should
be possible.

4. Comparison between subjective observations of different observers should
be possible.

5. The representation should have a small "cognitive distance" to the
observation.

6. It should be possible to construct representing objects empirically rather than
from theoretical considerations.

The observations are expressed by simple fuzzy sets that can be described by the
quadruples {A, B, C, D}, illustrated in figure 10-3, with the following interpre
tation: It is entirely possible that the actual feature value observed is in the range
[B, C]; it may be possible that the actual value is in the ranges [A, B] or [C, D],
but more easily closer to [B, C] than further away; an actual value outside of [A,
D] is incompatible with the observation . [B, C] is called "core," and [A, B] and
[C, D] are called "penumbra" of the possibility distribution .

The construction of a repertoire of semantic representations for linguistic
descriptors is done in the following way (see figure 10-4):

1. The observer selects a set of linguistic labels that allows for referencing all
possible values of the feature dimension to be described.
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A B c o
feature
dimension

Figure 10-3. Linguistic descriptors.

membership

L1

no
L2

no
L3 L4 L6

yes
L7 L8

no

label set

L9

no

Figure 10-4. Label sets for semantic representation.
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2. The repertoire of linguistic labels is arranged linearily or hierarchically in
accordance with their relative meaning in the given feature dimensions.

3. A set of examples containing a representative variety of feature values in the
given feature dimension is presented to the observer. The observer marks all
linguistic labels that definitively apply to the example feature value with
"yes" and the labels that definitely do not apply with "no." The labels that
have not been marked may be applicable, but to a lesser extent than the ones
marked "yes."

4. From the data thus obtained, simple membership functions are constructed
by arranging the example objects according to their feature values (using the
same criterion by which the linguistic labels had been arranged). These
values form the domain for the assignment for membership values.

5. Finally, we assign to a given label the membership value "yes" to the range
of examples in which the given label was marked "yes" for all examples and
the membership value "no" to the ranges in which the given label was marked
"no" for all examples . The break-off points between the regions with mem
bership value "no" and "yes" are connected by some continuous, strongly
monotonic function to indicate that the membership of label assignment
increases the closer one gets to the region with membership assignment "yes"
[Freska 1982, p. 303].

It is not difficult to imagine how the above technique could be used in expert
systems for knowledge acquisition and for the user interface.

Case 10-2: CADIAG-2, An Expert System for Medical Diagnosis

Expert knowledge in medicine is to a large extent vagus. The use of objective
measurements for diagnostic purposes is only possible to a certain degree. The
assignment of laboratory test results to the ranges "normal" or "pathological" is
arbitrary in borderline cases, and many observations are very subjective. The
intensity of pain, for instance, can only be described verbally and depends very
much on the subjective estimation of the patient. Even the relationship between
symptoms and diseases is generally far from crisp and unique. Adlassnig and
Kolarz [1982, p. 220] mention a few typical statements from medical books that
should illustrate to readers who are not medical doctors the character of avail
able information:

Acute pancreatitis is almost always connected with sickness and vomiting.

Typically, acute pancreatitis begins with sudden aches in the abdomen.

The case history frequently reports about ulcus ventriculi and duodendi.
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Bilirubinurie excludes the hemolytic icterus but bilirubin is detectable with hepa
tocellular or cholestatic icterus .

They designed and implemented CADIAG-2, for which they stated the follow 
ing objectives [Adlassnig 1980, p. 143; Adlassnig et al. 1985]:

1. Medical knowledge should be stored as logical relationships between symp
toms and diagnoses.

2. The logical relationship might be fuzzy. They are not obliged to correspond
to Boolean logic .

3. Frequent as well as rare diseases are offered after analyzing the patient's
symptom pattern.

4. The diagnostic process can be performed iteratively.
5. Both proposals for further investigations of the patient and reasons for all

diagnostic results are put out on request.

To sketch their system, let us use the following symbols:

5={51, ,5m } : =set of symptoms

V={V] , ,Vn } : =set of diseases or diagnoses

P={P., ,Pq } : =set of patients

All 5; , ~, and it are fuzzy sets characterized by their respective membership
functions.

Ils;expressed the intensity of symptom i

Ilb
J

expres ses the degree of membership of a patient to Dj

111', assigns to each diagnosis a degree of membership for Pk •

Two aspects of symptom ~ with respect to disease ~ are of particular interest:

1. Occurrence of 5; in case of Dj , and
2. Confirmability of 5; for ~

This leads to the definition of two fuzzy sets:

O(x), x = {O, 1,... , lOO} for occurrence of 5; at b,

and

C(x), x = {O, 1,.. . , lOO} representing the frequency with which

5; has been confirmed for Vj



208 FUZZY SET THEORY-AND ITS APPLICATIONS

The membership functions for these two fuzzy sets are defined to be

Ilo(x) = f(x; 1,50,99) x EX

IltCx) = f(x; 1,50, 99) x E Y

where X is the occurrence space, Y is the confirmability space, and f is defined
as follows (see also figure 9-4!):

0 x:::;a

2(x-ay a<x:::;b

f't»;a, b, c) =
c-a

l-2( x-cy for b c x s;c
c-a

1 for x> c

The Sl1 occurrence and confirmability relationships are acquired empirically
from medical experts using the following linguistic variables:

1
2
3
4
5
6
7
8
9

Occurrence 6;

always
almost always
very often
often
unspecific
seldom
very seldom
almost never
never

unknown

Confirmability C;

always
almost always
very often
often
unspecific
seldom
very seldom
almost never
never

unknown

The membership functions of 0; and C; are shown in figure 10-5. They are
arrived at by applying modifiers (see definition 9-3) to "never" and "always."
For details of the data acquisition process, see Adlassnig and Kolarz [1982,
p.226].

Other relationships such as symptom-symptom, disease-disease, and
symptom-disease are also defined as fuzzy sets (fuzzy relations) . Possibilistic
interpretations of relations (min-max) are used. Given a patient's symptom
pattern, the symptom I disease relationships, the symptom I combination-disease
relationships, and the disease I disease relationships yield fuzzy diagnostic
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seldom very often always

Figure 10-5. Linguistic variables for occurrence and confirmability.

indications that are the basis for establishing confirmed and excluded diagnosis
as well as diagnostic hypotheses.

Three binary fuzzy relations are then introduced: The occurrence relation, Ro ,
the confirmability relation, Rc , both in X ® Y, and the symptom relation, Rs;,
which is determined on the basis of the symptom pattern s of the patients.

Finally, four different fuzzy indications are calcul ated by means of fuzzy
relation compositions [Adlassnig and Kolarz 1982, p. 237] :

- - -
1. Sj~ occurrence indication R, = Rs 0 Ro

2. Sji1 confirmability indication R2 = Rs 0 Rc
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3. SJ1 nonoccurrence indication R3 = Rg 0 (1 - Ro)

4. S,D. nonsymptom indication R4 = (1 - Rg) 0 Ro

~R., (p, Dj ) = max rnin{l- ~iis (p , S;), ~Ro (S;, Dj )}
s;

Similar indications are determined for symptom [disease relationships, and we
arrive at 12 fuzzy relationships Rj •

Three categories of diagnostic relationships are distinguished:

1. Confirmed diagnoses
2. Excluded diagnoses
3. Diagnostic hypotheses

Diagnoses are considered confirmed if

~Rj = 1 for j = 1 or 6

or if the max-min composition of them yields 1.
For excluded diagnosis, the decision rules are more involved; and for diag

nostic hypotheses, all diagnoses are used for which the maximum of the follow
ing pairs of degrees of membership are smaller than .5:

max{~iij' ~i4}:::; .5 for

{j, k} = {I, 2} or {5,6} or {9,1O}

CADIAG-2 can be used for different purposes: for example, diagnosing diseases ,
obtaining hints for further examinations of patients, and explanation of patient
symptoms by diagnostic results.

Case 10-3: SPERIL I, an Expert System to Assess Structural Damage
[Ishizuka et al. 1982]

Earthquake engineering has become an important discipline in areas in which the
risk of earthquake is quite high.

Frequently, the safety and reliability of a particular or a number of existing structures
need to be evaluated either as part of a periodic inspection program or immediately
following a given hazardous event. Because only a few experienced engineers can prac
tice it well to date, it is planned to establish a systematic way for the damage assess
ment of existing structures . SPERIL is a computerized damage assessment system as
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designed by the authors particularly for building structures subjected to earthquake
excitation [Ishizuka et al. 1982, p. 262]

Useful information for the damage assessment comes mainly from the fol
lowing two sources:

1. visual inspection at various portions of the structure
2. analysis of accelerometer records during the earthquake

The interpretation of these data is influenced to a large extent by the particular
kind of structure under study. Information for damage assessment is usually col
lected in a framework depicted in figure 10-6.

It is practically impossible to express the inferential knowledge of damage
assessment precisely. Therefore the production rules in SPERIL I are fuzzy. A
two-stage procedure is used to arrive at fuzzy sets representing the degree of
damage . First the damage is assessed on a lO-point scale, and then the rating is
transformed into a set of terms of the linguistic variable "damage."

Let d be the damage evaluated at a lO-point scale. Then the relationship
between the terms and the original ratings can be described as follows :

o 2 3 4 5 678 9 10

d

slight moderate severe destructive

1;,0(d) = «o.n (1, .5)}

T,light (d) = {(l, .5), (2, .1), (3, .5)}

Tmoderate(d) = {(3,.5), (4, .1), (5, .7), (6, .3)}

T,evere(d) = {(5, .3), (6, .7), (7, 1), (8, .7), (9, .3)}

Tdestruetive(d) = {(8, .3), (9, .7), uo, l)}

The rule associated with node 2 in figure 10-8, for instance, would then read

IF: MAT is reinforced concrete,
THEN IF: STI is no,

THEN: GLO is no with 0.6,
ELSE IF: STI is slight,

THEN: GLO is slight with 0.6,
ELSE IF: STI is moderate,

THEN: GLO is moderate with 0.6,
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Figure 10-6. Inference network for damage assessment of existing structures
[Ishizuka et al. 1982, p. 263].

ELSE IF:
THEN :

ELSE IF:
THEN:
ELSE:

STI is severe,
GLa is severe with 0.6,
STI is destructive,
GLa is destructive with 0.6,
GLa unknown with 1,
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where

MAT = structural material,
OLO =damage of global nature,
STI = diagnosis of stiffness, and
"unknown" stands for the universe set of damage grade.
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To obtain a correct answer by using such knowledge, a rational inference
mechanism is required to process the rules expressed with fuzzy subsets along
with uncertainty in an effective manner.

To include uncertainty, first Dempster's and Shafer 's probabilities were used
[Dempster 1967; Shafer 1976]. Thus the conclusions were accompanied by a
lower and upper probability indicating lower and upper bounds of subjective
probabilities. (For details, see Ishizuka et al. [1982, pp. 264-266].)

It was felt that the rules as shown for node 2 could not necessarily be expressed
as crisp rules. Therefore fuzzy inference rules were introduced in order to arrive
at a fuzzy damage assessment together with upper and lower probabilities. For
details, the reader is again refereed to the above-mentioned source.

Improvements, particularly of the knowledge acquisition phase, have been
suggested [Fu et al. 1982; Watada et al. 1984]. They either use fuzzy clustering
or a kind of linguistic approximation.

Case 10-4: ESp, an Expert System/or Strategic Planning
[Zimmermann 1989]

Strategic planning is a large heterogeneous area with changing content over time
and without a closed theory such as is available in other areas of management
and economics. It deals with the long-range planning of a special company and
is frequently done for independent autonomous units, called strategic business
units (SBUs) [Hax and Majluf 1984, p. 15]. One technique for analyzing the
current and future business position is the business portfolio approach.

The original idea of portfolio analysis in strategic planning was to describe
the character of a corporation by the positions of SBUs in a two-dimensional port
folio matrix and to try to find strategies aimed at keeping this "portfolio" bal
anced. Some of the major problems encountered are given below.

Dimensionality. It is obvious that two dimensions are insufficient to describe
adequately the strategic position of an SBU. Two dimensions are certainly prefer
able for didactical reasons and for presentation , but for realistic description a mul
tidimensional vectorial positioning would be better.
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Data Collection and Aggregation. Even for a two-dimensional matrix, the
dimensions of an SBU must be determined by a rather complex data-gathering
and aggregation process. Factors such as ROI, market share, and market growth
can be obtained without too much difficult. Other factors to be considered are
combinations of many aspects . It is, therefore, not surprising that intuitive aggre
gation and the use of scoring methods are rather common in this context, although
their weaknesses are quite obvious: Aggregation procedures are kept simple for
computational efficiency, but they are very often not justifiable. Different factors
are considered to be independent without adequate verification. A lot of subjec
tive evaluations enter the analysis with very litte control.

Strategy Assignment. In classical portfolio matrixes, broad strategic categories
have been defined to which basic strategies are assigned. It is obvious that these
categories are much too rough to really define operational strategies for them.
One of the most important factors in determining real strategies will be the knowl
edge and experience of the strategic planners who transform those very general
strategic recommendations into operational strategies-a knowledge that is not
captured in the portfolio matrixes!

Modeling and Consideration of Uncertainty. In an area into which many ill
structured factors, weak signals, and subjective evaluations enter, and which
extends so far into the future, uncertainty is obviously particularly relevant.
Unfortunately, however, uncertainty is hardly considered in most of the strategic
planning systems we know. The utmost that is done is to sometimes attach uncer
tainty factors to an estimate and then to aggregate those together with the data in
a rather heuristic and arbitrary way.

ESP, an Expert System for Strategic Planning, tries to improve classical
approaches and to remedy some of their shortcomings. It also provides a
framework in which strategic planners can analyze strategic information and
develop more sophisticated strategic recommendations. It characteristics are as
follows:

Dimensionality. Multidimensional portfolio matrixes are used . For visual
ization, two dimensions each can be chosen; the location of SBUs are defined
by vectors, however. As an example, let us consider the four following
dimensions:

1. Technology Attactiveness
2. Technology Position
3. Market Attractiveness
4. Competitive Position
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Figure 10-7. Combination of two two-dimensional portfolios.

If we combine the first two and the last two dimensions we obtain two two
dimensional portfolio matrixes which, combined, correspond to a four-dimen
sional matrix (see figure 10-7). If each of the two-dimensional matrixes consists
of nine strategic categories by having three intervals-low, medium, high-on
each axis, then the combined matrix contains 9 x 9 = 81 strategic positions.
Graphically, only the two-dimensional matrixes are shown. The positions of the
combined matrix are only stored vectorially and used for more sophisticated
policy assignment.

Data Collection and Aggregation. Each "dimension" is defined by a tree of
subcriteria and categories. Figure 10-8 shows a part of the tree for "Technology
Attractiveness."
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medium

Figure 10-9. Terms of "degree of achievement."

The input given by the user consists of one linguistic variable for all criteria
of the leaves (lowest subcriteria in each of the four trees). This linguistic vari
able denotes the respective "degree of achievement"; it can be chosen from the
terms "not at all," "little," "medium," "considerably," and "full." These terms are
represented by trapezoidal membership functions that are characterized by their
four characteristic values on their supports (see figure 10-9).

To arrive at the root of each tree, these ratings of the leaves are aggregated
on every level of the tree by using the y-operator, described in chapter 3. There
the reader will find other operators (e.g. minimum, product), which can also be
chosen by the user. It is suggested that this aggregation of linguistic terms, rather
than of numerical values, be done by aggregating the four characteristic values
of each trapezoid in order to obtain the respective characteristic value of the
resulting trapezoid. The last aggregation level of one tree is shown in figure
10-10. Repeating this procedure for all characteristic values of the membership
functions of all aggregation steps of each of the four trees leads to a trapezoidal
membership function for each of the criteria.

Strategy Assignment. As already mentioned, strategy assignment is made on
the basis of the vectoriaUy described position of an SBD. Two levels can be
distinguished:

1. General Policy Recommendation
This is assigned to the position of the SBD as it is defined by the values of
the roots of the trees. In our example, the position would be defined by tech
nology attractiveness, technology position, competitive position, and market
attractiveness.
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2. Detailed Policy Recommendation
Policy recommendations based on the location in the portfolio matrix, which
in tum is determined by the values of the roots of the evaluation trees only,
can only be very rough guidelines. The same value at a root of the tree can
be obtained from very different vectors of values of the nodes of the first
level of the tree. The values of this vector are, therefore , used to make more
specific strategic recommendations in addition to the basic policy proposal
mentioned above. In the example tree shown in figure 10-8, for instance, the
ratings of "Acceptance," "Technological Potential," "Breadth of Applica
tion," and "Complementarity" would be used for such a specification of the
strategic recommendation.

Modeling and Consideration of Uncertainty. It is possible for the user of ESP
to interact with this system by defining a special a-level that results in a rectan
gle in the portfolio matrixes, as shown in figure 10-11. The a-level denotes the
desired degree of certainty, and the corresponding area in the matrix is a visual
ization of the possible position of the considered SBU.

ESP: Implementation. We had intended to design ESP by using one of the
available shells. It turned out, however, that none of the available shells offers
all the features we needed. Therefore, a combination of a shell (in this case
Leonardo 3.15) with a program (in Turbo Pascal) had to be used. The basic struc
ture of ESP is shown in figure 10-12.

Knowledge Base I contains primarily rules that assign basic strategy
recommendations to locations of SBU in multidimensional portfolio matrixes
and detailed supplementary recommendations to profiles of the first levels
of trees. Together with the inference engine, it provides for the user the "if
then" part and the explanatory function. For this part, the shell Leonardo 3.15
was used.

Knowledge Base II contains the structures of the free defineable trees
that determine the location of an SBU in the different dimensions of the
multidimensional matrix. The "Aggregator" computes their values and charac
teristic values for the linguistic values for all nodes of the trees on the basis
of available structural knowledge (tree structure , a-values, and y-values) and
on the basis of data (u-values) entered for each terminal leaf by the user. The
information provided by the "Aggregator" is then used for the visual presenta
tion of two-dimensional matrixes and profiles and also supports the explanatory
module.

All aggregation and visual presentation functions could not be accommodated
by Leonardo 3.15. Therefore, an extra program in Turbo-Pascal and the appro
priate bridge programs to Leonardo had to be written.
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Figure 10-11. Portfolio with linguistic input.

ESP is fully menu driven. It could be considered as a second-generation
expert system that works with shallow knowledge (KB I) as well as with deep
knowledge (KB II).
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Figure 10-12. Structure of ESP.

Exercises

221

1. What are the differences between a decision support system and an expert
system?

2. Construct examples of domain knowledge represented in the form of rules,
frames, and networks. Discuss advantages and disadvantages of these three
approaches.

3. List, describe, and define at least four different types of uncertainty men
tioned in this book. Associate appropriate theoretical approaches with them.
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4. An expert in strategic planning has evaluated linguistically the degree of
achievement of the lowest subcriteria of the criterion "Technology Attractive
ness ." He denotes the corresponding trapezoidal membership functions by the
vectors of the characteristic values. After the first aggregation step, the evalu
ation of the first-level criteria results. The respective trapezoidal membership
functions are given by the following vectors of the characteristic values:

Acceptance: (.2, .3, .5, .7)

Technological Potential: (.6, .7, .9, 1)

Breadth of Application: (.4, .5, .6, .7)

Complementarity: (.1, .3, .4, .6)

Compute the four characteristic values of the criterion "Technology Attrac
tiveness" by using the y operator with y = .5 and equal weights for all first
level criteria for the four respective characteristic values given above . Draw
the resulting stripe in the portfolio matrix for a = .8.
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11.1 Origin and Objective

FUZZY CONTROL

The objective of fuzzy logic control (FLC) systems is to control complex
processes by means of human experience. Thus fuzzy control systems and expert
systems both stem from the same origins. However, their important differences
should not be neglected. Whereas expert systems try to exploit uncertain knowl
edge acquired from an expert to support users in a certain domain, FLC systems
as we consider them here are designed for the control of technical processes. The
complexity of these processes range from cameras [Wakami and Terai 1993] and
vacuum cleaners [Wakami and Terai 1993] to cement kilns [Larsen 1981], model
cars [Sugeno and Nishida 1985], and trains [Yasunobu and Miamoto 1985].
Furthermore, fuzzy control methods have shifted from the original translation of
human experience into control rules to a more engineering-oriented approach,
where the goal is to tune the controller until the behavior is sufficient, regardless
of any human-like behavior.

Conventional (nonfuzzy) control systems are designed with the help of phys
ical models of the considered process. The design of appropriate models is time
consuming and requires a solid theoretical background of the engineer. Since
modeling is a process of abstraction, the model is always a simplified version of

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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the process. Errors are dealt with by means of noise signals, supplementary model
states, etc. Many processes can, however, be controlled by humans without any
model, and there are processes that cannot be controlled with conventional control
systems but are accessible to control by human operators-for example, most
people with a driving licence can drive a car without any model. The formaliza
tion of the operator's experience by the methods of fuzzy logic was the main idea
behind fuzzy logic control:

The basic idea behind this approach was to incorporate the "experience" of a human
process operator in the design of the controller. From a set of linguistic rules which
describe the operator's control strategy a control algorithm is constructed where the
words are defined as fuzzy sets. The main advantages of this approach seem to be the
possibility of implementing "rule of the thumb" experience, intuition, heuristics, and
the fact that it does not need a model of the process [Kickert and Mamdani 1978,
p.29] .

Almost all designers of FLC systems agree that the theoretical origin of those
systems is the paper "Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes" by Zadeh [1973b]. It plays almost the same
role that the Bellman-Zadeh [1970] paper titled "Decision Making in a Fuzzy
Environment" does for the area of decision analysis. In particular, the composi
tional rule of inference (see definition 9-7) is considered to be the spine of all
FLC models. The original activities centered around Queen Mary College in
London. Key to that development was the work of E. Mamdani and his students
in the Department of Electrical and Electronic Engineering. Richard Tong, of
nearby Cambridge, was another key figure in the development of fuzzy control
theory. The first application of fuzzy set theory to the control of systems was by
Mamdani and Assilian [1975], who reported on the control of a laboratory model
steam engine. It is interesting to note that the first industrial application of fuzzy
control was the control of a cement kiln in Denmark [Holmblad and Ostergaard
1982]. The area of fuzzy control was neglected by most European and American
control engineers and managers until the end of the 1980s, when Japanese
manufacturers launched a wide range of products with fuzzy controlled parts
and systems.

Fuzzy control was (and still is) treated with mistrust by many control engi
neers. This attitude towards fuzzy control is changing, and most of the progress
in this area is due to control engineers who started with conventional control
theory (and still apply it). "Fuzzy logic" became a marketing argument in Japan
at the end of the 1980s, and popular press articles gave the impression that fuzzy
control systems are cheap, easy to design, very robust, and capable of outper
forming conventional control systems. This is certainly not generally true; the
real situation depends heavily on the system to be controlled. The lack of prac-
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Figure 11-1. Automatic feedback control.

tical experience in FLC design and well-trained engineers in the field must also
be considered when one decides to implement fuzzy controllers. FLC is, however,
beginning to establish itself as a recognized control paradigm and will play a
major role in control theory in the future.

11.2 Automatic Control

The process of automatic control of a technical process relies mainly on the com
parison of desired states of the process with some measured or evaluated states.
The controller tries to reach the desired states (setpoints) by adjustment of the
input values of the process that are identical to the translated output values of the
controller. Due to the continuous comparison of these values, one gets a closed
loop system. Usually a noise signal leads to deviations from the set-points and
thus to dynamically changing controller outputs. Figure 11-1 depicts an auto
matic feedback control system.

Conventional control strategies use process models or experimental results as
a basis for the design of the control strategies . The well-known PID controllers
are widely used design paradigms. They use information about the input-output
behavior of the process to generate the control action. The behavior of the closed
loop is controlled by different gain values that can be adjusted independently by
the control engineer. Modem computer-controlled (direct digital ~ontrol, DDC)
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systems have to deal with sampled values and are therefore modeled as time
discrete control systems with sampling units. Thus the control action is a func
tion of the error vector of recent errors e: = [e(k), e(k - 1), ... , e(k - r)], where
k is the sampling time, and the vector of the last control outputs u: = [u(k - 1),
u(k - 2), ... , u(k - s»). We derive the current control action as u(k): = fie, u). Note
that e(k) and u(k) can be vectors in systems with many inputs and outputs (MIMO).

11.3 The Fuzzy Controller

Fuzzy controllers are special DDC systems that use rules to model process knowl
edge in an explicit way. Instead of designing algorithms that explicitly define the
control action as a function of the controller input variables, the designer of a
fuzzy controller writes rules that link the input variables with the control vari
ables by terms of linguistic variables. Consider, for example, the heating system
in your living room. If the temperature is slightly too low, then you would prob
ably want to increase the heating power a bit. If you now want to control the
room temperature by a fuzzy controller, you just interpret the terms "slightly too
low" and "a bit" as terms of linguistic variables and write rules that link these
variables, e.g.,

If temp = "slightly too low,"
then change of power = "increased by a bit"

After all rules have been defined, the control process starts with the computation
of all rule-consequences. Then the consequences are aggregated into one fuzzy
set describing the possible control actions, which in this case are different values
of the change of power. These computations are done with the computational
unit . Since our heating system doesn't understand a control action like "increased
by a bit," the corresponding fuzzy set has to be defuzzified into one crisp control
action using the defuzzification module. This simple example illustrates the main
ingrediences of a fuzzy controller: the rule base that operates on linguistic vari
ables, the fuzzification module that generates terms as functions of the crisp input
values (temperature , in this case), and the computational unit that generates the
terms of the output variables as a function of the input terms and the rules of the
rule base. Since the controlled process has to be fed with a crisp signal (instead
of increased by a bit in the example), the result of the computational unit that is
a term of a linguistic variable has to be transformed into a crisp value. Figure
11-2 depicts a generic so-called "Mamdani" fuzzy controller. Modifications of
this scheme are possible and will be explicitly discussed later.

When designing fuzzy controllers, several decisions regarding the structure
and the methodology have to be made. It is possible to view a fuzzy controller
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as a 7-tuple with the entries (input/fuzzificationlrules/rule evaluationl
aggregationldefuzzificationloutput) [compare Buckley 1992]. Possible decision
parameters are as follows:

Input: number of input signals, number of derived states of each input signal,
scaling of the input signal

Fuzzification: type of membership functions, mean, spread and peak of
membership functions, symmetry, crosspoints, continuous or discrete support,
granularity (number of membership functions)

Rules: number of rules, number of antecedents, structure of rule base, type of
membership functions in consequences, rule weights

Rule evaluation: aggregation operator in the antecedent, inference operator

Aggregation: aggregation operator combining the results of the individual rules,
individual rule-based inference (functional approach), or composition-based
inference (relational approach)

Defuzzification: defuzzification procedure

Output: number of output signals (usually determined by problem structure),
scaling

We will return to these parameters in more detail later. This classification,
however, shows that a fuzzy controller is the result of a sequence of decisions by
the designer. It is therefore not appropriate to talk about the fuzzy controller; one
should rather explicate which type of controller is under consideration. Many
modifications of Mamdani's original controller [Mamdani and Assilian 1975]
have been proposed since the publication of the original paper in 1975. One
important and often used modification was introduced by Sugeno [1985b] and
will be described after the discussion of Mamdani's original controller.

11.4 Types of Fuzzy Controllers

11.4.1 The Mamdani Controller

The main idea of the Mamdani controller is to describe process states by means
of linguistic variables and to use these variables as inputs to control rules. We
start with the assignment of terms to input variables. The base variable is an input
variable that can be measured or derived from a measured signal or an output
variable of the controller. In the heating system example, possible base variables
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x=Temperature [DC]

Figure 11-3. Linguistic variable "Temperature."

are room temperature, change of room temperature, number of open windows,
outdoor temperature, change of power, etc. This example illustrates that the
number of input signals is far from obvious. The terms of the linguistic variables
are fuzzy sets with a certain shape . It is popular to use trapezoidal or triangular
fuzzy sets due to computational efficiency, but other shapes are possible. The lin
guistic variable "temperature" could, for example, consist of the terms "very low"
(vl), "low" (1), "comfortable" (c), "high" (h), and "very high" (vh), as shown in
figure 11-3.

Formally, we describe the terms of each linguistic variable LV" ... , LV" by
their membership functions ~1(x), where i indicates the linguistic variable, i = 1,
... , n; j indicates the term of the linguistic variable i, j = 1, ... , m(i), and m(i)
is the number of terms of the linguistic variable i. The number of linguistic vari
ables and the number of terms of each linguistic variable determine the number
of possible rules. In most applications, certain states can be neglected either
because they are impossible or because a control action would not be helpful. It
is therefore sufficient to write rules that cover only parts of the state space.

The rules connect the input variables with the output variables and are based
on the fuzzy state description that is obtained by the definition of the linguistic
variables. Formally, the rules can be written as

rule r: if Xl is A{' and Xl is A~2 and . . . and X" is A~", then u is Aj

where Af' is the jth term of linguistic variable i corresponding to the membership
function ~NXi) and N corresponds to the membership function ~(u) representing
a term of the control action variable . A reasonable rule in the heating system
example is

if temperature is low and change_oCtemperature is negative small,
then power is medium
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Table 11-1. Rule base.

temp/change_te nb ns z ps pb

vi b b m m
I b m m s
c m s s
h s s s
vh m s s

The rule base in systems with two inputs and one output can be visualized by a
rule table where the rows and columns are partitioned according to the terms of
the input variables and the entries are the rule consequences. Assume that we
have defined five terms of the linguistic variable "change_oC temperature" : "neg
ative big" (nb), "negative small" (ns), "zero" (z), "positive small" (ps), "positive
big" (pb), and three control action terms for the "power": "small" (s), "medium"
(m) and "big" (b). A possible rule base is then visualized in table 11-1. Empty
entries refer to states with no explicitly defined rules. The first empty entry (vI,
nb) in table 11-1 refers to a state where the temperature is very low and falling
rapidly. Since the heating system has limited power, even maximal power would
not lead to a comfortable temperature. A rule that covers this situation is there
fore superfluous. One should, however, define a default value that is used as a
controller output if neither of the rules fires.

The definition of linguistic variables and rules are the main design steps when
implementing a Mamdani controller. Before elaborating on the last design step,
which is the choice of an appropriate defuzzification procedure, we show how
input values trigger the computation of the control action . The computational core
can be described as a three-step process consisting of

1. determination of the degree of membership of the input in the rule-
antecedent,

2. computation of the rule consequences, and
3. aggregation of rule consequences to the fuzzy set "control action."

The first step is to compute the degrees of membership of the input values in the
rule antecedents. Employing the minimum-operator as a model for the "and," we
compute the degree of match of rule r as

c, = mini=t ,.. , n {J.l{; (x;npUl)}

This concept enables us to obtain the validity of the rule consequences. We
assume that rules with a low degree of membership in the antecedent also have
little validity and therefore clip the consequence fuzzy sets at the height of the
antecedent degree of membership. Formally,



FUZZY CONTROL

ll~onseq(u) = minjn., l-IJ(U)}

231

The result of this evaluation process is obtained by aggregation of all conse
quences using the maximum operator. We compute the fuzzy set of the control
action:

This computation is a special case of an inference process described in chapter
10, and other inference methods can be applied. It is important to note that
Mamdani 's method takes into account all rules in a single stage and that no chain
ing occurs. Thus the inference process in fuzzy control is much simpler than in
most expert systems.

In our heating system example, we assume that the current temperature is 22°C
and that the changeofjemperature is -0.6°C/min. Thus we get that temperature
is "comfortable" with degree 004 and "high" with degree 0.3 (see figure 11-3) .
A similar definition of the linguistic variables in the change_oCtemperature case
yields "negative small" with degree 0.6 and "zero" with degree 0.2. In table 11-1,
we see that four rules have a degree of match greater than zero:

rIO: if temp = "comfortable" and change_of temp = "negative small," then power
= "medium"

rll : if temp ="comfortable" and change_of temp ="zero," then power ="small"

r13: if temp = "high" and change_of temp = "negative small," then power =
"small"

r14: if temp ="high" and change_of temp ="zero," then power ="small"

The degree of membership is

alO = min{Oo4, 0.6} = 004

all = min{Oo4, 0.2} = 0.2

a13 = min{0 .3, 0.6} = 0.3

al4 = min{0.3, 0.2} = 0.2

Accordingly, the consequences of the rules are

ll~gnseq(u) = min{Oo4, 11medium (U)}

ll~~nseq(U) = min{0.2, 11smalI (U)}

ll ~~n seq (U) = min{0.3, ll smalI (U)}

ll~~n seq (U) = min{0 .2, ll smalI (U)}
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0,4
0.3

small medium big

Figure 11-4. Rule consequences in the heating system example.

Figure 11-4 depicts the resulting fuzzy set of control action

Jlconseq(n) = max{Jlf~nseq (u), Jlf~nseq (u), Jlf~nseq (n), Jlf~nscq (u)}

11.4.2 Defuzzification

Since technical processes require crisp control actions, a procedure that generates
a crisp value out of one or more given fuzzy (output) sets is required. These
defuzzification methods are very often based on heuristic ideas, such as, "take the
action that corresponds to the maximum membership", "take the action that is
midway between two peaks or at the center of the plateau", etc. Of course, these
methods can also be characterized by their formal (mathematical) properties .Also,
defuzzification is not only relevant for fuzzy control but also for other types of
problems, e.g. multi criteria analysis (see chapter 14) and other areas in which
fuzzy sets have to be transformed into crisp expressions (real numbers, symbols,
etc.) . We discuss it here in the context of fuzzy control because historically it
became first relevant in this context.

In this book we will describe and discuss the best known defuzzification strate
gies and analyze their main properties and interrelationships. For many other
defuzzification approaches that exist, the reader is referred to references where
they are discussed in detail. (See, for instance , [Lee 1990; Runkler and Glesner
1993, 1994; Driankov 1993; Yager and Filev 1994; Yager 1996; Runkler 1996;
Li 1996; van Leekwijck and Kerre 1999]).

The crisp value to be chosen should generally be an element of the supports
of the fuzzy sets to be defuzzified. The criteria, however, which are used to find
this element can depend on very different bases: it can be the type of inference
of which the fuzzy set is a result of (see [Li 1996], it can be special points of the
membership functions (e.g. maxima or minima), it can be the area below the
membership functions or it can be other indicators.
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In decision making, for instance, we want to achieve semantical correctness.
This means to define "characteristic" or "significant" elements which are proba
bly those that have highest membership (maxima) [Runkler and Glesner 1994].
In fuzzy control we are looking for the most important rule base entry which
might require to take into consideration weights of the rules etc.

Other criteria for the choice of the defuzzification method is the scale level on
which the membership function is available (see chapter 16).

In the following we will first describe some elementary and some extended
defuzzification methods and then compare them with respect to their properties.

Extreme Value Strategies. These defuzzification strategies use extremal values
of the membership function (generally the maxima) to define the crisp equiva
lent value. Let us assume that the membership function is not unimodal (have a
unique maximum) but either have several maxima with the same value of /lex)
or a "core", i.e. a compact subset of the support in which the degree of mem
bership has the maximum value (a plateau as maximum). Depending on whether
the left, the right end or the center of the "core" is considered most appropriate
for defuzzification, one arrives at one of the following strategies :

Left of maximum (LaM)
Right of maximum (ROM), or
Center of maximum (COM).

Definition 11-1

The core of a fuzzy set is defined as

Co(x) = {xix E X and -,(3y E X)(A(y) > A(x))}

Then for the LaM-strategy the defuzzified value is

UWM = min{uluE Co}

For the ROM-strategy it is

UROM = max{ulu E Co}

and for the COM-strategy it is

UROM -UWM
UCOM =

This should not be confused with the "Mean of Maxima" (MOM) strategy, which
assumes that there is not a core of the fuzzy sets but separate different maxima.

Figure 11-5 depicts the above three strategies for our example.
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small medium big

Figure 11-5. Extreme value strategies.

Controid Strategies (Area Methods). The information taken into account in
above strategies is very limited . If more information shall be considered, which
is available via the membership function of the fuzzy set to be defuzzified, then
one normally resorts to centroid strategies. The best-known of these are the
"center of areas" and the "center of gravity" strategies .

Center of Area. The COA method chooses the control action that corresponds
to the center of the area with membership greater than zero. The idea of this
method is to aggregate the information about possible control actions that is rep
resented by the membership function. The solution is a compromise, due to the
fuzziness of the consequences. Formally, the control action is computed as: The
defuzzified value is the support element that divides the area below a continuous
membership function into two equal parts.

dCOA xmax

J f1(x)dx = J f1(x)dx
-tmln dC OA

The procedure can be computationally complex and can lead to unwanted results
if the fuzzy set is not unimodal. The result of the eOA defuzz ification for the
heating system example is depicted in figure 11-6.

The center ofgravity (COG) method is the most trivial weighted average and
has a distinct geometrical meaning, that is the center of gravity or center of mass.
From a mathematical point of view the COG corresponds to the expected value
of probability. It is defined as

Ju -f1(u)du
UCOG = ..::.U-:- _

Jf1(u)du
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All those defuzzification strategies might lead to problems if the fuzzy set to be
fuzzified is not compact, i.e. if it really consists of several fuzzy sets in between
of them there are "forbidden" zones. These are intervals of the action space which
do not belong to the support and from which no element should be chosen as a
defuzzified action. This can, for instance, happen if a car approaches an obstacle
and two possible (fuzzy) strategies are: "tum slightly right" and "tum slightly
life". The defuzzified strategy would most likely be "go straight ahead", which
is obviously not very desirable.

Example 11-1 [Runkler and Glesner 1993]

Let us assume a heating system which can be run at high or low degrees (but not
in-between). The total range (universe) is u = [0,255], and the two relevant rules
of the inference engine have weights of hand (l - h).

We shall consider two situations for changing weights: neighboring and
separate membership functions.

Since there is no unique maximum LaM, ROM and COM would only consider
the "core" and would, therefore, always stay in "low" for h > (I - h) and in "high"
for h < (l - h). For h = .5 the defuzzified values would be extremely different for
LaM and ROM. They would in any case not change continuously with h.

For COA and COG they would, for h = .5, even be at 127, certainly a not very
desirable value.

Let us now consider the situation shown in figure 11-8.
The range of 63 :::;; u :::;; 127 is the "forbidden zone" .
For LaM, ROM we would at least stay off the forbidden zone, but for COM

(and for h = .5) we would certainly end up in it. For COA and COG we would
also find defuzzified values in the forbidden zone for large ranges of h.
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Figure 11-7. Neighboring membership functions.

!J(U)
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Figure 11-8. Separate membership functions.

1 - h

191 255
U

These undesirable effects can be avoided by using parameterized defuzzifica
tion strategies, such as "Extended Center of Area" (XCOA) or "Extended Center
of Gravity" (XCOG).

Exemplarily we will show the XCOA strategy [Runkler and Glesner 1993]:

f(f1(u)t(u) du

U XCOA = -,,:50-
1
----,--,--f (f1(u)t(u) du '

52

where S1 and S2, respectively, are the supports of the two fuzzy sets.
This strategy reduces to
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for ex = 0
for ex = I
for ex ~ 00
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For the situation of example 11-1 XeOA jumps for low values of ex from 191
to 63. For high values of ex it behaves as MOM. For medium ex the defuzzified
value slowly slides to the edge of the forbidden zone and then jumps over it to
the opposite edge of the forbidden zone. It never lies in it!

Scale levels and properties of defuzzifiers

Obviously for nominal scale levels of the universe (see type A membership model
in chapter 16) a defuzzification does not make sense at all. The first scale level
from which a defuzzification makes sense at all is an ordinal scale level of the
universe. Generally a cardinal scale level (interval, ratio or absolute scale) would
have to be required .

For the membership functions there are similar requirements. The views,
however, on which scale levels membership functions are supplied in practice
diverge considerably (see also chapter 16).

For the defuzzifying strategies some authors [Runkler 1996; Li 1996; van
Leekwijck and Kerre 1999] have also various desirable properties .

From all these suggested we will select in the following the most important
ones and those with respect to which the defuzzification strategies we have dis
cussed differ at all:

Property 1: Closed Property
The defuzzified value of a fuzzy set should be an element of its support .

Property 2: Fuzzy Singleton
If a fuzzy set has a positive degree of membership for only one element, then the
defuzzification should select this element.

Property 3: Horizontal Movement
If a fuzzy set is shifted horizontally by a distance d, the defuzzified value should
make the same movement.

Property 4: (Strong) Monotony
Monotony in this context means, that, if D(A) is the defuzzified value of the fuzzy
set A, and the degrees of membership are increased on one side of D(A), then
D(A) should move to this side.

Property 5: Balance
If a fuzzy set is enlarged or reduced on both sides of D(A), then D(A) should not
change .
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Table 11-2. Properties of defuzzifiers.

Property

Strategy J 2 3 4 5 6 7 8 9 10

LOM Y Y Y Y No Y No No Yes No
ROM Y Y Y Y No Y No No Yes No
COM No Y Y Y No Y Y No Yes No
COA No Y Y Y Y No Y No No Y
COG No Y Y Y No No Y No No Y
XCOA Y Y Y Y Y No Y No No Y

Property 6: Strong Vertical Translation
The defuzzified value stays unchanged if a constant is added to all membership
values.

Property 7: Equality
If two convex fuzzy sets A and B have the same level center curves, then they
should have the same defuzzified value. Here "level center curves" are curves
that divide each a-level of a fuzzy set in two equal parts.

Property 8: T-norm property
If two fuzzy sets A and B are combined by a t-norm, then the defuzzified value
of A E B should be in the interval bounded by the defuzzified values of the two
fuzzy sets.

Property 9: T-conorm property
If two fuzzy sets A and B are combined by a t-conorm, the defuzzified value of
this combined fuzzy set should be in the interval bounded by the defuzzified
values of A and B.

Property 10: Continuity
A small variation in any of the degrees of membership should not result in a big
change of the defuzzified value.

Table 11-2 shows which of the described defuzzification strategies has which
property.

So far we have discussed formal mathematical properties which can be valu
able when deciding which defuzzification should be used. In addition, however,
other criteria may tum out to be important.

1. Computational Effort. Is the method slow or fast when implemented as
an algorithm? Does the situation require a fast method (for instance, in on-
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line embedded control) or is time not a relevant dimension (e.g. often in deci
sion making)?

2. Inference. Do we want the defuzzification to take into consideration the
type of inference we are using or shall it even adapt to changes in the
inference engine?

3. Plausibility. Does the defuzzification method yield a plausible control
action and is it stable or oversensitive?

Other criteria are possible (see, e.g., Driankov et al. [1993Jand Pfluger, Yen, and
Langari [1992]) and depend on the application under consideration. The choice
of an appropriate defuzzification procedure can therefore be compared to the
choice of an appropriate aggregation operator as discussed in chapter 3.

11.4.3 The Sugeno Controller

An often-used modification of Mamdani's controller was presented by Sugeno
[1985b] and Sugeno and Nishida [1985]. The idea is to write rules that have fuzzy
antecedents, equivalent to the Mamdani controller, and crisp consequences that
are functions of the input variables. The rule results are aggregated as weighted
sums of the control actions corresponding to each rule. The weight of each rule
is the degree of membership of the input value in the rule antecedent as com
puted in the Mamdani controller. A defuzzification procedure is therefore super
fluous. A rule can formally be written as

rule r: if XI is A{' and X2 is A~2 and ... and Xn is A~n, then u is
!r(x" X2, . .. , Xn )

where the variables are defined as in the Mamdani case. The consequence func
tion, which depends on the input variables, is usually linear, but other types may
be used. In the heating system example, we may write a rule like

if temperature is low and changeofjemperature is negative small
then power = 400 - 120· temp-23 ·delta_temp [W]

The definition of a functional relationship is not straightforward but allows the
identification of parameter values in the consequence function.

The control action is computed with the help of the degrees of membership
that are evaluated exactly as in the Mamdani controller. We obtain

~>~r' !r(XIo X2,''' ' xn)
uSugeno =....:-r__--=.--- _
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It is possible to view the linear Sugeno controller as a linear controller that is
valid around a fuzzily defined operating point. The control algorithm in the oper
ating point is perfectly valid and loses validity with decreasing degree of mem
bership, which is computed with the help of the rule antecedents. Thus the control
strategy is a combination of several linear control strategies defined at different
points in the state space.

11.5 Design Parameters

The design of a fuzzy controller involves decisions about a number of important
design parameters that can be determined before the actual control starts and/or
on-line. Important design parameters are the fuzzy sets in the rules, the rules
themselves, scaling factors in input and output, inference methods, and defuzzi
fication procedures. Although other design parameters also play important roles,
we want to focus on the parameters that have to be defined in almost all control
applications. Defuzzification has already been discussed thoroughly and infer
ence is discussed in connection with expert systems (chapter 10).

11.5.1 Scaling Factors

The easiest-to-change parameters are the scaling factors. The scaling factors scale
the base variables of the linguistic variables. Formally, the input and output vari
ables are calculated as x; = sfi ·Xj, where the x; is the variable that is used in the
rule and sf, is the scaling factor of rule i. Scaling factors allow the definition of
normalized base variables of the corresponding linguistic variables and play a
role similar to the gain in conventional control systems. It is obvious that alter
nation of the scaling factors has a significant impact on the closed loop behavior
of an FLC system.

11.5.2 Fuzzy Sets

The fuzzy sets describe terms of linguistic variables . When the shape of the fuzzy
sets are determined, several other parameters have to be adjusted. Here, we will
assume that the membership functions have a triangular shape, which by no
means is necessary but is often done in fuzzy control applications. The modal
value or peak value of a membership function is the value of the base variable
where the membership function is equal to one. The left and right width of the
membership function is the first value of the base variable on the left or right side
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Figure 11-9. Parameters describing the fuzzy sets.

of the peak value, respectively, that has a zero membership. The cross point
between two membership functions is the value of the base variable where both
membership functions assume the same membership value greater than zero . The
cross point level is the membership at the cross point. Clearly, two membership
functions may have more than one cross point. We therefore define the cross point
ratio as the number of cross points between two membership functions . Figure
11-9 depicts a linguistic variable with three fuzzy sets and the corresponding
parameters.

Several rules of thumb can be formulated using the above definitions. The
reader should, however, be aware of the empirical character of these rules, i.e .,
there are no globally valid proofs showing their validity. A common rule claims
that all values of the base variable should have a membership greater than zero
in at least one membership function corresponding to one of the terms. It is also
usual to demand that two adjacent membership functions interact, i.e., that the
crosspoint ratio is equal to one for those membership functions . It is therefore
often assumed that the cross point value between neighboring membership func
tions is equal to one and that the cross point level is 0.5 [Driankov et al. 1993,
p. 120].

Next, we will focus on symmetry, which is achieved if the left and the right
width are equal. Assume that we have designed a fuzzy controller with a single
input, a single rule with a one-term linguistic variable in the consequence, and
COA defuzzification. Then the Mamdani controller will clip the membership
function of the rule consequence in the height of the membership function in
the rule antecedent. If the input matches the rule antecedent with membership
one , then we would expect to get the peak value of the rule consequence. This
would only be the case if the membership function of the rule consequence is
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Figure 11-10. Influence of symmetry.
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Figure 11-11. Condition width.

symmetrical. This dependency is shown in figure 11-10 for a non symmetrical
fuzzy set in the rule consequence.

The condition width states that the left-width of the right membership func
tion is equal to the right-width of the left membership function and that they are
both equal to the length of the interval between the peak values of the two adja
cent membership function s [Driankov et al. 1993, p. 122]. This rule yields
smoothly changing control values and avoids large steps. A linguistic variable
that satisfies this condition is shown in figure 11-11.

11.5.3 Rules

The entire knowledge of the system designer about the process to be controlled
is stored as rules in the knowledge base. Thus the rules have a basic influence on
the closed-loop behavior of the system and should therefore be acquired thor
oughly. The development of rules may be time-consuming, and designers often
have to translate process knowledge into appropriate rules. Sugeno and Nishida
[1985] mention four ways to find fuzzy control rules:
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1. the operator's experience
2. the control engineer's knowledge
3. fuzzy modeling of the operator's control actions
4. fuzzy modeling of the process

We add the following sources that may also be used:

5. crisp modeling of the process
6. heuristic design rules
7. on-line adaptation of the rules
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Usually a combination of some of these methods is necessary to obtain good
results. As in conventional control, increased experience in the design of fuzzy
controllers leads to decreasing development times.

11.6 Adaptive Fuzzy Control

Many processes have time-variant parameters due to continuous alternation of
the process itself. This well-known phenomenon has led to the development of
adaptive controllers that change their control behavior as the process changes .
This adjustment is called adaptation . It is natural for adaptive fuzzy controllers
to change the same controller parameters that a designer may change. Therefore
most adaptive FLC systems change the shape of the membership functions, the
scaling factors, etc. It is common to distinguish between controllers that modify
their rules; these are called self-organizing controllers [Procyk and Mamdani
1979], and self-tuning controllers [e.g., Bartolini et al. 1982] that modify essen
tially the fuzzy set definitions. Since adaptive controllers work automatically, a
monitor has to be found that detects changes in the process. Two common
methods can be distinguished :

1. The performance measure approach, where the closed-loop behavior is eval
uated by certain performance criteria such as overshoot, rise-time, etc.

2. The parameter estimator approach, where a process model is continuously
updated due to sampled process information .

It is usually easier to define appropriate performance measures than to find
process models that can be updated continuously and that are valid over a wide
range of the state space. An overview of the area of adaptive fuzzy controllers is
given by Driankov et al. [1993], and researchers continue to work actively in the
field. Popular design methods currently include the combination of fuzzy con-
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trollers with neural network methods [e.g., Berenji 1992; Berenji and Khedar
1992] and genetic algorithms [e.g., Hopf and Klawonn 1993; Lee and Tagaki
1993].

11.7 Applications

Fuzzy control certainly is the branch of fuzzy set theory with the most applica
tions, and their number is steadily growing. The application boom was started by
Japanese manufacturers who applied fuzzy logic to processes ranging from home
appliances to industrial control. The first major book containing applications of
FLC was edited by M. Sugeno [1985a] and shows that the term "fuzzy control"
is not narrowly interpreted as applications of the Mamdani or Sugeno controller
to a certain process but includes other fuzzy logic techniques such as fuzzy
algebra as well. It is also worthwhile to mention that most successful applica
tions combine FLC systems with conventional control strategies to hybrid
systems.

We now present several applications of fuzzy control without going into detail.
Interested readers may consult the original literature .

11.7.1 Crane Control

Cranes are widely used in industrial assembly systems where heavy loads have
to be transported . Today, modem cranes reach a top speed of 160m/min and an
acceleration of up to 2m/s2 [Behr 1994]. A container crane is depicted in figure
11-12 . One of the main problems that have to be taken into account in the control
of such a crane system is that the load may start to swing. This can be avoided
with the help of mechanical constructions such as telescopes and stays or elec
tronic loss control. These methods are, however, expensive, and the construction
depends on the specific crane under consideration. In contrast, it was observed
that an experienced operator was able to control a crane satisfactorily without
such advanced devices. This was the motivation for the design of an FLC system
for crane control.

The crane control depends on the mode of operation: one distinguishes
between manual operation, where an operator controls the crane and the objec
tive of the fuzzy controller is to avoid swinging, and automatic operation, where
a certain position has to be reached. Here we focus on automatic operation.

The automatic operation mode can be divided into three different phases of
motion: acceleration, normal motion, and positioning . Figure 11-13 depicts the
typical behavior of the speed in the different phases.
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Figure 11-12. Container crane [von Altrock 1993].

rp

acceleration normal motion positioning

t

Figure 11-13. Phases of motion.

Different controllers were designed for the three phases. Input values were the
position, the speed, the length of the pendulum, the angle of the pendulum, and
in some cases the mass of the load. When the mass was unknown, a fuzzy esti
mator system was activated that calculates the mass as a function of the observed
system behavior. The controllers were implemented on a fuzzy processor for real
time control of the crane.
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Figure 11-14. Input variables [Sugeno and Nishida 1985, p. 106].

11.7.2 Control of a Model Car

One of the most difficult processes to control with conventional control methods
is a car. The mathematical models are large and nonlinear, and simple controllers
such as PID controllers do not yield satisfactory results. Most people can,
however, drive a car without any mathematical model, and it is clear that they
use their knowledge to control the car.

Sugeno and Nishida [1985] were the first to implement and publish the results
they obtained with a fuzzy-controlled model car. The fuzzy control rules were
derived by modeling an expert's driving actions. Four input variables were used:
Xl = distance from entrance of comer, Xl = distance from inner wall, X3 = direc
tion (angle) of car, and X4 = distance from outer wall. The four variables are
depicted in figure 11-14.

These four input variables are used as inputs to a Sugeno controller with 20
rules. The results were very encouraging and are depicted in figure 11-15. It is
worthwhile to mention that all rules were derived from an experienced driver's
control actions with an identification procedure .

Whereas the study by Sugeno and Nishida treated static problems von Altrock
et al. [1992] considered the control of a model car in extreme situations that are
inherentlydynamic.Typicaldynamical situationsare sliding and skidding.The model
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Figure 11-15. Trajectories of the fuzzy controlled model car [Sugeno and Nishida
1985, p. 112].
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Figure 11-16. Fuzzy model car [von Altrock et al. 1992, p. 42].

car has a one-horsepower electric motor and can accelerate to 20 mph in 3.5 seconds.
Furthermore it has advanced features such as individual wheel suspension, disk
brakes, and differential and shock absorbers.Three polaroid sensors are used for orien
tation (front, left, and right), and additional infrared sensors are mounted in each
wheel to measure the individual speed. The model car is shown in figure 11-16.

Since the conventional Mamdani max-min operators were not sufficient in this
case, compensatory operators such as the y-operator were used (see chapter 3).
Another modification was the introduction of "rule weights" that are used to
describe the plausibility of each rule . The objective of the car was to reach a target
as fast as possible without hitting the walls or any obstacle. A typical experi
mental design is depicted in figure 11-17.

Most of the results were very encouraging. However, in some situations the
car lost its orientation due to the limited information obtained from the sensors.
This can only be avoided if some sort of memory is used to compute the current
orientation [ef. von Altrock et al. 1992, p. 48].

11.7.3 Control of a Diesel Engine

Murayama et al. [1985] designed a fuzzy controller for a marine diesel engine.
The objective here was to minimize the fuel consumption rate (FeR). The engine
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Figure 11-17. Experimental design [von Altrock et al. 1992, p. 48].

is controlled by fuel flow rate (Q), fuel injection timing (U), fuel injection dura
tion (n, and inner pressure of the fuel pipe (P) . Special attention was paid to the
fuel injection timing, which influences the FCR directly. Figure 11-18 depicts the
FCR as a function of the fuel injection timing.

Since the data are noisy, gradient methods cannot be employed directly.
Therefore the authors use an adaptive method to verify the results obtained by
the gradient search. Fuzzy numbers and an adjustment method that uses a fuzzy
set to assess the credibility of the computed results are employed. The control
algorithm is depicted in figure 11-19.

No rules are used to calculate the actual control output as in the Mamdani and
the Sugeno controller. Therefore one may also consider this application as an
application of fuzzy data analysis to a control problem . The results that were
obtained with this simple method were, however, very encouraging. The fuzzy
control method outperformed the conventional method clearly, as is shown in
figure 11-20.

11.7.4 Fuzzy Control of a Cement Kiln

In this case, we will consider a physical process as the object of control. Let us
first describe briefly the process itself [King and Karonis 1988, pp. 323].
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Cement is manufactured by heating a slurry consisting of clay, limestone, sand,
and iron ore to a temperature that will permit the formation of the complex com
pounds of cement, dicalcium silicate (CzS), tricalcium silicate (C3S), tricalcium
aluminate (C3Al), and tetracalcium aluminoferrite (C4AIF). In the first stage of
the kilning process, the slurry is dried and excess water is driven off. In the second
stage, calcining takes place, with the calcium carbonate decomposing to calcium
oxide and carbon dioxide. In the final stage, burning takes place at 1,250-1,450°C,
and free lime (CaO) combines with the other ingredients to form the cement com
pounds. The end product of the burning process is referred to as clinker.

The kiln consists of a long steel shell about 130m in length and 5 m in diam
eter. The shell is mounted at a slight inclination to the horizontal , and is lined
with fire bricks. The shell rotates slowly, at approximately 1rev/min, and the
slurry is fed in at the upper or back end of the kiln. The inclination of the shell
and its rotation transports the material through the kiln in about 3 hours 15
minutes with a further 45 minutes spent in the clinker cooler.

The heat in the kiln is provided by pulverized coal mixed with air, referred to
as primary air. The hot combustion gases are sucked through the kiln by an induc
tion fan at the back end of the kiln [Umbers and King 1981, p. 370].
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Figure 11-21. Schematic diagram of rotary cement kiln [Umbers and King 1981,
p.371].

Figure 11-21 illustrates the production process. The main problem in mathe
matically modeling a control strategy is that the relationships between input vari
ables (measured characteristics of the process) and control variables are complex
and nonlinear and contain time lags and inter-relationships; in addition, the kiln's
response to control inputs depends on the prevailing kiln conditions. These were
certainly reasons why a fuzzy control system was designed and used-which
eventually even led to a commercially available fuzzy controller.
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From the many possible input and control variables, the following were chosen
as particularly relevant. Input variables include

1. exhaust gas temperature-back-end temperature (BT) ;
2. intermediate gas temperature-ring temperature (RT);
3. burning-zone temperature (BZ) ;
4. oxygen percentage in exhaust gases (02) ; and
5. liter weight (LW)-indicates clinker quality.

The proces s is controlled by varying the follow ing control variables:

1. kiln process (KS);
2. coal feed (CS)-fuel; and
3. induced draught-fan speed (BF).

The calculation of the control action was composed of the following four
stages:

1. calculate the present error and its rate of change;
2. convert the error values to fuzzy variables;
3. evaluate the decision rules using the compositional rule of inference; and
4. calculate the deterministic input required to regulate the process.

Concerning the control strategies used, let us quote Larsen:

The aim of the computerized kiln control system is to automate the routine control
strategy of an experienced kiln operator. The applied strategies are based on detailed
studies of the process operator experiences which include a qualitative model of influ
ences of the control variables on the measured variables [Larsen 1981, p. 337].

1. If the coal-feed rate is increased, the kiln drive load and the temperature in
the smoke chamber will increase, while the oxygen percentage and the free
lime content will decrease.

2. If the air flow is increased, the temperature in the smoke chamber and the
free lime content will increase, while the kiln drive load and the oxygen per
centage will decrease.

On the basis of thorough discussions with the operators, Jensen [1976] defined
75 operating conditions as fuzzy conditional statements of the type:

IF
AND
AND
THEN
PLUS

drive load gradient is
drive load is
smoke chamber temperature is
change oxygen percentage is
change air flow is

(DL,SL,OK,SH,DH)
(DL,SL,OK,SH,DH)
(L,OK,H)
(VN,N,SN,ZN,OK,ZP,SP,P,VP)
(VN,N,SN,ZN,OK,ZP,SP,P,VP)
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The following fuzzy primary terms are used for the measured variables:

1. DL = drastically low
2. L = low
3. SL = slightly low
4. OK= ok

5. SH = slightly high
6. H = high
7. DH = drastically high

The following fuzzy primary terms are used for the control variables:

1. VN = very negative
2. N = negative
3. SN = small nagative
4. ZN = zero negative
5. OK= ok

6. ZP = zero positive
7. SP = small positive
8. P = positive
9. VP = very positive

The linguistic terms are represented by membership functions with four discrete
values in the interval [0, 1] associated with 15 discrete values of the scaled vari
ables in the interval [-1, +1].

In order to simplify the implementation of the fuzzy logic controller,
Ostergaard [1977] defined 13 operating conditions as fuzzy conditional statements
of the type:

IF
AND
AND
THEN

drive load gradient is
drive load is
free lime content
change burning zone temperature

(SN,ZE,SP)
(LN,LP)
(LO,OK,HI)
(LN,MN,SN,ZE,SP,MP,LP)

The following fuzzy primary terms are used:

1. LP = large positive
2. MP = medium positive
3. SP = small positive
4. ZP = zero positive
5. ZE = zero
6. ZN = zero negative

7. SN = small negative
8. MN = medium negative
9. LN = large negative

10. HI = high
11. OK=ok
12. LO = low

The 13 operating conditions are defined by taking only some of the combina
tions into account, and by including also the previous values of the drive load
gradient, the latter being calculated from the changes in the drive load. In order
to decide whether the oxygen percentage set point or the air flow should be
changed, three additional fuzzy rules for each operating condition are formulated
based on the actual values of the oxygen percentage and the smoke chamber tem
perature, resulting in 39 control rules.

Details of membership functions used can be found in Holmblad and
Ostergaard [1982] and results of testing the system in Umbers and King [1981]
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and Larsen [1981]. We shall not describe these details here, primarily because
they are not of high general interest.

Before we turn to a quite different type of control, it should be mentioned,
however, that the reader can find descriptions and references to more than 10
further projects of the type described here in Mamdani [1981], in Pun [1977],
and in Sugeno [1985a] .

11.8 Tools

Fast and easy implementation of control systems requires adequate tools that
assist the system designer in the design and coding, which would be time
consuming if performed by hand. An increasing number of tools exist both for
conventional and fuzzy logic control. Modern tools use graphical animation and
offer interactive on-line development capabilities instead of precompiling. Pre
compiler tools precompile the linguistically designed controller into a code, e.g.,
in C. This can then be combined with other codes . Then the controller is started
and the closed-loop behavior is observed. If the behavior isn't sufficient-which
usually is the case-the control is interrupted and a new, modified, controller is
defined and precompiled. This controller is linked to the process and so on. This
method is inefficient and time-consuming, since every modification implies inter
ruption of the control and compiling and linking.

The interactive approach is much more efficient because the designer is
enabled to study the direct consequences of modifications of design parameters
such as rules and fuzzy sets. Here we shall consider, as an example, the fuzzy
TECH design tool by INFORM [Inform 1995]. Figure 11-22 shows the devel
opment philosophy of fuzzy TECH.

This tool runs on most hardware platforms and can be used for on-line opti
mization of a fuzzy control system.

The system introduces the concept of "normalized rule bases" that makes even
large rule bases easy to comprehend. A screenshot of a rule base for the model
car [von Altrock et al. 1992] is shown in figure 11-23.

The whole inference process is visualized in different windows on-line, and
auxiliary screens visualizing the phase plane and transfer characteristics help the
designer in tracing erroneous rules or term definitions. Figure 11-24 shows the
simulation screen of the model car presented at the FUZZ-IEEE conference in
1992.

We sum up by stating that FLC design is accelerated and made more efficient
by the use of modern graphical development tools . Such tools can also be used
effectively for training purposes in connection with simulation models or labora
tory processes .
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Figure 11-24. Simulation screen [von Altrock et al. 1992].

11.9 Stability

Stability and performance of the closed-loop system are considered by many
control engineers to be the main criteria assessing the quality of a control system.
In many cases it is desirable to prove the stability of the controlled system. It is,
of course, only possible to prove the stability of the process model and not of the
process itself; however, stability can often be proved for a wide range of model
parameters, and the risk of instability can thus be minimized. The lack of formal
techniques for stability analysis has been a main point of criticism of FLC
systems. There do, however, already exist many approaches to prove the stabil
ity of a closed-loop FLC system.

When studying the stability of FLC systems, one has to use a model of the
process that can be fuzzy or crisp. Most methods use crisp process models and
conventional nonlinear control theory to prove stability. In this context , the fuzzy
controller is considered as a nonlinear transfer element, i.e., the output is deter
mined as a function of the input variables, U = <I>(r) [Kickert and Mamdani 1978].
Such a system is depicted in figure 11-25 . Set-point values and noise can be
neglected because stability is a system property. This means that the control action
for a known input value can be derived by calculating the result of rule firing,
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Figure 11-25. Fuzzy controller as a nonlinear transfer element.

rule aggregation, and defuzzification. The problem is often to find a suitable rep
resentation of the fuzzy controller in this context.

In the case of a nonlinear crisp process model, one can distinguish between
time-domain and frequency-domain models [Bretthauer and Opitz 1994]. The
time-domain models include the state-space approach, Ljapunov theory, hyper
stability theory, and the bifurcation theory approach. The class of frequency
domain methods include the harmonic-balance approach and the circle and Popov
criteria . Figure 11-26 summarizes the different approaches .

A graphical approach to stability analysis is the state-space approach, where
the trajectory of the closed-loop system is displayed in the two-dimensional state
space. Naturally, this approach is limited to two-dimensional systems. The main
idea is to partition the space that is defined by the input base variables of the
rules, which is called the linguistic state space, according to the terms of the
linguistic variables. This leads to sections of the state space where the degree of
membership of an input variable Xi in one term-say, term k-is higher than the
degree of membership in the other terms, i.e., Ilfi(Xi) ~ Ilii(x;) for all j i :;t.: k; Since
the rule base was defined in terms of these input variables (see table 11-1), we
can infer which term of the output variable is dominant in the corresponding
sector of the state space. Figure 11-27 shows the linguistic state space that cor
responds to our heating system example . Note that every input consisting of a
temperature and a change of temperature can be located in the state space.

Suppose that we start the controller with an input temperature of 13 degrees
and a change of temperature of _1 0 per minute. The controller starts the heating
system with approximately medium power, and the temperature rises. Due to this
control action, other regions of the state space are reached and other rules get
dominant. The sequence of regions that are reached in the state space depends on
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Figure 11-26. Classification of stability analysis approaches.

the fuzzy controller and the system to be controlled and is called the linguisti c
trajectory. A possible linguistic trajectory of the heating system example is
depicted in figure 11-28 . The corresponding linguistic trajectory is (l,nb),
(l,ns),(l,z),(l,ps),(c,ps),(h,ps),(h,z),(c,z) where the first entry is the term of the
linguistic variable temperature and the second entry is the term of the linguistic
variable change of temperature, e.g., (l,ns) means the region with low tempera
ture and negatively small change of temperature. The linguistic trajectory shows
that the system reaches an equilibrium point, namely, (c,z), where the tempera
ture is comfortable and does not change. If an equilibrium point is reached for
all possible starting configurations in the state space, then the system is stable.
The state space approach has the advantage of being easy to understand and is
of great help when designing a fuzzy controller, since the impact of rules can be
seen directly in the state space. Some software tools offer the possibility of plot
ting the linguistic trajectory of the system on the computer screen. We close the
discussion of this approach by noting that a system that reaches an equilibrium
point in the linguistic state space may have underlying oscillations which cannot
be detected by this method due to the coarsenes s of the partition induced by the
membership functions of the terms of the linguistic variables. The heating system
may, as an example, lead to temperatures varying between 18° and 19° Celsius
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and small negative and positive changes of temperature if the power can only be
adjusted discretely. The activated region in the state space would, however,
always be (c,z).

Since the introduction of the formal methods of FLC stability analysis requires
a solid background in nonlinear control theory, a detailed discussion of the
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Figure 11-28. Linguistic trajectory.

approaches is not possible in this book. We limit ourselves to the specification of
the different approaches and request interested readers to consult the literature.
Topics and references include the following: controller as relay [Kickert and
Mamdani 1978], limit theorems [Bouslama and Ichikawa 1992], fuzzy sliding
mode control [Hwang and Lin 1992], Ljapunov theory [Langari and Tomizuka
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1990; Tanaka and Sugeno 1992; Kiendl and RUger 1993], harmonic balance
[Kiendl and RUger 1993], circle criterion [Ray and Majunder 1984], conicity cri
terion [Aracil et al. 1991], and vector fields [Aracil et al. 1988, 1989].

An overview of some of these approaches is found in Driankov et al. [1993],
and a literature survey is given by Bretthauer and Opitz [1994].

11.10 Extensions

Most of the basic problems of FLC have been resolved, and researchers are now
investigating advanced topics such as stability, adaptive fuzzy control, hybrid
systems, neuro-fuz zy systems, and FLC systems tuned by genetic algorithms
(GAs) that are inherently adaptive systems. Progress is fast in these areas, and
promising experimental results have been obtained .

With the rising popularity of FLC, more engineers will be trained in this area
in the future. This training will lead to more applications of FLC systems and to
rising field experience of the involved engineers. Fuzzy logic control is an inte
gral part of modem control theory, not replacing conventional methods but rather
complementing them.

Since the literature in fuzzy control is too vast to be discussed in its entirety
in this textbook, a summary is given below. It is primarily intended for those who
have an extended interest in this area:

One of the first books on fuzzy logic control was written by W. Pedrycz in
1989 [Pedrycz 1989] and focuses on many concepts of FLC. The use of fuzzy
relations in connection with FLC systems is discussed thoroughly. A second
edition of this popular book appeared in 1993 [Pedrycz 1993] and covers also
new directions, such as neural network methods. Many survey articles on FLC
have appeared in control journals in the last years, and we very much recommend
the survey of Lee [1990], which covers all basic aspects . The first major book on
applications was the one edited by Sugeno [1985a]. Zimmermann and von.
Altrock [1994] provide a more recent collection of application s, most of them
describing German industrial projects . Jamshidi et al. [1993] also cover a wide
area of different applications, including robotics and flight control, most of
which have been realized in the United States. An interesting collection of the
now-famous Japanese applications offuzzy control is provided by Hirota [1993].
Many articles do describe practical implementations of FLC systems and can be
found in journals covering mainly fuzzy sets as well as in journal s on automatic
control. From an engineer's point of view, the book written by Driankov,
Hellendoorn, and Reinfrank [1993] covers all major aspects of fuzzy control. A
background in conventional control theory is, however, necessary to understand
some of the chapters.



FUZ Z Y CONTROL 263

Exercises

1. a. Draw the block diagram of a Mamdani/Sugeno controller and explain
each function separately.

b. What are the differences between the Mamdani and the Sugeno
controller?

2. Which design parameters can be varied in a fuzzy controller?
3. A Mamdani controller has the following rule base:

error/change of error negative zero positive

negative big

zero big medium medium

positive small small

The linguistic variables are defined as follows:

Error:

2 3 4 567

negative

I I
- 7 -6 -5 -4 -3 -2 -1

I.l (error)
zero positive

error

Change of error:

2 3 4 5 6 7 change of
error

negative

-++-t--+-+-t---+--'''I--'---t''-+-+--+--'+--I--t--l-----.
-7 -6 -5 -4 - 3 - 2 -1
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medium

2 3 4 5 6 7 8 9 10 11 12 13 14 control
action

a. Calculate the fuzzy set of control, when error =2 and change of error =4.
b. Calculate the control action when

(i) mean of maxima
(ii) center of sums

is used as a defuzzification procedure.
4. Which operators can be varied in the Mamdani controller? Discuss the choice

of operators in connection with fuzzy controllers.
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12.1 Introduction

FUZZY DATA BASES
AND QUERIES

Data bases are one form of modeling parts of the real world. They may contain
descriptions of technical systems, of enterprises, of scientific activities, of land
scapes (geographical information systems), or other domains . The world of data
bases is the world of digital computers , one of the most typical dichotomous
systems. It is, therefore, not surprising that the type of storage is crisp and that
all data processing, e.g. input, storage, querying is crisp, no matter whether the
factual relationships described in a database are crisp or uncertain or fuzzy.

For approximately 20 years researchers around the world have been concerned
with the use of fuzzy set theory to represent imprecision in data bases. This
research has been hampered by the fast development of data base technology.
From the graphtheoretic paradigm data base theory moved to relational databanks
and on to object-oriented designs, each of these paradigms requiring different
fuzzy approaches . This is probably one of the reasons why commercial realiza
tions of fuzzy databank technology lag behind the theory.

In this book and chapter we cannot describe all existing fuzzy approaches in
fuzzy databank technology (interested readers are referred to [Petry 1996;
Bordogna and Pasi 2000; Pons et al. 2000]). We shall rather focus our attention
exemplarily on relational databanks and on similarity based fuzzy models.

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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12.2 Fuzzy Relational Databases

The relational data model is based on set-theoretic concepts. Essentially, rela
tional data bases consist of relations in two-dimensional (row and column)
format. Rows are called tuples and correspond to records and columns are called
domains or attributes and correspond to fields. One or more attributes are distin
guished as the key attributes. We will consider relations of the so-called "third
normal form", which possess two characteristics: first, each attribute fully
depends on the entire key (and not part of it). Secondly, each of the non-key attrib
utes is non-transitively dependent on the key (i.e, they depend only on the key
and not on each other).

Example 12-1

Let us consider a data base that describes materials which are supplied by
different suppliers. The first table shows the suppliers together with their loca
tions, the material supplied and their evaluated quality. The second table contains
again the suppliers and information about their delivery reliability and their costs
and the third table describes the materials supplied.

Suppliers

supplier location material quality

DEWAG Paris 802.025 medium

DEWAG Paris 802.020 medium

MAM Berlin 802.025 high

KBA Hamburg 802.025 high

INFORM Aachen 802.025 low



FUZZY DATA BASES AND QUERIES

Reliability
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supplier material reliability

DEWAG 802.025 high

DEWAG 802.020 medium

MAM 802.025 medium

KBA 802.025 low

INFORM 802.025 high

Materials

material description standard

802.020 engine XL EURO

802.025 engine L EURO

802.020 engine XL ISO

Access to a database via a query is normally based on relational algebra. This
allows to manipulate and combine the relations or tables that the requested query
results are provided.

A relational algebra operation consists of an operation name, one or more rela
tion names, one or more domain names and an optional conditional expression.
For example, an operation on the above relations might be:

Select Companies where Material =EURO-NORM and Location =Paris

which would result in:

DEWAG in Paris.
#

So far all components in the relations were crisp. If this is not an adequate descrip
tion of reality, fuzzy rather than crisp relations might be used (see chapter 6).

The fuzziness of such a relation can either be modeled by considering lin
guistic values of the domains of attributes as terms of linguistic variables (see
chapter 9), or one can assign to the relations an additional degree of membership.
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In this case the table "Reliability" in the last example would, for instance, look
as follows:

Reliability

supplier material reliability /lR

DEWAG 802.025 high .8

DEWAG 802.020 medium .7

MAM 802.025 medium .6

KBA 802.025 low .8

INFORM 802.025 high .9

In this case the "values" for the attribute reliability would obviously be consid
ered as being crisply defined (as symbols) and the IlR would indicate the degree
to which the relation is true . There might be another table which shows the
degrees of membership for other "reliabilities" (high , low or medium) of the
suppliers.

Fuzzy data bases are still very seldom in practice. One of the reasons may be
that companies are very hesitant to replace their (crisp) data based by fuzzy data
banks before they are convinced that it is worthwhile or necessary to do this.

Another application of fuzzy set theory is to design fuzzy query languages to
crisp data bases. Thi s might avoid replacing existing crisp data bank s and still
taking advantages of the strength of fuzzy set theory .

12.3 Fuzzy Queries in Crisp Databases

With respect to databases fuzzy sets can primarily be used in two directions: first
to differentiate between different degrees of relevance, strength of relations etc .
Secondly, they can also be used to reduce complexity, i.e. to extract from large
masses of data relevant information. The first goal was con sidered in the last
section. Now we want to focus on the second goal.

In the last section of this chapter we called all the values that an attribute could
have the domain of this attribute. From a user 's point of view not all values in
the domain of an attribute will have to be considered different. Values may be
distinguishable, i.e. 4 and 5, but the user might consider them as indifferent in
the context of a certain query.
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We shall call elements in the domain of an attribute that have, in a certain
context, the same meaning "equivalent". This can be expressed in the form of an
equivalence relation .

Example 12-2

The domain of the attribute "quantity" be defined as

D, = {high, medium, sufficient, low}.

For the purpose of a certain query the user is only interested whether the quality
is either "high or medium" or "sufficient or low" .

This can be expressed by the following equivalence relation, E:

E high medium sufficient low

high I I

medium I I

sufficient I I

low I I

Hence, the domain of the attribute "quality" in this context is partitioned into two
subsets of equivalent values which we will call "equivalence classes".

Expressed differently:

C(quality) = {{high, medium}, {sufficient , low}}.

In the context C the equivalence relation has partitioned the domain of the
attribute quality into two equivalence classes .

The introduction of equivalence classes obviously reduces the complexity of
the data to be considered by reducing the number of component of vector D, to
those of vector C.

Example 12-3 [Schindler 1997]

Let us consider the following data base which describes suppliers delivering
materials with different qualities and different delivery delays:
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I supl. supplier material quality delay

BAW 802.025 sufficient 8

DEWAG 802.025 medium 5

DEWAG 809.200 high 8

KBA 802.025 sufficient 7

KBA 809.200 sufficient 3

KBA 840.024 low 9

MD 802.025 sufficient 8

MD 809.200 medium 4

MTX 802.025 high 2

MTX 840.024 high 4

MAM 802.025 low 7

MAM 840.024 medium 6

ZT 809.200 high 8

ZT 840.024 medium 2

The domains of "quality" and "delay" are

D, = {high, medium, sufficient , low}.

o, = [1, 10].

The goal of a query is to evaluate the suppliers in 4 groups, such that appropri
ate measures can be taken to improve the supply situation.

The manager of the purchasing department believes that for the query the fol
lowing contexts are appropriate:

C, (quality) = {{high, medium}, {sufficient, low}}.

{high, medium} is considered good quality and {sufficient, low} indicates bad
quality.

Cd(delay)={[1,5], [5,1O]},

where a delay of [1, 5] is considered acceptable and (5, 10] is considered
unacceptable.
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Apply ing these contexts the our data base we obtain the follow ing classes:

I supl, supplier quality delay

{MTX, DEWAG, MD, ZT} {high, medium} {2, 4, 5}

{DEWAG, ZT, MAM} {high, medium} {6, 8}

{KBA} {sufficient} {3}

{BAW, MD, KBA, MAM} {sufficient, low} {7, 8, 9}

CI

C2

C3

C4

An interpretation of these 4 classes is shown in the follow ing matrix:

unacceptable 10 C2 C4
- ask supplier to terminate

9
- decrease delays relationship

8
-

7
f----

6

acceptable 5 CI C3
f-- expand ask supplier to

4
f-- relationship improve quality

3
f----

2
f--

I

high I medium suff. I low

good bad

D (quality)

quality

Obviously suppliers in one class are not distinguishable according to their attrac
tiveness. This might be demotivating for suppliers when they improve quality or
delay and still remain in the same class. One way to improve this situation is to
define fuzzy sets over the attributes "quality" and "delay".

Let us define the following two linguistic variables:
The linguistic variable "delay" shall have two term s "acceptable" and "unac

ceptable" with the following membership functions:
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For the lingui stic variable "delay" we shall define the two terms "good" and "bad"
with the following membership functions:

Ilgood (u) = {(high , 1), (medium, .67), (sufficient, .33)}

Ilbad (u) = {(medium, .33), (sufficient, .67), (low , l)}.

Graphic ally the class matrix would now book as follow s:

D (delay)

unacceptable 10 C2 C4

9
ask supplier to terminate
decrease delays relationship

8

7

6

5 Cl C3

4
expand ask supplier to
relationship improve qual ity

3

2

acceptable

high medium suff. low D (quality)

0.00 ------------------------------ -------

0.33

0.67 - ------- -

1.00 ---------
Il good Il bad

Il
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For the various suppliers the degrees of membership in the different terms can
easily be determined by substituting the values of the attributes in the member
ship functions.

The supplier "BAW" in the data base, for instance, would provide material
which is of good quality to the degree .33 and of bad quality to the degree .67.
His delay is acceptable to the degree 0 and unacceptable to the degree I.

We might, however, also be interested in either the degree of membership to
which either a supplier belongs to the various classes or the degree to which he
is "attractive", where "attractive" can be considered as "having good quality and
an acceptably delivery delay".

In their case we have to aggregate the respective degrees of membership. Since
it is an "and" aggregation, we could either use a t-norm or a compensatory aggre
gation. We shall assume that the two attributes are compensatory and, therefore,
choose the "compensatory and" (definition 3-20). We shall compute the degree
of membership of the suppliers in the different classes and use y = .5.

For supplier "BAW" the degrees of membership for classes I and 3 are obvi
ously O.

For class 2 the terms "unacceptable" (of delay) and "good" (of quality)
are relevant. For "BAW" these are I (delay of 8) and .33 (sufficient quality),
respectively.

Hence , using the y-operator with y = .5:

Ilc2 (RA W) = (I . .33r
5
(I - (I - .33)(1 - 0))5

=.57 ·1 =.57

For class 4 we would obtain accordingly Ilc4(RAW) = .82.

Obviously these two degrees of membership do not add up to 1. If we want to
obtain normalized degrees of membership, we can divide all degrees of mem
bership for "BAW" by the sum of degrees of membership of "BAW" to the 4
classes (this is the cardinality according to definition 2-5).

For "BAW" the cardinality is (.57 + .82) = 1.39 and hence, we obtain the class
memberships of

IlBAW(1) = 0

IlBAW(2) =.41

IlBAW(3) = 0

IlBAW(4) = .59

The remaining suppliers supply more than one material.
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Here we have two alternative ways of proceeding, depending on whether we
are interested in a specific material delivered by several suppliers or whether we
want to evaluate suppliers with respect to all materials they supply. We will
assume the latter. In this case we compute the degrees of membership for all mate
rials, suppliers and classes separately and then add the degrees of membership of
different materials of one supplier for each class.

"MTX", for example , supplies two materials (802.025 and 840.024) with dif
ferent ratings . Let us consider class 1:

Material "802.025" has degrees of membership of I and I respectively. Mate
rial "840 .025" has 1 and 0.75. Hence, the first material has an (unnormalized)
degree of membership of I and "840.024" one of .87.

Following Ozawa and Yamada [1994] we add these two degrees of member
ship to determine the degree of membership of MTX to class 1. After we have
determined the (unnormalized) degrees of membership of MTX to the other
classes we will find that the cardinality for MTX is 2.37. Hence: MTX belongs
to class 1 to the degree

1.87 = .79.
2.37

The following table shows the unnormalized degrees of membership of the sup
pliers to the classes . The last row of this matrix shows the respective cardinali
ties. If these are used for normalization, we arrive at the subsequent matrix of
normalized degrees of membership.

BAW DEWAG KBA MD MTX MAM ZT

Cl 0.00 0.53 0.57 0.68 1.87 0.36 0.82

C2 0.57 1.53 0.57 0.93 0.50 0.68 1.00

C3 0.00 0.33 0.82 0.45 0.00 0.20 0.57

C4 0.82 0.33 1.82 1.02 0.00 1.45 0.00

1.39 2.72 3.78 3.08 2.37 2.69 2.39

expand
relationship

ask supplier
to decrease

delays ask
supplier to
improve
quality

terminate
relationship

Partition matrix of non-normalized degrees of membership
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BAW DEWAG KBA MD MTX MAM ZT

Cl 0.00 0.20 0.15 0.22 0.79 0.13 0.34

C2 0041 0.56 0.15 0.30 0.21 0.25 0042

C3 0.00 0.12 0.22 0.15 0.00 0.07 0.24

C4 0.59 0.12 0.48 0.33 0.00 0.55 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

Partition matrix of normalized degrees of membership
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expand
relationship

ask supplier
to decrease

delays ask
supplier to
improve
quality

terminate
relationship

In above example the aggregation of the degrees of membership was performed
by using the y-operator with y =0.5. As was already described in chapter 3, this
models an aggregation in the middle of the "logical and" and the "liguistic or".
More or less compensation can be achieved by varying the y between zero and
one. It might also be appropriate to assign different weights (importance) to the
various attributes. This is also possible when using the y-operator, requires some
caution, however (see [Zimmermann and Zysno 1983]).
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13.1 Introduction

FUZZY DATA ANALYSIS

The terms data analysis . pattern recognition, and data mining are often used
synonymously, and we shall do the same here. On the one hand, this area is
one of the oldest and most obvious application areas for fuzzy set theory. On
the other hand, pattern recognition existed long before fuzzy sets became
known.

This topic embraces a very large and diversified literature . It includes research
in the areas of artificial intelligence, interactive graphic computers, computer
aided design, psychological and biological pattern recognition , linguistic and
structural pattern recognition, and a variety of other research topics. One could
possibly distinguish between mathematical pattern recognition (primarily cluster
analysis) and nonmathematical pattern recognition. One of the major differences
between these two areas is that the latter is far more context dependent than the
former: a heuristic computer program that is able to select features of chromo
somal abnormalities according to a physician's experience will have little use for
the selection of wheat fields from a photo-interpretation viewpoint. In contrast
to this example, a well-designed cluster algorithm will be applicable to a large
variety of problems from many different areas. The problems will again be

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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different for structural pattern recognition-when, for instance, handwritten H's
should be distinguished from handwritten A's, and so on.

Verhagen [1975] presents a survey of definitions of pattern recognition
that also cites the difficulties of any attempt to define this area properly. Bezdek
[1981, p. 1] defines pattern recognition simply as "A search for structure
in data."

The most effective search procedure-in those instances in which it is
applicable-is still the "eyeball" technique applied by human "searchers." Their
limitations, however, are strong in some directions: Whenever the dimensional
ity of the volume of data exceeds a limit, and the human senses, especially the
vision, are not able to recognize data or features, the "eyeball" technique cannot
be applied.

One of the advantages of human search techniques is the ability to recognize
and classify patterns in a nondichotomous way. One way to imitate this strength
is the development of statistical methods in mathematical pattern recognition,
which in connection with high-speed computers have shown very impressive
results. There are data structures, however, that are not probabilistic in nature or
not even approximately stochastic. Given the power of existing EDP, it seems
very appropriate and promising to find nonprobabilistic, nondichotomous models
and structures that enable us to recognize and transmit in a usable form patterns
of this type, which humans cannot find without the help of more powerful
methods than "eyeball-search." Here, obviously, fuzzy set theory offers some
promise. Fuzzy set theory has already been successfully applied in different areas
of pattern search and at different stages of the search process. In the references,
we cite cases of linguistic pattern search, of character recognition [Chatterji
1982], of visual scene description [Jain and Nagel 1977], and of texture classifi
cation [Hajnal and Koczy 1982]. We also give references for the application
of fuzzy pattern recognition to medical diagnosis [Fordon and Bezdek 1979;
Sanchez et al. 1982], to earthquake engineering [Fu et al. 1982], and to pattern
search in demand [Carlucci and Donati 1977].

Another way to describe the main goal of data analysis is complexity reduc
tion, in the sense that data masses that cannot be comprehended by human beings
are reduced to lower-dimensional information that can be used, for instance, by
human decision makers to support their decisions.

In data analysis, objects are considered that are described by some attributes.
Objects can, for example, be persons, things (machines, products, . . .), time
series, sensor signals, process states, and so on. The specific values of the attrib
utes are the data to be analyzed. The overall goal is to find structure (informa
tion) about these data . This can be achieved by classifying the huge amount of
data into relatively few classes of similar objects. This leads to a complexity
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reduction in the considered application, which allows for improved decisions
based on the information gained.

The process of data analysis normally starts with the description of the
process or the set of data that is to be analyzed. This process is very nontrivial,
often least supported by tools, and generally leads to a high-dimensional
model (one dimension corresponding to one property of the data or process) .
In feature analysis, the first reduction of complexity (dimension) is reached by
reducing the number of properties to those that are most important, i.e., that
contribute most to the description of the process or data set. Since this reduction
is generally not yet sufficient, an additional reduction is achieved by defining
in feature space a small number of classes. This stage is called classifier design,
and it more or less terminates the preparatory steps of data analysis . These classes
are now used, either in a batch type operation or continuously, to assign single
objects or data to classes and thus to extract manageable information for human
operators or subsequent systems figure 13-1 shows the interdependent steps of
data analysis as described above.

The methods mentioned in the boxes in figure 13-1 indicate that numerous
"classical" methods are already available. The process of data analysis described
so far is not necessarily connected with fuzzy concepts.

If, however, either features or classes are fuzzy, the use of fuzzy approaches
is desirable. In figure 13-1 , for example, objects, features, and classes are con
sidered. Both features and classes can be represented in crisp or fuzzy terms. An
object is said to be fuzzy if at least one of its features is fuzzy. This leads to the
following four cases:

• crisp objects and crisp classes
• crisp objects and fuzzy classes
• fuzzy objects and crisp classes
• fuzzy objects and fuzzy classes

Obviously, the first case is the domain of classical pattern recognition, while the
latter three cases are the subject of fuzzy data analysis .

13.2 Methods for Fuzzy Data Analysis

Figure 13-1 indicates that some boxes-particularly those of feature analysis and
classifier design-contain quite a number of classical dichotomous methods, such
as clustering, regression analysis, etc., which for fuzzy data analysis have been
fuzzified, i.e., modified to suit problem structures with fuzzy elements . The box
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Process Description

r-- determination of membership function -feature nomination
scale levels

Feature Analysis Classifier Design
--

factor analysis clustering
discriminant analysis structured modelling
regression analysis neural nets

knowledge based
approaches

Classification
pattern recognition
diagnosis
ling. approximation
fuzzification
defuzzification
ranking

neural nets

Figure 13-1. Scope of data analysis.

"classification," in contrast, lists some approaches that originate in fuzzy set
theory and that did not exist before.

In modem fuzzy data analysis, three types of approaches can be distinguished.
The first class is algorithmic approaches, which in general are fuzzified versions
of classical methods, such as fuzzy clustering, fuzzy regression, etc. The second
class is knowledge-based approaches, which are similar to fuzzy control or fuzzy
expert systems. The third class, (fuzzy) neural net approaches, is growing rapidly
in number and power. Increasingly combined with these approaches, but not
discussed in this book, are evolutionary algorithms and genetic algorithms (see
Zimmermann [1994]).

The major three classes mentioned above will be discussed in the following
sections of this chapter.
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13.2. 1 Algorithmic Approaches
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For feature analysis, fuzzy regression methods have been used. Recommended
publications concerning this approach (which will not be discussed in this book)
are, e.g., Bardossey et al. [1992, 1993], Diamond [1993], Ishibuchi [1992],
Kacprzyk [1992], Peters [1994], and Tanaka [1987].

Here we shall focus our attention on clustering methods.

13.2.1.1 Fuzzy Clustering

13.2.1.1.1 Clustering Methods. Let us assume that the important problem of
feature extraction-that is, the determination of the characteristics of the physi
cal process, the image of other phenomena that are significant indicators of struc
tural organization, and how to obtain these-has been solved. Our task is then to
divide n objects x E X characterized by p indicators into c, 2 ~ c < n, categori
cally homogenous subsets called "clusters ." The objects belonging to anyone of
the clusters should be similar and the objects of different clusters as dissimilar as
possible. The number of clusters, c, is normally not known in advance.

The most important question to be answered before applying any clustering
procedure is which mathematical properties of the data set (for example, distance,
connectivity, intensity, and so on) should be used and in what way they should
be used in order to identify clusters. This question will have to be answered for
each specific data set, since there are no universally optimal cluster criteria.
Figure 13-2 shows a few possible shapes of clusters; and it should be immedi
ately obvious that a cluster criterion that works in figure 13-2a will show a very
bad performance in figures 13-2b or 13-2c. More examples can, for instance, be
found in Bezdek [1981] or Roubens [1978] and in many other publications on
cluster analysis and pattern recognition [Ismail 1988, p. 446; Gu and Dubuisson
1990, p. 213].

For further illustration of this point, let us look at an example from Bezdek
[1981, p. 45]. Figure 13-3 shows two data sets, which have been clustered by a
distance-based objective function algorithm (the within-group sum-of-spared
error criterion) and by applying a distance-based graph-theoretic method (single
linkage algorithm). Obviously, the criterion that leads to good results in one case
performs very badly in the other case and vice versa. (Crisp) clustering methods
are commonly categorized according to the type of clustering criterion used in
hierarchical, graph-theoretic, and objective-functional methods .

Hierarchical clustering methods generate a hierarchy of partitions by means
of a successive merging (agglomerative) or splitting (diverse) of clusters
[Dimitrescu 1988, p. 145]. Such a hierarchy can easily be represented by a den
dogram, which might be used to estimate an appropriate number of clusters, c,



282 FUZZY SET THEORY-AND ITS APPLICATIONS

a

...::.~"":: ' .
• t" •••..:- '..

~:. I...~~' .... ~ ... ..'.t • •
~. . ,.,_.' I,'
", ..:....•..: ~.
\'. ..'
.:.. • 'I ',_ .'

.~ .'. . .','
I. I.: .

' .. ""

b

c

II .; ";:JY.J.~~
~ ;~ ,~' ,~

.~ .',' ~ --=
I,' II' I, "...... .. ,

: 't' • • \ I
.,:-.~: v:t, '': I,: -.

.:: • ~ I, ::!
:,,' ':-, ' ~ .. . .

d

Figure 13-2. Possible data structures in the plane.

for other clustering methods. On each level of agglomeration or splitting, a locally
optimal strategy can be used without taking into consideration the policies used
on preceding levels. These methods are not iterative ; they cannot change the
assignment of objects to clusters made on preceding levels. Figure 13-4
shows a dendogram that could be the result of a hierarchical clustering
algorithm. The main advantage of these methods is their conceptual and compu
tational simplicity.

In fuzzy set theory, this type of clustering method would correspond to the
determination of "similarity trees" such as those shown in example 6-14.
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Graph-theoretic clustering methods are normally based on some kind of
connectivity of the nodes of a graph representing the data set. The clustering
strategy is often breaking edges in a minimal spanning tree to form subgraphs .
If the graph representing the data structure is a fuzzy graph such as those dis
cussed in chapter 6, then different notions of connectivity lead to different types
of clusters, which in turn can be represented as dendograms. Yeh and Bang
[1975], for instance, define four different kinds of clusters. For the purpose of
illustrating this approach , we shall consider one of the types of clusters suggested
there.

Definition 13-1 [Yeh and Bang 1975]

Let G = [V, R] be a symmetric fuzzy graph . Then the degree of a vertex v is
defined as d(v) = I:u".,Il ji(u). The minimum degree ofG is o(G) = minvE v {d(v)}.

Let G = [V, R] be a symmetric fuzzy graph. G is said to be connected if, for
each pair of vertices u and v in V, llii(U, v) > O. G is called 't-degree connected
for some 't ~ 0 if o(G) ~ t and G is connected.

Definition 13-2

LetG = [V, R] be a symmetric fuzzy graph . Clusters are then defined as maximal
t-degree connected subgraphs ofG.

Example 13-1 [Yeh and Bang 1975, p. 145]

Let G be the symmetric fuzzy graph shown in figure 13-5. The dendogram in
figure 13-6 shows all clusters for different levels of r . For further details, see Yeh
and Bang [1975].

Objective junction methods allow the most precise formulation of the cluster
ing criterion . The "desirability" of clustering candidates is measured for each c,
the number of clusters, by an objective function . Typically, local extrema of the
objective function are defined as optimal clusterings. Many different objective
functions have been suggested for clustering (crisp clustering as well as fuzzy
clustering) . The interested reader is referred in particular to the excellent book
by Bezdek [1981] for more details and many references. We shall limit our con
siderations to one frequently used type of (fuzzy) clustering method, the so-called
c-means algorithm .

Classical (crisp) clustering algorithms generate partitions such that each object
is assigned to exactly one cluster. Often, however, objects cannot adequately be
assigned to strictly one cluster (because they are located "between" clusters). In
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Figure 13-5. Fuzzy graph.
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Figure 13-6. Dendogram for graph-theoretic clusters.

these cases, fuzzy clustering methods provide a much more adequate tool for
representing real-data structures.

To illustrate the difference between the results of crisp and fuzzy clustering
methods let us look at one example used in the clustering literature very
extensively : the butterfly.
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Figure 13-7. The butterfly.

Example 13-2

The data set X consists of 15 points in the plane, as depicted in figure 13-7. Clus
tering these points by a crisp objective-function algorithm might yield the picture
shown in figure 13-8 , in which"1" indicates membership of the point in the left
hand cluster and "0" membership in the right-hand cluster. The x's indicate the
centers of the clusters. Figures 13-9 and 13-10, respectively, show the degrees
of membership the points might have to the two clusters when using a fuzzy
clustering algorithm.

We observe that, even though the butterfly is symmetric, the clusters in figure
13-8 are not symmetric because point Xg, the point "between" the clusters, has
to be (fully) assigned to either cluster 1 or cluster 2. In figures 13-9 and 13-10,
this point has the degree of membership .5 in both clusters, which seems to be
more appropriate. Details of the methods used to arrive at figures 13-8 to 13-10
can be found in Bezdek [1981, p. 52] or Ruspini [1973].

Let us now consider the clustering methods themselves.
Let the data set X = {x" ... ,xn } ~ IRP be a subset of the real p-dimensional

vector space IRP• Each Xk =(Xkl' • • • , Xkp) E IRP is called a feature vector. Xkj is the
jth feature of observation Xk .

Since the elements of a cluster shall be as similar to each other as possible and
the clusters as dissimilar as possible, the clustering process is controlled by use
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clustercenters : x

Figure 13-8. Crisp clusters of the butterfly.
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Figure 13-9. Cluster 1 of the butterfly.
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Figure 13-10. Cluster 2 of the butterfly.

of similarity measures . One normally defines the "dissimilarity" or "distance" of
two objects Xk and XI as a real-valued function d : X x X~ R+ that satisfies

d(Xb xl)=dkl ~O

d k/ =0~ Xk =XI

d kl = d lk

If additionally d satisfies the triangle equality, that is,

dk/ ~ dkj + d j l

then d is a metric, a property that is not always required. If each feature vector
is considered as a point in the p-dimensional space, then the dissimilarity dkl of
two points Xk and XI can be interpreted as the distance between these points.

Each partition of the set X = {x" . . . , xn } into crisp or fuzzy subsets Si (i = 1,
.. . , c) can fully be described by an indicator function us, or a membership func
tion !lSi' respectively. In order to stay in line with the terminology of the preced
ing chapters, we shall use, for crisp clustering methods,

us; :X~ {O, I}

and, for fuzzy cases,

!lSi: X~ {O, I}

where Uik and !lik denote the degree of membership of object x, in the subsetSi , that is,
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Uik: = US/Xk)

Ilik: = IlS/Xk)
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Definition 13-3

Let X = {XI> . • . ,xn} be any finite set. Ven is the set of all real c x n matrices, and
2 ::; c < n is an integer. The matrix U = [uid EVen is called a crisp c-partition if
it satisfies the following conditions:

1. u« E {O, I} 1::; i s c, 1 s k s n
e

2. Lllik =1 I::; i s r
;=1

n

3. °< L < n 1::; i ::; c
k=1

The set of all matrices that satisfy these conditions is called Me.

Example 13-3

Let X = {XI> X2, x )}. Then there are the following three crisp 2-partitions:

Xl X2 X)

U) =[~ ~ ~]
Obviously, conditions (2) and (3) of the definition rule out the
following partitions :
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Definition 13-4

X, V cm and c are as in definition 13.3. D= [Ilid EVen is called afuzzy-c partition
if it satisfies the following conditions [Bezdek 1981, p. 26]:

1. Ilik E [0, 1] 1::;; i ::;; c, 1 ::;; k ::;; n
c

2. Lllik = 1 1s k s r
i= 1

n

3. 0 < Lllik < n 1::;; i s c
k=l

Mfc will denote the set of all matrices satisfying the above conditions. By con
trast to the crisp c-partition, elements can now belong to several clusters and to
different degrees. Conditions (2) and (3) just require that the "total membership"
of an element is normalized to 1 and that the element cannot belong to more
clusters than exist.

Example 13-4

Let X = {X., X2, X3}. Then there exist infinitely many possible fuzzy 2-partitions,
such as

Xl X2 X3

_ [1 .5
~]Ul = 0

.5

Xl X2 X3

_ ['8 .5 .2]
U2 =

.8.2 .5

XI X2 X3

_ [.8 1 .9]
U3 =

0 .1.2

and so on.
Our butterfly example (figure 13-7), for instance, could have the following

partition:

XI3 Xl4 X15}
.14

.86

Xs

.97 .86 .94 .99 .94 .86 .5 .14 .06 .01 .06 .14 .03

.03 .14 .06 .01 .06 .14 .5 .86 .94 .99 .94 .86 .97
j

Xl

u= .86

.14
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The location of a cluster is represented by its "cluster center" Vi = (Vii, • . . , Vip)

E !ffiP, i = 1, , c, around which its objects are concentrated.
Let V = (VI, , vc> E !fficp be the vector of all cluster centers, where the Vi in

general do not correspond to elements of X.
One of the frequently used criteria to improve an initial partition is the so

called variance criterion. This criterion measures the dissimilarity between the
points in a cluster and its cluster center by the Euclidean distance . This distance,
dih is then [Bezdek 1981, p. 54].

dik = d(Xh Vi)

=llxk -v;il

= [i(Xkj _Vij)2]1/2

]=1

The variance criterion for crisp partitions corresponds to minimizing the sum
of the variances of all variables j in each cluster i, with ISil = n, and yields

As indicated by the above transformation, the variance criterion corresponds
except for the factor lin-to minimizing the sum of the squared Euclidean
distances. The criterion itself amounts to solving the following problem:

min Z(SI, "" Sc; v) = t L Ilxk - vi
i= l XkESj

such that

Using definition 13-3, the variance criterion for crisp c-partitions can be
written as

C n

min zeD, v)= L L Uik Ilxk - vi
i= 1 k=1

such that
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1 n

Vi =-n-L(Uik)Xl
" k=l£"Uik
k=1

For fuzzy c-partitions according to definition 13-4, the variance criterion
amounts to solving the following problem :

min z(U, v) = fj)llik t Ilxk - vi
i= l k=l

such that

Here Vi is the mean of the Xk m-weighted by their degrees of membership. That
means that the x, with high degrees of membership have a higher influence on Vi

than those with low degrees of membership. This tendency is strengthened by m,
the importance of which we will discuss in more detail at a later time.Tt was
shown (see, for instance, Bock [l979a, p. 144]) that, given a partition U, Vi is
best represented by the clusters Si as described above.

If we generalize the criterion concerning the used norm, the crisp clustering
problem can be stated as follows: Let G be a (p x p) matrix, which is symmetric
and positive-definite. Then we can define a general norm

The possible influence of the chosen norm, determined by the choice of G,
will be discussed later. This yields the formulation of the problem:

min z(u, v) = ttUikllxk -V;II~
k=1 i=l

such that

This is a combinatorial optimization problem that is hard to solve, even for
rather small values of c and n. In fact, the number of distinct ways to partition x
into nonempty subsets is
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which for c = 10 and n =25 is already roughly 1018 distinct IO-partitions of the
25 points [Bezdek 1981, p. 29].

The basic definition of the fuzzy partitioning problem for m > I is

min zmCD; v) = tt(lliktllxk -vill~
k=1 i =1

such that

(Pm) is an analytical problem, which has the advantage that by using differential
calculus one can determine necessary conditions for local optima . Differentiat
ing the objective function with respect to Vi (for fixed U) and to Ilik (for fixed v)

c

and applying the condition D ik = I, one obtains (see [Bezdek 1981, p. 67]):
;=1

n

Vi= n L,clliktxk i=I, . . . .c
L(llikt k=1

k=1

(13.1)

(13.2)

Let us now comment on the role and importance of m: It is called the expo
nential weight, and it reduces the influence of "noise" when computing the cluster
centers in equation (13.1) (see Windham [1982, p. 358]) and the value of the
objective function Zm (U; v). m reduces the influence of small u, (points further
away from v.) compared to that of large Ilik (points close to Vi)' The larger m >
1, the stronger is this influence.

The systems described by equations (13.1) and (13.2) cannot be solved ana
lytically. There exist, however, iterative algorithms (nonhierarchical) that approx
imate the minimum of the objective function, starting from a given position. One
of the best-known algorithms for the crisp clustering problem is the (hard) c
means algorithm or (basic) ISODATA-algorithm. Similarly, the fuzzy clustering
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problem can be solved by using the fuzzy c-means algorithm, which shall be
described in more detail in the following.

The fuzzy c-means algorithm [Bezdek 1981, p. 69]. For each m E (0, 00), a
fuzzy c-means algorithm can be designed that iteratively solves the necessary
conditions (13.1) and (13.2) above and converges to a local optimum (for proofs
of convergence, see Bezdek [1981] and Bock [1979]).

The algorithm comprises the following steps:

Step I. Choose c (2 :::; c :::; n), m (1 < m < 00), and the (P, p)-matrix G with
G symmetric and positive-definite. Initialize [;(0) E Mfc, set I = O.

Step 2. Calculate the c fuzzy cluster centers {vl/)} by using (J/) from condition
(13.1).

Step 3. Calculate the new membership matrix [;(/+1) by using {vl/)} from
condition (13.2) if x, :;: vI/). Else set

_ {I for j = i
11 jk - 0 for i» i

Step 4. Choose a suitable matrix norm and calculate ~ = II [;(/+1 ) - [;(/) IIG. If
~ > E, set I = I + 1 and go to step 2. If ~ :::; E, ~ stop.

For the fuzzy c-means algorithm, a number of parameters have to be chosen:

the number of clusters c, 2 :::; c :::; n;
the exponential weight m, I < m < 00;
the (p, p) matrix G (G symmetric and positive-definite), which induces a norm;
the method to initialize the membership matrix [;(0);
the termination criteria ~ = II [;(/+1 ) -[;(I)IIGs E.

Example 13-5 [Bezdek 1981, p. 74]

The data of the butterfly shown in figure 13-7 were processed with a fuzzy
2-means algorithm, using as a starting partition

[;(0) = [ .854 .146 .854 . . . .854J
.146 .854 .146 . . . .146 2xl S

E was chosen to be .0 I; the Euclidean norm was used for G; and m was set to
1.25. Termination in six iterations resulted in the memberships and cluster centers
shown in figure 13-11 . For m = 2, the resulting clusters are shown in figure 13-12.

As for other iterative algorithms for improving starting partitions , the number c
has to be chosen suitably. If there does not exist any information about a good c,
the computations are carried out for several values of c. In a second step, the best
of these partitions is selected.
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.99 Values for fL
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m= 1.25 .01

• •
0

• •
(a) .99 .47 .01 0 0

• x • • • • • x •«-' 1 xa 0 '-vI Z

• 0 •.
.99

0

! .01
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(b)

~ :>t:: ~ ~0.5

Figure 13-11. Clusters for m = 1.25.

.86 Values for iLa
m=2.00 .14

• •
.94 .06
• •

(a) .97 .99 .88 .50 .12 .01 .03

• x • • • • • x •
v) .94 .06 \.y

I • 0 • Z
I

.86 I .140

• ! •
!

::t iLl \ I iL
z

\

(b) :~ : =
Figure 13-12. Clusters for m = 2.
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The exponential weight m influences the membership matrix. The larger the
m, the fuzzier becomes the membership matrix of the final partition. For m ~ 00,

{; approaches {; = r-H This is, of course, a very undesirable solution, because
each Xk is assigned to each cluster with the same degree of membership.

Basically, less fuzzy membership matrices are preferable because higher
degrees of membership indicate a higher concentration of the points around the
respective cluster centers . No theoretically justified rule for choosing m exists.
Usually m = 2 is chosen.

G determines the shape of the cluster, which can be identified by the fuzzy
c-rneans algorithm. If one chooses the Euclidean norm NE, then G is the identity
matrix I, and the shape of the clusters is assumed to be an equally sized hyper
sphere. Other frequently used norms are the diagonal norm or the Mahalanobis
norm for which GD = [diag(crj)]-I and GM = [cov (xW', respectively, where c]
denotes the variance of feature j.

The final partition depends on the initially chosen starting position. When
choosing an appropriate c, if there exists a good clustering structure, the final par
titions generated by a fuzzy c-means algorithm are rather stable.

A number of variations of the above algorithm are described in Bezdek [1981].
The interested reader is referred to this reference for further details. Numerical
results for a number of algorithms are also presented in Roubens [1978].

13.2.1.1.2 Cluster Validity

Complex algorithms stand squarely between the data for which substructure is hy
pothesized and the solutions they generate; hence it is all but impossible to transfer a
theoretical null hypothesis about X to {; E Mfn which can be used to statistically sub
stantiate or repudiate the validity of algorithmically suggested clusters . As a result a
number of scalar measures of partition fuzziness (which are interesting in their own
right) have been used as heuristic validity indicants [Bezdek 1981, p. 95].

Actually, the so-called cluster validity problem concerns the quality or the
degree to which the final partition of a cluster algorithm approximates the real or
hypothesized structure of a set of data. Most often this question is reduced,
however, to the search for a "correct" c. Cluster validity is also relevant
when deciding which of a number of starting partitions should be selected for
improvement.

For measuring cluster validity in fuzzy clustering, some criteria from crisp
cluster analysis have been adapted to fuzzy clustering . In particular, the so
called validity functionals used express the quality of a solution by measuring its
degree of fuzziness. While criteria for cluster validity are closely related to the
mathematical formulation of the problem, criteria to judge the real "appro
priateness" of a final partition consider primarily real rather than mathematical
features.
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Let us first consider some criteria taken from traditional crisp clustering.
One of the most straightforward criteria is the value of the objective function .

Since it decreases monotonically with increasing number of clusters, c, that is, it
reaches its minimum for c = n, one chooses the c* for which a large decrease is
obtained when going from c* to c* + 1. Another criterion is the rate of conver
gence. This is justified because experience has shown that, for a good clustering
structure and for an appropriate c, a high rate of convergence can generally be
obtained .

Because the "optimal" final portion depends on the initialization of the starting
partition if, the "stability" of the final partition with respect to different starting
partitions can also be used as an indication of a "correct" number of clusters c.

All three criteria serve to determine the "correct" number of clusters . They are
heuristic in nature and therefore might lead to final partitions that do not correctly
identify existing clusters . Bezdek shows, for instance , that the global minimum
of the objective function is not necessarily reached for the correct partition
[Bezdek 1981, pp. 96 ff]. Therefore other measures of cluster validity are needed
in order to judge the quality of a partition.

The following criteria calculate cluster validity functionals that assign to each
fuzzy final partition a scalar that is supposed to indicate the quality of the clus
tering solution. When designing such criteria, one assumes that the clustering
structure is better identified when more points concentrate around the cluster
centers, that is, the crisper (unfuzzier) is the membership matrix of the final
partition generated by the fuzzy c-means algorithm.

The best-known measures for judging the fuzziness of a clustering solution are

the partition coefficient, F( U, c),
the partition entropy, H( U, c), and
the proportion exponent, P( U, c).

Definition 13-5 [Bezdek 1981, p. 100]

Let UE Mfc be a fuzzy c-partition of n data points. The partition coefficient of
U is the scalar

F(U, c) =it (~ik)2
k=l i=1 n

Definition 13-6 [Bezdek 1981, p. 111]

The partition entropy of any fuzzy c-partition UE Mf c of X, where I X I = n; is
for 1 :5: c:5: n
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1 n e

R(U, e) = --LLllik loge(llik)
n k=! i =!

(see definition 4-3a, b, where the entropy was already used as a measure of
fuzziness.)

Definition 13-7 [Windham 1981, p. 178; Bezdek 1981, p. 119]

Let UE (Mfe\McO) be a fuzzy e-partition of X; IXI = n; 2 S; e < n. For column k
ofU, 1 S; k S; n, let

[Ilk!] = greatest integer S; (:k )
The proportion exponent of U is the scalar

The above-mentioned measures have the following properties:

1 -
- S; F(U, e) S; I
e

OS; R(U, e) S; log .fc)

OS; P(U, e)< 00

The partition coefficient and the partition entropy are similar in so far as they
attain their extrema for crisp partitions U E Me:

F(U, e) =1 <=> R(U, e) =0 <=> U E Me

- 1 - - [IJF(U, e) = -;; <=> R(U, e) = log.Ic) <=> U = -;;

The (heuristic) rules for selecting the "correct" or best partitions are

max {max{F(U,e)}} e=2, . . . , n - 1
Den e

min {min{R(U, e)}} e = 2, . .. , n-l
Gelle

where ne is the set of all "optimal" solutions for given e.
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The limitations of F( U, c) and H(U, c) are mainly their monotonicity and the
lack of any suitable benchmark that would allow a judgment as to the accept
ability of a final partition. The monotonicity will usually tend to indicate that the
"correct" partition is the 2-partition. This problem can be solved, for instance, by
choosing the i* partition for which the value of H( U, c) lies below the trend when
going from c* - 1 to c*.

H( U, c) is normally more sensitive with respect to a change of the partition
than is F(U, c). This is particularly so if m is varied.

While F(U, c) and H(U, c) depend on all e-n elements, the proportion expo
nent P(U, c) depends on the maximum degree of membership of the n elements.
P(U, c) converges towards 00 with increasing Ilk> and it is not defined for Ilk = 1.

The heuristic for choosing a good partition is

max {max{P(U, cm c = 2, .. . , n-l
Dene

By contrast to F( U, c) and H(U, c), P( U, c) has the advantage that it is not
monotone in c. There exist, however, no benchmarks such that one can judge the
quality of a portion c* from the value of P(U, c*).

The heuristic for P( U, c) possibly leads to an "optimal" final partition
other than the heuristics of F(U, c) and/or of H(U, c) . This might necessitate the
use of other decision aids derived from the data themselves or from other con
siderations. Bezdek [1981] describes quite a number of other approaches in his
book.

Even though the fuzzy c-means algorithm (FCM) performs better in practice
than crisp clustering methods, problems may still have features that cannot be a
ccommodated by the FCM. Exemplarily, two of them shall be looked at briefly.

Most crisp and fuzzy clustering algorithms seek in a set of data one or the other
type of clustershape (prototype). The type of prototype used determines the dis
tance measurement criteria used in the objective function. Windham [1983]
presented a general procedure that unifies and allows the construction of dif
ferent algorithms using points, lines, planes, etc. as prototypes. These algorithms,
however, normally fail, if the pattern looked for is not in sense compact. For
instance, the patterns shown figures 13-2b and l3-2c will hardly be found. Dave
[1990] suggested an algorithm that can find rings or, in general, spherical shells
in higher dimensions. His fuzzy shell clustering (FSC) algorithm modifies the
variance criterion mentioned above (after example 13-4) by introducing the
radius of the "ring" searched for, arriving at

min zs(u,v, r) = ti(llik)m(Did
2

i=1 k=1
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Figure 13-13. Clusters by the FSC. (a) Data set; (b) circles found by FSC; (c)
data set; (d) circles found by FSC.

where

r, is the radius of the cluster prototype shell , and all other symbols are as defined
for the FCM algorithm. The algorithm itself has to be adjusted accordingly by
including rio

Details are given in Dave [1990] . This algorithm also finds circles if the data
are incomplete. Figure 13-13 shows examples of it from Dave .

Interesting applications can be found in Dave and Fu [1994] .
The FCM as well as the FSC satisfies the constraint

c

Lilik =1, I~k~n
i=l

which was used in definition 13-4 of a fuzzy c-partition. Considering data sets
shown in figure 13-14, this constraint would enforce that, for instance, two cluster
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Figure 13-14. Data sets [Krishnapuram and Keller 1993].

points A and B would get the same degree of membership, ~ = .5, in clusters
I and 2.

The ~ik would then express a kind of "relative membership" to the clusters,
i.e., the membership of point B in cluster I compared to the membership of point
B in cluster 2 (see also figure 13-14) . From an observer's point of view it might,
however, be inappropriate to assign the same degrees of membership to points A
and B because he interprets those as (absolute) degrees of membership, e.g.,
degrees to which point s A or B belong to clusters I or 2, respectively. Krishna
puram and Keller [1993] suggest their possibilistic c-means algorithm (PCM) to
compute the latter kind of degrees of membership for elements in clusters by
modifying the definition of a fuzzy c-partition and, as a consequence, the objec
tive function of the cluster algorithm.

Definition 13-4 is modified to

1. ~ik E [0, I], I s i s c, l:S;k:S;n
n

2. o< L~ik:S; n, I :s; i < c
k=l

3. max u., >0 for all k.
I

Simply relaxing condition 2 in definition 13-4 in the FCM would produce the
trivial solution, Le., the objective function would drive all degrees of member
ship to O. This result is certainly not meaningful. One would rather try to have
the degrees of membership of data that belong strongly to clusters appropriately
high and those that do not represent the features of the clusters well very low.
This is achieved by the following objective function:

Here dik can be the same distance as in the FCM , ~ik are now the "absolute"
degrees of memberships, and 11i are appropriately chosen positive numbers (see
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Krishnapuram and Keller [1993]). When applying such an algorithm to data sets
as shown in figure 13-14, point A would obtain considerably higher degrees of
membership than point B.

13.2.2 Knowledge-Based Approaches

Knowledge-based approaches resemble very much those procedures described in
chapters 10 and 11. Figure 13-15 indicated the basic structure of knowledge
based classification.

After the preprocessing, the data describing the elements are fed into an expert
system. This contains in the knowledge base-in an appropriate fuzzy descrip
tion-the relevant features, which in the inference engine are aggregated per
element. The results are either membership functions or possibly singletons. The
"matching" function contains the description of the classes (fuzzy or crisp) and
determines the similarity of the expert system output with the class description.
An assignment of elements to classes occurs then either according to the respec
tive degrees of similarity or to the class with the highest degree of similarity.

An example of such a data-mining system is described by Fei and Jawahir
[1992]. The basic structure is given below.

In a turning situation, the finish-turning operation involving the machining of
a component at small feeds and at small depths of cut requires a number of major
issues to be solved before the process can begin. The process of finish turning
itself is so complex that it is practically impossible to establish any theoretical
model that could precisely predict the machinability parameters. Here we shall
only consider the relationship between depth of cut and feed on one hand and the
resulting surface roughness on the other hand.

Figure 13-16 shows the linguistic variables defining the relevant features on
the input side.

In this case the classes, i.e., surface roughness, are defined as intervals with
linguistic labels as follows:

Label Excellent Good Fair Acceptable Poor

Ra (11m) .0-.6 .6- 1.1 1.1-1.5 1.5-2 .0 2.0-3 .0

The authors have modeled the uncertainty in this case by computing a kind of
"uncertainty factor" that applies to the respective terms of the linguistic variable
(classes). Alternatively, the classes could, of course, have been modeled by fuzzy
sets, rather than by intervals, possibly in multidimensional space.
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Deeper

0.2

Light

01 D4

1.0

Depth
of
Cut (mm)

Figure 13-16. Linguistic variables "Depth of Cut" and "Feed."

I~ Fl F2 F3 F4 FS F6 F7 F8
Depth

!Deeper (04)
0.6/0

l.OIE l.0/0 l.O/A l.O/A l.O/A l.O/A l.O/A
OA/F

0.2/E 0.1/0 0.7/F 0.6/A
Deep (03) l.OIE l.0/0 l.O/A l.OIP

0.8/G 0.9/F 0.3/A O.4IP

Mediwn(D2)
O.IIE O.4/G 0.6/F O.2/A

I.OIE l.O/G l.O/A l.OIP
0.9/G 0.6/F 0.4/A 0.8IP

OA/G 0.3/F 0.9/A
Light (01) 1.0IE l.O/G 1.0/G l.0/F l.O/A

0.6/F 0.7/A O.IIP

E - Excellent. G - Good. F - Fair. A- Acceptable. P - Poor

Work Material =AISI 1045
Cutting Speed =230 m/min

Figure 13-17. Knowledge base.

Chip Breaker =FCB4
Tool Insen= TNMG 160408

The knowledge base of this system is shown in figure 13-17 and the structure
of the entire system in figure 13-18.

13.2.3 Neural Net Approaches

Artificial neural nets (ANNs) have proven to be a very efficient and powerful tool
for pattern recognition. The literature on types of ANNs and their applications to
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Customer Interface

Select Cutting Comditions
Input

Feed
Work Material Depth of Cut
Tool Insert Type +Tool Geometries
Cutting Speed Fuzzification

Algorithm

+
Knowledge-Base for Predicting Surface

Roughness in Finish Turning

+
Fuzzy Inference

Engine

+
Surface Roughness Prediction in Terms of
Linguistic Variables with Certainty Levels

Figure 13-18. Basic structure of the knowledge-based system.

data analysis is abundant, and it would exceed the scope of this book to intro
duce the reader to this area. Since the beginning of the 1990s the relationship and
the cross-fertilization of fuzzy set theory and artificial neural nets have grown
stronger and stronger (see, for example, Lee [1975], Huntsberger [1990], Kosko
[1992], Nauck et al. [1994], Kim and Choo [1994], and Kunchera [1994]). There
are two reasons for this: (1) artificial neural nets are "classical" in the sense that
originally their structure was dichotomous and a fuzzification has turned out to
be useful in many cases, and (2) fuzzy set systems and ANNs are complemen
tary in the sense that fuzzy systems are interpretable , plausible, and in a sense
transparent (knowledge-based) systems, which, however, in general cannot learn.
In other words, the knowledge has to be acquired first and then fed into the
systems in the form of if-then rules or otherwise. ANNs, by contrast, have the
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"black box" character, i.e., they cannot be interpreted easily, but they can learn
in a supervised or unsupervised fashion.

It is obvious that it makes sense to combine the attractive features of these
two approaches while trying to avoid their weaknesses. Unfortunately, it is also
beyond the scope of this book to describe the various ways in which these two
approaches have been combined.

13.3 Dynamic Fuzzy Data Analysis

13.3.1 Problem Description

So far "objects" were considered to be elements or points (vectors) in the appro
priate spaces.

The development of objects over time (and, therefore, the development of the
features) is not considered explicitly or is taken into account by just using single
values of the past in the feature vector.

Methods that use this type of feature vectors can be called static. In many
applications, however, explicit consideration of trajectories rather than single
points is desirable, e.g.:

• monitoring of patients in medicine, e.g. during narcosis, where the develop
ment of the patients' condition is essential;

• state-dependent machine maintenance;
• rating of shares: the examination of the development of share prices and other

characteristics allows better estimates than just considering the current share
price.

In all cases, where a dynamic viewpoint is desirable, the momentary snapshot for
some components of the feature vector may be replaced by a trajectory of this
feature. Thus, dynamic objects are represented by multi-dimensional trajectories
in the feature space. Since most methods for data analysis are not suited to clas
sify objects described by trajectories, new methods for dynamic data analysis
were developed.

Figure 13-19 illustrates the difference between classical (static) and dynamic
data analysis. Consider a two-dimensional feature space with one additional time
dimension and suppose that a set of objects is observed over time. States of
objects at a point of time can be seen in the cut of this three-dimensional space
at the current moment (figure 13-l9a). Two classes of objects can easily be dis
tinguished in this plane. However, if the trace of each object from the initial to
its current state (i.e. its trajectory) is considered and projected into the feature
space (figure 13-19b), other classes may seem more reasonable.
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Figure 13-19. (a) States of objects at a point of time; (b) projections of trajec
tories over time into the feature space.

One of the major problems is that "distances" or "similarities" used in cluster
algorithms are defined with respect to pairs of points, but not with respect to pairs
of functions (or vectors).

13.3.2 Similarity of Functions

As stated before, the components of feature vectors describing dynamic objects
are trajectories. Starting from the fact that most methods for data analysis use a
distance measure or a similarity measure as a criterion to classify objects, one
way to handle dynamic objects is to define the similarity measure for trajectories
(functions) and to use it within existing or perhaps completely new methods.

Similarity of trajectories can be defined in different ways. Basically, two view
points can be distinguished .

The more similar are two trajectories

• the better they match in formlevolutionlcharacteristics(structural similarity)
• the smaller their (pointwise) distance in feature space is (pointwise similar-

ity).

Figure 13-20 gives an example of the differences between structural and point
wise similarity. In terms of pointwise similarity A and B would be grouped
together as well as C and D. But in terms of structural similarity the grouping
{A,D} and {B,C} seems to be more natural (depending on the chosen type
of structural similarity). The following two sections describe these two types of
similarity and the relationships between them.

Structural Similarity between Functions. Structural similarity relates to a
variety of aspects of the trajectories (functions) under consideration: form,
evolution, size or orientation (of trajectories in Q}t")are some examples . Depend
ing on the chosen aspect, different criteria may be relevant to describe similar-



308 FUZZY SET THEORY-AND ITS APPLICATIONS

X2 .-.
~r.>

~

A »-: /'

.»~ -
V- B V l--'""

-----
~

k:::::::V c'" ~V....- --
~Y[)

--
----":/ XI»>

35

30

25

20

15

10

5

o
o 20 .a 110 110 100 120 140 1110 1110 aoo

Figure 13-20. Structural and pointwise similarity.

ity, e.g. slope, curvature, position and values of extremal points or other infor
mation like smoothness or monotonicity (as a degree of membership of a trajec
tory to the set of monotone functions).

Here some examples of structural similarity are given for illustration:
(A) Slope and curvature of trajectories are relevant, but their position in the

feature space is not relevant:
The functions y =x and y = 1.001*x + 100 are similar (both describe straight

lines with approximately equal slope and a curvature of zero), whereas y = x and
y = x + 0.001*sin(x) are not similar (despite the fact that they are much closer
in terms of Euclidean distance).

This type of definition of similarity can be applied to classify e.g. shares as
"decreasing" (A, E, H), "increasing" (B, D, G, J, K), "constant" (F, I) or ' fluctuat
ing' (C), depending on the trajectories of their share prices (figure 13-21).
(B) Form of trajectories is relevant, but their size and position in the feature space
are not relevant:

The unit circle (center at (0, 0) and radius 1) and the circle with center at (100,
0) and radius 17.4 are similar to degree l , whereas the unit circle and the unit square
are much less similar.

This type of definition may be applied to classify engines, using the airborne
sound they emit during operation: amplitude and position of characteristic pat
terns change with speed, independent of the state of the engine. However, the
characteristic pattern remains the same depending on the fact, whether an engine
is intact or damaged (figure 13-22).
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Figure 13-22. Idealized characteristic patterns of time signals for (a) an intact
engine; (b) an engine with some defect.
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In some cases, structural similarity can be reduced to pointwise similarity, for
instance in the first example, by considering the pointwise similarity for the first
and the second derivatives of the functions, respectively.

One method to define structural similarity between functions is to consider
relevant characteristics of these functions (e.g. integral, extrema), which contain
the information about the specific structure of functions .

The following algorithm to determine a measure for structural similarity
between arbitrary functions f and g is proposed:

I . A set of relevant characteristics K, i = I, . . . , m, describing structural sim
ilarity is chosen.

2. A fuzzy set A, labeled "admissible difference for characteristic K," with
membership function Ili is defined.

3. All characteristics KM) for the function f and Ki(g) for the function g are
calculated.

4. For each characteristic K, the difference ~Kj = I Kjf) - K;(g) I, i = 1, . . . ,
m, is calculated.

5. The degree of membership s, = lli(~Ki) of the difference ~Ki to the fuzzy set
Ai is calculated for each characteristic K, These membership values can be
interpreted as similarities between functions f and g with respect to the
chosen characteristics.

6. Finally the vector [Sl> S2, "" sm] of partial similarities is transformed
using specific transformations (e.g. y-operator, fuzzy integral, minimum,
maximum) into a real number s(f, g) expressing the overall degree of
similarity.

To define structural similarity between functions, the following possible charac
teristic values can be used:

1. Integral
2. Global minimum, maximum
3. Position of minima, maxima, zeros, inflection points
4. Number of minima, maxima, zeros, inflection points
5. Statistical characteristics
6. Parameters (if a family of parametric functions is under consideration)
7. Spline parameters (if spline approximation is used)
8. Fourier/Taylor/Wavelet coefficients
9. Range of function values

10. Median of function values
11. Center of gravity.

All these characteristic values may be calculated for the original function (tra
jectory) as well as for any derived function (e.g. derivatives, transformations , etc).
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Furthermore, characteristics may be defined over the whole domain or just over
parts of it (e.g. maximum of the first derivative in the domain 5 < x < 8).

The definition of structural similarity as well as the choice of relevant character
istics can be simplified if the class of possible functions (trajectories) is restricted.

Pointwise Similarity between Functions. Pointwise similarity between func
tions is concerned with the closeness of functions in the feature space and is based
on considering functional values directly (function 's characteristics or derived
functions are not relevant in this case) . The proposed method uses similarity of
the difference of two functions to the zero-function as a measure of similarity for
a pair of functions . That is, similarity between functions g(x) and hex) defined on
the universe X is determined as similarity between the difference function f(x) =
g(x) - hex), x E X, and the zero-function: s(g, h) = s(g-h, 0) = s(f, 0).

The following algorithm to determine a measure for pointwise similarity
between an arbitrary function f(x) and the zero-function is proposed:

I. A fuzzy set A "approximately zero" with a membership function Il is defined
(figure 13-23a). To emphasize the time focus, the variable x is taken to be
time (t).

2. The degree of membership Il(f(x» of the function f(x) to the fuzzy set A is
calculated for each point x E X. These degrees of membership can be inter
preted as (pointwise) similarities of the function f(x) to the zero-function
(figure 13-23b).

3. The function Il(f(x» is eventually transformed by using specific transforma
tions (e.g. y-operator, fuzzy integral, minimum, maximum) into a real number
s(f, 0) expressing the overall degree of being zero.

=>

Il([(t»

:' Jv
0 .2

o

Figure 13-23. (a) The fuzzy set "approximately zero" (1l(Y)), the function f(t) and
the resulting pointwise similarity Il(f(t)); (b) projection of pointwise similarity into
the plane (t, Il(f(t))).
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(13.3)

All similarity measures obtained with the help of this algorithm are invariant with
respect to the addition of a function, i.e. s(g, h) = s(g + c, h + c) holds for all
functions g, hand c. On the other hand, every similarity measure satisfying the
above equation can be described by defining pointwise similarity between an arbi
trary function and the zero-function.

The Case of Multi-dimensional Functions. The two algorithms presented
above were formulated to determine structural and pointwise similarity between
one-dimensional functions. The extension of these definitions for n-dimensional
functions g(x) and h(x), x E X, X X2 X ... x X; is straightforward, and will be
explained based on the algorithm for pointwise similarity. The modification of
the algorithm can be performed in two ways :

1. Fuzzy sets AXj "approximately zero" are defined on each subuniverse Xi> i =
1, . . . , n, and the similarity measures sXj(g,h), i = 1, ... , n, are determined
according to the described algorithm for projections of functions g(x) and
h(x) on subuniverses. The result is the n-dimensional vector of similarities

[SXI' SX2' . .. , sxnl.
2. The n-dimensional fuzzy set A "approximately zero" is defined on XI x X2

X .. • X X, and the similarity measure SXlxX2 ' . . xxn(g, h) is obtained for n
dimensional functions analogously to the one-dimensional case .

For some classification methods it could be desirable to transform the similarity
measure into the distance measure using e.g. the relation:

I
dig, h) = -(-) -1.

s g,h

In the first case , when n one-dimensional fuzzy sets are given, the transforma
tion can be performed in two ways :

1. The distance measure is calculated for the components of the n-dimensional
vector [SXI' SX2' . . . , sxnl resulting in the vector [dxl' dx2, . .. , dx.J, The latter
is then transformed into an overall distance using e.g. the Euclidean norm:

d(g,h) = ~_L d;; .
l- l ... . , n

2. The n-dimensional vector [SXI' SX2' . . . , sxnl is transformed by using some
transformations (e.g. y-operator, fuzzy integral, minimum, maximum) into an
overall similarity s(g, h). Thereafter the distance measure is calculated e.g.
by (13.3).

The obtained distance measure between n-dimensional functions g and h can
be used as a criterion within classical methods for data analysis, allowing the
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classification of multi-dimensional trajectories. This topic will be discussed in the
next section in more detail.

13.3.3 Approaches for Analysic Dynamic Systems

In the following , two different methods for the handling of dynamics within exist
ing methods for data analysis are considered:

a) During preprocessing: feature vectors containing trajectories are pre
processed as to become valid inputs for classical methods such as e.g. fuzzy
c-means;

b) Within the data analysis methods: classical methods are modified, so that
they can process feature vectors containing trajectories directly.

Since the modifications of the classical methods do not directly affect the way
clusters are built, the resulting methods are basically static. But they are suited
to process dynamic objects. Each approach is handled separately in the next two
sections.

Handling of Trajectories during Preprocessing. The goal of preprocessing is
the preparation and representation of the measured data in order to make the clas
sification possible and improve classification results [Famili et al. 1997]. In many
data analysis tools, methods for preprocessing are integrated [MIT Data Engine
2.1 Manual 1997]. These methods include transformations of data such as
calculation of the power spectrum from the time signal, computation of different
characteristics or scaling / standardization of the data. Thus, usually preprocess
ing is performed along with feature selection .

The easiest way to integrate dynamic features into existing methods for static
data analysis is to transform trajectories into real numbers (characteristic values)
and to use the latter instead of the original trajectories, i.e. vector valued features
are replaced by one or more real numbers. This leads to conventional feature
vectors, which can be processed by classical methods. This idea is illustrated in
figure 13-24, where Xl> X2, • • • , XN denote features represented as trajectories
or vectors and C;(Xj ) , i = 1, .. . , L, j = 1, . . . , N, is the i-th characteristic value
for feature j.

It should be noted that the number L; j = 1, ... , N, and type of characteris
tic values can vary for different features. Since this approach does not require
any modifications of the classification methods used, it can very easily be used
in conjunction with different methods for data analysis. The following approach
requires a modification of the classification methods, but does not use any
characteristic values.
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Figure 13-24. Transformation of a feature vector containing trajectories into a
usual feature vector.

Handling of Trajectories within Data Analysis Methods. In the previous
section, the problem of using trajectories is circumvented by reducing each tra
jectory to a vector of characteristic values.

In the following, another approach to handle dynamics is proposed, which is
based on similarity between functions . First, some basic remarks related to the
notions of distance and similarity are given.

Many data analysis methods (e.g. fuzzy c-means [Bezdek 1981], possi
bilistic c-means [Krishnapuran and Keller 1993], (fuzzy-) Kohonen networks
[Rumelhart and McClelland 1988]) use the distance between pairs of feature
vectors describing objects as a measure of similarity between these objects. Start
ing with a distance d(g,h) between objects, a similarity relation can be defined
by s(g, h) = 1/(1 + drg.h) [Bandemer and Nather 1992]. Conversely, each strictly
positive similarity relation defines a distance measure d(g, h) = l/s(g, h) - 1.

All data analysis methods mentioned above use nothing else but the distance
between objects and class representatives to calculate degrees of membership of
objects to classes . The positions of objects in the feature space are used to deter
mine representatives of each class. Therefore , it is sufficient to provide a distance
for pairs of objects and / or class representatives to be able to calculate degrees
of class membership. These considerations were used to develop a modified
version of the fuzzy c-means algorithm, which is called the functional fuzzy c
means (FFCM) and is able to classify dynamic objects (i.e, objects described by
trajectories). Since the features are trajectories, the class centers calculated by the
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Figure 13-25. Input and output of the functional fuzzy c-means .

FFCM are not just points in the feature space, as in classical fuzzy c-means, but
consist themselves of trajectories. This idea is illustrated in figure 13-25 , where
for the sake of simplicity objects are represented by only one feature .

The functional fuzzy c-means algorithm (FFCM) is very similar to the stan
dard fuzzy c-rneans (FCM). In the following we present the FFCM and point at
the differences to the FCM.

The problem of finding fuzzy clusters of trajectories in the feature space can
be formulated as the minimization of an objective function I(B,U;X) of the form

c N

I(B, U; X) = L.L. (llijt d 2 (x j, b;)
i=1 j =1

with the following parameters

c = number of clusters
N = number of objects
m = fuzzifier (weighting exponent)
/lij = degree of membership of object j to class i
d2(xj, bi) = distance between object j and the class center of class i
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Xj = feature vector describing object j
hi = class center of class i

It should be noted that in the case of the FFCM the components of the feature
vector of object Xj and of class center hi are trajectories in the feature space. The
distance measure is used for the calculation of d 2(xj , hi)'

The algorithm for solving the described problem consists of the
following steps:

1. Initialization
Generate values Ilij for i =1, .. . , c and j =1, ... , N such that

c

Lllij = 1 vt = 1,. . . , N
;,,1

2. Determination of class centers hi

Remark: The product and the sum are calculated for each component of each
trajectory of the feature vectors.

3. Recalculation of membership values Ilij' This is the main difference between
the FFCM and the FCM. The FFCM calculates the distances dij and dkj using
the distance measure

1
i = 1,. . . , C, j = 1,.. . , N

4. Stopping criterion : There exist many possible stopping criteria . One is to
repeat steps 2 to 4 until the changes in the membership values between two
iterations are smaller than a fixed threshold.

Examples of applying the FFCM to managerial and to engineering problems will
be shown in chapter 15.
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13.4 Tools for Fuzzy Data Analysis

13.4.1 Requirements for FDA Tools
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In section 13.2, three classes of methods, primarily for classifier design and clas
sification, were described in various degrees of detail. Each of these classes con
tains numerous methods, the suitability of which depends on the structure of the
problem to be solved. In addition, and not described here, one needs methods for
feature analysis such as fuzzy regression analysis , fuzzy discriminant analysis,
etc. (for more details, see, for example, Bezdek and Pal [1992]). In other words,
the tools needed for FDA are much more heterogeneous than those needed for
fuzzy control as described in chapter 11.

One of the most serious problems is that very often one only knows which
tool is the most suitable one after the problem has been solved. Only general
guidelines are known, such as: If the shape and the number of patterns one is
looking for is known, then an appropriate cluster method might best be employed.
If the knowledge is available as expert knowledge but not mathematically, then
a knowledge-based approach might be the best. And if this information is hidden
in a large mass of available data, then an ANN might be trainable to solve the
problem.

The only possible way, then, to perform FDA efficiently is to have a variety
of methods readily available on a computer in order to find out by an intelligent
trial-and-error method which of the methods is best suited to a specific case. This
approach, however, amounts to having case tools similar to those already
described for fuzzy control in chapter 11. There are only two differences: (l)
Instead of only a shell for knowledge-based inference, now the methods of all
three groups described in section 13.2. have to be induced, and (2) since the input
data themselves are often the object of analysis and since they often are not in a
suitable form to be analyzed, methods for data preprocessing also have to be
included.

Data Preprocessing. If, for example, in quality control some acoustic signals
have to be investigated, it becomes necessary to filter these data in order to over
come the problems of noisy input. In addition to these filter methods, some trans
formations of the measured data such as, for example, fast Fourier transformation
(FFT) could improve the respective results. Both filter methods and FFT belong
to the class of signal processing techniques. Data preprocessing includes signal
processing and also conventional statistical methods.

Statistical approaches could be used to detect relationships within a data set
describing a special kind of application . Here correlation analysis, regression
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analysis, and discrimination analysis can be applied adequately. These methods
could be used, for example, to facilitate the process of feature extraction. If, say,
two features from the set of available features are highly correlated, it could be
sufficient for a classification to consider just one of these.

The differences between an Fe tool and an FDA tool are probably responsi
ble for the fact that hardly any FDA tools are yet available on the market. In the
following section, we briefly describe the only one known so far.

13.4.2 DataEngine

DataEngine is a software tool that contains methods for data analysis described
above (see figure 13-26) . In particular, the combination of signal processing,
statistical analysis, and intelligent systems for classifier design and classification,
leads to a powerful software tool that can be used in a very broad range of
applications.

~ataEngin~

Data
Output

File
Serial Ports
Data Acquisition Boards
Data Editor
Data Generator

Data Preprocessing

Algoritbmlc
Data Analysis

Knowledge Based
Data Analysis

Neural
Data Analysis

Data
Output

File
Serial Ports
Data Acquisition Boards
Printer
2D and 3D Graphics

Hardwareplatforms:

• IBM.Compatible (MS Window.)
• SUD SPARe II (MOTIF)

- other platforms

User Interface:

- grapbical Programming

· interactive and automatie modes

c++ Precompiler for

•Algorithmic Classifiers

• Rulebased Systems

-Neural Nets
Structure
Output

Figure 13-26. Structure of DataEngine.
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DataEngine is written in an object-oriented concept in C++ and runs on all
usual hardware platforms. Interactive and automatic operation supported by an
efficient and comfortable graphical user interface facilitates the application
of data analysis methods. In general, such applications are performed in the
following three steps:

1. Modeling a specific application with DataEngine. Each subtask in an
overall data analysis application is represented by a so-called function block
in DataEngine. Such function blocks represent software modules that are
specified by their input interfaces, output interfaces, and function. Examples
include a certain filter method or a specific cluster algorithm. Function blocks
could also be hardware modules such as neural network accelerator boards.
This leads to a very high performance in time-critical applications.

2. Classifier design (off-line data analysis). After having modeled the appli
cation in DataEngine , off-line analysis has to be performed with given data
sets to design the classifier. This task is done without process integration .

3. Classification. Once the classifier design is finished, the classification of new
objects can be executed. Depending on specific requirements, this step can
be performed in an on-line or off-line mode. If data analysis is used for deci
sion support (e.g., in diagnosis or evaluation tasks), objects are classified off
line. Data analysis could also be applied to process monitoring and other
problems where on-line classification is crucial. In such cases, direct process
integration is possible by the configuration of function blocks for hardware
interfaces (see figure 13-27).

DataEngine provides the following models for intelligent data analysis:

• Fuzzy Rule Base
Fuzzy Rule Bases allow the representation of linguistic human knowledge in
a computer. The fuzzy inference procedure is able to reproduce human deci
sion behavior. Applications are knowledge-based diagnosis, classification
tasks, control, and process modeling. Especially for data analysis tasks the
DataEngine implementation offers a multistage inference procedure as well
as the ability to work with symbolic variables, too.

• Multilayer Perceptron
The multilayer perceptron is a supervised learning neural network. Appli
cations are classification tasks, process modeling and control. In addition
to the backpropagation learning rule with momentum and decay, DataEngine
provides the quickpropagation learning rule. A configurable learning
rate decay is implemented to avoid the overfitting of the neural network.
The integrated pruning algorithm supports finding the optimal network
architecture .
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Figure 13-27. Screen shot of DataEngine.

• Kohonen Feature Map
The self-organizing feature map of Kohonen is a unsupervised learning neural
network, which learns the structures inside the presented data. Applications
of this neural network are classification tasks and knowledge discovery. Espe
cially for classification tasks DataEngine provides an example-based labeling
algorithm, knowledge discovery is supported by the graphical visualization of
the feature map.

• Fuzzy C-Means
The fuzzy c-means algorithm [Bezdek 1981] is a fuzzy clustering algorithm.
Its applications are clustering and classification tasks. Especially for classifi
cation tasks DataEngine provides an example-based labeling algorithm .



FUZZY DATA ANALYSIS 321

• Fuzzy Kohonen Network
The Fuzzy Kohonen Network is a synthesis of Kohonen's feature
maps and the fuzzy c-means algorithm. The use of a slightly modified fuzzy
c-means inside the training algorithm of the network dramatically reduces
training times. Applications of this method are clustering and classification
tasks.

Each of these methods comes along with its own specialized editor. The
editors offer simple and fast access to all parameters of the model and the
model state can be visualized in several specialized views. All editors are
structured similarly so that the training period for a new method is reasonably
short.

In addition to the provided models DataEngine supplies signal processing
functions such as the fast fourier transformation, smoothing and digital filtering,
statistical and mathematical functions as well as a spreadsheet-based data editor
support data preprocessing. The so-called cards represent a graphical macro
language that can be used for the automation of tasks carried out repeatedly.
DataEngine 2.1 is fully integrated into the Microsoft Windows environment and
thus provides features like data exchange via the clipboard and makes full use of
the Microsoft Windows printing capabilities.

The software package is extendible by so called user-defined function
blocks. A user-defined function block is a special Microsoft Windows DLL
(Dynamic Link Libraries) which has to conform to the DataEngine PlugIn
interface.

There are three third party plug-ins available for DataEngine, which use the
interface described in the previous section. Find here a short description of these
products:

• FeatureSelector Plugln
The FeatureSelector PlugIn is a tool for automatic feature selection in case of
classification tasks. Given a number of examples, the FeatureSelector searches
for the most significant set of features which solve your classification task.
For the best solutions the tool generates appropriate training data files for
DataEngine.

• Advanced Clustering Library Plugln
The Advanced Clustering Library PlugIn provides nine additional clustering
algorithms for DataEngine. The package contains the clustering algorithms
Gustafson-Kessel, Gath-and-Geva and Fuzzy C-Means, which are imple
mented in several variations (probabilistic, possibilistic, parallel to axis).
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Applications of data analysis are abound. Recently, fuzzy data analysis of various
kinds has been applied to character recognition [Shao and Wu 1990], intelligence
[Guo and Zhang 1990], market segmentation, and many other areas. Here, two
applications shall be described in which the tool described above has been used.

13.5.1 Maintenance Management in Petrochemical Plants

Problem Formulation. Over 97% of the worldwide annual commercial pro
duction of ethylene is based on thermal cracking of petroleum hydrocarbons with
steam. This process is commonly called pyrolysis or steam cracking. Naphtha,
which is obtained by the distillation of crude oil, is the principal raw ethylene
material. Boiling ranges, densities, and compositions of naphtha depend on crude
oil quality.

Naphtha is heated in cracking furnaces up to 820°C-840°C, where the chem
ical reaction starts. The residence time of the gas stream in the furnace is deter
mined by the severity of the cracking process. The residence time for low severity
is about Is and for high severity 0.5 s. The severity of the cracking process spec
ifies the product distribution . With high-severity cracking, the amount of ethyl
ene in the product stream is increased and the amount of propylene is decreased
significantly.

During the cracking process, acetylenic, diolefenic, and aromatic compounds
are also produced, which are known to deposit coke on the inside surfaces of the
furnace tubes. This coke layer inhibits heat transfer from the tube to the process
gas, and therefore at some time the furnace must be shut down to remove
the coke. To guarantee a continuous run of the whole plant, several furnaces are
parallel integrated into the production process. The crude on-line measured
process data is not suitable for determining the degree of coking . About 20
different measurements of different indicators, such as temperatures, pressures,
or flows, are taken every minute. On the basis of these data only, it is not
possible for the operator to decide whether the furnace is coked or not. His or
her experience and the running time of the regarded furnace is the basis for this
decision .

Solution by Data Analysis. Clustering methods compress the information in
data sets by finding classes that can be used for classification . Similar objects are
assigned to the same class. In the present case, "objects" are different states of a
cracking furnace during a production period. Objects are described by different
features . Features are the on-line measured quantities, such as temperatures, etc.
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Figure 13-28 shows the structure of the cracking furnace under considera
tion. Features describing the process are primarily temperatures and flows. The
classes are "coked state" and "decoked state." Fuzzy cluster methods were used
to determine the coking of I0 cracking furnaces of a thermal cracker. The
data of one year have been analyzed. The process of coking lasts about 60
days. Therefore only mean values of a day of the measured quantities were
considered. For different furnaces, the centers of coked and decoked classes
were found by searching for coked and decoked states in the data set.
Figure 13-29 shows the temperature profile of a furnace during the whole
year. Characteristic peaks, where temperature decreases significantly, result
from decoking processes . Kl and K2 describe decoked and coked states of the
furnace.

The temperature profile shows no characteristic shape that results from coking .
Furnace temperature is only one of the features shown in figure 13-29. There are
dependencies between features, so a determination of coking through considera
tion of only the feature "temperature" is not possible.

Figure 13-30 shows the membership values of a furnace state during a pro
duction period using the classifier. The values describe the membership of the
current furnace state in the coked class. The membership values increase contin
uously and reach nearly 1 at the end of the production period.

The classifier works on-line and classifies the current furnace state with ref
erence to the coking problem. The operator can use this information to check how
long the furnace under consideration will be able to run until it has to be decoked.
As a result, it becomes easier to make arrangements concerning logistical ques
tions, e.g., ordering the correct amounts of raw material or not being understaffed
at certain times.

13.5.2 Acoustic Quality Control

In acoustic quality control, many efforts have been undertaken to automate the
respective control tasks that are usually performed by humans.

Even if there are many computerized systems for automatic quality control via
analysis of acoustic signals, some of the problems cannot be solved adequately
yet. Below, an example of acoustic control of ceramic goods is presented to show
the potentials of fuzzy data analysis in this respect.

Problem Formulation. In cooperation with a producer of tiles, a prototype has
been built that shows the potentials of automatic quality control. At this point, an
employee of this company has to check the quality of the final product by hitting
it with a hammer and deciding about the quality of the tile based on the
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healing gas

Figure 13-28. Cracking furnace.
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Figure 13-29. Furnace temperature.
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Figure 13-30. Fuzzy classification of a continuous process.
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resulting sound. Since cracks in the tile cause an unusual sound, an experienced
worker can distinguish between good and bad tiles.

Solution Process. In this application, algorithmic methods for classifier design
and classification were used to detect cracks in tiles. In the experiments, the tiles
are hit automatically, and the resulting sound is recorded via a microphone and
an AID-converter.

Then signal processing methods like filtering and fast Fourier transformations
(FFI) transform these sound data into a spectrum that can be analyzed. For
example, the time signal is transformed by an FFf into the frequency spectrum.
From this frequency spectrum, several characteristic features are extracted that
could be used to distinguish between good and bad tiles. The feature values are
the sum of amplitude values in some specified frequency intervals . In the exper
iments, a six-dimensional feature vector showed best results. After this feature
extraction, the fuzzy c-means algorithm found fuzzy classes that could be inter
preted as good and bad tiles. Since a crisp distinction between these two classes
is not always possible, fuzzy cluster techniques have an advantage : not only do
they distinguish bad from good tiles but also the intermediate qualities can be
defined (see figure 13-31).
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Exercises

FUZZY SET THEORY-AND ITS APPLICATIONS

I. Describe three example problems from the areas of engineering and
management, each of which can be considered as a problem of pattern
recognition.

2. How is the dimensionality of the data space reduced in pattern recognition ?
3. What is the center of a cluster and how can it be defined?
4. Which basic types of objective -function algorithms exist in cluster analysis?
5. Consider the folIowing fuzzy graph:

Determine the clusters of the graph in dependence of the r-degree (cf. figure
13-6).

6. Let X = {x" Xl , X3, X4} and let each Xi be a point in three-dimensional space.
Determine all 3-partitions that are possible and display them as shown in
example 13-1.

7. Give three possible fuzzy three-partitions for the problem given in exercise
6.

8. Let X = {(l, I), (I, 3), (10, I), (10, 3), (5, 2)} be a set of points in the plane.
Determine a crisp 3-partition that groups together (1,3) and (10, 3) and that
minimizes the Euclidean norm metric. Do the same for the variance
criterion .

9. Determine the cluster validity of the clusters shown in figures 13-11 and
13-12 by computing the partition coefficient and the partition entropy.



14 DECISION MAKING IN
FUZZY ENVIRONMENTS

14.1 Fuzzy Decisions

The term decision can have very many different meanings, depending on whether
it is used by a lawyer, a businessman, a general, a psychologist, or a statistician.
In one case it might be a legal construct, and in another a mathematical model;
it might also be a behavioral action or a specific kind of information processing .
While some notions of a "decision" have a formal character, others try to describe
decision making in reality.

In classical (normative, statistical) decision theory, a decision can be charac
terized by a set of decision alternatives (the decision space); a set of states of
nature (the state space); a relation assigning to each pair of a decision and state
a result; and finally, the utility function that orders the results according to their
desirability. When deciding under certainty, the decision maker knows which state
to expect and chooses the decision alternative with the highest utility, given the
prevailing state of nature. When deciding under risk, he does not know exactly
which state will occur; he only knows a probability function of the states. Then
decision making becomes more difficult. We shall restrict our attention to
decision making under certainty. In this instance, the model of decision making
is nonsymmetric in the following sense: The decision space can be described

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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either by enumeration or by a number of constraints. The utility function orders
the decision space via the one-to-one relationship of results to decision alterna
tives. Hence we can only have one utility function, supplying the order, but we
may have several constraints defining the decision space.

Example 14-1

Let us assume that the board of directors wants to determine the optimal
dividend. Their objective function (utility function) is to maximize the dividend.
The constraint defining the decision space is that the dividend be between zero
and 6%. Hence the optimal dividend is "Between 0 and 6%" and "maximal."
(The constraint does not impose an order on the decision space!) The optimal
dividend will obviously be 6%. Assigning a linear utility function, figure 14-1
illustrates these relationships.

In 1970 Bellman and Zadeh considered this classical model of a decision and
suggested a model for decision making in a fuzzy environment that has served
as a point of departure for most of the authors in "fuzzy" decision theory. They
consider a situation of decision making under certainty, in which the objective
function as well as the constraint(s) are fuzzy, and argue as follows: The fuzzy
objective function is characterized by its membership function, and so are the
constraints. Since we want to satisfy (optimize) the objective function as well as
the constraints , a decision in a fuzzy environment is defined by analogy to
nonfuzzy environments as the selection of activities that simultaneously satisfy

Utility

Constraint

o 2 3 4 5 6 Divldend(%)

I
Optimal
Decision

Figure 14-1 . A classical decision under certainty.
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objective function(s) and constraints. According to the above definition and
assuming that the constraints are "noninteractive," the logical "and" corresponds
to the intersection. The "decision" in a fuzzy environment can therefore be viewed
as the intersection of fuzzy constraints and fuzzy objective function(s) . The rela
tionship between constraints and objective functions in a fuzzy environment is
therefore fully symmetric, that is, there is no longer a difference between the
former and the latter.

This concept is illustrated by the following example [Bellman and Zadeh 1970,
B-148]:

Example 14-2

Objective function "x should be substantially larger than 10," characterized by
the membership function

{
o x~lO

llo(x) = 2 - I

(I + (x -lOr) x> 10

Constraint "x should be in the vicinity of II," characterized by the member
ship function

( 4)-1
llcCx)= I+(x-Il)

The membership function llJ5(x) of the decision is then

llb(x) = llo(x) /\ llcCx)

for x> 10

for x ~ 10

forlO<x~II.75

for x ~ 10

~D(X) = {:in{(1 +(x -lOfT', (I + (x -IO'r'j

= {~ + (x - iu') -1 for x> 11.75

This relation is depicted In figure 14-2. Let us now modify example 14-1
accordingly.

Example 14-3

The board of directors is trying to find the "optimal" dividend to be paid to the
shareholders. For financial reasons this dividend ought to be attractive, and for
reasons of wage negotiations it should be modest.
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x15

Objective Function
,,~-----

10

Constraint<,

5o

Figure 14-2. A fuzzy decision.

The fuzzy set of the objective function "attractive dividend" could, for
instance , be defined by:

{

I x ~ 5.8

110 (x) = 2,11
00

[-29x 3
- 366x 2

- 877x + 540] I < x < 5.8

o x~1

The fuzzy set (constraint) "modest dividend" could be represented by

{

I x s 1.2

Ilc(x) = _1_[_29x3
- 243x 2 +16x +2,388] 1.2 < x < 6

2,100

o x~6

The fuzzy set "decision" is then characterized by its membership function

Ilb(X) = min{llo(x), Ilc(x)}

If the decision maker wants to have a "crisp" decision proposal, it seems appro
priate to suggest the dividend with the highest degree of membership in the fuzzy
set "decision." Let us call this "maximizing decision," defined by

Xmax = arg (max min {Ilo (x), IlcCx)})
x

Figure 14-3 sketches this situation.
After these introductory remarks and examples, we shall formally define a

decision in a fuzzy environment in the sense of Bellman and Zadeh.
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~(x)

1.0 +--~

.8

.6

.4

.2

x

765432
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Figure 14-3 . Optimal dividend as maximizing decision.

Definition 14-1 [Bellman and Zadeh 1970, B-148]
- -

Assume that we are given a fuzzy goal G and a fuzzy constraint C in a space of
alternatives X. Then e and Ccomb~ne to f~rrn a decision, iJ.z whi:h is a_fuzzy
set resulting from intersection of G and C. In symbols, D = G n C, and
correspondingly,

~l> = min {~G ' ~d

More generally, suppose that we have n goals e.. ..., en and m constraints
C , em' Then the resultant decision is the intersection of the given goals
e ,en and the given constraints C... . . , em'That is,

- - - - - - -
D = G 1 n Gz n .. . n c, n c, n c, n . .. n c,

and correspondingly

~l> = min {~GJ ,~Gz , . .. , ~Gn , ~CI , ~C2 , • •. , ~Cm}

=min {~GJ ,~Cj } =min {~i}
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Definition 14-1 implies essentially three assumptions:

1. The "and" connecting goals and constraints in the model corresponds to the
"logical and."

2. The logical "and" corresponds to the set-theoretic intersection.
3. The intersection of fuzzy sets is defined in the possibilistic sense by the

min-operator.

Bellman and Zadeh indicated in their 1970 paper that the min-interpretation
of the intersection might have to be modified depending on the context. "In short,
a broad definition of the concept of decision may be stated as: Decision = Con
fluence of Goals in Constraints" [Bellman and Zadeh 1970, B-149].

The question arises whether even the intersection interpretation is a generally
acceptable assumption or whether "confluence" has to be interpreted in an even
more general way. Let us consider the following example.

Example 14-4

An instructor at a university must decide how to grade written test papers . Let
us assume that the problem to be solved in the test was a linear programming
problem and that the student was free to solve it either graphically or using
the simplex method. The student has done both. The student's performance is
expressed-for graphical solution as well as for the algebraic solution-as t~e

achieved degree of membership in the fuzzy sets "good graphical solution" (G)
and "good simplex solution" (S), respectively. Let us assume that he reaches

/le =0.9 and /ls =0.7

If the grade to be awarded by the instructor corresponds to the degree of mem
bership of the fuzzy set "good solutions of linear programming problems" it
would be quite conceivable that his grade /liP could be determined by

/liP = max {/lc, /ls} = max {0.9,O.7} = 0.9

The two definitions of decisions-as the intersection or the union of fuzzy sets
imply essentially the following: The interpretation of a decision as the intersec
tion of fuzzy sets implies no positive compensation (trade-off) between the
degrees of membership of the fuzzy sets in question, if either the minimum or
the product is used as an operator. Each of them yields a degree of membership
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of the resulting fuzzy set (decision), which is on or below the lowest degree of
membership of all intersecting fuzzy sets (see example 14-3).

The interpretation of a decision as the union of fuzzy sets, using the max
operator, leads to the maximum degree of membership achieved by any of the
fuzzy sets representing objectives or constraints. This amounts to a full compen
sation of lower degrees of membership by the maximum degree of membership
(see example 14-4).

Observing managerial decisions, one finds that there are hardly any decisions
with no compensation between either different degrees of goal achievement or
the degrees to which restrictions are limiting the scope of decisions. The com
pensation, however, rarely ever seems to be "complete," as would be assumed
using the max-operator. It may be argued that compensatory tendencies in human
aggregation are responsible for the failure of some classical operators (min,
product, max) in empirical investigations.

Two conclusions can probably be drawn: Neither the noncompensatory "and"
represented by operators that map between zero and the minimum degree of
membership (min-operator, product-operator, Hamacher's conjunction operator
[definition 3-15] , Yager's conjunction operator [definition 3-16]) nor the fully
compensatory "or" represented by the operators that map between the maximum
degree of membership and 1 (maximum, algebraic sum, Hamacher 's disjunction
operator, Yager 's disjunction operator) are appropriate to model the aggregation
of fuzzy sets representing managerial decisions.

"Confluence of Goals and Constraints" should therefore be interpreted as in
definition 14-2.

Definition 14-2

Let ~G,<x), i = 1, . . . , m, X E X, be membership functions of constraints, defin
ing the decision space, and let ~Glx), j = 1, . . . , n, x E X be the membership
functions of objective (utility) functions or goals.

A decision is then defined by its membership function

~b(X) =@j~Ci(X) *@j J.!Gj (x ), i = I, .. . ,m,j=I, .. . , n

where *, @j, @j denote appropriate, possibly context-dependent "aggregators"
(connectives).

We shall discuss the question of appropriate connectives in more detail in
chapter fifteen. Before we tum to fuzzy mathematical programming , it should be
mentioned that the symmetry that is a property of all definitions based on
Bellman-Zadeh's concept (irrespective of the operators used) is not considered
adequate by all authors (for example, see Asai et al. [1975]).
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14.2 Fuzzy Linear Programming

Linear programming models shall be considered as a special kind of decision
model: The decision space is defined by the constraints ; the "goal" (utility func
tion) is defined by the objective function ; and the type of decision is deci
sion making under certainty. The classical model of linear programming can be
stated as

maximize f(x) = cT x

such that Ax ~ b

x~O

(14.1)

Let us now depart from the classical assumptions that all coefficients of A, b, and
c are crisp numbers, that ~ is meant in a crisp sense, and that "maximize" is a
strict imperative!

If we assume that the LP-decision has to be made in fuzzy environments, quite
a number of possible modifications of model (14.1) exist. First of all, the deci
sion maker might not really want to actually maximize or minimize the objective
function. Rather, he or she might want to reach some aspiration levels that might
not even be definable crisply. Thus he or she might want to "improve the present
cost situation considerably," and so on.

Secondly, the constraints might be vague in one of the following ways: The ~

sign might not be meant in the strictly mathematical sense, but smaller violations
might well be acceptable. This can happen if the constraints represent aspiration
levels as mentioned above or if, for instance, the constraints represent sensory
requirements (taste, color, smell, etc.) that cannot adequately be approximated
by a crisp constraint. Of course, the coefficients of the vectors b or c or of the
matrix A itself can have a fuzzy character either because they are fuzzy in nature
or because perception of them is fuzzy.

Finally, the role of the constraints can be different from that in classical linear
programming, where the violation of any single constraint by any amount renders
the solution infeasable. The decision maker might accept small violations of
constraints but might also attach different (crisp or fuzzy) degrees of importance
to violations of different constraints. Fuzzy linear programming offers a number
of ways to allow for all these types of vagueness, and we shall discuss some of
them below.

First of all, one can either accept Bellman-Zadeh's concept of a symmetrical
decision model (see definition 14-1) or develop specific models on the basis of
a nonsymmetrical basic model of a "fuzzy" decision [Orlovsky 1980; Asai et al.
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1975]. Here we shall adopt the former, more common, approach. Secondly, one
has to decide how a fuzzy "maximize" is to be interpreted , or whether to stick to
a crisp "maximize." In the latter case, complicat ions arise on how to connect a
crisp objective function with a fuzzy solution space. We will discuss one approach
for a fuzzy goal and one approach for a crisp objective function.

Finally, one has to decide where and how fuzziness enters the constraints.
Some authors [Tanaka and Asai 1984] consider the coefficients of A, b, c as fuzzy
numbers and the constraints as fuzzy functions . We shall here adapt another
approach that seems to be more efficient computationally and more closely resem
bles Bellman-Zadeh's model in definition 14-1 : We shall represent the goal and
the constraints by fuzzy sets and then aggregate them in order to derive a maxi
mizing decision .

In both approaches, one also has to decide on the type of membership func
tion characterizing either the fuzzy numbers or the fuzzy sets representing goal
and constraints.

In classical LP, the "violation" of any constraint in model (14.1) renders the
solution infeasible . Hence all constraints are considered to be of equal weight or
importance. When departing from classical LP, this conclusion is no longer true,
and one also has to worry about the relative weights attached to the constraints .

Before we develop a specific model of linear programming in a fuzzy envi
ronment, it should have become clear that in contrast to classical linear pro
gramming, "fuzzy linear programming" is not a uniquely defined type of model ;
many variations are possible, depending on the assumptions or features of the
real situation to be modeled.

14.2. 1 Symmetric Fuzzy LP

Let us now tum to a first basic model for "fuzzy linear programming." In model
(14.1), we shall assume that the decision maker can establish an aspiration level,
z, for the value of the objective function he or she wants to achieve and that each
of the constraints is modeled as a fuzzy set. Our fuzzy LP then becomes :
Find x such that

(14.2)

Here ~ denotes the fuzzified version of S; and has the linguistic interpretation
"essentially smaller than or equal to." ~ denotes the fuzzified version of ;:::
and has the linguistic interpretation "essentially greater than or equal to." The
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objective function in model (14.1) might have to be written as a minimizing goal
in order to consider z as an upper bound.

We see that model (14.2) is fully symmetric with respect to objective function
and constraints, and we want to make that even more obvious by substituting
n) =Band n) =d. Then model (14.2) becomes:
Find x such that

Bx~d

x~O (14.3)

Each of the (m + 1) rows of model (14.3) shall now be represented by a fuzzy
set, the membership functions of which are lJ.;{x) . Following definition 14-1, the
membership function of the fuzzy set "decision" of model (14.3) is

!J.b(X) = min {!J.i(X)}
i

(14.4)

(14.6)

!J.;(X) can be interpreted as the degree to which x fulfills (satisfies) the fuzzy
unequality B;X ::;d, (where B, denotes the ith row of B).

Assuming that the decision maker is interested not in a fuzzy set but in a crisp
"optimal" solution, we could suggest the "maximizing solution" to equation
(13.4), which is the solution to the possibly nonlinear programming problem

max min {!J.i(X)} = max !J.b(X) (14.5)
x~o x~o

Now we have to specify the membership functions !J.i(X). !J.i(X) should be 0 if
the constraints (including the objective function) are strongly violated, and 1 if
they are very well satisfied (i.e., satisfied in the crisp sense); and !J.i(X) should
increase monotonously from 0 to 1, that is,

{

I if Bix::; d,

!J.i(X)= E[O,l] if di<Bix::;di+Pi i=l, . . . ,m+l

o if Bix > d, +Pi

Using the simplest type of membership function, we assume them to be linearly
increasing over the "tolerance interval" Pi:

()-f &x-d;

if Bix::;di

if d, < Bix::;di+Pi i = 1,. .. , m+l (14.7)!J.i x - -
Pi

0 if Bix>di+Pi

The Pi are subjectively chosen constants of admissible violations of the con
straints and the objective function. Substituting equation (14.7) into problem
(14.5) yields, after some rearrangements [Zimmermann 1976] and with some
additional assumptions,
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( B-X-d.)max min 1- I I

X;,O i Il i

339

(14.8)

Introducing one new variable, A, which corresponds essentially to equation
(14.4), we arrive at

maximize A

such that Api + B;x ::;; d, + Pi i = 1, ... , m + I

X~O (14.9)

(14.10)

If the optimal solution to problem (14.9) is the vector (A, xo), then Xo is the
maximizing solution (14.5) of model (14.2), assuming membership functions as
specified in (14.7) .

The reader should realize that this maximizing solution can be found by
solving one standard (crisp) LP with only one more variable and one more con
straint than in model (14.3). Consequently, this approach is computationally very
efficient.

A slightly modified version of models (14.8) and (14.9), respectively, results
if the membership functions are defined as follows: A variable ti, i = I, . . . , m +
I, 0 ::;; t, ::;; Pi, is defined that measures the degree of violation of the ith constraint:
The membership function of the ith row is then

t,
lli(x)=I-....!....

Pi

The crisp equivalent model is then

maximize A

such that Api + t, ::;; Pi i = 1, . .. , m + I

B;x- ti ::;; d,

x, t ~ 0 (14.11)

This model is larger than model (14.9), even though the set of constraints ti

::;; Pi is actually redundant. Model (14.11) has some advantages , however, in par
ticular when performing sensitivity analysis, which will be discussed in the
second volume on decisions in fuzzy environments.

Example 14-5

A company wanted to decide on the size and structure of its truck fleet. Four
differently sized trucks (Xl through X4) were considered . The objective was to
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minimize cost, and the constraints were to supply all customers (who have a
strong seasonally fluctuating demand). This meant certain quantities had to be
moved (quantity constraint) and a minimum number of customers per day had to
be contacted (routing constraint). For other reasons, it was required that at least
six of the smallest trucks be included in the fleet. The management wanted to use
quantitative analysis and agreed to the following suggested linear programming
approach:

minimize

41,400Xl + 44,300X2 + 48,100x3+ 49,100x4

subject to constraints

0.84xl + 1.44x2+ 2.16x3 + 2.4X4 ~ 170

16xl + 16x2 + 16x3 + 16x4 ~ 1,300

Xl ~ 6

The solution was Xl = 6, X2 = 16.29, X3 = 0, X4 = 58.96, and Min Cost =
3,864,975. When the results were presented to management, it turned out that the
findings were considered acceptable but that the management would rather have
some "leeway" in the constraints. Management felt that because demand fore
casts had been used to formulate the constraints (and because forecasts never turn
out to be correct!), there was a danger of not being able to meet higher demands
by their customers.

When they were asked whether or not they really wanted to "minimize trans
portation cost ," they answered: Now you are joking. A few months ago you told
us that we have to minimize cost; otherwise, you could not model our problem.
Nobody knows minimum cost anyway. The budget shows a cost figure of $4.2
million , a figure that must not be exceeded. If you want to keep your contract,
you better stay considerably below this figure.

Since management felt forced into giving precise constraints (because of the
model) in spite of the fact that it would rather have given some intervals, model
(14.3) was selected to model the management's perceptions of the problem sat
isfactorily. The following parameters were estimated:

Lower bounds of the tolerance interval:

d, = 3,700,000 d2 = 170 d3 = 1,300 d, =6

Spreads of tolerance intervals:

PI =500,000 P2 = 10 P3 = 100 P4 =6
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After dividing all rows by their respective p;'s and rearranging in such a way
that only 'A remains on the left-hand side, our problem in the form of (14.9)
became:

Maximize 'A subject to constraints

0.083x, + 0.089x2 + 0.096x3+ 0.098x4 + 'A s 8.4

0.084x] + 0.I44x2 + 0.216x3+ 0.24x4 - 'A ~ 17

0.16x, + 0.16x2 + 0.16x3+ 0.16x4 - 'A ~ 13

0.167x, - 'A ~ 1

The solution is as Follows:

Unfuzzy

XI =6
X2 = 16.29
X4 = 58.96
Z = 3,864,975

Constraints:
1. 170
2. 1,300
3. 6

Fuzzy

X, = 17.414
X2 = 0
X4 = 66.54
Z = 3,988,250

174.33
1,343.328

17.414

As can be seen from the solution, "leeway" has been provided with respect to all
constraints and at additional cost of 3.2%.

The main advantage, compared to the unfuzzy problem formulation, is the fact
that the decision maker is not forced into a precise formulation because of math
ematical reasons even though he or she might only be able or willing to describe
the problem in fuzzy terms. Linear membership functions are obviously only a
very rough approximation. Membership functions that monotonically increase or
decrease, respectively, in the interval of [dj , d, + p;] can also be handled quite
easily, as well be shown later.

So far, the objective function and all constraints were considered fuzzy. If
some of the constraints are crisp, Dx :::; b, then these constraints can easily be
added to formulations (14.9) or (14.11), respectively. Thus problem (14.9) would,
for instance, become :
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maximize A

such that APi + Bx ~ d, + Pi i = 1, ... , m + 1

os s»
x, A~O (14.12)

Let us now tum to the case in which the objective function is crisp and the solu
tion space is fuzzy.

14.2.2 Fuzzy LP with Crisp Objective Function

A model in which the objective function is crisp-that is, has to be maximized
or minimized-and in which the constraints are all or partially fuzzy is no longer
symmetrical. The roles of objective functions and constraints are different; the
latter define the decision space in a crisp or fuzzy way, and the former induce an
order of the decision alternatives. Therefore the approach of models (14.3)-(14.5)
is not applicable. The main problem is the scaling of the objective function (the
domain of which is not normalized) when aggregating it with the (normalized)
constraints. In very rare real cases, a scaling factor can be found that has a real
justification.

The problem we face is the determination of an extremum of a crisp function
over a fuzzy domain, which we have already discussed in section 7.2 of this
book. In definition 7-3, we defined the notion of a maximizing set that we will
specify here and use as a vehicle to solve our LP problem. Two approaches are
conceivable:

1. The determination of the fuzzy set "decision."
2. The determination of a crisp "maximizing decision" by aggregating the

objective function after appropriate transformations with the constraints.

1. The Determination of a Fuzzy Set "Decision." Orlovski [1977] suggests
computing, for all a-level sets of the solution space, the corresponding optimal
values of the objective function and considering as the fuzzy set "decision" the
optimal values of the objective functions, with the degree of membership equal
to the corresponding a-level of the solution space.

Definition 14-3 [Werners 1984]

Let Ra = {xix E X, ~R(X) ~ a} be the a-level sets of the solution space and N(a)
= {xix E Ra,f(x) = SUPX'ERafix')} the set of optimal solutions for each a-level set.

The fuzzy set "decision" is then defined by the membership function
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(14 .13)

{

SUP ex if x E U N(ex)
!lopt (x) = xeN(a) co-O

o else

The fuzzy set "optimal values of the objective function" has the membership
function

{

SUP !loPt(x) if rE1R1 /\rl(r)~0

!l/(r) = xe r'(r)

o else

fix) is the objective function with functional values r.
For the case of linear programming, the determination of the r's and !lopt(x)

can be obtained by parametric programming [Chanas 1983]. For each ex, an LP
of the following kind would have to be solved:

maximize f(x)

such that ex ~ !li(X) i = I, .. . , m

XEX

The reader should realize, however, that the result is a fuzzy set and that the deci
sion maker would have to decide which pair (r, !lrf(r» he or she considers optimal
if he or she wants to arrive at a crisp optimal solution .

Example 14-6 [Wemers 1984]

Consider the LP-Model

maximize z =2x1 + X2

such that Xl ~ 3

XI +X2 ~ 4

5xI +X2 ~ 3

X .. X2 ~ 0

The "tolerance intervals" of the constraints are PI = 6, P2 = 4, P3 = 2.
The parametric linear program for determining the relationships betweenf(x)

= r and degree of membership is then

maximize z =2xI + X2

such that XI ~ 9 - 6ex

XI +X2 ~ 8 - 4ex

5xI + X2 ~ 5 - 2ex
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10

Figure 14-4. Feasible regions for flR(X) =0 and flR(X) = 1.

Figure 14-4 shows the feasible regions for Ro and R1 for l!R(X) = 0 and l!R(X) =
1. Figure 14-5 shows the resulting membership function l!t<r). Additionally,
figure 14-5 shows the membership function of the goal and the fuzzy decision
that will be discussed below.

Obviously, the decision maker has to decide which combination (r l!t<r» he
or she considers best.

Decision aids in this respect either can be derived from external sources or
may depend on the problem itself. In the following, we shall consider an approach
that suggests a crisp solution dependent on the solution space.

2. The Determination of a Crisp Maximizing Decision Some authors
[Kickert 1978; Nguyen 1979; Zadeh 1972] suggest approaches based on the
notion of a maximizing set, which seem to have some disadvantages (see Werners
[1984]). We shall therefore present a model that is particularly suitable for the
type of linear programming model we are considering here. Werners [1984] sug
gests the following definition .
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0,5

fl.,

5

Figure 14-5. Fuzzy decision.

10 15

Definition 14-4

Let! X -) 1R 1 be the objective function, R a fuzzy region (solution space), and
S(R) the support of this region. The maximizing set over the fuzzy region. MRU),
is then defined by its membership function

0 if f(x)~ inf f
S(R)

f(x)- inf f
I-lMR(j) (r) =

sUi )
if inf f < f(x) < sup f

sup f -inJ f S(R) S( R)
S(R) S(R)

1 if sup f~ f(x)
S(R)

The intersection of this maximizing set with the fuzzy set "decision" (figure 14-5)
could then be used to compute a maximizing decision Xo as the solution with the
highest a degree of membership in this fuzzy set. It does not seem reasonable that
the judgment of the decision maker is calibrated by looking at the smallest value
of f over the feasible region. A better benchmark would be the largest value for
fthat can be obtained at a degree of membership of 1 of the feasible region. This
leads to the following definition.
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Definition 14-5 [Werners 1984]

Lett X~ 1R 1 be the objective function, R =fuzzy feasible region, S(R)=support
of R, and R, = a-level cut of R for a = 1. The membership function of the goal
(objective function) given solution space R is then defined as

0 if f(x) $ sup f
Rl

f(x)-sup f

lle(x) = RI if sup f < f(x) < sup f
sup f -sup f RI S(R)
S(R) RI

if sup f$ f(x)
S(R)

The corresponding membership function in functional space is then

{

SUP llC<x) if r E 1R,j-1(r) :;t:0
lle(r): = XEorl(r)

else

Example 14-7

Consider the model of example 14-6. For this model, R] is the region defined by

Xl s 3

XI+ X2 s 4

5xl + X2 $ 3

x:2::0

The supremum off over this region is

sup 2Xl +X2 = 7
R,

Figure 14-5 shows the membership functions llt<r) and lle(r) . Using the min-max
approach, the resulting solution is x? = 5.84, xg = .05, ro = 11.73, and the attained
degree of membership is llli(Xo) = .53.

Let us now return to model (14.2) and modify it by considering the objective
function to be crisp and by adding a set of crisp constraints Dx $ b':

maximize

such that

f(x) =cTX

Ax~b }
Dx$b'R

x:2::0 (14.14)
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Let the membership functions of the fuzzy sets representing the fuzzy constraints
be defined in analogy to equation (14.7) as

{

I if A,x:S; b,

()
b, +P, -A,x .

u, x = If b, < Aix :s; b, +Pi
P,

o if A,x> b, +P, (14.15)

(14.16)

The membership function of the objective function (14.5) can be determined by
solving the following two LPs:

maximize I(x) = cTx

such that Ax :s; b

Dx:S; b'

x~O

yielding SUPRJ= (CTX)OPI =j;; and

maximize I(x) = cTx

such that Ax :s; b +P

Dx:S; b'

x~O

yielding supsuhl= (CTX)Opl = 10.
The membership function of the objective function is therefore

(14.17)

(14.19)

() f'X- ~
if 10:S;CTx

if j; <cTx<fo~G x = 10 - j;

0 if cTX:S; j; (14.18)

Now we have again achieved "symmetry" between constraints and the objec
tive function, and we can employ the approach we used to derive model (14.9)
as an equivalent formulation of model (14.2).
The equivalent model to (14.6) is

maximize A

such that ACfo - j;)_cTX:S; - fi
Ap+Ax:S;b+p

Dx:S;b'

A:S;l

A,X~O
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Example 14-8

We shall again consider the model in example 14-6. In example 14-7, we have
computed II = 7. By solving problem (14.17), we obtain 10 = 16. Therefore
problem (14.19) is

maximize A

such that 91., - 2xt - x2:::;;-7

61., +x\:::;; 9

41., +XI +X2:::;; 8

21., + 5xI + X2 s 5

1.,:::;;1

A, XI> X2:2: 0

The solution to this problem is x? = 5.84, xg = 0, Ao = .52.

Before we tum to fuzzy dynamic programming, it should be mentioned that on
the basis of the approach described so far, suggestions have been published for
a duality theory [Rodder and Zimmermann 1980], for sensitivity analysis in fuzzy
linear programming [Hamacher, Leberling, and Zimmermann 1978], for integer
fuzzy programming [Zimmermann and Pollatschek 1984], and for the use of other
than linear membership functions and other operators [Wemers 1988]. These
topics will not, however, be discussed here. They have been discussed in more
detail in Zimmermann [1987]. Other approaches introducing fuzziness into math
ematical programming have been published by a number of authors (see, for
instance, [Slowinski 1998], [Wang et al. 2001], [Sakawa and Nighizaki 2001],
[Jamison and Lodwick 2001], [Sengupta et al. 2001]). Often these approaches
have been developed in the context of multi objective decision making. In order
to avoid duplication, these approaches will be mentioned at the end of the dis
cussion of the vector-maximum problem in section 14-4.

14.3 Fuzzy Dynamic Programming

Traditional dynamic programming [Bellman 1957] is a technique well known in
operations research and used to solve optimization problems that can be com
posed into subproblems of one variable (decision-variable) each. The idea under
lying dynamic programming is to view the problem as a multistage decision
process, the optimal policy to which can be determined recursively.

Generally the problem is formulated in terms of state variables, Xi ; decision
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Figure 14-6. Basic structure of a dynamic programming model.

variables, d.; stage rewards, r , (x;, d;); a reward function, R;(dN, ••• , dN.;, XN); and
a transformation function , l;Cd;, x;). Figure 14-6 illustrates the basic structure.

The problem is solved by solving recursively the following :

max R;(x,; d;) = max Ii (x;, d;) 0 R;+i (X;+i)
di d;

such that

i = 1,. . . , N-l

or

All variables, rewards, and transformations are supposed to be crisp.

14.3.1 Fuzzy Dynamic Programming with Crisp State Transformation
Function

In their famous paper, Bellman and Zadeh [1970] suggested for the first time
a fuzzy approach to this type of problem. Conceivably they based their con
siderations on the symmetrical model of a decision as defined in definitions 14-1
and 14-2. The following terms will be used to define the fuzzy dynamic pro
gramming model [Bellman and Zadeh 1970, B-151] : X;EX, i = 0, . . . , N: (crisp)
state variable where X= {'tl> . . . , 'tN} is the set of values permitted for the state
variables ; d, E D, i = 1, . . . , N: (crisp) decision variable where D= {al> . .. , am}

is the set of possible decisions.

X;+l = I(X;, d;) : (crisp) transformation function

For each stage I , I = 0, .. . , N - 1, we define:
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1. a fuzzy constraint C, limiting the decision space and characterized by its
membership function

IlE,(d,)

2. a fuzzy goal GN characterized by the membership function

IlGN(XN)

The problem is to determine the maximizing decision

DO={dn i =0, ... , N, for a given Xo

The Model. According to definition 14-1, the fuzzy set decision is the "con
fluence" of the constraints and the goal(s), that is,

N-I
D=nC,nGN

,=0

Using the min-operator for the aggregation of the fuzzy constraints and the
goal, the membership function of the fuzzy set decision is

lliJ(do, .•• , dN-1) = min {IlEo(do), . . . , IlEN-1(dN-1) , IlGN(XN)} (14 .20)

The membership function of the maximizing decision is then

lliJo(dg, ••. , d~_I) = max max [min {IlEo(do), ... , IlGN(tN(XN-h dN_1))}]
do,..·,dN-2 dN-l

(14.21)

where dt denotes the optimal decision on stage i . If K is a constant and g is any
function of dN- h we can write

max min {g(dN - 1) , K} = min {K, max g(dN - 1)}

dN-1 dN-l

and equation (14.21) can be expressed as

IliJo (dg , ... , d~_I) = max min {IlEo (do), ... , IlGN-l (XN-I)}
do ,..· ,dN-l

with

We can thus determine DO recursively.

(14.22)

(14.23)

Example 14-9 [Bellman and Zadeh 1970, B-153]

Let dh dz be the two decision variables, the possible values of which can be (Xh

(Xz. The state variables are x" t =0, . . . , 2 with a finite range X ={1h 1 z, 13} .
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The fuzzy constraints for t =0 and t = 1 are

CO(ai) = {(a" .7), (az , I)}

C1(a i) = {(aI, 1), (az, .6)}

The fuzzy goal is specified as

G(xz) ={(t" .3), ('z, 1), ('3' .8)}

and the crisp transformation function is defined by the following matrix:

351

Solution. Using equation (14.23) we can compute the fuzzy goal induced at
t =1 as follows: We start at stage t =2. The state-decision combinations that yield
'; on state t = 1 are obtained from the above matrix.

So we can compute:

).ltt ('I) = max {min [).leJd,),).l('h (t('" a, ))]
dl •

nun [).lei (dl),).l('h(t( 'I, az))]}

= max {min [1, .3], min [.6, l]}

=max {.3, .6} =.6

~dlo =az

).lei ('z) = max {min [I, .8], min [.6, .3]}

= max {.8, .3} = .8

~d? =al

).lei ('3) = max {min [1,.3], min [.6, .8]}

=max {.3, .6} =.6

~d? =az

).leo ('I) = max {min [.7, .6], min [I, .8]}

=.8
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Thus for
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Ileo ('t2) = max {min [.7, .6], min [1, .6]}

=.6

-t d8 = (X2 or (X2

Ileo ('tJ) = max {min [.7,.6], min [1, .6]}

= .6

Xo ='tJ :d8 =(X2, df =(X,

with 1100 =.8
2

Xo = 't2 : d8 = (x" df = (X2 or

d8 =(X2, df =(X2

with Ilo~ = .6

Xo = 'tJ : d8 = (x" df = (X2 or

d8 = (X2, df = (X2

both with 1100 =.6
2

14.4 Fuzzy Multicriteria Analysis

In the recent past, it has become more and more obvious that comparing the desir
ability of different means of action, judging the suitability of products , or deter
mining "optimal" solutions in decision problems cannot be done in many cases
by using a single criterion or a single objective function. This area, multicriteria
decision making, has led to numerous evaluation schemes (e.g., in the areas of
cost-benefit analysis and marketing) and to the formulation of vector-maximum
problems in mathematical programming.

Two major areas have evolved, both of which concentrate on decision making
with several criteria: Multi Objective Decision Making (MODM) and Multi
Attribute Decision Making (MADM) . The main difference between these two
directions is that the former concentrates on continuous decision spaces, primar
ily on mathematical programming with several objective functions, and the latter
focuses on problems with discrete decision spaces . There are some exceptions
to this rule (e.g., integer programming with multiple objectives), but for our
purposes this distinction seems to be appropriate .

The literature on multicriteria decision making has grown tremendously in the
recent past. We shall only mention one survey reference for each of these two
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areas: Hwang and Yoon [1981] for MADM and Hwang and Masud [1979] for
MODM. Fuzzy set theory has contributed to MODM as well as to MADM. We
shall illustrate these contributions by describing one model in each of these areas.
This topic has been treated in much more detail in the volume on fuzzy sets and
decision analysis [Zimmermann 1987].

14.4. 1 Multi Objective Decision Making (MODM)

In mathematical programming, the MODM problem is often called the "vector
maximum" problem, and was first mentioned by Kuhn and Tucker [1951].

Definition 14-6

The vector-maximum problem is defined as

"maximize" {Z(x) Ix E X}

where Z(x) = (ZI(X), ..• , zkCx» is a vector-valued function of x E IRn into IRk and
X is the "solution space."
Two stages can generally be distinguished, at least categorically, in vector
maximum optimization:

1. the determination of efficient solutions, and
2. the determination of an optimal compromise solution.

Definition 14-7

Let "max" (Z(x) Ix E X} be a vector-maximum problem as defined in definition
14-6. x is an efficient solution if there is no XE X such that

Zi(x) ~ Zi(x) i = 1,... , k

and

Zi(X)> Zi(X) for at least one i = 1,... , k

The set of all efficient solutions is generally called the "complete solution."

Definition 14-8

An optimal compromise solution of a vector-maximum problem is a solution
x E X that is preferred by the decision maker to all other solutions, taking into
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consideration all criteria contained in the vector-valued objective function . It is
generally accepted that an optimal compromise solution has to be an efficient
solution according to definition 14-7.

In the following, we shall restrict our considerations to the determination of
optimal compromise solutions in linear programming problems with vector
valued objective functions.

Three major approaches are known to single out one specific solution from
the set of efficient solutions which qualifies as an "optimal" compromise
solution:

1. the utility approach [see, e.g., Keeney and Raiffa 1976],
2. goal programming [see, e.g., Chames and Cooper 1961], and
3. interactive approaches [see, e.g., Dyer 1973]

The first two of these approaches assume that the decision maker can specify his
or her "preference function" with respect to the combination of the individual
objective functions in advance, either as "weights" (utilities) or as "distance func
tions" (concerning the distance from an "ideal solution," for example). Generally
these two approaches assume that the combination of the individual objective
functions that arrives at the compromise solution with the highest overall utility
is achieved by linear combinations (i.e., adding the weighted individual objec
tive functions) . The third approach uses only local information in order to arrive
at an acceptable compromise solution.

The following example illustrates a fuzzy approach to this problem.

Example 14-10

A company manufactures two products 1 and 2 on given capacities. Product 1
yields a profit of $2 per piece and product 2 of $1 per piece . Product 2 can be
exported, yielding a revenue of $2 per piece in foreign countries; product 1 needs
imported raw materials of $1 per piece . Two goals are established: (1) profit
maximization and (2) maximum improvement of the balance of trade, that
is, maximum difference of exports minus imports. This problem can be modeled
as follows:

(
- 1 2)(X1 ) (effect on balance of trade)

"maximize" Z(x) = 2
1 X2 (profit)

such that
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Figure 14-7. The vector-maximum problem.

-XI + 3xz:::; 21

XI + 3xz:::; 27

4xI + 3xz:::; 45

3xI +xz:::; 30

Figure 14-7 shows the solution space of this problem. The "complete solution"
is the edge Xl - r - ~ - x4

• Xl is optimal with respect to objective function ZI(X)
= -Xz + lxz (i.e., best improvement of balance of trade). x4 is optimal with respect
to objective function zlx) = lxl + Xz (profit). The "optimal" values are ZI(X

1) =
14 (maximum net export) and zz (r") = 21 (maximum profit), respectively. For Xl

= (7; O)", total profit is zlx1
) = 7 and x4 = (9; 3)T yields ZI(X4

) = -3, that is, a net
import of 3. Solution r =(3.4; 0.2l is the solution that yields zl(r) =-3, zz(r)
= 7, which is the lowest "justifiable" value of the objective functions in the sense
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that a further decrease of the value of one objective function cannot be balanced
or even counteracted by an increase in the value of the other objective function.

To solve problems of the kind shown in example 14-10, we can use the fol
lowing approach. We first assume that either the decision maker can specify aspi
ration levels for the objective functions or we define properties of the solution
space for "calibration" of the objective functions. Let us consider the objective
functions as fuzzy sets of the type "solutions acceptable with respect to objective
function I." In example 14-10, we would have to construct two fuzzy sets: "Solu
tions acceptable with respect to objective function 1" and "solutions acceptable
with respect to objective function 2." As calibration points, we shall use the
respective "individual optima" and the "least justifiable solution."

The membership functions ~l(X) and ~2(X) of the fuzzy sets characterizing the
objective functions rise linearly from 0 to 1 at the highest achievable values of
ZI(X) = 14 and zlx) = 21, respectively.

This means that we assume that the level of satisfaction with respect to the
improvement of the balance of trade rises from 0 for imports of 3 units or more
to 1 for exports of 14 and more; and the satisfaction level rises with respect to
profit from 0 if the profit is 7 or less to 1 if total profit is 21 or more.

()_{~'(Xl+3
for zl(x)$-3

for -3 < z.(x) $14~I x -
17

1 for 14 < Zl(X)

()_{~'(X)-7
for Z2(X) s 7

for 7<z2(x)$21~2 x -
14

1 for 21 < Z2(X)

We are now faced with a problem of type (14.3) in which crisp constraints have
been added (i.e., the problem consists of two rows representing our fuzzified
objectives and four crisp constraints). We can now employ formulation (14.12).

Example 14-10 (continuation)

In analogy to formulation (14.12) and including the crisp constraints, we arrive
at the following problem formulation:



DECISION MAKING IN FUZZY ENVIRONMENTS

maximize A

such that A ~ -o.05882x1 + 0.117xz + 0.1764

A~ +0.1429 Xl + 0.714xz - 0.5

21 2:: -XI + 3xz,

272:: X l + 3xz,

45 2:: 4Xl + 3xz,

302:: 3xI +Xz,

X 2:: 0,

357

depicted in figure 14.8.
The maximum degree of "overall satisfaction" (Amax = 0.74) is achieved for

the solution Xo = (5.03 ; 7.32l. This is the "maximizing solution," which in our
example yields a profit of $17.38 and an export contribution of $4.58. The basic
solution Xl and x4 yield A= O.

Figure 14-8. Fuzzy LP with min-operator.
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In contrast to the usual vector-maximum models, the efficient solutions con
tained in the "complete solution" are ordered (distinguishable) by their degree of
membership to the fuzzy set decision. It should be obvious that the approach
described above can only be applied if the "symmetrical model" of a decision
(definition 14-1) is accepted. Otherwise, we will have to use approaches applic
able to problem (14.13), these, however, will not be discussed in this volume.

At the beginning of section 14.2, many simplifying assumptions were pointed
out that are generally accepted in traditional linear programming models. These
assumptions concerned the use of real numbers rather than fuzzy numbers for the
coefficients of linear programming as well as the use of crisp relations rather than
fuzzy. One approach used in section 14.2 for the fuzzification of crisp mathe
matical programming problems seems to be computationally very efficient, well
applicable in practice, and understandable by practioners. In the literature, the
reader will find numerous different approaches that, from a mathematical point
of view, are quite interesting . It would certainly exceed the scope of this book to
describe the majority of these suggestions . We shall, however, mention a few of
them. The reader will find quite a number of references to other approaches in
the bibliography at the end of the book.

Approaches that use fuzzy sets to describe the parameter of linear program
ming models can be traced, in particular, to the paper by Negoita, Minouiu, and
Stan [1976]. They use fuzzy sets to describe the parameters of the matrix A and
the capacity vector b and then formulate for each a the respective a-cuts. The
resulting crisp problem can then be solved by the usual LP codes . If the mem
bership functions have only a finite number of values, an optimal alternative and
an objective function value can be determined for each case. This approach,
however, is connected with a high computational effort. Afterwards the decision
maker has to choose a desirable degree of membership and the associated solu
tion. Kacprzyk and Orlovski [1987], in their review article, mention a number of
additional references in which special representations of fuzzy parameters are
used. Here we shall mention only the work of Tanaka and Asai [1984], who use
triangular membership functions, and Ramik and Rimanek [1985, 1989], who use
fuzzy parameters in LR representation and replace each resulting fuzzy relation
by four strict relations .

Other authors consider nonlinear vector-maximum problems in which all
parameters are defined fuzzily. Sakawa and Yano [1987], for instance, formulate
a fuzzy nonlinear vector-maximum problem with fuzzy parameters a" L = 1,
.. . , k in the k objective functions and hi, i = 1, .. . , m in the m constraints. Here
the fuzzy parameters are regarded as real-valued fuzzy numbers. For each a
degree, a crisp equivalent model can be formulated for which the values of the
fuzzy numbers can be considered as variables subject to the condition that they
belong to the fuzzy number at least with the degree of membership a. Sakawa
and Jano [1987] define the notion of an a-pareto-optimal solution in generaliz-
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ing the classical pareto-optimality with respect to the crisp equivalent models.
The authors suggest an interactive algorithm that leads the decision maker to a
satisfying solution. The decision maker has to provide as starting values the
desired a and the aspiration level for the objective function. The algorithm then
solves an equivalent model that minimizes for a given a the deviation from the
aspiration level and supplies additional trade-off information to the decision
maker. This approach assumes that the decision maker can choose the states that
are expressed in the fuzzy numbers. Therefore, this approach seems to be only
suitable if the decision maker can really influence these values, that is, if they are
not dependent on the environment. Because it is assumed that the parameters are
variables, the resulting a-model is at least quadratic, even if the basic model is
linear.

If the fuzzy coefficients are the result of insufficient information that can be
improved by additional effort, an optimal context-dependent allocation of addi
tional effort is of interest. Tanaka, Ishihashi, and Asai [1986] discuss the value
of additional information and suggest a model for the allocation of information
on the basis of sensitivity analysis. In the recent past, fuzzy models have also
been suggested for fractional programming, integer programming, geometric
programming, and other versions of mathematical programming problems. Of
particular interest is the application of possibility theory to mathematical pro
gramming suggested by Buckley [1988a, 1988b], and the papers by Arikan and
Gungor [2001], Abd El-Wahed and Abo-Sinna [2001], and Jamison and Lodwich
[2001] .

14.4.2 Multi Attributive Decision Making (MADM)

The general multi attributive decision-making model can be defined as follows .

Definition 14-9

Let X = {Xi I i = 1, . . . , n} be a (finite) set of decision alternatives and G = {gj I
j = 1, ... , m} a (finite) set of goals according to which the desirability of an
action is judged. Determine the optimal alternative XO with the highest degree of
desirability with respect to all relevant goals gj.

Most approaches in MADM consist of two stages:

1. the aggregation of the judgments with respect to all goals and per decision
alternative, and

2. the rank ordering of the decision alternatives according to the aggregated
judgments.
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In crisp MADM models, it is usually assumed that the final judgments of the
alternatives are expressed as real numbers. In this case, the second stage does not
pose any particular problems and suggested algorithms concentrate on the first
stage. Fuzzy models are sometimes justified by the argument that the goals, gj,
or their attainment by the alternatives, Xi> respectively, cannot be defined or judged
crisply but only as fuzzy sets. In this case, the final judgments are also repre
sented by fuzzy sets, which have to be ordered to determine the optimal alterna
tive. Then the second stage is, of course, by far not trivial.

In the following, we shall describe two fuzzy MADM models-the first one,
by Yager, because it shows very clearly the general structure of the problem and
the second , by Baas and Kwakernaak, because many of the publications refer to
this model, which is one of the first of this kind published.

Model 14-1! [Yager 1987]

Let X = {X l. ' •. , xn } be a set of alternatives. The goals are represented by the
fuzzy sets Gj,j = 1, ... , m. The "importance" (weight) of goalj is expressed by
Wj , the "attainment" of goal o, by alternative Xi is expressed by the degree of
membership IlG2j (Xi) '

The decision is defined in line with definition 14-1 as the intersection of all
fuzzy goals, that is,

and the optimal alternative is defined as that achieving the highest degree of mem
bership in b.

The rationale behind using the weights as exponents to express the importance
of a goal can be found in definition 9-3: There the modifier "very" was defined
as the squaring operation. Thus the higher the importance of a goal, the larger
should be the exponent of its repre senting fuzzy set, at least for normalized fuzzy
sets and when using the min-operator for the intersection of the fuzzy goals. Yager
concentrates on the problem of determining the weights of the goals. As a solu
tion to that problem, he suggests Saaty's hierarchical procedure for determining
weights by computing the eigenvectors of the matrix M of relative weights of
subjective estimates [Saaty 1978]:

The membership grade in all objectives having little importance (w < I) becomes larger,
and while those in objectives having more importance (w > I) become smaller. This
has the effect of making the membership function of the decision subset D, which is
the min value of each X over all objectives, being more determined by the important
objectives, which is as it should be. Furthermore , this operation (min) makes particu-
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larly small those alternatives that are bad in important objectives, therefore when we
select the Xi that maximizes D, we will be very unlikely to pick one of these [Yager
1978,p.90].

The solution procedure can now be described as follow s: Given the set X =
{x" . . . , xn } and the degrees of membership Ilaj (x;) of all x, in the fuzzy sets o,
representing the goals,

I . Establish by pairwise comparison the relative importance, ai, of the goals
among themselves. Arrange the a; in a matrix M.

al al
a l a2
a2

M= a t

an
at

2. Determine consistent weights Wj for each goal by employing Saaty's eigen
vector method.

3. Weight the degrees of goal attainmen~, Ilaix;) exponentially by the respec
tive Wj' The resulting fuzzy sets are (Gj(x;) wj

4. Determine the intersection of all ((;j(x ;» wj :

b ={(x; , min(IlGj(xi)Wj ) I i =I, . . . , n;j =I, . . . , m)}
J

5. Select the x ; with largest degree of membership in b as the optimal
alternative.

Example 14-11 [Yager 1978, p. 94]

Let X = {x" X2, X3}, and let the goals be given as

(;1 (x;) = {(Xt, .7), (X2, .5), (X3, .4)}

(;2(x;) = {(x" .3), (X2, .8), (X3, .6)}

(;3(x,) = {(Xt, .2), (X2' .3), (X3' .8)}

(;4 (Xi) = {(Xl, .5), (X2, .1), (X3' .2)}

The subjective evaluations have resulted in the following matrix of weights:
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~].1
3

.1
6

.1
7

Via Saaty's method, we obtain the vector

W = {WI, W2, W3, W4} as

w = {2.32 , 1.2, .32, .16}

Exponential weighting of G/Xi) by their respective weight yields

- 2.32
GI (Xi) = {(XI, .44), (X2 , .2), (X3, .12)}

G2(x f l = {(XI, .24), (Xl , .76), (X3, .54)}
- .31

G3(x;) = {(Xl, .6), (Xl, .68), (X3, .93)}
- .16
G4 (Xi) = {(Xl, .9), (Xl , .69), (X3, .77)}

The fuzzy set decision b, as the intersection of the Gaj/Xi), becomes

iJ = {(X., .24), (Xl, .2), (X3, .12)}

and the optimal alternative is XI with a degree of membership in Gof ~6(Xl)
= .24.

Model 14-2 [Baas and Kwakernaak 1977]

Let again X = {Xi Ii = 1, .. . , n} be the set of alternatives and G = {gj Ii = 1,
. . . , m} the set of goals. rij is the "rating" of alternative i with respect to goal},
and Wj E jRl is the weight (importance) of goal}. It is assumed that the rating of
alternative i with respect to goal} is fuzzy and is represented by the membership
function ~iiij (rij) on JRI.

Similarly, the weight (relative importance) of goal} is represented by a fuzzy
set Wj with membership function ~w/Wj)' All fuzzy sets are assumed to be nor
malized (i.e., have finite supports and take on the value 1 at least once!).

Step 1. The evaluation of an alternative Xi is , by contrast to model 14.1,
assumed to be a fuzzy set that is computed on the basis of the rij and Wj as follows:
Consider a function g: jRlm~ jR defined by
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On the product space ~2n, a membership function Ilzi is defined as

IlZi(Z) = min Cmin (Ilw/W j ), min (Ilk,k(11m
J =l , . .. , m k=l ,... ,m

363

(14.24)

(14.25)

Through the function g, the fuzzy set i = (~2m, Ilz;) induces a fuzzy set Ri = (~,
IlR) with the membership function

Ilk;(r) = sup Ilz;(z) r E ~
z:8(z )=r

(14.26)

IlR,( r) is the final rating of alternative Xi on the basis of which the "rank order
ing" is performed in step 2.

Step 2. For the final ranking of the Xi, Baas and Kwakernaak start from the
observation that if the x, had received crisp rating r, then a reasonable procedure
would select the Xi that have received the highest rating, that is, would determine
the set of preferred alternatives as {i Ell r, ;;:: ri. vi E I}, 1 = { I, . . . , n} .

Since here the final ratings are fuzzy, the problem is somewhat more compli
cated . The authors suggest in their model two different fuzzy sets in addition
to k, which supply different kinds of information about the preferability of an
alternative.

a. They first determine the conditional set (I I R) with the characteristic
function

. _ _ {1 if ij;;:: 0
IlUlk)(lllj, . •. , rn) = o else

VjEI
(14.27)

This "membership function " expresses that a given alternative Xi belongs to the
preferred set iff

r.> rj Vj E 1

The final fuzzy ratings R define on ~n a fuzzy set R= (~n, Ill?) with the mem
bership function

Ilk(i'i, .. . ,Tn)= .min Ilk, (ij)
l=l, . .. , n

(14.28)



364 FUZZY SET THEORY-AND ITS APPLICATIONS

This fuzzy set together with the conditional fuzzy set (14.27) induces a fuzzy set
j = (l, !-ti) with the membership function

!-tl (i) = sup (min {!-tulii)(i I i1, . .. ,rn), !-tii(i1 , . . .,rn)})
ii .··· ,Tn

(14.29)

which can be interpreted as the degree to which alternative Xi is the best alterna
tive. If there is a unique i, then Xi corresponds to the alternative that maximizes
equation (14.29) if the Wj and rijare set to the values at which !-t.lWj) and !-tilij(rij),
respectively, attain their supremum, namely 1.

b. This is, of course, not all the information that can be provided. Xi might not
be the unique best alternative, but there might be some Xi attaining their
maximum degree of membership at r*. They might, however, be represented
by different fuzzy sets rij'

Baas and Kwakernaak therefore try to establish another criterion that might
be able to distinguish such "preferable" alternatives from each other and rank
them:

If the final ratings are crisp, rJ, ..., rn> then

1 n

Pi = 1j---Ii)
n-l j = l

j"#i

for fixed i, can be used as a measure of preferability of alternative Xi over all
others.

If the ratings ri are fuzzy, then the mapping hi: IRm
~ JR induces a fuzzy set

Pi = (JR, !-tp) with the membership function

!-tP,(p) = sup !-tii(i1, oo.,rn)
h;(r" . .. • rn)=P

(14.30)

in which !-til is defined by equation (14.28).
This fuzzy set can be used to judge the degree of preferability Xi over all other

alternatives.
The computational aspects for determining all the fuzzy sets mentioned above

shall not be discussed here; models 1 and 2 have been described because of their
illustrative value. Baas and Kwakernaak mention and prove special conditions
for the membership functions to make computations possible.

To summarize: Three kinds of informations are provided:

1. !-til,(1') as the fuzzy rating of xi.
2. !-ti(i) as the degree to which Xi is best alternative, and
3. !-tP,CP) as the degree of preferability of Xi over all other alternatives.
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Example 14-12 [Baas and Kwakernaak 1977, p. 54]

Let X ={x" xz, X3} be the set of available alternatives and G = {g" gz, S» g4} the
set of goals. The weights and the ratings of the alternatives with respect to the
goals are given as normalized fuzzy sets that resemble the terms of a linguistic
variable (see definition 9-1). Figure 14-9 depicts the fuzzy sets representing
weights and ratings . Table 14-1 gives the assumed ratings for all alternatives and
goals and the respective weights. Figure 14-10 shows the ~Ri(ri) (final ratings for
alternatives x" xz, X3)'

The degrees of membership of the alternatives to the fuzzy set (/, ~j), that is,
the degrees to which alternatives Xi are best, are

Alternative ~i(Xi)

1 .95
2 I
3 .77

The fuzzy set Pz(P) indicating the degree to which alternative 2 is preferred to
all others is shown in figure 14-11. pz is calculated as pz = rz -t( r. + 1'3)'

Many other fuzzy methods and models have been suggested to solve the
MADM problem. They differ by their assumptions concerning the input data and
by the measures used for aggregation and ranking. Also, they concentrate either
on the first step (aggregation of ratings), or the second step (ranking) , or both.
Obviously all of them have advantages and disadvantages. They will, however,
not be discussed here but will be in the second volume .

An interest ing example of a more engineering-type application of multicrite 
ria decision making using fuzzy sets is described by Muiioz-Rodriguez and
Cattermole [1987].
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'FBlr"

0.5

o

'Good'

0.2 0.4 0.6 0.6

0.5

o

0.5

o

"Very good"

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

o 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8

Figure 14-9. Fuzzy sets representing weights and ratings.
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0.5

o

"Very Important'

0.2 0.4 0.6 0.6 w

0.5

o

'Rather unimportant'

0.2 0.4 0.6 0.8 w

'Moderately Important'

0.5

o

Figure 14-9. Continued.

0.2 0.4 0.6 0.8 w

Table 14-1 . Ratings and weights of alternative goals.

Goal Weight
Rating i'jj for alternative x,

s, Wj i = 1 2 3

I very important good very good fair
2 moderately important poor poor poor
3 moderately important poor fair to good fair
4 rather unimportant good not clear fair
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-1.0 -0.8 -0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 Pz

Figure 14-11. Preferability of alternative 2 over all others.

Exercises

369

1. Explain the (mathematical) difference between the symmetric and nonsyrn
metric model of a decision in a fuzzy environment.

2. Consider example l~. What grade would the student get if the "and" was
interpreted as the "bold intersection" (definition 3-6), the "bounded differ
ence" (definition 3-8), or the "bold union"?

3. Consider the following problem:

Minimize z = 4x] + 5Xl + 2x3

such that 3x[ + 2xl+ 2x3 :::;; 60

3x] + Xl + X3 :::;; 30

2xl + X3;::: 10

Determine the optimal solution. Now assume that the decision maker has
the following preferences:
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a. He has a linear preference function for the objective function between the
minimum and 1.5.

b. The tolerance intervals can be established as

PI = 10, pz = 12, P3 = 3

Now use model (14.9) to determine the optimal solution and compare it
with the crisp optimal solution.

4. Solve the example of exercise 3 by assuming the objective function to be
crisp and by using equation (14.18).

5. Consider the problem:

"maximize" Z(x) = { - Xl - 3xz }
1.5xI +2.5xz

such that -XI + 2xz S; 18

4xI + 3xz S; 40

3Xl + Xz S; 25

Determine an optimal compromise solution by using the model from
example 14-10 (continuation).

6. What is the optimal alterative in the following situation (use Yager's
method!) ?

Alternatives: X = {Xl> Xz, X3, X4}
Goals: GI(x;) = {(Xl> .8), (xz .6), (X3, .4), (X4, .2)}

Gi(xj) = {(Xl> .4), (xz .6), (X3, .6), (X4, .8)}
G3(Xj) = {(Xl> .6), (xz .8), (X3, .8), (X4, .6)}

The relative weights of the goals have been established as: GI : Gi: G3 = 1:4 :6.



15 APPLICATIONS OF
FUZZY SETS IN ENGINEERING

AND MANAGEMENT

15.1 Introduction

The scope of applications of fuzzy sets-increasingly together with neural nets
is very large and still growing continuously. The closer the problem is to human
evaluation, intuition, perception, and decision making, the less dichotomous is
the problem structure and the more relevant and promising is the application of
fuzzy technology.

In addition, one should realize, that we have moved from a situation of lack
of computer readable data to a situation of an abundance of data, in which human
beings are often unable to detect in the masses of available data the information
that is relevant and valuable to them. Obviously there exists an increasing need
for reduction of complexity by compactification of data. This is the reason for
the increasing importance of (intelligent) data mining methods and tools. Web
technology is just opening completely new areas of application . If a model of a
real problem does not consist of crisply defined mathematical statements and rela
tions-if it is, for instance, a verbal model or a model containing fuzzy sets, fuzzy
numbers, fuzzy statements, or fuzzy relations-then traditional mathematical
methods cannot be applied directly. Either fuzzy algorithms-that is, algorithms
that can deal with fuzzy entities or algorithms the procedure of which is "fuzzily"

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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described-can be applied or one has to find crisp mathematical models that are
in some specific sense equivalent to the original fuzzy model and to which avail
able crisp algorithms can then be applied.

All cases in which fuzzy set theory is properly used as a modeling tool are
characterized by four features:

1. Fuzzy phenomena, relations, or evaluations are modeled by a well-defined
and founded theory. (There is nothing fuzzy about fuzzy theory!)

2. By doing so, a better approximation of real phenomena by formal models is
achieved.

3. A better modeling of real phenomena normally requires more and more
detailed information-more, in fact, than is needed for rather rough dichoto
mous modeling.

4. The amount of computer readable data is too large to be comprehended by
a human observer.

When talking about "applications", different things can be meant:

1. One can "apply" one theory to another: for instance, one can apply fuzzy set
theory to linear programming, which yields another theory, namely, fuzzy
linear programming.

2. One can apply one theory to a model, which is an abstract picture of a pos
sible real problem situation: the application of fuzzy set theory to inventory
models, for instance, represents such an application.

3. One can apply a theory or a model to a real problem and solve it as well as
possible.

We have considered applications of the first kind in chapters 9, 10, and partly
in chapter 12, 13 and 14. This chapter is dedicated to applications of type 2
and 3, where often the existence of an application of type 2 triggers one of
type 3.

The theory of fuzzy sets has already been applied to quite a number of opera
tions research problems. As can be expected for a theory of this age, the major
ity of these "applications" are applications to "model problems" rather than to
real-world problems. Exceptions are the areas of classification (structuring),
control, logistics, and blending. For these areas there is already considerable soft
ware commercially available. The same is true for planning languages (decision
support systems), for instance, in the area of financial planning. The reader should
realize that the lack of real applications cannot necessarily be blamed on the
theory. A real application of a certain theory normally requires that the practi-
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tioner who has the problem to be solved is also familiar with and understands,
or at least accepts, the theoretical framework of the theory before it can really be
applied. This obviously takes some more time.

Real applications, particularly the commercially successful ones, very often
either are not published or are published after a long delay. This is partially due
to competitive considerations and partly to the fact that practitioners normally do
not consider publications as one of their prime concerns.

Nevertheless, for a textbook and for practitioners applications of type 2 and 3
are important since, as already mentioned, the knowledge of a type 2 application
may trigger either other type 2 application s or type 3 applications.

The number of disciplines in which fuzzy sets are applied is increasing
steadily. So far the main areas are (in alphabetical order and not in order of impor
tance) : actuarien science, business administration and management, chemistry,
earth sciences, ecology and environmental science, economics, engineering (civil,
industrial, mechanical, nuclear etc.), ergonomy, information technology, medi
cine, social sciences, telecommunication, traffic management.

It would obviously exceed the scope of this text book to cover the majority of
these areas. Therefore, two areas were selected, which exhibit probably most
applications : engineering and management. Fuzzy applications in these areas are
increasingly known by the terms "business intelligence" and "engineering intel
ligence" . Table 15-1 shows which applications are described in various chapters
of this book.

15.2 Engineering Applications

Many, if not most engineering applications of fuzzy sets use the principle of fuzzy
control that was studied in chapter 11 . Hence , applications of this type were
already described in the fuzzy control chapter. A second and large class of appli
cations are located in (static) data analysis and hence, were studied in chapter 13.
There are, however, numerous engineering applications which use other features
or methods of fuzzy set theory. Examples of those can be found in [Kno and
Cohen 1998], [Levner et al. 1998], [Jones and Hua 1998], [Gasos and Rosetti
1999], [Chen et al. 1998]. Some detailed descriptions and surveys can also be
found in [Zimmermann 1999].

Most of these applications require too long a description to be included in this
textbook . In order to describe the essential s of non-fuzzy control engineering
applications we have chosen two examples : one showing a linguistic multicrite
ria analysis and one which uses dynamic fuzzy pattern recognition as described
in chapter 13.
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15.2.1 Linguistic Evaluation and Ranking of Machine Tools
[Devedzic and Pap 1999J

The approach suggested by Devedzic and Pap is much broader applicable. It shall
be illustrated, however, using a central part of these experimental study:

A metal cutting process generally is preceded by the following planning cycle:

(a) selection of processing method,
(b) operations selection and sequencing,
(c) machine tools selection,
(d) tooling selection,
(e) machining parameters selection and determination,
(f) tool path determination and calculation,
(g) NC programming , and
(h) cost and process economy calculations.

We shall concentrate on the machine tool selection . In particular, we shall focus
on the machine tools rigidity modeling.

Rigidity has its clear mechanical definition and can be precisely deter
mined for each machine tool element as well as for machine tools as a system
in a whole. However, this approach is often applied only in the design stage,
and during the exploitation period this characteristic is qualitatively evaluated
as "high rigidity", "medium rigidity", "low rigidity", etc. These linguistic values
are provided by skilled personnel based on experience , intuition and/or recently
presented evidence. Metal cutting is a highly dynamical process which is influ
enced by numerous influences. The ultimate goal of a machining process is to
produce a workpiece respecting the requested dimensional accuracy and surface
quality.

One of the main characteristics of machine tools is their capability to reach
workpiece requirements. On the other hand, evaluation of the machining process
can be shown through realized productivity and economy. In reality, machine
tools characteristics and output features could be indirectly perceived and repre
sented through machine tool reigidity, which is often used as an integral qualita
tive feature of machine tool condition and capability. For linguistic modeling of
machine tools rigidity Devedzic and Pap have used literature and empirical infor
mation and data, and results of an experiment conducted in laboratory.

Table 15-2 shows the measured data on which the experiment is based and
table 15-3 shows the surface quality parameters that can be reached with four
lathes, B, D, D and E.

Figure 15-1 depicts the terms of the linguistic variable "rigidity", where
"norm(lT)" stands for a normalized surface quality.
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Table 15-2. Experimental data.

Machine
Cutting tool
Workpiece/material

Cutting speed u (m/min)
Cutting feed s (mm/rev)
Cutting depth 0 (mm)

Turret lathe
PTGNR 2525 MI6
Alloyed steel bar (D = 52 rnm,

L =500mm)/AISI 8620
80-350
0.1-0.5
1-3

Table 15-3. Surface quality parameters (output data).

Ra Rmax R, Ra" , Rm" , R,",
Lathe (J1m ) (J1m) (J1m) Cut. depth (% ) (%) (% )

B 1-8 6- 60 5-19 0, 83 68 35
C 1-8 7-39 4-20 02 89 65 71
D 0.6-7 3-37 3-13 03 79 74 52
E 1-10 9-39 5-25 04 67 76 78

Note: R(.)" , = R (')miJR(' )(B.C.D.E); R m == R m,, ; 0, = l mm, O2 = 2m m, ~ = 2.5mm , O. = 3 mm; R,

arithmetical average deviation from center line; Rm,,-maximum height of surface roughness
(microirregularities); R,-mean height of surface roughness (microirregularities).
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Figure 15-1 . Linguistic values for variable "rigidity".
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The membership functions were checked empirically and proved to be accept
able. They are represented by the following triangular or trapezoidal membership
functions:

IlVH = [.33, .5, .5, .58]

IlH = [.42, .58, .58, .75]

11M = [.5, .67, .67, .83]

ilL = [.58, .75, .75, .92]

IlvL = [.75, .83, 1,1]

Total machine tool rigidity depends on partial rigidity of all its elements. Among
them the greatest influence performs three basic assemblies: main spindle, tail
stock center, and toolholder.

It is clear that the significance of each of these elements is not the same.
Therefore, it is quite useful to create a procedure for the generation of linguis
tic values mentioned above (figure 15-1) , based on partial linguistic evalua
tion of rigidity value and significance of each element for given machining
conditions.

Interviews with experts showed that in the case of partial evaluation of ele
ments' rigidity values usually three linguistic values have been used (figure 15-2) .
Trapezoidal fuzzy numbers representing values of the linguistic variable "element
rigidity" are defined as

IlHS = [.35, .35, .7, .8]

IlMS = [.7, .8, .8, .9]

ilLs = [.8, 1, 1,1]

M L
tl
,I

/ I
'I H • high

/ I M • medium
'. / I
-r I L -jcw

i. I

/ '. 1
, I

H

O'--- ....I..-_.........__--..lf.---.:..-__-+

0.5

o 0.5 1 norm(IT)

Figure 15-2. Linguistic values for variable "elements' rigidity".
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Furthermore, using fuzzy sets representing values of variable elements ' rigidity
and empirical rules defining total machine tools rigidity, fuzzy sets determining
significance of machine tools elements' rigidity have been defined (figure 15-3).
Total number of empirical rules is very large and depend on cardinality of input
term-sets.

For the determination of the values of the linguistic variable "significance",
however, realistic boundary conditions allow the reduction of the rules to those
shown in table 15-4:

The membership functions of the terms of the linguistic variable "signifi
cance" , high, medium and low, were defined as:

Table 15-4. Boundary values of the linguistic variable
"significance".

Element Value Significance Rigidity

S H H VH
TC H H
TH H H
S H M VH
TC H M
TH H M
S H L VH
TC H L
TH H L
S M H M
TC M H
TH M H
S M M M
TC M M
TH M M
S M L M
TC M L
TH M L
S L H L
TC L H
TC L H
S L M L
TC L M
TH L M
S L L VL
TC L L
TH L L
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Figure 15-3. Linguistic values for variable "significance".

IlHS = [.9, .9, .965, .978]

IlMS = [.49, .894, .894, .949]

ills = [.512, 1,1,1]

They are shown in figure 15-3:
The determination of a linguistic value of rigidity is based on the above

"dictionaries" of linguistic terms for "elements' rigidity" and "significance". The
aggregating of element evaluations to an evaluation for each lathe is performed
by using a weighted average of the element evaluations, i.e. a type of aggrega
tion that was already mentioned in chapter 14 in multi attribute decision making.
For each lathe j = {B, C, D, E} the evaluation is

where index i denotes the three elements:

i = 1 = rigidity of main spindle

i =2 =rigidity of tailstock center

i = 3 = rigidity of tool holder.

Figure 15-4 shows the results for the four lathes :
The ranking of the four fuzzy sets characterizing the lathes can now be per

formed by using any of the methods mentioned in chapter 14 or, for instance, by
any of the methods compared by [Bortolan and Degain 1998] . The authors of
this experiment use the center-of-gravity defuzzification and arrive at the order
{B, D, E, C}.
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15.2.2 Fault Detection in Gearboxes [Joentgen et al. 1999J

The problem is that of automatic fault detection in gearboxes (in this case of
a helicopter gearbox). Used are the methods of fuzzy dynamic data analysis
described in section 13.3.

The state-dependent maintenance of machines is a strategy to increase the
availability of machines and to simultaneously improve the planning of down
times. One prerequisite is the precise and reliable monitoring of machine's states.
Since continuous machine monitoring by a trained expert is very time consum
ing and expensive, various systems for automatic diagnosis have been developed.
They have been successfully applied in different areas, e.g., for diagnosis of
electric motors [Fogliardi 1997], tape deck chassis [Fochem, Wischnewski , and
Hofmeier 1997], saw blades [Brandt et al. 1996], roller bearings [Fochem,
Joentgen, and Geropp 1997], household appliances [Weber, Wischnewski , and
Fochem 1997], household appliances [Weber, Wischnewski, and Fochem 1997],
etc. All these diagnostic systems use vibration analysis [Geropp 1995] to detect
faults in machine components. Vibration analysis is based on the examiantion
of solid-born signals measured at different places of a machine during opera
tion. Changes of a machine's state lead to changes in the vibration signal. Using
either expert knowledge or preliminary knowledge, it can be decided whether a
change in the machine's state is due to a fault or to changes in some operating
parameters.

Many of the above mentioned diagnostic systems use classification methods
such as fuzzy c-means [Bezdek 1981] and fuzzy Kohonen networks [Tsao,
Bezdek, and Pal 1994] to recognize different states of a machine. These methods
require a selection of features which are relevant for the recognition of faults.
The feature selection is usually based on an expert's knowledge and is crucial for
the classification results.

In this application the functional fuzzy c-means algorithm (FFCM), described
in 13.3, is used for automatic fault detection in gearboxes based on measured
vibration signals. This algorithm is suited for the classification of dynamic
objects, i.e., objects described by trajectories of their features. This paper shows
how to apply the FFCM algorithm for early recognition of state's changes as well
as for feature selection without any requirements for expert knowledge.

The subject of investigation in this paper is an intact gearbox. It is observed
over a period of time during operation under a constant load. Vibration signals
are measured at different positions on the gearbox each minute.

The task of the analysis is to monitor the state of the gearbox and to recog
nize significant changes in its state based on the vibration signal.

The experiment covered a period of time of approximately 114 hours (6,830
minutes). To reduce the resulting data set, only every 10th measurement was taken
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into consideration (i.e., minutes 1, 11, 21 etc.). Carrying out the analysis for
translated data (e.g., minutes 5, 15,25 etc.) does not change the final results.

During preprocessing for each point of time the vibration signal measured
was converted into a frequency spectrum containing 1024 values using Fourier
transformation.

Thus, at each of 682 points of time a frequency spectrum consisting of 1024
values was given for the analysis . The brightness of the points in the figure rep
resents the measured amplitude of a certain frequency at a corresponding point
of time. To better illustrate the given data set, the upper bound of the scaling was
set to 1.0, although some amplitude values exceed this upper bound.

In the course of the experiment a defect has occurred in the gearbox. This
defect finds expression in the higher frequency amplitudes in the time interval
between 500 and 640. Due to this defect, the gearbox was turned off at point 630
and repaired. According to experts, first symptoms of the defect can be recog
nized retroactively from point 320 on provided that the whole figure of the data
set is at expert's disposal.

In this application, the objects to classify are states of the gearbox. Each state
is described by one feature, i.e., a frequency spectrum. Each frequency spectrum
at a given point of time is considered as a trajectory. Thus, there are in total 682
objects or trajectories, which can be clustered using the functional fuzzy c-means.
The resulting class centers, which are frequency spectra, represent then typical
states of the gearbox . Depending on the time interval chosen for the analysis, two
procedures of classifier design can be distinguished :

• Clustering of all states of the gearbox from the beginning of the experiment
till the current point (incremental classifier design) ;

• Clustering of the n latest states of the gearbox (rolling classifier design).

The following sections discuss these two types of the design procedure in more
detail. First some general remarks on the chosen approach are given.

At point t c, classes , which are typical states, are known. Now a classifier with
c, + I classes is designed. The shapes of the membership functions are then used
to decide, whether a new class has occurred. Typically, if there is no new class,
two or more of the membership functions are almost identical. In the other case
a new class is discovered and has to be labeled.

Incremental Classifier Design. During incremental design of the classifier, the
total information about a machine's states obtained from the beginning of the
experiment until the current moment is used. In the course of the experiment
available information is constantly supplemented with new data. For each point
of time a classifier is designed based on information available so far.
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Since the fuzzy c-means, as well as many other clustering methods, has diffi
culty recognizing classes with a very different number of objects correctly, new
states of a machine are recognized only if they have appeared very often or differ
very much from known states. Therefore, changes of states are discovered rather
lately.

In this application 682 objects or trajectories consisting of 1024 values were
clustered using the functional fuzzy c-means. At the beginning of the experi
ment, differences between frequency spectra can hardly be found. These spectra
constitute the only class "State: intact". In the following two classes will be
looked for.

The first change in the state of the gearbox appeared when the gearbox was
started anew at point 230 after it was turned off for a while. The changes in the
frequency spectra (measured with the distance measure for trajectories described
in [Joentgen, Mikenina, Weber, and Zimmermann 1999]) are so large that these
new appearing spectra are recognized as a separate class, although their number
is very small. From this time on two typical states "State: intact" and "State: new
start" are known. Therefore, in the following three classes will be looked for.

The third class "State: defective" is recognized approximately from point 440
on. Degrees of membership of objects to this class exceed all other degrees of
membership after point 340 (figure 15-5). This means that at point 440 a fault in
operation is recognized retroactively, starting at point 340.

Such late fault detection compared to the expert's statement is due to the above
mentioned drawback of the fuzzy c-means and can be explained by the large
number of objects representing class 1 "State: intact", which were observed in
the time interval from 0 to 300. It should be noticed that measurements at points
which are far in the past are not significant for the current fault detection. Con
sidering them in the computations deteriorates the classification results .

Rolling Classifier Design. To avoid the problems related to different sizes of
classes, the analysis of machine's states can be carried out periodically using time
windows each covering 100 points. This means that only the data of the last 100
points of time are used for classifier design and classification. The size of the time
windows was chosen arbitrarily. If the windows are too large, older states which
persist over a long time period prevent early recognition of new states, if they
are too small, older states may be forgotten and the system tends to recognize
new states too often . For the sake of simplicity, only each loth time window is
considered.

In the following the time window from point of time tl until point t2 is denoted
by (t., t2) .

At the beginning of the experiment it is supposed that there exists only one
class "State: intact". Therefore, the FFCM is used to look for two classes.
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For time windows before window (140, 240) clustering results in two class
centers, which can hardly be distinguished. Therefore, they can be considered as
variations of class "State : intact" .

Starting the gearbox anew at point 233, which appears at first in time window
(140,240), is recognized as a new class and labeled as "State: new start" . Because
now two typical classes of the gearbox are known, the algorithm will look for
three classes in the following.

The new start of the gearbox at point 314, which is at first observed in time
window (220, 320), leads to such large variations in the frequency spectra that
the class "State: new start" is split into two classes. Therefore, from this point on
four classes will be looked for.

In time window (230, 330) the fault is not recognized yet. Figure 15-6 shows
the membership functions of the objects to the four calculated classes . Points at
which the gearbox was started anew (points 233 and 314) can easily be recognized.
At these points, degrees of membership of objects to class 3 are 1 whereas degrees
of membership to the other two classes are O. As stated above, restarting the
gearbox at point 314 leads to the formation of two classes . Based on the member
ship functions shown in figure 15-6 it is not possible to distinguish clearly between
classes 1 and 2. The centers of classes 1 and 2 are also almost identical. Therefore,
it is assumed that classes 1 and 2 represent two parts of the class "State: intact".

Changes in the membership functions for classes 1 and 2 can first be recog
nized in time window (240, 340) (figure 15-7). After starting the gearbox anew
at point 314 it is possible to distinguish between membership functions of classes
1 and 2. Considering the shapes of these functions in the whole time window,
one can notice a decreasing and an increasing trend. The membership function
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Figure 15-6. Membership functions for time window (230. 330).
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Figure 15-8. Membership functions for time window (250, 350).

with a decreasing trend corresponds to class 1 "State: intact" whereas the one
with an increasing trend corresponds to class 2 "State: defective".

The se trend s are even stronger in the next time window (250, 350), shown in
figure 15-8. Membership functions characterizing classes 1 and 2 can be distin
guished even better than in figure 15-5 and figure 15-6.

The defect in the gearbox can be recognized from point 340 on. This defect
is detected 20 points (i.e., 200min.) later than it should be possible according to
the expert's statement. It should be noticed that the diagnosis by an expert can
also be carried out only retroactively. Thus, the functional fuzzy c-means allows
an early on-line fault detection in the gearbox.
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Significant differences between the centers of classes 1 and 2 can be found at
those spectral lines, at which bright vertical lines start or finish. These differences
with respect to the center of class 2 are illustrated in figure 15-9.

Peaks in figure 15-9 correspond to characteristic frequencies, which are rele
vant for fault detection.

Refinement of the Analysis. The analysis described in the two previous sec
tions was based on just 10% of the available data. In this section it will be inves
tigated whether the use of all data can lead to an earlier detection of the change
from "State: intact" to "State: defective" . During on-line state-monitoring all
these data would be available and could be taken into account.

As was shown above, the functional fuzzy c-rneans can recognize the defec
tive state of the gearbox from point 314 on (i.e., from the 3140th minute on). For
a more precise analysis, now the time interval from minute 2900 to minute 3300
is considered. To remain consistent with previous calculations, the analysis is
carried out for time windows each covering 100 points.

The considered time interval contains 36 minutes (starting at point 3114),
when the gearbox was turned off and started anew. This action represents an
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external disturbance of the gearbox. The measured data are not relevant for a
description of a gearbox's state during normal operation, Therefore they can be
excluded from the analysis. The succeeding points of time are shifted backwards
by 36 minutes. In the following, two classes will be looked for.
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In time window (3014, 3114) (just before starting a gearbox anew) it is not
yet possible to distinguish two classes. The corresponding membership functions
are shown in figure 15-10.

Clear recognition of two classes is possible in time window (3064,3200) (dis
regarding the 36 minutes which start at point 3114). The corresponding mem
bership functions are illustrated in figure 15-11.

As described above, the fault could not be found using time window (230,
330), i.e., until minute 3300 the fault was not detected . Using all available data
the fault is detected about two hours earlier (around minute 3200).

The application presented in this chapter shows that using the functional fuzzy
c-means automatic fault detection in gearboxes can be successfully carried out
based on vibration signals. Moreover, combining the rolling classifier design with
this method allows an early fault detection. When typical states of the gearbox
are recognized, they must be judged by an expert . Beyond that, the method does
not require any expert knowledge.

15.3 Applications in Management

The borderline between engineering and management applications is fuzzy. Many
of the functions (such as scheduling , maintenance, layout planning, simultaneous
engineering, etc.), which are actually management functions, are performed by
engineers . In universities they are also partly taught in management schools and
partly in industrial engineering. The underlying mathematical structures differs
very often. While engineering problems normally are characterized by nonlinear
functuality and by fewer variables, management problems are generally modeled
linearly and they are very large in terms of the number of variables and con
straints. There are, of course, exceptions to this rule: there are, for instance, more
problems with a combinatorial character in management than in engineering and
they are certainly hard to solve. Recent problems that require data mining have
increased in importance and they seem to be more relevant in the management
area than in the engineering area. The reason may be, that very often engineer
ing problems are more limited in scope while management problems generally
have to take into consideration the entire enterprise for which masses of data are
stored in data warehouses.

In the following we will present fuzzy set applications in main areas of man
agement. The examples are selected in such a way, that the most important areas
as well as the most important methodological approaches are covered. Typical
managerial problems, such as the determination of creditworthiness, which are
described in other chapters, are not included again.
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15.3.1 A Discrete Location Model [Darzentas 1987J

For quite a number of years, there has been a widespread interest in location
models. For specific types of these problems, excellent review papers exist. One
of the most popular models is the "simple plant location model" (SPLP) for
which, for instance, Krarup and Pruzan [1983] summarize the existing literature
through the mid-1980s. In this paper, the authors also establish some relation
ships between SPLP, other location problems, set-covering problems, and integer
programming. One of the problems, the discrete location problem (DLP), can be
formulated as a set-covering problem and principally solved by pure zero-one
programming algorithms. In this type of problem, a number of facilities are to
be located at specific points within an area, according to precisely quantified
criteria. This results in a districting, that is, a plan that shows where the faci
lities have to be located and what locations they serve. However, in many
location problems, especially those associated with social policies, noncrisply
defined criteria are used such as how "near" or "accessible" a facility is or how
"important" certain issues are, etc. In these cases, a fuzzy sets approach is more
appropriate.

In such a problem, the decision maker's main task is the identification and
evaluation of criteria on the basis of which an optimum will be obtained. The
choice of specific locations can only be based on questions like:

• How "far" should people travel to reach a service point?
• How "important" are "bad" and "good" roads and public transport?
• Is "homogeneity" of social class and income within a subset important?
• Is it "very unfair" to locate two major facilities in one point?

The fuzzy nature of the problem can be accepted and introduced at various stages
in the analysis.

There are two major obstacles to finding "optimal" solutions to DLPs: It is
necessary but difficult to define all possible covers, that is, subsets of locations,
which have to enter even the crisp DLP-model. For readers who are not aquainted
with this type of problem, the above-mentioned paper by Krarup and Pruzan
or the work of Darzentas [1987, pp. 330-337] are recommended. The second
problem is the "evaluation" of the covers in order to select the best one.

The aim of a location project is easy to state: find the "best" districting-which
means that the objective itself is a fuzzy set. There may also be a number of
restrictions, such as "the budget allows for approximately M facilities" or "it is
preferable that village i serves village m." and vice-versa, or "it is very impor
tant that i andj belong to the same district," and so on. Hence constraints can be
formulated as fuzzy sets.
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In a crisp model, the determination of the optimal districting can be performed
by using integer programming algorithms. If the problem is of reasonable size,
heuristic versions have to be used.

In fuzzy DLPs, possibly even with multiple criteria , this approach is not pos
sible. One could then use either fuzzy integer programming (see, for example,
Fabian and Stoica [1984] or Zimmermann and Pollatschek [1984]), or one could
try to reduce the number of possible districtings to a reasonable size by elimi
nating nonfeasible and dominated covers. The remaining covers could be evalu
ated with respect to relevant criteria (yielding a fuzzy set for each criterion) and
then ordered in analogy to methods described in section 14.4.

Example 15-1

Consider the road network shown in figure 15-12, which is part of a real road
network. The points 1, . .. , 4 represent villages whose populations are given in
table 15-5a . The distances between the villages are given in table I5-5b. The
problem is to optimally locate three facilities in order to serve (cover) each village
with only one facility. This problem in its nonfuzzy form can be formulated as a
set-partitioning problem. The fuzzy version of the problem can be formulated as
a symmetric fuzzy-decision model (see definition 14-1).

Suppose the three covers shown in figure 15-13 are the only covers feasible
due to crisp constraints, which are omitted here. In figure 15-13, the villages
hosting a facility are hatched. For the determination of the "best" cover, the grades
of membership of all three covers to every fuzzy criterion are rated. These ratings
and the fuzzy criteria are given in table 15-6. In this example, the degrees of
membership of the covers in the fuzzy set "decision" are obtained using the min
operator. These degrees imply an order on the set of covers. If a crisp decision

Table 15-5a. Populations. Table 15-5b. Distances between villages.

Miles

Village Population 2 3 4

1 1,100 I 11 7 9
2 650 2 11 14
3 1,350 3 7
4 730 4 9 14
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Figure 15-12. Road network.

4

Figure 15-13. Feasible covers.
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Table 15-6. Determination of the fuzzy set decision.

Covers

c, C2 C2

It is a better policy to locate this type
of facility in villages with high
population : .9 .8 .7

The facilities should not be located in
polluted areas: .6 .5 .2

The distance between a village
without a facility and a facility should
not exceed 8 miles considerably: .6 .9 .6

Membership values of the decision: .6 .5 .2

has to be made, the cover with the maximum degree of membership (c., Ililcl)
= .6) is chosen.

15.3.2 Fuzzy Set Models in Logistics

OR has been applied extensively to the area of logistics in the past. In the fol
lowing, two applications of fuzzy set theory are presented. At first, we show
the "fuzzification" of a standard problem in OR: the transportation problem.
Second-as an example of existing projects-we show a decision support system
based on a fuzzy model.

15.3.2.1 Fuzzy Approach to the Transportation Problem [Chanas et al.
1984]. The analysis of "fuzzy counterparts" of linear programming problems
of some special structure-for example, problems of flows in networks, trans
portation problems, and so on-appears to be an interesting task. The following
model considers a transportation problem with fuzzy supply values of the sup
pliers and with fuzzy demand values of the receivers. For the solution of the
problem, parametric programming is used.
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1 ----------------------------,..---------,.

x

Figure 15-14. The trapezoidal form of a fuzzy number aj = (a], £11, aT, a,2).

Figure 15-15. The membership function of the fuzzy goal G.

Model 15-1

m n

minimize C = LLCijXij
i=1 j = l

m

such that L xij == ai i = 1, 2, ... , m
j=l

m

L xij == bj j = 1,2, . .. , n
i=1

Xij ;;::: 0 i =1, 2, . .. .m; j =1,2, ... ,n

tl j and '1 denote nonnegative fuzzy numbers of trapezoidal form. Note the slight
difference between definition 5-3 and the definition shown in figure 15-14, which
is only used for this section. The value of Il,;{LjXij)(lliiCE;Xij)) is interpreted as a
feasibility degree of the solution with respect to the ith (jth) constraint in model



APPLICATIONS OF FUZZY SETS IN ENGINEERING AND MANAGEMENT 395

15-1. With the objective function of model 15-1, a fuzzy number Gis associ
ated, expressing the "admissible" total transportation costs. The membership
function, ~G' of the Gis assumed to be of the form

~G(x) = {I for x < Co
f(x) for x ~ Co

where f(x) is a continuous function, decreasing to zero and achieving the value 1
for x = Co (see figure 15-15) . In particular, fix) may be a linear function. ~G(x)

determines the degree of the decision maker's satisfaction with the achieved level
of the total transportation costs .

Model 15-1 now can be reduced to the symmetrical decision model 15-2,
assuming goal and constraints are aggregated via the min-operator.

Model 15-2

maximize A

such that ~G(c(x» ~ A

~ai (~ Xij) ~ A i = 1,2, , m

~bj(LXij) ~ A j = 1,2, , n
I

A zo s» ~O

Here, however, this problem shall be solved by parametric programming. For each
level of a constraint's fulfillment A, A E [0, 1], one has to find the cheapest trans
portation plan. This plan satisfies the goal Gto the maximum degree for the respec
tive A. Hence in analogy to definition 14-5 and example 14-7 , we shall determine

max{~G(x) /\ ~C<x)}

where ~t(x) will first be determined by an appropriate linear programming model.
Here the min-operator is assumed to be acceptable. For the subsequent aggrega
tion of ~t(x) and ~G(x), any nondecreasing operator and any decreasing function
for fix) can be employed. Let us first tum to the determination of ~t(x): The para
meter of our parametric LP shall be denoted by r, r E [0, 1], and rather than deter
mining A-cuts we shall consider (l - r)-cuts. Using the definition given in figure
15-14 for the fuzzy numbers specifying supplies and demands, the (l - r)-cuts
are intervals of the form:

iif-r ={Xl~ai (x) ~ 1- r} =[af - r~:, al + rall

btr = {xl~b; (x) ~ 1- r} = [b) - r!!.~ , aJ + rbll

Our problem can then be modeled as follows :
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Model 15-3

m n

maximize LLCjjXjj

j=1 j =l

such that ~ [I 1 2 -2]£.J X ij e a; - r~j .a; + raj
j=l

Xij ~O re[I-r,l]

i = 1,2, . .. , m

j = 1, 2, ... , n

where r = sUPxllan6(x), that is, the maximum value of Ilt(x) that can be achieved
for a given r. Solving this model either as a parametric LP or with special algo
rithms for parametric transportation models, we obtain Ilt(r) for r e [1 - r, 1].
This can now be combined with IlG(r) to define the bership function of the
fuzzy set "decision."

Example 15-2 [Chanas et al. 1984]

There are two suppliers with supply values:

ii, =00,5, 10,5) and ii2 =(16,5, 16,5) (triangular fuzzy numbers)

and three receivers with demand values :

bl =00,5,10,5), b2 =(9,4,9,4); b3 =0 , 1,1,1)

(also triangular fuzzy numbers), respectively. The unit transport costs are

CII =10 C n =20 CI3 =30

e21 =20 C22 =50 C23 =60

The membership function of the fuzzy goal is linear:

IlG(X) = j~
800-x

500

Model 15-3 for this example becomes:

for x ~800

for X::; 300

for x e [300,800]
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minimize c = lOxlI + 20XI2 + 30X13 + 20X21 + 50X22 + 60X23

such that Xli + X12 + X13 ;:: 10 - 5r

Xli + X12 + X13 ::;; 10 + 5r

X21 + X22 + X23 ;:: 16 - 5r

X21 + X22 + X23 ::;; 16 + 5r

Xli + X21 ;:: 10 - 5r

Xli + X21 ::;; 10 + 5r

X12 + X22 ;:: 9 - 4r

XI2 + X22 ::;; 9 + 4r

X13 + X23 ;:: 1 - r

X13 + X23 ::;; 1 + r

Xij;:: 0 'Iii,}

Table 15-7 shows the parametric transportation problem table. Column FR
denotes a "fictitious" receiver, row FD a "fictitious" supplier, and M a large real
number. The rows and columns without an asterisk correspond to the suppliers
having supply values settled at the minimum level. In this section the FD and FR
are blocked by assigning a large transport cost M to their cells. The rows and
columns with an asterisk correspond to the maximum surplus of the product that
may be sent additionally (but not necessarily, and therefore the respective trans
port costs to the "fictious" receiver and suppliers are equal to zero) if the con
straints are to be satisfied at least to the degree I - r.

It should be observed that the joint supply value of all the suppliers is equal
to Ii = (26, 10, 26, 10) and the joint demand value of all the receivers is equal to
b= (20, 10, 20, 10). The maximum degree to which the constraints could be sat
isfied is equal to r= .7. Therefore the relevant interval for analysis is r E [.3, 1].

Table 15-7. Table of the parametric transportation problem .

Receivers

Suppliers J 2 3 J* 2* 3* FR Supply

1 10 20 30 10 20 30 M 10 - 5r
2 20 50 60 20 50 60 M 16 - 5r
1* 10 20 30 10 20 30 0 lOr
2* 20 50 60 20 50 60 0 lOr
FD M M M 0 0 0 0 20r

Demand 10 - 5r 9 -4r 1 - r lOr 8r 2r 6 + 20r
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Table 15-8. Solution to transportation problem.

.3 ",; r "'; ~ t ",; r"';.6 .6 "'; r "'; 1

X l 2 3 + 14r 9 -4r 9 - 4r
X I3 7 - 19r 1 - r 1 - r

X21 10 + Sr 10 +Sr 16 - Sr

X 22 6 - lOr 6 - lOr

The solution of this example is shown in table 15-8 . The membership func
tion ~C<r) takes the form

1

.06 +1.38r for r E [.3 , ~]

~G (r)= .l8+1.02r for rE [~, .6 ]
.54+0.42r for r E[.6,1]

The maximizing solution is obtained for r =.4059 and ~G(.4059) =.5941. Figure
15-16 depicts this situation in analogy to figure 14-5.

15.3.2.2 Fuzzy Linear Programming in Logistics. Ernst [1982] suggests a
fuzzy model for the determination of time schedules for containerships, which
can be solved by branch and bound, and a model for the scheduling of contain
ers on containerships, which results eventually in an LP. We shall only consider
the last model (a real project).

The model contained in a realistic setting approximately 2,000 constraints and
originally 21,000 variables, which could then be reduced to approximately 500
variables. Thus it could be handled adequately on a modem computer. It is
obvious, however, that a description of this model in a textbook would not be
possible. We shall, therefore, sketch the contents of the modeling verbally and
then concentrate on the aspects that included fuzziness.

The system is the core of a decision support system for the purpose of sched
uling properly the inventory, movement, and availability of containers, especially
empty containers, in and between 15 harbors. The containers were shipped
according to known time schedules on approximately 10 big containerships
worldwide on 40 routes. The demand for container space in those harbors was to
a high extent stochastic. Thus the demand for empty containers in different
harbors could either be satisfied by large inventories of empty containers in all
harbors, causing high inventory costs, or they could be shipped from their loca-
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0,98

0,792

0,5941

0,52
0,474

Decision

r0,60,3 0,4059

1/3

0+-------+-.;----;.------.--------".....--
o

Figure 15-16. The solution of the numerical example.

tions to the locations where they were needed, causing high shipping costs and
time delays.

Thus the system tries to control optimally primarily the movements and inven
tories of empty containers, given the demand in ports, the available number of
containers , the capacities of the ships, and the predetermined time schedule of
the ships.

This problem was formulated as a large LP model. The objective function
maximized profit (from shipping full containers) minus cost of moving empty
containers minus inventory costs of empty containers . When comparing data of
past period with the model, it turned out that very often ships had transported
more containers than their specific maximum capacity. This, after further inves
tigations, led to a fuzzification of the ship's capacity constraints, which will be
described in the next model.
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z = c'»
Bx~b

Ax;;; d

the net profit to be maximized
the set of crisp constraints
the set of capacity constraints for which a crisp formulation turned
out to be inappropriate

Then the problem to be solved is

maximize z = cTx

such that Ax;;; d

ses»
x~O (15.1)

This corresponds to model (14.14). Rather than using model (14.19) to arrive
at a crisp equivalent LP model, the following approach was used: Based on equa
tion (14.10) and model (14.11), the following membership functions were defined
for those constraints that were fuzzy :

f.
~;(t;) = --'- 0 ~ t, ~ P;-d; i E I,

p;-d;

I = Index set of fuzzy constraints .
As the equivalent crisp model to (14.1) , the following LP was used:

maximize z' =cTx- L, s;(Pj -b;)~j(t;)
te t

such that Ax ~ d + t

ss s: b

t ~P - b

x, t ~ 0 (15.2)

where the s, are problem-dependent scaling factors with penalty character.
Formulation (15.2) only makes sense if problem-dependent penalty terms s.;

which also have the required scaling property, can be found and justified .
In this case the following definitions performed successfully: First the crisp

constraints Bx ~ b were replaced by Bx ~ .9b, providing a 10% leeway of capac
ity, which was desirable for reasons of safety. Then "tolerance" variables t were
introduced:

Bx - t ~ .9b

t s .1b

The objection function became
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maximize z = c'x - s't

where s was defined to be

average profit of shipping a full containers = __-=~ ---,c..:....-= _

average number of time periods that elapsed
between departure and arrival of a container

Because of this definition, more than 90% of the capacity of the ships was used
only if and when very profitable full containers were available for shipping at the
ports, a policy that seemed to be very desirable to the decision makers.

Before turning to another application area, it should be mentioned that other
applications of fuzzy set theory can be found in the literature [Oh Eigeartaigh
1982] and that the development of model (14-9) was initially triggered by a real
problem in logistics described by Zimmermann [1976].

15.3.3 Fuzzy Sets in Scheduling

Scheduling is a very common activity in management. It concerns very different
areas, i.e. production , maintenance, transportation , activities , etc. The environ
ments in these different areas differ from each other and so do the specific con
straints that have to be taken into consideration . Some of these scheduling tasks
have a more engineering character (such as in telecommunication, in repair, in
computer networks, etc.). They are not considered here. We rather focus on those
areas that are generally in the general management domain. Sometimes planning
and scheduling (or control) are closely related to each other and can hardly be
separated. Also, some neighboring areas, such as production- and inventory
control are very much interrelated. We shall present six cases which cover dif
ferent areas and also different approaches for planning and scheduling .

15.3.3.1 Job-Shop Scheduling with Expert Systems [Bensana et al. 1988].
In the following, we will present a job shop scheduling approach where concepts
from the field of artificial intelligence and concepts of fuzzy set theory enrich
traditional OR.

Different kinds of knowledge cooperate in the determination of feasible sched
ules. One kind of knowledge is represented by rules. Relevances of rules with
respect to facts and goals are expressed by concepts of fuzzy set theory. First, we
will sketch the system. Second, we will focus on the application of fuzzy set
theory within the system.

The scheduling problem in a workshop can be stated as follows: Given a set
of machines and technological constraints, and given production requirements



402 FUZZY SET THEORY-AND ITS APPLICATIONS

expressed in terms of quantities, product quality, and time constraints expressed
by means of earliest starting times and due dates for jobs , find a feasible sequence
of processing operations.

A set of K jobs must be performed by a set of M machines . Each job k is char
acterized by a set of operations O, assigned to machines on which they have to
be performed . A schedule is described by means of a precedence graph, expressed
by a set of pairs (OJ, OJ) denoting that OJ must precede OJ'

The system, implemented in LISP and named OPAL, consists of two planning
modules-the "constraint-based" analysis module and the "decision-support"
module-whose interaction is guided by a "supervisor" module. The supervisor
module plays the role of the inference engine and guides the search process. The
structure of the system is shown in figure 15-17.

The constraint-based analysis (CBA) module deals with a partial order of
operations derived from the processing sequence of parts and the schedule in
progress on one side and the time constraints for job processing on the other. By
subsequent systematic comparisons of the existing precedence constraints, new
precedence constraints are generated. This procedure stops in one of the follow
ing states:

success:
failure:

A feasible and complete schedule is derived.
Due to conflicting precedence constraints, a feasible schedule does not
exist.

•
•II

DATA
BASE

Constraint
based analysis

module

Supervisor

module

Decision
support
module

Figure 15-17. Structure of OPAL.
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wait: The schedule in progress is incomplete (i.e., the set of precedence
constraints does not form a complete order), and no more precedence
constraints can be generated.

If the CBA module reaches a "wait" state, the decision pertaining to operation
ranking is no longer dictated by feasibility considerations with respect to due
dates. Such a decision can be made according to other kinds of criteria of a tech
nological nature (e.g., it is better not to cut a workpiece made of metal M before
a workpiece made of metal M'), or related to productivity (facilitate material flow,
avoid filling up machine input buffers, avoid long set-up times . ..).

According to these criteria , a decision-support module (DS) generates new
precedence constraints. First, it selects a subset C of the set of all unordered pairs
of operations . Second, it choses one element of C and forms a new precedence
constraint.

The selection can be based on criteria like specific machines, specific opera
tions, temporal location, influence on the quality of the schedule, or influence on
the resolution speed. The grades of membership of the unfixed pairs of opera
tions in the sets defined by those criteria may be expressed fuzzily. If more than
one criterion is used for selection, the corresponding fuzzy sets are intersected
by the minimum-operator.

In the second step, one element of this fuzzy set is chosen to be fixed, that is,
to be the new precedence constraint. This step is carried out by using a collec
tion of pieces of advice expressed as "if .. . then" rules. Rules differ by their
origin and by their range of application (general or application-dedicated). More
over, their efficiency is more or less well known and depends upon the prescribed
goal, or the state of completion of the schedule. These rules can express antago
nistic points of view. Lastly, they are usually pervaded by imprecision and fuzzi
ness, because their relevance in a given situation cannot be determined in an
all-or-nothing manner.

To take these features into account, each rule r is assigned a grade of rele
vance 1t,(k) with respect to goal k. 1t,(k) can be viewed as the grade of mem
bership of rule r to the fuzzy set of relevant rules for goal k. The aim of these
coefficients is basically to create an order on the set of rules. For every pair
of operations, the "if" part of a rule is evaluated as to the extent to which
0 ; should precede OJ according to the attribute of the rule. Let v be the index
qualifying this attribute, and let Vij be the value of this index when 0; pre-

v.,
cedes OJ' The ratio xij = __'1_ is then evaluated . To avoid thresholding

v ij + v ji

effects, three fuzzy sets H = high ratio, M = medium ratio, and S = small ratio
are defined (see figure 15-18). Hence the relation appearing in the rule is a fuzzy
relation .
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x0,80,60,40,2

0'---_--'~__-->L __"' ....3L _L_ _

o

11-----,..

Figure 15-18. Fuzzy sets for the ratio in the "if' part of the rules.

The "then" part of all rules is of the same format. It provides advice about
whether 0 ; should precede OJ (i < j) or if the rule does not know (i - j) . This
advice is expressed by three numbers:

!-IAi < j) = min(!-ts(xij), 1t,(k»

!-trCi - 0 = min(!-t,\1(xij), 1tr(k»

!-trCi < i) = min(!-tii(xij), 1tr(k»

The rules relevant for goal k are all triggered and applied to all facts in the set
C. The proportions of relevant triggered rules preferring i < j , j < i, i - j are
obtained as relative cardinalities (see definition 2-50):

p(i < j) = L!-trU< j)IL 1tr(k)

pCi< i) = L!-trCi <oiL1tr (k)

p(j - 0 = L!-tr(i - j)IL 1tr(k)

When p(i - j) is close to 1, it is not possible to decide which of the two opera
tions should precede the other because the rules are indifferent. In contrast, when
p(i - j) is close to 0, but p(i < j) is close to p(j < i), the set of rules is strongly
conflicting. The preference index for decision i < j is defined as min {p(i < j), 1
- p(i - j)}; in terms of fuzzy logic, it expressed to what extent most of the trig
gered rules prescribe i < j, and most are not indifferent about 0; preceding OJ'

The schedule is gradually built up by adding precedence constraints between
operations. The search graph is developed as follows: each time the CBA module
stops, a new node is generated and the current schedule is stored. The DS module
then generates a new precedence constraint to the schedule graph, and the CBA
module checks for consequent precedence constraints . Backtracking occurs if the
explored path leads to a failure state. When no feasible schedule at all exists, the
data must be modified in order to recover feasibility.
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15.3.3.2 A Method to Control Flexible Manufacturing Systems [Hintz and
Zimmermann 1989]. The following application shows the usage of multiple
concepts of fuzzy set theory within a hybrid system for production planning and
control (PPe) in flexible manufacturing systems (FMS s). FMSs are integrated
manufacturing systems consisting of highly automated work stations linked by a
computerized material-handling system making it possible for jobs to follow
diverse route s through the system (see figure 15-19). They facilitate small batch
sizes, high quality standards, and efficiency of the production process at the same
time.

Decentralized ppe systems for each FMS are provided with schedules of
complete orders by an aggregate planning system. They are responsible for
meeting the due dates , minimizing flow times , and maximizing machine utiliza
tions . Generally, these objectives are conflicting. The planning process is carried
out by subsequently solving the subproblems:

1. Master scheduling
2. Tool loading
3. Releasing scheduling
4. Machine scheduling

Subproblem 1 is solved by using fuzzy linear programming (FLP), subproblem
2 is solved by a heuristic algorithm, and subproblems 3 and 4 are solved using

ROBO · TRAILER SYSTEM
A",o PaU" Changer (APe}

Figure 15-19. Example of an FMS [Hartley 1984, p. 194].
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approximate reasoning (AR). We will just sketch the master scheduling, omit the
tool loading, and focus on the release and machine scheduling.

Master Scheduling. The objective of the master schedule is to determine a
short-term production program with a well-balanced machine utilization that opti
mally meets all due dates. Its determination is a quite well-structured problem,
although some important input data are rather uncertain. Since nearly the com
plete manufacturing of a part can be performed within an FMS, a simultaneous
approach using FLP (as defined in section 14.2.1) has been employed for the
master scheduling. Restrictions to be considered in the master schedule are as
follows:

I . Parts can only be processed when they are released from earlier production
stages.

2. They have to meet given due dates in order to match the following opera
tions and assembling .

3. The capacity of the FMS must not be exceeded. Because the machines may
partially be substituted by each other, they have to be classified into appro
priate groups.

4. There is only a limited number of (expensive) fixtures and pallets available.

In restrictions I and 2, release and due dates are often rough estimates that
include safety buffers and unnecessary work-in-process inventories. In practice
it is often possible to supply some parts earlier than initially planned (i.e., by
overtime) or to violate the due dates only for a portion of an order (for instance,
by lot-size splitting) without seriously disturbing processing or assembling. On
the other hand, if release dates or due dates are chosen too stringently, there may
be no feasible solution at all.

For these reasons, restrictions 1 and 2 are modeled as fuzzy constraints while
restrictions 3 and 4 are modeled as crisp constraints. The solution of the FLP
yields a solution

• that is feasible according to restrictions 1--4, if possible , or
• that minimizes the deviations from given due dates and distributes them uni

formly among the different orders. The value of the maximized variable then
denotes the degree of membership of the optimal solution in the set of feasi
ble and optimal solutions.

Release and Machine Scheduling. Decisions concerning the parts schedule for
both releasing and machining are arrived at by AR. This is considered to be an
appropriate way to model a very complex situation with many interdependencies.
The decision criteria are formulated in terms of production rules, which have been
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shown to lead to quite stable decisions. It will be shown later that this approach
also leads at least to a very good compromise of the tree mentioned conflicting
goals of scheduling. In addition , this method is very suitable for interactive deci
sion making, where the decision maker can employ familiar linguistic descrip
tions of the situations.

The basic release scheduling procedurecan be regarded as dispatching parts for a
single capacity unit (the FMS) with several work stations: As long as unused
working places and appropriate pallets with fixtures are available, new parts can be
released into the FMS. Once the upper limit of parts has been reached, the remaining
parts have to wait in a queue until one of the parts leaves the FMS. Then the decision
of which part should be released next will be made using an AR procedure.

The machine scheduling procedure is very similar to dispatching when using
priority rules . This means that no machine is allowed to wait if there is a part that
can be processed on that machine . If there are several parts at a time waiting for a
machine, then another AR procedure is used to choose a part from the waiting line.

For both AR procedures, a hierarchy ofdecision criteria is defined (see figure
15-20). This hierarchy corresponds to stepwise operationalizing the decision cri
teria until they can easily be used by the decision maker. On the other hand, such
a hierarchy can be considered as the combination of elementary local-priority
rules in a more comprehensive global-priority or decision rule. The single ele
ments or concepts of the hierarchy may in general consist of arithmetic or lin
guistic terms. Both the hierarchy and the ways to make the concepts operational
are heuristic in nature. Hence no optimal solution can be guaranteed.

Let us further concentrate on the criteria hierarchy depicted in figure 15-20a
for the release scheduling. The decision of which part to release next mainly
depends on date criteria of the parts under consideration or the impact of parts
on machine utilization, or it may depend on some kind of external priority. For

(a) Release scheduling

Figure 15-20. Criteria hierarchies.

(b) Machine scheduling
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the date criteria, we furthermore distinguish between the slack time of a part and
the time the part has already waited for processing.

The impact on the effect on machine utilization can be twofold. First, we have
to take care that the machines are used as uniformly as possible, thus trying to
avoid bottlenecks. For this purpose, we define a criterion "uniformity of utiliza
tion." On the other hand, we want to ensure a good utilization in the shift with
reduced personnel, during which no parts can be fixed on pallets. On the con
trary , parts can only be processed as long as they do not need any manual
operation, be it for changing a pallet or in any case of failure. We shall take this
into consideration by using the concept "processing time until the next fixturing."
The external priority can be given by the plant manager or some other person
responsible.

To illustrate the AR process, we will look at the definitions of the concepts of
the hierarchy and the aggregation of concepts by the rule set. We will focus on
the derivation of the date criterion of the slack time and the waiting time crite
ria. Slack time and waiting time are considered linguistic variables as defined in
section 9.1:

Linguistic variable

slack time
waiting time
date criterion

Term set

critically_short, short
short, medium, long
urgent, noturgent

The base variable is defined for all possible values for the indicator, that is, in
general, all real numbers within a reasonable interval. The meaning of the terms
can be defined by giving the degree of membership as a function of the above
defined indicator as base variable. As membership functions, piecewise linear
functions are used. The parameters were obtained by extensive simulation studies
for a specific structure of orders to be processed in a specific FMS.

An essential task before aggregating these two criteria with the date criteria is
the assignment of degrees of sensibleness to each element (rule) of the Cartesian
product defined by the assumptions and the conclusion: {long, medium, short}
® {critically_short, short } ® {urgent, not urgent}. This can be done by an
expert (scheduler) and results in the "degrees of sensibleness" shown in paren
theses for each rule above.

An example rule set might be (degree of sensibleness given in parentheses):

1. IF waiting time is long AND slack time is critically_short THEN date
criterion is urgent (1.0)
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2. IF waiting time is medium AND slack time is critically_short THEN date
criterion is urgent (0.8)

3. IF waiting time is short AND slack time is critically_short THEN date
criterion is urgent (0.6)

4. IF waiting time is long AND slack time is short THEN date criterion is
urgent (0.5)

5. IF waiting time is medium AND slack time is short THEN date criterion is
urgent (0.2)

6. IF waiting time is medium AND slack time is short THEN date criterion is
noturgent (0.7)

Each of these rules can now be interpreted as one possible aggregation of the
two criteria "slack time" and "waiting time" with the "date criteria" (see figure
15-20a). Only rules with a nonzero degree of sensibleness are considered. The
AR procedure applied is depicted in figure 15-21. That is, first the conditional

Overall degree
d membership

.>
Membership of
conditions with

" • operator

Detennlne mem-
bersh�p of lingu-

IsIIc variables

Values of base
variables

~
Membership of
rules with max-

operator

Detennlne confi-
dence In rules

Define rules

Figure 15-21. Principle of approximate reasoning.
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parts of the rules connected by "AND" or "OR" are aggregated by using the y
operator. The "THEN" of the rule is then interpreted as "the conditions hold and
the rule is valid," where this "AND" is also modeled by the y operator. In this
case, however, y is taken to be zero, since no compensation is assumed between
the truth of the rule and the validity of its conditions. If more than one rule leads
to a certain condition, the maximum of the respective degrees of membership
determines the final result.

Example 15-3

We want to compute the values (degrees of membership) of the terms of the "date
criteria" in figure l5-20a. Consider three parts, whose slack time and waiting
time are linguistic variables as described above. The grades of membership in
terms of the linguistic variables are given in table 15-9.

In the first step, the conditional parts of the rules are aggregated by using the
yoperator. In this example, y=.5 is used. The results are depicted in table 15-10.
In the second step, the rules are evaluated. The use of the yoperator with y = 0
is equivalent to the multiplication of the degree of membership of the condition
and the degree of sensibleness. The results are summarized in table 15-11, where
the maxima of the respective degree of membership for the two terms (urgent,
notjrrgent) of the linguistic variable "date criteria" are printed in bold. Part 3 in
the table shows the highest degree of membership in the fuzzy set of parts with
urgent date criteria and the lowest degree of membership in the fuzzy set of parts
with notjirgent date criteria.

Results. The approach described above has been programmed, and its perfor
mance has been compared to systems with no master scheduling and employing

Table 15-9. Membership grades for slack time and
waiting time.

Membership grade
ofpart

I 2 3

Waiting time: long 0.7 0 0.7
medium 0.2 0.8 0.3
short 0 0.4 0

Slack time: critically_short 0.4 0.8 0.7
short 0.6 0.2 0.3
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Table 15-10. Membership grades for conditional
parts of the rules.

Part

1 2 3

Condition I 0.58 0.00 0.67
Condition 2 0.20 0.78 0.41
Condition 3 0.00 0.53 0.00
Condition 4 0.72 0.00 0.41
Condition 5 0.29 0.37 0.21
Condit ion 6 0.29 0.37 0.21

Table 15-11. Membership grades for the rules.

Part

1 2 3

Date criterion is urgent:
conclusion I 0.58 0.00 0.67
conclusion 2 0.16 0.62 0.33
conclusion 3 0.00 0.32 0.00
conclusion 4 0.36 0.00 0.21
conclusion 5 0.06 0.Q7 0.04

Date criterion is not urgent:
conclusion 6 0.20 0.26 0.15

only simple priority rules for release and machine scheduling using a general sim
ulation program for FMS. The results are shown in table 15-12. The suggested
approach dominated the classical priority scheduling with respect to all three
objectives.

15.3.3.3 Aggregate Production and Inventory Planning [Rinks 1982a, b].
The "HMMS -model" [Holt et al. 1960] is one of the best-known classical models
in aggregate production planning . It assumes that the main objective of the pro
duction planner is to minimize total cost, which is assumed to consist of costs of
regular payroll , overtime and layoffs, inventory, stock-outs , and machine setup.
The model assumes quadratic cost functions and then derives linear decision rules
for the production level and the work-force level. The following terminology
is used:
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Table 15-12. Results.

FUZZY SET THEORY-AND ITS APPLICATIONS

Criteria

Mean in-process waiting time [min]
Part of lots that have met their due dates [%]
Mean machine utilization [%]

Suggested
approach

2,884
97
80

Priority rule
approach

3,369
28
79

Overtime costs

Inventory-connected costs

Regular payroll costs

Hiring and layoff costs

FS, = sales forecast for period t
Wt- I = work force level in period t - I

1,_1 = inventory level at the end of period t - I
LlW, = change in work force level in period t

P, = production level in period t

In general, the decision variables are related to the cue variables as

l{ = !(FS" \¥,-l,!t-l)

LlW = g(FS" It-!)

By contrast to most other models, the HMMS-model was tested empirically for
a paint factory. The cost coefficients were derived in different ways (statistically,
heuristically, etc.), and the performance of the decision rules was compared to
the actual performance of the paint factory managers [Holt et al. 1960].

The following model resulted for the paint factory.

Model 15-5

v

minimize CN = minimizeLc;
t=1

where

C. = [340\¥,]

+ [64.3(\¥, - \¥,-In

+ [0.20(l{ - 5.67\¥,)2 +51.2l{ - 281\¥,]

+ [0.0825(1, - 320n

and subject to restraints

1'-1 + P, - S, =It t = 1, 2, . . . , N
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Even though the HMMS-model performed quite well and is used as a common
benchmark for later models, it was rarely used in practice. The main objection
was generally that managers would not use it, roughly speaking, because too
much mathematics was involved.

Rinks tries to avoid this lack of acceptance by suggesting a model based on
the concepts described in chapters 9 and 10 of this book. He developed one
production and one work-force algorithm that consist of a series of relational
assignment statements (rules) of the form

If FS, is and It-! is .
and W'_I is then P, is .
Else ...

and

If FS, is and 1'-1 is .. .
and W'_l is then ~W, is . . .
Else . . .

respectively
He uses the definition (given in table 15-13) of the terms of linguistic vari

ables. Figure 15-22 sketches the membership functions of the terms of the lin
guistic variables used. Forty decision rules were suggested (see table 15-14) ,
these were not claimed to be optimal but rather heuristic in character and accept
able to the manager.

1.0

0 .8

0.6

0.4

0 .2

0

I
-I

7

-0.5
II 13 IS

o
17 19 21 23 25

0 .5 I

Universes of Discourse

Figure 15-22. Membership functions for several linguistic terms.
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Table 15-13. Definition of linguistic variables [Rinks 1982].

Base Membership
Linguistic terms Acronym variable" f unction express ion":

VERY HIGH VH x HIGH x * HIGH x
(POSITIVE, VERY BIG ) (PVB) (dx)

HIGH H x 1 _ eHO.5/1 1- xO' ·'J

(POSITIVE BIG) (PB) (dx)

RATHER HIGH RH x 1 - eHO.2sm.7-xll 'J

(POSITIVE, RATHER BIG) (PRB) (dx)

SORTOF HIGH SH x 1 _ el-(O.2S/IO.4-xl' .5]

(POSITIVE, SORTOF BIG) (PSB) (dx )

AVERAGE A x 1 - e l- 51x1J

(ZERO) (Z) (dx)

SORTOFLOW SL x 1 _ eHO.2S/I-o.4-XI)'-' J

(NEGATIVE, SORTOF BIG) (NSB) (dx)

RATHER LOW RL x 1 _ el-(O.2S~-o.7-xO'· 'J

(NEGATIVE , RATHER BIG) (NRB ) (dx )

LOW L x 1 _ el-(O.5~ I-xO>S1

(NEGATIVE BIG) (NB) (dx)

VERY LOW VL x LOW x * LOW x
(NEGATIVE, VERY BIG) (NVB) (dx)

AT LEAST AVERAGE ALA x 1 - e[ -Slxll - 1 ,,:; x":; 0
0< x ":; 1

AT MOST AVERAGE AMA x 1 -1 ,,:; x":; 0
1 - e[-5lxll o<x":; 1

a x is anyone of the following variables: W,_I> FS
"

W" and P" dx is LlW"
b All variables are scaled to be placed in the [-1 , 1] interval.
C dx replaces x in the membership function expression for use with LlW"

To test the performance of the suggested approach, the data of the paint factory
of the HMMS-model were used. In order to apply Rinks decision rules, the mem
bership functions of the terms, as shown in figure 15-22, had to be calibrated. In
fact the range [-I, I] on the horizontal axis of this figure had to be calibrated to
the data. For test purpo ses, lower and upper bounds as shown in the following
tabulation were derived from available historical data (HMMS) :
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Table 15-14. Membership functions.

Cue variables Decision variables

Rule no. FS, 1'-1 W,_I P, l1W,

1 H AMA H H Z
2 H AMA A RH PRB
3 H AMA L SH PVB
4 SH L H H Z
5 SH L A RH PRB
6 SH L L SH PVB
7 SH SH H SH NRB
8 SH SH A A Z
9 SH SH L A PRB

10 A A H SH NRB
11 A A A A Z
12 A A L A PRB
13 SL SL H SH NRB
14 SL SL A A Z
15 SL SL L SL PRB
16 RL L H SH NRB
17 RL L A A Z
18 RL L L A PRB
19 L ALA H SL NVB
20 L ALA A RL NRB
21 L ALA L L Z
22 SL H H SL NVB
23 SL H A RL NRB
24 SL H L RL Z
25 H AMA SH H PSB
26 H AMA SL SH PB
27 SH L SH H PSB
28 SH L SL SH PB
29 SH SH SH A Z
30 SH SH SL A PSB
31 A A SH A NSB
32 A A SL A PSB
33 SL SL SH A NSB
34 SL SL SL A Z
35 RL L SH A NSB
36 RL L SL A Z
37 L ALA SH RL NB
38 L ALA SL L NSB
39 SL H SH RL NB
40 SL H SL RL Z

I. Acronyms for the values of the linguistic variables are defined in table 15-1 3.
2. Each production rule is a fuzzy relational assignment statement of the form "IF FS,is__AND

1,_1 is __ AND W,- l is __ THEN P, is __."
3. Each work force rule is a fuzzy relational assignment statement of the form "IF FS, is__AND

1'_1is __ AND W,_l is __ THEN ~W, is __."
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Variable

w.,
t1W,
P,
1,-1
FS,

Lower bound

60
-10
250
150
250

Upper bound

115
10

750
490
750

In the absence of historical data, the manager would use his or her judgment
to make the determinations. For computations, the max-min compositions were
used, resulting in fuzzy sets as representing the "conclusion" or "decision." Since,
however, a decision concerning the workforce, production, or inventory of next
period should be a crisp decision, Rinks used the maximum rule if possible . If
the membership function did not have a unique maximum he used other, heuris
tic rules to choose the crisp decision to be implemented.

For the 60 months of data for the HMMS-model (1949-1953), the results of
the work-force algorithm are shown in figure 15-23. The cost results are shown
in table 15-15.
Rink's own evaluation of the simulation results reads as follows:

While the 5.0 per cent cost penalty evidenced by the production scheduling fuzzy algo
rithms is somewhat greater than that reported by other heuristics-Search Decision

Wort Force
(Htn)

120

110

100

90

80

70

60

i

2

- Linear O",h tof'l Ru l ~$

Year

Figure 15-23. Comparison of work force algorithms.
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Table 15-15. Cost results.

Costs Linear DR Fuzzy
(1,000$) HMMS (optimal) algorithm

Regular payroll 1,879 1,814
Hiring and layoff 20 22
Overtime 129 251
Inventory 25 43

Total cost 2,053 2,130

Table 15-16. Comparison of performances.

Ice cream Chocolate Candy Paint

Decision rule 100% 100% 100% 100%
(perfect)

Decision rule 104.9% 102.0% 103.3% 110%
(moving average)

Company 105.3% 105.3% 114.4% 139.5%
performance

Management 102.3% 100.0% 124.1% 124.7%
coefficients

Correlation W"=.78 W"= .57 W"= .73 W"= .40
P"'= .97 P'" =.93 P'" =.86 P'" =.66

Rule [Taubert 1967] and Parametric Production Planning [Jones 1967] reported cost
penalties of less than one percent for the paint factory-it must be ramembered that
the fuzzy algorithms do not even require an explicit cost function . For situations where
restrictive assumptions cannot be retionalized and sufficient data is not available to
construct a cost function, approximate reasoning based models would seem to offer an
appealing alternative [Rinks 1982b, p. 579].

If Rinks had compared his results to other benchmarks , he would probably have
been more optimistic . Table 15-16 is from Bowman [1963, p. 104] and shows
the real performance and the performance of another heuristic, the management
coefficient approach, in the case of the HMMS paint factory and three other
plants. Compared to the 139% and 124.7% performance of these two approaches,
the 105% performance of the fuzzy algorithm would look even better.
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15.3.3.4 Fuzzy Mathematical Programming for Maintenance Scheduling.
The following application, basing on a master thesis from Zittau, Germany, is of
interest because the effects of different operators were investigated and because
parametrized membership functions were used.

Model 15-6 [Holtz and Desonki 1981]

The problem objective here is to determine optimal maintenance cycles in elec
trical power plants. Stochastic models had been used before, but because of the
very low frequency of breakdowns, it seemed that a model based on frequentis 
tic arguments was not appropriate.

T, : Cycle times of maintenance operations for j = 1, .. . , N maintenance crews
(decision variable)

xij : Coefficients of the crisp cost function, i = 1,2, 3; j = 1, . . . , N
Yij : Coefficients of the manpower requirement function, i = 1, 2, 3; j =

1, .. . , N
zij : Coefficients of the breakdown function , i = 1, 2, 3; j = 1, . .. , N
Mh : Number of manhours available for maintenance per year
B : Number of breakdowns per year
Bm• x : Maximum of acceptable breakdowns per year

Crisp Mathematical Model. For N = 2 and C = total cost, the following crisp
model was the point of departure :

minimize C =C(1;, ... ,T,, ) =i (Xlj T, + Xl j + X3
j

)
j=1 ~

such that ±(Ylj~ + Y2j + Y3
j)

5, Mh
j=1 T,

±(Zlj~ + Zlj + Z3
j

) 5, Bm.x
j=l ~

t, ?O

The requirements were as follows:

1. Cost should not exceed 500 considerably-and in no case should exceed an
upper bound that could be varied .

2. Manpower Mh should generally not exceed 1,100, and by no means 1,200.
3. The number of breakdowns can exceed 50 but never 300 (Bm• x) .
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Fuzzy Mathematical Model. The symmetrical concept of a decision (defini
tion 14-1) was used, and the optimal decision was defined to be

Two types of membership functions were investigated: a linear membership func
tion and a nonlinear two-parameter membership function.

Type 1 Membership Functions

I { ( c; - C)}~c(1j) = - [I + sgn(CL - C)] +[I + sgn(C - CL )] ·

2 ~-~

where CL and Cu represent the lower and upper bounds for total cost.

I { ( Mhu - Mh )}~Mh(1j)= - [I + sgn(Mh L - Mh)] +[I + sgn(Mh - MhL)] ·
2 Mh L -Mhu

with Mh L and Mh u the lower and upper bounds.

~ii(1j)=.!.{[l+Sgn(BL -B)]+[I+sgn(Bu -BL)] '( B
u
-B)}

2 ~-~

with BL and Bo the lower and upper bounds.

Type 2 Membership Function. We shall only show the membership function
for the objective function. The others are defined accordingly:

I { l+sgn(C-CL) )
~c(1j) = - [I + sgn(CL - C)] + ( )1 I2 I I C - CL1+ -- --

bl CI

b, and c, serve as means of better fitting the membership function to the real sit
uation. On the other hand, they obviously increase the computational effort.

Detailed numerical results, as well as a comparison of the performance of the
min-operator versus the product operator as a model for the intersection, can be
found in Holtz [1981].

15.3.3.5 Scheduling Courses, Instructors, and Classrooms. It is well
known that the determination of time schedules in which several resources have
to be combined belongs to the most difficult combinatorial problems in opera
tions research. Rarely does one ever try to determine optimal schedules. The
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determination of feasible schedules is very often the best one can hope for. The
difficulty of obtaining such schedules by formal algorithms might partly be due
to the fact that constraints are treated as crisp requirements even though in reality
they often are flexible. The following case indicates how a combination of fuzzy
set theory and heuristics can lead to quite acceptable results.

Model 15-7 [Prade 1979]

Problem Description. A quarterly schedule in a French university is to be
determined, There are N (here N = 4) instruction programs; each lasts one year,
and a student can only attend one of them. Each instruction program I consists
of M(l) courses (here, 10 :::; M(l) :::; 14). Each course contains lectures, lab work,
and a final examination.

A course is taught by one instructor, supported by several teaching assistants.
An instructor may teach several courses in one or several instruction programs.
The availability of an instructor differs from person to person . An instructor may
be present for only some predetermined days of a week; another may be avail
able for only some weeks during the quarter. Information about the availability
of instructors is only known approximately beforehand.

A schedule has to satisfy seven "global" constraints:

1. Each instruction program must be completely planned for the entire school
year.

2. There are precedence constraints between courses (or sometimes parts of
courses) that are elements of the same instruction program.

3. It is not desirable that more than four weeks elapse between the first lecture
of a course and its final examination.

4. It is not desirable that any course that has already begun is interrupted for
more than a week.

5. Some courses can be in common in several instruction programs.
6. An instructor is not always available.
7. It is very desirable that several courses (three or four) are planned during the

course of the same week.

Constraints 1, 2, 5, and 6 are considered as "hard," 3, 4, and 7 as "soft" con
straints . More local constraints will be considered later.

Solution. The flow time of a course is considered as a fuzzy number with a
membership function similar to that shown in figure 15-24. These fuzzy numbers
in L-R representation (see definition 5-6) are used to compute via fuzzy PERT a
fuzzy early starting date r; and a late ending date a. If x denotes time, then the
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Figure 15-24. Flowtime of a course.

interval i,in which the course i will be taught is a fuzzily bounded interval (see
figure 7-5), bounded by ri and a. respectively.

The membership function of these intervals Ii is

{

Il" (x) for x s I)

1ll;(X)= 1 for xE[I),dJ

Ild, (x) for x ~ d,

where r.; d, are the mean values of ri, and a. respectively.
The "global" constraints are taken into consideration successively : Constraints

1 and 2 are used as a basis for PERT; constraint 4 is used to compute whole pro
grams from single courses. And if constraint 5 is relevant, the intersection of the
different possibility intervals for all relevant courses in all effected instruction
programs is computed. Constraint 6 is taken care of similarly.

So far. the slack time for each course. the work load of each instructor. and
the number of courses per week for each instruction program have been deter
mined. Modifications of this schedule due to the availability of the instructors
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Figure 15-25. The scheduling process.

can now be made, and the following "local" constraints are considered by inter
actively changing schedules that have been generated automatically via heuristic
priority assignment. Figure 15-25 summarizes the entire process.

"Local" constraints are as follows:

1. There exist precedence constraints between lectures and lab work inside a
course (the graph of these constraints is not the same for all the courses).

2. An instructor can teach only one lecture at a given moment.
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3. It is generally desirable to plan two lectures of the same course in succes
sion, but not three.

4. It is not desirable that an instructor teach more than two lectures of different
courses in the same morning.

5. It is desirable to give priority to lectures in the morning and lab work in the
afternoon.

Example 15-4

The following tables and figures can only serve to visualize the process. Details
can be found in Prade [1977]. Figure 15-26 presents the data of one of the four
instruction programs that were considered. All courses had to be scheduled within
one quarter of 11 weeks. Table 15-17 gives the node number, name of courses,
instructor number, and category (1 to 4 indicate different availabilities of the
instructor). p, a, and ~ are the mean values of the left and right spreads of the
processing time for each course. The availability for each instructor is given in
table 15-18. Table 15-19 gives course numbers, initialized by the name of the
instructor and early start and late finish times.

Table 15-17. Structure of instruction program.

Instructor Processing time
category

N Name number a p ~

I A231 (Ll to 6) 9 3 0.5 2 I
2 A231 (L7 to 10) 9 3 0.5 I I
3 AI41 (Ll to 6) 12 3 0.5 2 I
4 A 14 1 (L7 to 10) 12 3 0.5 I I
5 AI21 12 3 I 3 1.5
6 A241 12 3 1 3 1.5
7 A510 9 3 I 3 1.5
8 M317 (Ll to 8) 17 4 1 3 1.5
9 M317 (L9 to 10) 17 4 I 3 1.5

10 PSI6 8 I 0 4 0
11 V231 2 1 2 0 I 0
12 V211 I 4 I 3 1.5
13 E541 23 4 I 3 1.5
14 E551 23 4 I 3 1.5
15 M361 13 3 I 3 1.5
16 E531 11 I 0 4 0
17 E532 11 I 0 4 0
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Figure 15-26. Courses of one instruction program.



Table 15-19. PERT output.

Name a p f3 a d f3
A231 0 1 0 0 11 0
AI41 0 1 0 2 6 2
AI21 0 1 0 1.5 4 I
A241 I 4 1.5 0 11 0
A510 I 4 1.5 0 7 0
M317 0 I 0 0 11 0
PS16 2 7 3 0 11 0
V231 0 1 0 0 3 0
V211 0 5 0 0 11 0
E541 0 I 0 1.5 6 I
E551 1 4 1.5 0 9 0
M361 0 I 0 0 11 0
E531 0 4 0 0 7 0
E532 0 8 0 0 11 0

As reference (membership) functions for the fuzzy numbers in L-R
representation representing the "flowlines" of the course, Prade used L(x) = exp
[-r] and R(x) = max [0, 1 - r].

The intersection of the availability schedule (table 15-18) and the PERT
schedule yields the possibility schedule of weeks in which courses can be sched
uled (table 15-20). Table 15-21 shows an example of the final schedule for the
first week.
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Table 15-20. Availability of weeks for courses.

Weeks

Name 1 2 3 4 5 6 7 8 9 10 11

A231 I I I I I I I I 0 I I
AI41 I I 0.5 0 I I 0.8 0.4 0 0 0
AI21 I I 0.5 0 0.4 0 0 0 0 0 0
A241 0 0 0.4 0 I I I I I I I
M510 0 0 0.4 I I I I 0 0 0 0
M317 I I I I I I 0.5 0 0.5 I I
PSI6 0 0 0 0 0.4 0.8 I I I 0.5 0.5
V231 I I 0.5 0 0 0 0 0 0 0 0
V211 0 0 0 0 0.5 I I I I I 0.5
E541 I I I I I I 0.4 0 0 0 0
E551 0 0 0.4 I I I 0.5 0.5 0.5 0 0
M361 I I I 0.5 0 I I I I 0.5 0.5
E531 0 0 0 0.5 I I I 0 0 0 0
E532 0 0 0 0 0 0 0 I I I I

Table 15-21 . First week's final schedule.

Morning Afternoon

Monday AI41 Al41 AI21
L.I L.2 L.l

Tuesday A231 A231 M317
L.I L.2 L.I

Wednesday A231 A231 M317 A231
L.3 L.4 L.2 L.W.1

Thursday AI41 AI41 AI21 Sports
Friday AI21 Al21 M317 AI41

15.3.4 Fuzzy Models in Inventory Control

There exist a large number of inventory models in operations research using a
great variety of methods for their solution. For inventory models using linear or
integer linear models, the approach of section 14.2 or an algorithm described
in Zimmermann and Pollatschek [1984] may be used. For solutions basing on
differential calculus, the models in chapter 7 might be useful. Kacprzyk and
Staniewksi [1982] present a very interesting approach for aggregate inventory
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planning, using primarily the concept presented in chapters 3 and 5 of this book.
We shall present a model that uses Bellman and Zadeh's approach to fuzzy
dynamic programming discussed in section 4.3.

Model 15-8 [Sommer 1981]

The management of a company wants to close down a certain plant within a
definite time interval. Therefore production levels should decrease to zero as
steadily as possible and the stock level at the end of the planning horizon should
be as low as possible. The demand is assumed to be deterministic.

Mathematical model. Let

d, E D, i = 1, ... ,N be the decision variable representing the production
level in period i,

where

D = {ab' .. , an}
Xi E X, i = 1, .. . , N + 1

and

is the set of values permitted for the decisions.
be the state variable representing the inventory level
at the beginning of period i,

X = {t l e • • • , 'tm } is the set of possible state values,
ai,i = 1, . .. , N is the deterministic demand in period i,

Xi+l = Xi + d, - a, is the crisp transformation function,
eM;) = {(d;, 11 c;(d;) } are fuzzy constraints on the decision variables

representing the goal "production should decrease as steadily as
possible,"

i = 1, ... , N, and
G;(XN+I) = (XN+b Il G(XN+l)} is the fuzzy goal, representing the decision to have

as Iowa stock level as possible at the end of the planning horizon.

Then, using equation (14.20), the membership function of the decision on stage
i is

and the membership function of the maximizing decision on stage i is

which can be determined recursively using equation (14.23),
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As will be shown in the following numerical example, the state spaces can
sometimes be reduced even further by introducing a bound on the basi s of
heuristic considerations.

Example 15-5

Let

. (d)~ f3+.5i +d;/20

if ° s di s 60 - io.
if 6O-Wi $, d, $, 80 - Wi

/lei I 5-.5i-di / 20 if 8O-Wi s d, s 100 -IOi

° if 10O-Wi $, d,

and

_( )_{l- xN+J20 if °$, XN+l :::; 20
/lGN+l XN+I - ° Ie se

al = 45, az = 50, a3 = 45, a4 = 60, and N = 4

x, the stock level at the beginning, is supposed to be 0.

't j ={0,5,10, }

(J,h = {O, 5, 10, }

Only {di Ill c,(d;) > O} are of interest. Hence we can put a bound on the decision
variables as follows:

d~,

I
2
3
4

55
45
35
25

85
75
65
55

Also, °< Xs $, 20.
Using the transformation function, we can also find upper and lower bounds

for the state variables on the different intermediate stages. We proceed in three
steps: First we determine upper bounds xi' and lower bounds xI' from the forward
calculation. The according bounds x'/'and xf from backward calculation are com
puted in the second step. Then we can obtain the final bounds by
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U_ • {u' U" }
Xi - mIn Xi , Xi

xl = max{xf', xI"}

The lower bound for the state variable Xi can be calculated as

r { l' I }Xi = max 0, Xi-I +di.; - a i-I

The appropriate upper bound is

i = 2, . . . , 4

:it' = X~I + d i'- I - a i- I i = 2, . . . , 4

For the different stages we obta in, for X l = 0,

r xu'Xi I

I
2 10 40
3 5 65
4 0 85
5

Starting with Xs and assuming xf =0 and xf =20, we obtain recursivel y the fol
lowing upper and lower bounds:

I"
x~

"
Xi I

I
2 0 65
3 0 60
4 5 50
5

The final upper and lower bounds can be determined by

I {l' l"}Xi = m ax Xi , Xi

U_ . {u' U"}
Xi -lOrn Xi , X i
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Xl x"I I

1 0 0
2 10 40
3 5 60
4 5 50
5 0 15

Now we can determine the optimal d, and Xi within the lower and upper bounds
computed above:

Stage 1: Using equation (14.23), we obtain

Il C4 (X4) = max{min[llc(d4 ) , Il C(X4 , d4)]}
d4

= max{min[llc(d4),llc(x4+d4-a4)]}
d4

d4

X4 25 30 35 40 45 50 55 IlC.(X4)

5 1/4 1/4
10 1/2 1/4 1/2
15 3/4 1/2 1/4 3/4
20 I 3/4 1/2 1/4 1
25 3/4 3/4 1/2 1/4 3/4
30 1/2 3/4 1/2 1/4 3/4
35 1/4 1/2 1/2 1/4 1/2
40 1/4 1/2 1/4 1/2
45 1/4 1/4 1/4
50 1/4 1/4

Stage 2:
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d3

X3 35 40 45 50 55 60 65 JlO,(X3)

5 1/4 1/2 3/4 1/2 1/4 3/4
10 1/4 1/2 3/4 3/4 1/2 1/4 3/4
15 1/4 1/2 3/4 1 3/4 1/2 1/4 1
20 1/4 1/2 3/4 3/4 3/4 1/2 1/4 3/4
25 1/4 1/2 3/4 3/4 1/2 1/2 1/4 3/4
30 1/4 1/2 3/4 1/2 1/2 1/4 1/4 3/4
35 1/4 1/2 1/2 1/2 1/4 1/4 1/2
40 1/4 1/2 1/2 1/4 1/4 1/2
45 1/4 1/2 1/4 1/4 1/2
50 1/4 1/4 1/4 1/4
55 1/4 1/4 1/4
60 1/4 1/4

Stage 3: Jlt>(xz) =max{min[Jl c(dz), Jlt>(xz+dz - az)]}
d:

dz

Xz 45 50 55 60 65 70 75 Jlc,(xz)

10 1/4 1/2 3/4 3/4 3/4 1/2 1/4 3/4
15 1/4 1/2 3/4 3/4 3/4 1/2 1/4 3/4
20 1/4 1/2 3/4 3/4 1/2 1/2 1/4 3/4
25 1/4 1/2 3/4 1/2 1/2 1/2 1/4 3/4
30 1/4 1/2 1/2 1/2 1/2 1/4 1/4 1/2
35 1/4 1/2 1/2 1/2 1/4 1/4 1/4 1/2
40 1/4 1/2 1/2 1/4 1/4 1/4 1/2

Stage 4: Jlt>(Xl ) =max{min[Jlt(x.), Jlt>(x . +d. - a,)]}
d,

d ,

Xl 55 60 65 70 75 80 85

0 1/4 1/2 3/4 3/4 1/2 1/2 1/4
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15.3.5 Fuzzy Sets in Marketing

Classical applications of fuzzy sets in marketing, such as media selection [Wiedey
and Zimmermann 1978], are too similar to other applications of fuzzy linear pro
gramming to be discussed here again. We shall rather tum to recent and modem
applications of fuzzy technology in marketing, which base primarily on data
mining. The motivation and justification of these applications is, of course, the
change of data availability that has already been mentioned before.

The so-called database marketing became only feasible after enough data were
available. Unluckily the data masses grew that fast, that they superceded quickly
the human competence of percepting complex and little structured data pools .

In the following we shall focus on the area of market segmentation and present
first an easy to understand static problem and then a more complicated dynamic
problem .

15.3.5.1 Customer Segmentation in Banking and Finance. Banks and insur
ance companies have now-a-days masses of data about customers stored in their
data banks and data warehouses. They have a number of products that they want to
offer their customers, such as shares, bonds, derivates, etc. and they develop new
products. On the other hand, each individual customer has certain wishes and
needs, preferring one or the other of the products, i.e. they have certain product
affinities. Ifa bank would offer all its products to all its customers (for instance, by
a mailing) then it would be very costly, the relative effectiveness would be very
low and the customers might even be frustrated by getting that much mail.

In databank marketing the bank tries to subdivide its customers into segments
which are as homogenous with respect to the needs of the customers in a segment.
One can then offer special products only to segments which have a high demand
for this product. This is called customer segmentation.

Traditionally the features of these segments are defined as crisp intervals con
cerning, e.g. property, debt, income, balance of account, age, etc. and nominal
features, such as sex, marital status, profession, etc.

The main disadvantages of these feature definitions are, that there is no com
pensation between the features, that wrong classifications occurs and that dynamic
changes of the customers cannot be accounted for. If fuzzy analysis, e.g. fuzzy
clustering, is used, marginal customers are better classified, existing compensa
tions can be considered and dynamic changes may be recognized via changes of
degrees of membership of customers to clustery.

Example 15-6

In this experimental study of 300 customers the following features were used:
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Income
Credit
Age
Property
Profit (of the bank).

Traditionally the bank distinguished three classes:

Class 1:

Class 2:

Class 3:

Annual income less than
Property less than
Income between
Property between
Income more than
Property more than

DM 30,000
DM 40,000
DM 30,000 and 80,000
DM 40,000 and 200,000
DM 80,000
DM 200,000

The marketing effect turned out to be very unsatisfactory.
Subsequently fuzzy clustering was used. The fuzzy c-means algorithm, de

scribed in chapter 13 was used. It turned out, that nine classes represented the opti
mal number of classes and shown in table 15-22 class centers were determined:

These classes would certainly not have been found by a traditional classifica
tion. At the first glance those classes do not really make much sense. When shown
to marketing experts, however, they found the following very plausible descrip
tion of the classes :

Class: Content:

1 more than 60-year-old persons with low income and a certain property
2 in training
3 3rd stage of life high income and property
4 3rd stage of life low income and property
5 career persons
6 high senior citizens' segment
7 junior segment
8 persons with high credit capacity
9 social weak segment

15.3.5.2 Bank Customer Segmentation based on Customer Behavior [Ang
stenberger 2001]. By contrast to last section this time not the present status of
the customers (snap shot like) but the dynamic behavior of the customers will be
used for segmentation . The study, which is described here, is much larger than
that in last section. It concerns 24,267 customers of a commercial bank and it is
described in detail in [Angstenberger 2001]. Here we summarize the problem,
the process and the results.
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Table 15-22. Cluster centers of nine optimal classes.

Age Income Property Credit Profi t

class 1 63 2,585 10,485 2,965 45
class 2 28 2,300 8,020 3,200 24
class 3 52 5,260 50,920 7,830 256
class 4 53 3,200 20,785 6,040 165
class 5 43 6,240 22,680 8,925 117
class 6 78 2,190 34,280 1,185 316
class 7 9 235 3,285 230 5
class 8 42 1,120 15,705 150,060 930
class 9 37 955 13,405 7,302 0

Table 15-23. Dynamic features describing bank
customers.

Feature Description

1 Overdraw limit on account
2 Current end-of-month balance
3 Maximum balance this month
4 Minimum balance this month
5 Average credit utilization this month
6 Credit turnover this month
7 Number of bank-initiated payment reversals,i.e.

returned cheques/cancelled direct debits in
the current month

The bank customers are described by two static features, seven dynamic fea
tures and one categorical feature. The first two features are used as unique
identification numbers of customers, such as the customer number and account
number. The seven dynamic features characterize the state of an account each
month and are represented by sequences of 24 measurements. They are summa
rized in table 15-23:

One of the categorical features provided for bank customers determines special
account properties which can be savings / time deposits / depots and can take two
values, such as "yes" or "no" . According to bank experts, customers with or
without these account properties must be treated separately since they may exhibit
different payment behavior. Therefore, the data set will be separated into two
subsets according to this categorical feature. The first set of customers charac-
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terized by feature valus "yes" and possessing a savings account or depots con
sists of 4,688 customers, while the other set includes 19,579 customers without
the said properties of their accounts. These two sets of customers will be denoted
hereinafter as groups "Y" and "N", respectively, and the analysis of the customer
structure will be performed separately for each group.

After a preliminary analysis of data sets including the calculation of the mean,
minimum and maximum values of trajectories and their variances, it can be seen
that the value ranges of the seven features are very large and different. The main
statistical characteristics of the data group "Y" are summarized in table 15-24.

Those of customers "N" are shown in table 15-25.
The goals of the dynamic analysis of bank customers can be formulated as

follows:

1. to find segments of customers with similar payment behavior based on the
whole temporal history covering two years;

2. to find segments of customers with similar payment behavior based on the
temporal history of half a year, and to follow changes in the cluster structure
and in the assignment of customers to the clusters over time.

Table 15-24. Main statistics of each feature of the data group "Y".

Features Mean value Standard deviation a /1- 3eT /1 + 3eT

I 14,510.06 48,097.47 -129,782.34 158,802.46
2 16,347.19 134,581.82 -387,398.26 420,092.63
3 7.77 100,780.11 -302,332.56 302,348.10
4 37,655.46 273,818.07 -783,798.76 859,109.67
5 7,946.71 36,071.66 -100,268.26 116,161.68
6 81,002.74 636,081.44 -1 ,827,241.60 1,989,247.\0
7 0.01 0.00 -0.11 0.12

Table 15-25. Main statistics of each feature of data group "N".

Features Mean value /1 Standard deviation a /1- 3eT /1 + 3eT

1 20,811.16 63,966.97 -171,089.75 212,712.06
2 -4,278.04 145,423.24 -440,547.76 431,991.68
3 -13,393.86 153,139.98 -472,813.81 446,026.08
4 7,360.17 157,022.60 -463,707.63 478,427.98
5 17,426.61 123,226.32 -352,252.36 387,\05.59
6 35,406.50 318,825.34 -921,069.54 991,882.53
7 0.01 0.00 -0.\0 0.11
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The first goal can be achieved by clustering customers represented by trajecto
ries of their features on the time interval of two years. The clustering results
provide information about the structure within the customer portfolio appearing
during this time interval until the current moment. These results are suitable for
distinguishing between "good" and "bad" customers according to their long-term
payment behavior. The analysis of a long history is often carried out by banks to
achieve reliable results, particularly for recognizing "bad" credit customers. The
drawback of this analysis is, however, that the classifier cannot be used to clas
sify new observations of existing customers or observations of new customers
for the next two years , since the cluster prototypes are described by trajectories
with a length of 24 months and thus cannot be compared with shorter sequences
of observations. Thus, the classification of new observations and updating the
classifier (if necessary) can be repeated every two years. In this case the design
of the classifier is static, but the classifier is dynamic in nature since it is applied
to dynamic objects.

A more applicable classifier can be designed by clustering sequences of obser
vations over half a year, which is the second goal of the analysis conducted. This
analysis allows one to recognize customer segments based on the short-term
payment behavior of customers and to detect temporal changes in the customer
behavior. The classification of new observations of existing or new customers can
be repeated every six months providing up-to-date information about the cus
tomers' states and their development. If changes in the customer structure are
detected, the classifier is adapted according to the detected changes, which cor
responds to an update of the customer segments and their descriptions. There
fore, this type of analysis is based on dynamic classifier design and classification
applied to dynamic objects .

The following tasks will be performed, using pointwise similarity as defined
in section 13.3.2.

It would exceed the scope of this book to explain in detail the algorithmic
steps performed in this study. It should be mentioned, however, that pointwise
similarity is defined by

Table 15-26. Scope of the analysis of bank customers.

III. Type of similarity
I. Length of temporal history ll. Type of customers measure for trajectories

The whole temporal history Customers of group 'Y' Pointwise similarity
t=[1 ,24]

Time windows equal to half a year Customers of group 'N'
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1
Il(y,a)=-

l+al

which difines the membership function of the fuzzy set "approximately zero",
which was described in figure 13-22.

A is defined as a function of a of the a-cut chosen of this fuzzy set and Pis
a parameter that determines the shape of the membership function

I-a
a=--.ap2

The arithmetic mean is used for aggregation. For other parameter settings see
[Angstenberger 2001]. When segmenting (clustering) customers, it is important
that as many as possible of the customers are absorbed (belong to) a cluster and
that the customers outside of clusters (here called "stray-customers") are not too
numerous. This depends, amongst other parameters, on the a-cut and the number
of clusters used. For the customers group "Y" table 15-27 shows the number of
stray-customers for different a-cuts (here called UO) and for two clusters . For
U

O = 0.5 the numbers for 3 and 4 cluster are 692 and 560 respectively.
Table 15-28 shows the respective results for N-customers .
For this group the numbers of stray-customers are 4,563 for c = 3 and 14,270

for c = 4.
Hence, for both groups the number of clusters c = 2 is optimal.
The features used for clustering are now trajectories and not point. The fol

lowing two figures show this, exemplarily, for the cluster centers of feature 1 for
the customer groups "Y" and "N".

So far the segmentation was performed on the basis of the whole 24 month
history. A similar analysis was done on the basis of a moving time window of six
months with similar results. It showed quite well how customers moved from one
cluster to another over time.

Table 15-27. Absorbed and stray customers for "Y"
group.

Absorbed

Stray

UO = 0.3
UO = 0.4
UO = 0.5
UO = 0.6

3,114
3,099
3,081
3,065

1,419
1,396
1,367
1,308

155
193
240
315
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Table 15-28. Absorbed and stray-customers tor "N"
group.

Absorbed

c] C2 Stray

UO = 0.3 12,227 5,975 1,377
UO =0.4 11 ,073 5,964 2,542
UO = 0.5 9,494 5,942 4,143
UO = 0.6 6,479 5,801 7,299

Feature 1: Current end-or-month balance
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Figure 15-27. Feature 1: current end-of-month balance tor "Y".

Tables 15-29 and 15-30 indicate this movement of customers .
After conducting four types of analysis for different customer groups and for

different lengths of the temporal history it is necessary to compare the results
obtained . It has already been stated that the customer segments recognized based
on the whole temporal history and in the first time window are very similar,
however the feature values characterizing cluster centers in the first case are
somewhat larger in the absolute values compared to those in the second case.

Comparing the results for customers in group "Y" and "N," it can be seen that
the values of the end-of-month balance of customers in group "Y" exceed the
corresponding values of customers in group "N", and vary in the larger value
range. The credit turnover (not shown here) of the first customer group is approx
imately 10,000-20,000 DM larger than the values of the other customer group,
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Feature 1: Current end-or-month balance
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Figure 15-28. Feature 1: current end-of-month balance for "N".

Table 15-29. Temporal change of assignment of customers in group uY" to
clusters.

From tw, to tw2 From tw2 to tw, From twj to tw4

Numb er of customers C/ C2 C/ C2 C/ C2

Remained in C; 1,118 2,947 1,046 2,921 1,120 2,997
Moved from C 1 into C2 64 91 45
Moved from C2 into C1 31 102 40
Dropped out of C, 55 74 77 82 75 106
Appeared in C, 94 92 131 65 50 65

Table 15-30. Temporal change of assignment of customers in group "N" to
clusters.

From twj to tW4

Number of customers C/ C2 C/ C2 C/ C2

Remained in C; 10,466 4,323 9,951 4,045 10,250 4,321
Moved from C 1 into C2 108 336 104
Moved from C2 into C1 163 235 123
Dropped out of C, 653 501 911 795 612 571
Appeared in C j 569 644 780 634 672 633
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whereas the credit utilization (not shown here) of the active users is
20,000-30,000 DM lower. Therefore , customers in group "Y" belonging to the
segment of "active users" have more entries in their accounts, higher monthly
account statements and use bank credit less actively than customers in group "N".
Customers in the second segment, "non-users", are similar in their behavior for
both groups of customers .

The results of analysis conducted in this section can help a bank to better
understand the customer portfolio, to distinguish between different groups of
active users and non-users in order to be able to develop particular marketing
strategy which may be, for instance, offering special favorable services to a group
of the most active users .

Bank customer segmentation was carried out based on the dynamic data rep
resenting customers' temporal behavior and by applying the dynamic fuzzy clus
tering algorithm. The dynamic analysis allows to take into consideration the
payment behavior of customers over a period of time which characterizes cus
tomers much better than a single observation. Until now in most applications
related to customer segmentation and described in the literature the static analy
sis of customers was performed based on measurements at a certain moment of
time. These analysis results are obviously not very reliable, since clusters , or cus
tomer segments, obtained from such analysis can often change due to significant
fluctuations of account feature values that requires periodic reclustering. By con
trast the dynamic fuzzy clustering helps to save time and can provide more reli
able complete results.

Exercises

1. In what ways and for what purposes can fuzzy sets be used in operations
research?

2. Explain why in model 14-3 every nondecreasing operator can be used to
combine the goal with all of the constraints.

3. Could approaches (13.9) or (13.18) have been used in model 14-2? If so,
what would have been the consequences ?

4. In section 14.3.1, a fuzzy decision model has been employed as an opti
mization criterion. Can this approach be used for both precise and heuris
tic algorithms?

5. In the system presented in section 14.3.2, the decision support module picks
one precedence constraint out of the subset C of the set of all unordered
pairs of operations. Consider multiple criteria for the selection of the subset
C. Discuss possible fuzzy aggregation models for the derivation of the
subset C.
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6. Assume in model 14-7 that the instructors' availability is given by the fol
lowing table:

Instructor
Weeks

number 2 3 4 5 6 7 8 9 10 11

1 0 0 0 .5 0.5 1 1 I .5 0 0
8 0 0 .5 I I 1 1 .5 .5 0 0
9 .5 I I I I I I .5 .5 0 0

11 0 0 0 .5 .5 1 I 1 .5 .5 0
12 I 1 .5 .5 I I I I I 1 I
13 0 I I .5 .5 I I 1 .5 0 0
17 1 I I I I 1 1 1 1 1 I
21 .5 .5 I I .5 0 0 0 0 0 0
23 1 1 1 I .5 .5 .5 0 0 0 0

Determine a new table 14-15 of available weeks for courses, and try to
determine heuristicaIly a first week's final schedule.

7. Discuss approaches, and their advantages and disadvantages, for PERT net
works in which activity times are fuzzy and stochasticaIly uncertain.

8. Determine the critical path for the network shown in table 14-14 by sub
stituting for the addition of activity time in the normal critical path method
the extended addition (section 5.3.1).

9. Determine an optimal policy for model 14-8 modified as foIlow s: the
demands are a, = {40, 40, 45, 50} , and the fuzzy set goal is characterized
by the membership function

_{1- X N+I if
~GN+I - 10

o else

10. In the example shown in table 14-18, the membership degrees of the dis
trictings were evaluated subjectively by the decision maker. Consider fuzzy
accessibility measures for the "nearness" or "accessibility" of a service
point to every other point in a district for a location problem greater than
that shown in figure 14-15. Develop a model in which these accessibility
measures are aggregated to a fuzzy measure for the "acceptability" of every
district and are further aggregated to a fuzzy measure for the membership
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degree of every districting to the fuzzy set of "best districtings." Discuss
the sensitivity of such an approach to the choice of the intersection
operator.

11. Discuss the possible use of expert systems and FLC model in operations
research. Do those approaches satisfy sound OR principles?



16 EMPIRICAL RESEARCH
IN FUZZY SET THEORY

16.1 Formal Theories vs. Factual Theories vs.
Decision Technologies

The terms model, theory, and law have been used with a variety of meanings, for
a number of purposes, and in many different areas of our lives. It is therefore
necessary to define more accurately what we mean by models, theories, and laws
in order to describe their interrelationships and to indicate their use before we
can specify the requirements they have to satisfy and the purposes for which they
can be used. To facilitate our task, we shall distinguish between definitions given
and used in the scientific area and definitions and interpretations as they can be
found in more application oriented areas, which we will call "technologies" in
contrast to "scientific disciplines." By technologies we mean areas such as oper
ations research, decision analysis, and information processing, even though these
areas call themselves sometimes theories (i.e., decision theory) and sometimes
science (i.e., computer science, management science , etc.) . This statement is by
no means a value judgment; we only want to indicate that the main goals of these
areas are different. While the main purpose of a scientific discipline is to gener
ate knowledge and to come closer to truth without making any value judgments,
technologies normally try to generate tools for solving problems better, very often

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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by either accepting or being based on given value schemes. Let us first tum to
the area of scientific inquiry and consider the following quotation concerning the
definition of the term model: "A possible realization in which all valid sentences
of a theory T are satisfied is called a model of T."

Harre [1967, p. 86] states, "A model, a, of a thing, A, is in one of many pos
sible ways a replica or an analogue of A." And a few years later, "In certain formal
sciences such as logic and mathematics a model for or of a theory is a set of sen
tences, which can be matched with the sentences in which the theory is expressed,
according to some matching rule. ... The other meaning of 'model' is that of
some real or imagined thing or process, which behave similarly to some other
thing or process, or in some other way than in its behavior is similar to it" [Harre,
1972, p. 173]. He sees two major purposes of models in science : (I) logical: to
enable certain inferences to be made that would not otherwise be possible; and
(2) epistemological: to express and enable us to extend our knowledge of the
world. Models, according to Harre, are used either as a heuristic to simplify a
phenomenon or to make it more readily manageable and explanatory where a
model is a model of the real causal mechanism.

Leo Apostel [1961, p. 4] provides us with a very good example for various
definitions of models as tuples of a number of components in the following def
inition: "Let then R (S, P, M, T) indicate the main variables of the modelling rela
tionship. The subject S takes, in view of the purpose P, the entity M as a model
of the prototype T." For the four components of the definition, he gives a number
of examples that are quite informative concerning the use of models in science
and that can be summarized as follows :

Subjects (S) and purposes (P):

1. For a certain domain of facts, let no theory be known. If we replace our study
of this domain by the study of another set of facts for which a theory is well
known and that has certain important characteristics in common with the field
under investigation, then we use a model to develop our knowledge from a
zero (or near zero) starting point.

2. For a domain D of facts, we do have a full-fledged theory, but one too diffi
cult mathematically to yield solutions, given our present techniques . We then
interpret the fundamental notions of the theory in a model, in such a way that
simplifying assumptions can express this assignment.

3. If two theories are without contact with each other, we can try to use the one
as model for the other or introduce a common model interpreting both and
thus relating both languages to each other.

4. If a theory is well confirmed but incomplete, we can assign a model in the
hope of achieving completeness through the study of this model.

5. Conversely, if new information is obtained about a domain, to assure our-
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selves that the new and more general theory still concerns our earlier domain,
we construct the earlier domain as a model of the later theory and show that
all models of this theory are related to the initial domain, constructed as
model, in a specific way.

6. Even if we have a theory about a set of facts, this does not mean that we
have explained those facts. Models can yield such explanations.

7. Let a theory be needed about an object that is too big or too small, too far
away, or too dangerous to be observed or experimented upon. Systems are
then constructed that can be used as practical models, experiments that can
be taken as sufficiently representative of the first system to yield the desired
information .

Often we need to have a theory present to our mind as a whole for prac
tical or theoretical purposes. A model realizes this globalization through
either visualization or realization of a closed formal structure.

Thus, models can be used for theory formation , simplification, reduction,
extension, adequateness, explanation, concretization, globalization, action, or
experimentation .

Entity (M) and model type (T):
M and T are both images or both perceptions or both drawings or both for

malisms (calculi) or both languages or both physical systems. M can also be a
calculus and T a theory or language, or vice versa.

Apostel believes that all models that can be constructed by varying the contents of the
four components form a systematic whole: Models are used for system restructuration
because of their relations with the system (partial discrepancy) ; because of their rela
tionship among each other (partial inconsistency at least multiplicity) ; because of their
relationship with themselves (locally inconsistent or locally vague).

By now two things should have become obvious:

I. There is a very large variety of types of models, which can be classified
according to a number of criteria. For our deliberation, one classification
seems to be particularly important: The interpretation of a model as a "formal
model" and the interpretation as a "factual , descriptive model." This corre
sponds to Rudolph Carnap's distinction between a logical and a descriptive
interpretation of a calculus [Carnap 1946]. For him, a logically true interpre
tation of a model exists if, whenever a sentence is true, the second is equally
true and if a whenever a sentence is refutable in the calculus, it is also false in
the model. An interpretation is factual interpretation if it is not a logical inter
pretation, which means that whether a model is true or false does not depend
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only on its logical consistency but also on the (empirical) relationship of the
sentences (axioms of the model) to the properties of the factual system of
which the model is supposed to be an image. The second interpretation of a
model is the one that is quite common in the empirical sciences and it is the
one we will primarily be referring to in the following.

2. There is certainly a relationship between a model and a theory. This rela
tionship, however, is seen differently by different scientists and by different
scientific disciplines. We will now try to specify this relationship because
theories, to our mind, are the focal point of all scientific activities.

For Harre [1972, p. 174] "A theory is often nothing but the description and
exploitation of some model," or "Development of a theory on the other involves
the superimposing of one model on another" [1967, p. 99].

White [1975] eventually simply points out that

There is a need to logically separate a model and a theory and that they play support
ing roles in decision analysis, viz., some theory is needed so that aspects of models can
be tested and that some model is needed so that the affects of some changes can be
examined. In particular validation of a model needs a theory.

Thus, there seems to be a very intimate relationship between a model and a
theory in scientific inquiry. Both, probably to varying degrees, are based on
hypotheses, and these hypotheses can either be formal axioms or scientific laws.
These scientific laws seem to us to fundamentally distinguish models and theo
ries in scientific disciplines from the type of models (sometimes also called
theories) in the more applied areas: "An experimental law, unlike a theoretical
statement invariably possesses a determinate empirical content which in princi
pal can always be controlled by observational evidence obtained by those proce
dures" [Nagel 1969, p. 83].

These laws as scientific laws assert invariance with respect to time and space.
The tests to which such hypotheses have to be put before they can claim to be a
law depend on the philosophical direction of the scientist. Karl Popper, as prob
ably the most prominent representative of "critical rationalism," believes that
laws are only testable by the fact of their falsifiability. Popper holds further that
a hypothesis is "corroborated" (rather than confirmed) to the degree of severity
of such tests. Such a corroborated hypothesis may be said to have stood up to the
test thus far without being eliminated. But the test does not confirm its truth. A
good hypothesis in science, therefore, is one that lends itself to the severest test,
that is, one that generates the widest range of falsifiable consequences [Popper
1959].
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The area of operations research will be considered as an example of a more
application-oriented discipline, which is here called "technology," in which mod
eling plays a predominant role. Even though one might dispute whether opera
tions research is a science or a technology, this discussion will follow Symonds,
who, as the President of the Institute of Management Science, stated, "Operations
Research is the development of general scientific knowledge" [Symonds 1965,
p.385] .

What, now, is a model in operations research? Most authors using the term
model take it for granted that the reader knows what a model is and what it means.
Arrow, for instance, uses the term model as a specific part of a theory when he
says, 'Thus the model of rational choice as built up from pairwise comparisons
does not seem to suit well the case of rational behaviour in the described game
situation" [Arrow 1951]. He presumably refers to the model of rational choice,
because the theory he has in mind does not give a very adequate description of
the phenomena with which it is concerned, but only provides a highly simplified
schema. In the social and behavioral sciences as well as in the technologies, it is
very common that a certain theory is stated in rather broad and general terms
while models, which are sometimes required to perform experiments in order to
test the theory, have to be more specific than the theories themselves. "In the lan
guage of logicians it would be more appropriate to say that rather than con
structing a model they are interested in constructing a quantitative theory to match
the intuitive ideas of the original theory" [Suppes 1961]. Rivett, in his book Prin
ciples ofModel Building [1972], offers three different kinds of classifications of
models; when enumerating the models that he suggests be put into the different
classes, he no longer uses the term model but talks of "problems in this area" and
"the theory of this area" as a not-too-well-defined entity of knowledge. Ackoff
suggests as a model of decision making a six-phases process that is supposed to
be a good picture (model) of the real decision-making process [Ackoff 1962].
This is only one example of quite a number of very similar models of decision
making.

If we consider the size of some of the models used in operations research,
containing more than 10,000 variables and thousands of constraints, we can
easily see what does not distinguish a theory from a model: It is not the com
plexity, it is not the size, it is not the language, and it is not even the purpose. In
fact, there seems to be only a gradual distinction between theory and model.
While a theory normally denotes an entire area or type of problem, it is more
comprehensive but less specific than a model (e.g., decision theory, inventory
theory, queueing theory, etc.); a model most often refers to a specific context or



448 FUZZY SET THEORY-AND ITS APPLICATIONS

situation and is meant to be a mapping of a problem, a system, or a process . In
contrast to a scientific theory, containing scientific laws as hypotheses, a model
normally does not assert invariance with respect to time and space but requires
modifications whenever the specific context for which the model was constructed
changes.

In the following, we will concentrate on models rather than on theories. Real
izing that there is quite a variety of types of models, we do not think that it is
important and necessary for our purposes to distinguish models by their language
(mathematics or logic is considered to be a modeling language), by area, by
problem type, by size, and so on. One classification, however, seems to be impor
tant: the distinction of models by their character. Scientific theories were already
divided into formal theories and factual theories . For models, particularly in the
area of the technology in which values and preferences enter our considerations,
we will have to distinguish among the following :

1. Formal models. These are models that are purely axiomatic systems from
which we can derive if-then statements and the hypotheses of which are
purely fictitious. These models can only be checked for consistency; they can
neither be verified nor falsified by empirical arguments.

2. Factual models. These models include in their basic hypotheses falsifiable
assumptions about the object system; that is, conclusions drawn from these
models have a bearing on reality and they, or their basic hypotheses, have to
be verified or can be falsified by empirical evidence .

3. Prescriptive models. These are models that postulate rules according to which
processes have to be performed or people have to behave. This type of model
will not be found in science, but it is a common type of model in practice.

The distinction between these three different kinds of models is particularly
important when using them: All three kinds of models can look exactly the same,
but the "value" of their outputs is quite different. It is therefore rather dangerous
not to realize which type of model is being used, because we might take a formal
model to be a factual model or a prescriptive model to be a factual model, and
this could have quite severe consequences for the resulting decision .

As an example, let us look at the above-mentioned Ackoff model of decision
making. Is it a formal, a factual, or a prescriptive model? If it is a formal model,
we cannot derive from it any conclusion for real decision making. If it is a factual
model, then it would have to be verified or falsified before we can take it as a
description of real decision making. The assertion, however, that decision making
proceeds in phases was already empirically falsified in 1966 [Witte 1968]. Still,
a number of authors stick to this type of model. Do they want to interpret their
model as a prescriptive model? This would only be justified if they could show
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that, for instance, decision making can be performed more efficiently when done
in phases. This, however, has never been shown empirically. Therefore, we can
only conclude that authors suggesting a multiphase scheme as a model for deci
sion making take their suggestion as a formal model and do not want to make
any statement about reality, or that they are using a falsified, that is, invalid and
false, factual model.

16. 1.2 Testing Factual Models

The quality of a model depends on the properties of the model and the functions
for which the model is designed. In general, models will have to have at least the
following three major properties: logical consistency, usefulness, and efficiency.
By logical consistency, we mean that all operations and transformations have
been performed properly and that all conclusions follow from the hypothesis. This
consistency has to be demanded of all types of models, whether they are formal,
factual, or prescriptive. By usefulness, we mean that the model has to be helpful
for the function for which it has been designed. By efficiency, we mean that the
model, as the tool to achieve an end, has to fulfill the desired function at a
minimum of effort, time, and cost.

In decision making and problem solving, factual models will be needed to
describe, to explain, and to predict phenomena and consequences. For "condi
tional predictions," formal models will also be useful in order to obtain if-then
statements, for instance, in the framework of simulation. Formal models will
also be useful and necessary for the area of communicat ion within the decision
making process and for relaying the resolutions or conclusions of the decision
or problem-solving process to the "actors." One should assume that prescriptive
models are the most common in decision making. This, however, is only true
if one calls all "decision models"-that is, models that contain an objective
function by which an optimal solution can be determined-prescriptive models.
To our mind, this is not quite appropriate because these kinds of models only
prepare suggestions for possible decisions; the normative or prescriptive char
acter is acquired only after the "solution" has been declared a decision by
the authorized decision maker. A much more important feature of these models,
it seems to us, is that they have to describe or define properly the conditions
that limit the action space (such as capacities, financial resources, legal restric
tions, etc.).

We can now restate the notion of the quality of a model more precisely: we
already mentioned that consistency is one of the necessary conditions for quality.
Usefulness of a model will have to be defined for each of the three different types
of models differently:
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1. While a factual model can be called useful, if it is "factually true" (by con
trast to logically true), that is, if it maps the object system with an appropri
ate precision (which can only be tested empirically), the model also has to
generate knowledge-that is, the user of a model should gain knowledge he
or she would not have gained without using the model or which he or she
did not have available before using the model.

2. Formal models can be neither verified nor falsified empirically. Such a model
will be considered useful if activities such as teaching, explaining, and com
munication become more efficient with the model than without it.

3. Prescriptive models also cannot be verified or falsified. They are the more
useful the more effectively they help to enforce the desired behavior, to
control predefined performance measured, and to define ranges within which
decision makers have freedom to decide.

Two prime factors in modeling are the modeling language and the quality of
input data. The type of modeling language appropriate for models in decision
making was already discussed in chapter 1. Here we shall elaborate some more
on the quality of input data.

The saying "garbage in-garbage out" is well known and speaks for itself.
The following quotation from Josiah Stamp [1975, p. 236] points in the same
direction: "Governments are very keen in amassing statistics. They collect them,
add them, raise them to the nth power, take the cube root and make wonderful
diagrams. But what you must never forget is that every one of these figures comes
in the first instance from the village watchman who just puts down what he damn
pleases."

It must, however, be borne in mind that the effort put into deriving and obtain
ing numerical values or relations must be geared to the value of the model, and
that when data are scarce it may still be useful to draw conclusions from not
fully satisfactory input data. In this case, a tentative look at the dependence of
the solution upon the quality of the input data may be very advisable.

The quality of the input data is closely related to the question of operational
definitions for the relevant variables. The processes of defining variables and their
operational indicators and measurement are intertwined. To quote White [1975,
p. 102], "We take 'measurement' to be a special aspect of a 'definition'." One
might take the view that measurement is the actual procedure for assigning the
real numbers that constitute the measure. However, as pointed out in a previous
section, this is the quantification process and in itself does not constitute a
measure unless it is a homomorphism. The homomorphism then defines the
measure. Very often when modeling in the area of social sciences, one will find
that relations, data, or values are stated in very vague ways. Goals, for instance,
may be stated as "trying to achieve satisfactory profits," data as "the South of the
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Table 16-1. Hierarchy of scale levels.

Permissible transformation

Type of scale Verbal Formal lnvariance Example

Nominal scale One-to-one X i "I: Xj ~ x[ "I:x; Uniqueness License
function of values plates

Ordinal scale Monotonic X i :S Xj ~ x[ :S x; Rank order of Marks
increasing values
function

Interval scale Affine x' = a ·x + b Ratio of Temperature
function differences (CO, PO)

Ratio scale Similarity x'=a ·x Ratio of Length
function values (ern, inch)

Absolute Identity x'=x Values Frequency

country is much poorer than the North," and relations as "his investment strate
gies were much more risky than those of his competitors." Very often these vari
ables are measured subjectively, and point scales are used to transform the
"measurements" into numerical values. Even though it is necessary to include in
the model variables that are considered important but that are very hard to oper
ationalize and measure, the quality of the input data might have very limiting
effects on the degree of transformation of these variables that can be permitted
in the model. Rather than neglecting these kinds of data, one should consciously
determine which scale quality these data have and then make sure that only
admissible transformations are being used when processing these data in the
model. Table 16-1 sketches the hierarchy of scale levels including the permis
sible transformations for each of the levels.

The testability of the components of a model-in the scientific and in the prac
tical context-depends largely on the operational definition of the hypotheses. In
this sense, observation and formal analysis prior to model building can very often
improve the testability of hypotheses. Let us illustrate this with the following
example. In decision analysis, one normally distinguishes among decision
making under certainty, decision making under risk, and decision making under
uncertainty. One assumes that in decision making under risk the decision maker
is able to store and process probability distribution functions. Here probabilities
ought to be interpreted as Koopman-type probabilities-that is, probabilities as
expressions of belief rather than in the frequentistic sense. This hypothesis is
hardly testable because a situation of decision making under risk is not homoge
nous with respect to the available information at all. An improvement in the
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testability of hypotheses could be achieved if one would distinguish, for instance,
among the following:

1. Decision making when quantitative probabilities are known (intervalscale)
2. Decisions when interval probabilities are known (hyperordinal scale)
3. Decisions when qualitative probabilities are known (ordinal scale)
4. Decisions when partially ordered nominal probabilities are known (ordinal

scale)
5. Decisions when nominal probabilities are known (states are known but not

truth ratable)
6. Decisions when only some of the nominal probabilities are known

It is obvious that the information storage and processing requirements that a
human would need in order to decide "rationally" are quite different in the above
cases and that the permissible operations in the model will also be different
depending on the type of probability that can be assumed to exist.

If the testing is done on the basis of the outputs of the analysis, the decision
maker might already be able to indicate that the output of the analysis is not
satisfactory, probably because important relations or variables have been omitted.
If the decision maker or expert rates the output of the model as satisfactory, it
gains the status of face-validity, sometimes in practice the most we can hope for.

Ideally a model should now be tested by implementation, that is, by compar
ing actual with predicted results. This, however, in many instances is impossible
for several reasons.

1. Changes ofenvironment: Factors such as sales, price levels, and so on might
have changed while the model was built and implemented, and therefore the
observed results after implementation of the model can no longer be com
pared with the predicted results.

2. Changes in performance: If, for instance, the model is tested after imple
mentation by running the old procedure parallel to the model and if the old
procedure included human activities, the performance of these activities
might be improved by the persons because they know that the "new" model
is being compared with their performance, which would probably drop again,
if and when the operation of the new procedures would be terminated.

3. Risk and uncertainty: It is obvious that if procedures have been designed to
optimally decide in situations of risk or uncertainty, the "real" results cannot
meaningfully be compared with the probabilistic prediction .

4. Optimality: If only one solution is actually implemented, there is, of course,
no way to compare this with other alternatives. In many cases, the optimal
solution with which the model solution could be compared is not known at



EMPIRICAL RESEARCH IN FUZZY SET THEORY 453

all because it is not computable or because optimality was defined subjec
tively in a way that is not objectively reproducible.

It has already been pointed out that all kinds of theories and models can be
and ought to be tested for consistency. In formal analysis , it might even be pos
sible to prove consistency, which does not mean that models and theories for
which consistency has not yet been proven are not formally correct. For "factual"
or "substantial" theories and models, empirical testing of basic hypotheses , rela
tions, and resulting outputs is absolutely necessary in order to achieve a certain
degree of confirmation of the theory or the model. This fact is often neglected
when working with theories and models. If, for instance, the hypothesis of "ratio
nality" in decision-making models is "justified" by defining rationality by more
basic axioms such as transitivity, reflexibility, existence of an ordering, and so
on, which seem quite plausible and natural, then the model or the theory might
become more testable but certainly not better confirmed. To confirm the model
would require empirically testing either the main hypothesis or the presumably
more operational basic axioms. This, of course, still does not determine uniquely
the methods that can be used for testing hypotheses . These methods will depend
on the area in which the model is being used (physics, engineering, management)
and the purposes for which the model has been built. Thus, in scientific inquiry,
probabilistic tests might not be acceptable because scientific laws assert deter
ministic invariance . These methods, however, might be the only available ones
for testing models in areas such as management , sociology, and political decision
making.

In the following we shall report on empirical research concerning two main
components of fuzzy set theory: Membership functions and operators (connec
tives, aggregators).

16.2 Empirical Research on Membership Functions

Measurement means assigning numbers to objects such that certain relations
between numbers reflect analogous relations between objects. In other words,
measurement is the mapping of object relations into numerical relations of the
same type.

If it is possible to prove that there is a homomorphic mapping! E ~ N from
an empirical relational structure (E, Pi, ... , Pn) with a set of objects E and an n
tuple of relations Pi into a numerical relational structure (N, Qb . . . , Qn) with a
set of numbers N and relations Qi, then a scale «E, N, f» exists. By specifying
the admissible transformations , the grade of uniqueness is determined.

Therefore measurement starts by formulating the properties of the empirical
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structure; implicitly, the intended object space is modeled on a nonnumerical
level. Strictly speaking, at the very beginning there should be a semantic defini
tion of the central concepts ; this would considerably facilitate the consistent use
of the relevant principles. Unfortunately, this definition has not yet been possible
for the concept of membership. Membership has a clear-cut formal definition.
However, explicit requirements for its empirical/experimental measurement are
still missing. Under these circumstances, it is not surprising that apart from first
steps by Norwich and Turksen [1981], genuine measurement structures have not
yet been developed .

Under these circumstances , one could wait and see, until a satisfactory defin
ition is available. However, one should remember that up to the beginning of the
twentieth century, even in the "hard sciences," measures were used without being
equipped with adequate measurement theories. Usually the measurement tools
used were based on not much more than plausible reasons. Nevertheless, the
success of the natural sciences is undisputed. Hence, for the purpose of empiri
cal research, it may be tolerable to use plausible techniques.

Firstly, such a scale can serve as an operational definition of membership . Sec
ondly, a specific concept can be criticized and hence may help to obtain useful
improvements . We shall present two models for membership functions. Let us
call the first "Type A-model" and the second "Type B-model."

16.2. 1 Type A-Membership Model

Of prime importance is the determination of the lowest necessary scale level of
membership for a specific application. The purpose of the model A-membership
was to empirically investigate aggregation operators. In this instance, it was suf
ficient to determine degrees of membership for a predefined set of objects rather
than continuous membership functions . The requested scale level should be as
low as possible in order to facilitate data acquisition, which usually involves the
participation of human beings. On the other hand, a suitable numerical handling
is desirable in order to insure mathematically appropriate operating . Regarding
the five classical scale types-nominal, ordinal, interval, ratio, and absolute
scale- the interval scale level seems to be most adequate. In this respect, we
cannot follow Sticha, Weiss, and Donnell [1979], who assert that membership
has to be measured on an ordinal scale. Usually the intended mathematical oper
ations require at least interval-scale quality.

The easiest way to obtain data is to ask some subjects directly for member
ship values. However, it is well known that scales that are developed by using
the so-called direct methods may be distorted by a number of response biases
[Cronbach 1950]. On the other hand, indirect methods work on the basis of much
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Table 16-2. Empirically determined grades of
membership.

Stimulus x )1M(X) J1c(X) )1Mnc(X)

I. bag 0.000 0.985 0.007
2. baking tin 0.908 0.4 19 0.517
3. ballpo int pen 0.215 0.149 0.170
4. bathtub 0.552 0.804 0.674
5. book wrapper 0.023 0.454 0.007
6. car 0.501 0.437 0.493
7. cash register 0.692 0.400 0.537
8. container 0.847 1.000 1.000
9. fridge 0.424 0.623 0.460

10. Hollywood swing 0.318 0.212 0.142
11. kerosene lamp 0.481 0.310 0.401
12. nail 1.000 0.000 0.000
13. parkometer 0.663 0.335 0.437
14. pram 0.283 0.448 0.239
15. press 0.130 0.512 0.101
16. shovel 0.325 0.239 0.301
17. silver spoon 0.969 0.256 0.330
18. sledgehammer 0.480 0.012 0.023
19. water bottle 0.564 0.96 1 0.714
20. wine barrel 0.127 0.980 0.185

weaker assumptions using ordinal judgments only. Their advantages are sim
plicity and robustness with respect to response biases.

Their disadvantage is that many judgments are needed, since the ordinal judg
ment provides relatively little information. This drawback seemed acceptable in
order to avoid distortions of the data. Thus we decided to use a method that yields
an interval scale on the basis of ordinal ratings: After a set of suitable objects has
been established, subjects are asked for the grades of member ship on a percent
age scale. People are accustomed to this type of judgment, and division by 100
provides the normalized 0- I values. The obtained data are interpreted as ranks.
The subsequent scaling procedure refers mainly to a method suggested by
Diederich, Messick, and Tucker [1957] based on Thurstone's "Law of Categori
cal Judgment" [Thurstone 1927].

A detailed description of the method can be found in Thole , Zimmermann, and
Zysno [1979]. Table 16-2 illustrates the type of membership information that was
obtained and the type of objects used for experimentation. The transformation of



456 FUZZY SET THEORY-AND ITS APPLICATIONS

the observed information to degrees of membership was performed by a com
puter program written for this purpose.

16.2.2 Type B-Membership Model

Often a certain concept can be considered as a context-specific version of a more
general feature . For instance, the set of young men is a subset of all objects with
the feature age. We shall call this general feature the "base variable." This coin
cides with the definition of a base variable in definition 9-1. The scale of the base
variable that is normally generally accepted (here age in years) will be called a
'judgmental scale." In contrast to the scale of the base variable, the scale of the
"specific version" is context-dependent. Thus a term in definition 9-1 does not
necessarily correspond to "the specific version" of the base variable, because
"terms" did not explicitly assume a specific context. If the term young refers to
the age of men (by contrast to the age of flies, cars, houses , or dinosaurs), then
we can assume that the observer has some idea about what "young" means with
respect to men. He has a "standard" with respect to which he evaluates age in
terms of "young," "old," etc. We shall, therefore, call this specific context
dependent scale an "evaluational scale." If there exist a judgmental scale and an
evaluational scale, both referring to the same empirical relational structure, then
a mapping from one numerical relative into the other that reflects the differences
of the basic empirical relational structure with respect of the same set of elements
would be possible . If, on the other hand, the scale of (for instance) the base vari
able and the mapping (function) was known, then the scale of the special feature
could be determined. The mapping (function) can be considered as the member
ship function, which has to be determined. The required scale level of the mem
bership function essentially remains the same as for type A model. In contrast to
model A, however, we used direct scaling methods . These involve less effort and
are justified by the existence of the base variable, which provides extra control
with respect to judgmental errors of the subjects . The judgmental (valuation) of
membership can be regarded as the comparison of object x with a standard (ideal),
which results in a distance d(x) . If the object corresponds fully with the standard,
the distance shall be zero; if no similarity between standard and object exists, the
distance shall be " 00." If the evaluation concept is represented formally by a fuzzy
set P«: X, then a certain degree of membership f..lp(x) is assigned to each element
x. We shall assume that this degree of membership is a function of the "distance,"
d, between the two above-mentioned scales (P representing a fuzzy set defined
context-dependently as a subset of the universe X).

Thus we define
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1
IIp(x) = 1+d(x)
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(16.1)

where d(x) is the "distance" of the two scales for the element x E X. The distance
function now has to be specified. A specific monotonic function of the similarity
with the ideal could, as a first approximation, be d'(x) = lIx.

Experience shows, however, that ideals are very rarely fully realized. As an
aid to determine the relative position, very often a context-dependent standard b
is created. It facilitates a fast and rough preevaluation such as "rather positive,"
"rather negative," and so on. As another context-dependent parameter, we can
use the evaluation unit a, similar to a unit of length such as feet, meters, yards,
and so on. If one realizes furthermore that the relationship between a physical
unit and perceptions is generally exponential [Helson 1964], then the following
distance function seems appropriate:

1
d(x) = a( x-b)

e

Substituting equation (16.2) into model (16.1) yields the logistic function

1
II p(x) = 1 - a( x-b)

+e

(16.2)

(16.3)

It is S-shaped, as demanded by several authors [Goguen 1969; Zadeh 1971].
Formally, b is the inflexion point and a is the slope of the function.

From the point of view of linear programming, model (16.3) has the additional
advantage that it can easily be linearized by the following transformation:

1-1l Il-In-- = 10-- = a(x-b)
Il 1-1l

(16.4)

where Il stands for IIp(x).
The parameters a and b will have to be interpreted differently depending

on the situation that is modeled. From a linguistic point of view, a and b can be
considered as semantic parameters.

Model (16.3) is still too general to fit subjective models of different persons .
Frequently only a certain part of the logistic function is needed to represent a
perceived situation. This is also true for measuring devices such as scales,
thermometers , and so on, which are designed for specific measuring intervals
only.

In order to allow for such a calibration of our model, we assume that only a
certain interval of the physical scale is mapped into the open interval (0, 1) (see
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Figure 16-1. Calibration of the interval for measurement.

x

figure 16-1). Whenever stimuli are smaller than or equal to the lower bound or
larger than or equal to the upper bound, the grade of membership of 0 or 1, respec
tively, is assigned to them. This is achieved by changing the range by legitimate
scale transformations such that the desired interval is mapped into [0, 1].

Since we requested an interval scale, the interval of the degrees of member
ship may be transformed linearly. On this scale level, the ratios of two distances
are invariant. Let jI and u, respectively, be the upper and lower bounds of the
normalized membership scale, let Ili be a degree of membership between these
bounds, Il < u, < jI, and let u', Il~, jI' be the corresponding values on the trans-
formed scale. Then -
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Ili -Il Il: -Il'---------
jI-1l -jI'-Il'

For the normalized membership function , we have !:!: = 0 and jI = 1.
Hence
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(16.5)

(16.6)

Generally it is preferable to define the range of validity by specifying the inter
val d with the center c as shown in figure 16-1.

Hence

jI'=d+Il'

and

Il' = 2c- jI'

Substituting equation (16.7) into equation (16.8) yields

!:!:' =2c-d-!:!:'

Solving equation (16.9) for !:!:' gives

Il' = c-d/2

and inserting equations (16.10) and (16.7) into equation (16.6) yields

Il: = d(lli -1/2) +c

(16.7)

(16.8)

(16.9)

(16.10)

(16.11)

o I

Ili = Ie+e!a(X-b) -c)~+±1

The general model of membership (16.3) is specified by two parameters of cali
bration , if Ili is replaced by Il:' Solving this equality for Ili leads to the complete
model of membership:

(16.12)

r·l indicates that values outside of the interval [0, 1] have no real meaning. The
measurement instrument does not differentiate there. Hence

x <:! -71l(X) = 0

x> x -71l(X) = 1 (16.13)

The determination of the parameters from empirical databases does not pose any
difficulties in the general model (16.3). It should be mentioned that not only
monotonic functions, such as those discussed so far, can be described, but so can
unimodal functions-by representing them by an increasing (Sf) and a decreas-
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Figure 16-2. Subject 34, "Old Man."

ing (SD) part. Formally, they can be represented as the minimum or maximum,
respectively, of two monotonic membership functions each:

o I

!l SISD(x) = min r!l SI (x), !l SD(x)']
o I

!lSISD (x) = max r!l SI (x), !lSD(x)l

A computer program was written to process the observed data.
The type B-model for membership functions , which provides a membership

function rather than degrees of membership for single element s of a fuzzy set (as
Type A does), was also empirically tested .

We shall present results concerning a very common fuzzy set, "young men,"
"old men," and so on. Having available membership functions, we could also test
models of modifiers such as "very."

The evaluation of the data showed a good fit of the model. Figures 16-2
through 16-7 show the membership functions given by six different persons. As
can be seen, the concepts "very young men" and "young men" are realized in the
monotonic type as well as in the unimodal. The detailed data and results can be
found in a major report of the authors [Zimmermann and Zysno 1982].

One may ask whether a general membership function for each of the four sets
can be established. Though the variety of conceptual comprehension is rather
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Figure 16-4. Subject 5, "Very Young Man."
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Figure 16-5. Subject 15, "Very Young Man."
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Figure 16-6. Subject 17, "Young Man."
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Figure 16-7. Subject 32, "Young Man."

remarkable, there should be an overall membership function at least in order to
have a standard of comparison for the individuals . This is achieved by deter
mining the common parameter values G, b, c, and d for each set. Obviously, the
general membership functions of "old man" and "very old man" are rather similar
(see figures 16-8 and 16-9). Practically, they differ only with respect to their
inflection points, indicating a difference of about five years between "old man"
and "very old man." The same holds for the monotonic type of "very young man"
and "young man"; their inflection points differ by nearly 15 years. It is interest
ing to note that the modifier "very" has a greater effect on "young" than on "old ,"
but in both cases it can be formally represented by a constant. Several subjects
provided the unimodal type in connection with "very young" and "young." Again
the functions show a striking congruency.

16.3 Empirical Research on Aggregators

In section 3.2.2, a number of possible operators were mentioned. We saw that
they were assigned in various ways to set-theoretic operations , such as inter
section, union, etc. For some of these operators, axiomatic formal justifications
were also given. In definition 14-1, the triple decision-intersection-min-operator
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Figure 16-8. Empirical membership functions "Very Young Man," "Young Man,"
"Old Man," "Very Old Man."
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Figure 16-9. Empirical unimodal membership functions "Very Young Man",
"Young Man."

was used. Some indication was given there that, from a factual point of view, this
triple might tum out not to be true. After what has been said in section 16.1, it
should be obvious that for a factual use of fuzzy set models only empirical ver
ification of models for the aggregators is appropriate . This can only be done in
specific contexts, and the results will therefore be of limited validity.
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Some empirical testing of aggregators has been performed in the context of
fuzzy control. We shall report on empirical research done in the context of human
evaluation and decision making, that is, concerning the question, "How do human
beings aggregate subjective categories, and which mathematical models describe
this procedure adequately?"

As already mentioned, the term decision has been defined in many different
ways. A decision also has many different aspects, for example, the logical aspect,
the information-processing aspect, etc. We shall focus our attention on the last
aspect: The search for and the modeling, processing, and aggregation of infor
mation. A decision in the sense of definition 14-1, rather than being some kind
of optimization, is the search for an action that satisfies all constraints and all
aspiration levels representing goals. "Deciding" about the creditworthiness of a
person might be called an "evaluation" rather than a decision. It means, however,
checking on whether a person satisfies all aspiration levels concerning security,
liquidity, business behavior, and so on.

In the following, we will give a rough description of two experiments and their
results. The first experimental design started from the triple "decision
intersection-min-operator" and tried to find out whether the min-operator was
adequate for modeling the intersection. However, it did not question the pair
"decision-intersection." The second experiment is no longer limited to consider
ing a decision as the intersection ; it relinquishes the set-theoretic interpretation
of a decision altogether.

Test 1: Intersection-min-operator [Thole et al. 1979]

Two fuzzy sets, A and iJ, were considered. It seems reasonable to demand that
the following conditions concerning the judgmental "material" are satisfied:

1. The attributes characterizing the members of the sets A and iJ are indepen
dent, that is, some magnitude of 1lA: is not affected by some magnitude of Ila
and vice versa. As an operational criterion for this kind of independence, a
correlation of zero is demanded:

2. If llA:na represents the aggregation of 1lA: and Ila, modeling the intersection,
and if WA: and Wa are weights, then llA:na can be described by

llA:nil = (WA:IlA:)o (willlil)

Where 0 stands for some algebraic operation. But since the models proposed
do not take into account the different importance of the sets with respect to
their intersection, equal weights are demanded:
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As an operational criterion for equal weights, equal correlations are
demanded:

With regard to these conditions, three fuzzy sets were chosen: "metallic
object" [Metallgegenstand], "container" [Behiilter], and "metallic container"
[Metall-behiilter].1 It has to be proved that these sets satisfy the conditions
mentioned above.

Now the following hypotheses may be formulated : Let 11M(x) be the grade of
membership of some object x in the set "metallic object" and 11 (x) be the grade
of membership of x in the set "container"; then the grade of membership of x in
the intersection set "metallic container" can be predicted by

HI : IlMndx) = min {11M (x), Ildx)}

H2 : IlMndx) = 11M (x) ' Il d x)

A pretest was carried out in order to guarantee that these assumptions were
justified.

Sixty students at the RWTH Aachen from 21 to 33 years of age, all of them
native speakers of the German language, served as unpaid subjects in the main
experiment. Each subject was run individually through two experimental ses
sions, the first one taking about 20 minutes, the second one about 40 minutes. In
order to eliminate influences of memory as much as possible, the interviews were
performed at an interval of approximately three days.

Each subject was asked to evaluate each of the objects with respect to being
a member of A (metallic object), B(container), and A n B(metallic container).
The three resulting membership scales are shown in table 16-2.

Now, what about the prediction of the empirical data for "metallic container"
by the two candidate rules? Table 16-3 shows the empirical results together with
the grades of membership computed by using the min-operator and the product
operator, respectively.

Figures 16-10 and 16-11 show graphically the relationship between empiri
cal and theoretical grades of membership. The straight line indicates locations of
perfect prediction-that is, if the operator makes perfect predictions and the data
are free of error, then all points lie on the straight line.

1 This investigation has been carried out in Germany. The corresponding German word is given
in brackets. It should be realized that the German language allows the forming of compound word;
hence the intersection is labeled by one word.
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Table 16-3. Empirical vs. predicted grades of membership.

Stimulus x /lMnc(X) /lMnc(X) Imin /lMnc(X) Iprod .

1. bag 0.007 0.000 0.000
2. baking tin 0.517 0.419 0.380
3. ballpoint pen 0.170 0.149 0.032
4. bathtub 0.674 0.552 0.444
5. book wrapper 0.007 0.023 0.010
6. car 0.493 0.437 0.219
7. cash register 0.537 0.400 0.252
8. container 1.000 0.847 0.847
9. fridge 0.460 0.424 0.264

10. Hollywood swing 0.142 0.212 0.067
11. kerosene lamp DAOI 0.310 0.149
12. nail 0.000 0.000 0.000
13. parkometer 0.437 0.335 0.222
14. pram 0.239 0.283 0.127
15. press 0.101 0.130 0.067
16. shovel 0.301 0.293 0.D78
17. silver spoon 0.330 0.256 0.248
18. sledgehammer 0.023 0.012 0.006
19. water bottle 0.714 0.546 0.525
20. wine barrel 0.185 0.127 0.124

The question arises : Are the observed deviations small enough to be tolera
ble? To answer this question we chose two criteria:

1. if the mean difference between observed and predicted values is not differ
ent from zero (ex = 0.25; two-tailed), and

2. if the correlation between observed and predicted values is higher than 0.95,
the connective operator in question should be accepted.

Since the observed differences are normally distributed, we used the student
t = test as a statistic. It is entered by the mean of the population (in this case, 0),
the mean of the sample (0.052 for the min-operator and 0.134 for the product
operator), the observed standard deviation (0.067 for the minimum and 0.096
for the product), and the sample size (20). For the min-rules, the result is
t = 3.471, which is significant tdf > 19; p, the probability of transition, is less
than 0.01). For the product rule, the result is t = 6.242, which is also significant
(df = 19; p is less than 0.001). Thus, both hypotheses HI and H2 have to be
rejected.

Despite the fact that none of the connective operators tested seems to be a
really suitable model for the intersection of subjective categories, there is a slight
superiority of the min-rule, as can be seen from the figures . If one were forced
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Figure 16-10. Min-operator: Observed vs. expected grades of membership .

to use one of these aggregation rules, then the minimum certainly would be the
better choice.

The results of this experiment indicate that both product and minimum fail to
be perfect models for the intersection operation in human categorizing processes.

Test 2 [Zimmermann and Zysno 1980]

The interpretation of a decision as the intersection of fuzzy sets implies no pos
itive compensation (trade-oft) between the degrees of membership of the fuzzy
sets in question if either the minimum or the product is used as an operator. Each
of them yields degrees of membership of the resulting fuzzy set (decision) that
are on or below the lowest degree of membership of all intersecting fuzzy sets
(see test).

The interpretation of a decision as the union of fuzzy sets, using the max
operator, leads to the maximum degree of membership achieved by any of the
fuzzy sets representing objectives or constraints. This amounts to a full compen-
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Figure 16-11. Product-operator: Observed VS. expected grades of membership.

sation of lower degrees of membership by the maximum degree of membership
(see example 14-4).

Observing managerial decisions, one finds that there are hardly any decisions
with no compensation between different degrees of goal achievement or between
the degrees to which restrictions are limiting the scope of decisions. The com
pensation, however, rarely seems to be "complete," as would be assumed using
the max-operator. It may be argued that compensatory tendencies in human aggre
gation are responsible for the failure of some classical operators (min, product,
max) in empirical investigations.

Two conclusions can probably be drawn : Neither the noncompensatory "and"
represented by operators that map between zero and the minimum degree of mem
bership (min-operator, product-operator, Hamacher's conjunction operator (see
definition 3-15), Yager's conjunction operator (see definition 3-16) nor the fuzzy
compensatory "or" represented by operators that map between the maximum
degree of membership and 1 (maximum, algebraic sum, Hamacher's disjunction
operator, Yager's disjunction operator) are appropriate to model the aggregation
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of fuzzy sets representing managerial decisions. It is necessary to define new
additional operators that imply some degree of compensation, that is, that map
also between the minimum degree of membership and the maximum degree of
membership of the aggregated sets. In contrast to modeling the non-compensatory
"and" or the fully compensatory "or," they should represent types of aggregation
that we shall can "compensatory and."

It is possible that human beings use many nonverbal connectives in their think
ing and reasoning. One type of these connectives may be called "merging con
nectives," which may be represented by the "compensatory and." Being forced
to verbalize them, people may possibly map the set of "merging connectives"
into the set of the corresponding language connectives ("and," "or") . Hence, when
talking, they use the verbal connective they feel to be closest to their "real" non
verbal connective.

In analogy to the verbal connectives , the logicians defined the connectives /\
and v, assigning certain properties to each of them. By this, compound sentences
can be examined for their truth values. In contrast to this constructive process,
the empirical researcher has to analyze a given structure . Therefore, in order to
induce subjects to use their own connectives, we avoided the verbal connectives
"and" and "or" in our experiment, but tried to ask for combined membership
values implicitly presenting a suitable experimental design and instruction,
respectively.

We shall not describe in detail the experimental work in which different com
pensatory operators were tested and in which the y-operator (see definition 3-19)
turned out to perform best. The reader is referred to Zimmermann and Zysno
[1980] for details. We shan return to figure 1-1 and explain how credit clerks
arrive at a decision concerning the creditworthiness of customers by aggregating
their judgments concerning the determinants of creditworthiness. For details,
see Zimmermann and Zysno [1983]. A number of possible compensatory and
noncompensatory models were tested.

Searching for an appropriate decision situation, our choice fell on the rating
of creditworthiness for the following reasons:

I. This is a decision problem that is complex enough though it is still relatively
transparent and definable. In addition, this situation is highly standardized.
Even though test subjects come from different organizations, similar evalu
ation schemes can be assessed.

2. A sufficiently large number of decision makers is available with about the
same training background and similar levels of competence.

3. The decision problem to be solved can be formulated and presented in a
realistic manner with respect to contents and appearance.
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First , the creditworthiness hierarchy shown in figure 1-1 was developed together
with 18 credit clerks .

Testing the predictive quality of the proposed models required a suitable basis
of stimuli that were to be rated with respect to the creditworthiness criteria and
a weighting system that allowed a differentiated aggregation of these criteria.

The natural basis of information for evaluating creditworthiness is the credit
file. Therefore, we would have liked to analyze original bank files. However, a
selection of finished cases is always a biased sample, since the initially rejected
applicants are missing. Moreover, we wanted to avoid unnecessary troubles with
banking secrecy. Therefore, it was decided to prepare 50 fictitious applicants for
credit.

A credit application form usually contains about 30 continuous or discrete
attributes of applicants. If each variable were dichotomized, 230 different bor
rowers could be produced. Clearly, one cannot realize all possible variations.
Therefore, a sample was drawn that satisfied the following two conditions: The
50 applicants (stimuli) should

I. be distributed as evenly as possible along the continuum of each aspect, and
2. be typical for consumer credits.

The files were produced in three stages:

1. One hundred and twenty applications were completed randomly with respect
to the grade of extension of the 30 attributes.

2. The resulting 30 x 120 data matrix was purged of 40 cases most unlikely and
least typical. The remaining 80 files were completed using information of an
inquiry agency (Schufa) and a short record of a conversation between the
client concerned and a credit clerk.

3. The applicants should represent the variability of the eight concepts. If each
aspect is dichotomized into two classes (11 :;;; 0.5 ~ 0, 11 > 0.5 ~ I), then
the resulting 28 = 256 patterns of evaluation can be put in a 16 x 16 matrix.
With the assistance of two credit experts, the 80 credit files were placed into
this tableau. Finally, 30 files were eliminated in order to obtain equal fre
quencies in rows and columns.

We could now expect that the 50 applicants varied evenly along each attribute
and each criterion. Only one attribute was constant: the credit amount was fixed
at DM 8,000 , because the judgment "creditworthy" is only meaningful with
respect to a certain amount. A borrower might be good for DM 8,000 , but not for
DM 15,000.
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Figure 16-12. Predicted V5. observed data: Min-operator.

Surely it would be interesting to include the credit amount as a variable in this
investigation . But in order to receive a stable basis for scaling and interpretation,
a serious enlargement of the sample of credit experts would be necessary. This,
however, would have considerably exceeded our budget.

The predictive quality of each model can be evaluated by comparing observed
u-grades with theoretical u-grades. The latter can be computed for higher-level
concepts by aggregation of the lower-level concepts using the candidate formula.
The membership values for higher-level concepts should be predicted sufficiently
well by any lower level of the corresponding branch. The quality of a model can
be illustrated by a two-dimensional system, the axes of which represent the
observed versus theoretical u-values. Each applicant is represented by a point. In
the case of exact prognosis, all points must be located on a straight diagonal line.
As our data are corrected empirically, there will be deviations from this ideal.
Figures 16-12 to 16-15 depict some of the typical results of the tests for secu
rity as being determined by fourth-level determinants .

Unfortunately, the weighted geometric mean fails drastically in predicting
security by unmortgaged real estate and other net properties. In our view, this is
due to the fact that the model does not regard different grades of compensation.
The inclusion of different weights for the concepts does not seem to be sufficient
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Figure 16-13. Predicted vs. observed data: Max-operator.
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Figure 16-14. Predicted vs. observed data: Geometric mean operator.
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Figure 16-15. Predicted vs. observed data: y-operator.

for describing the human aggregation process adequately. Consequently, it comes
as no surprise that the y-model, comprising different weights as well as different
grades of compensation, yields the best results .

It should be kept in mind, however, that y has not been determined empiri
cally. This would have required a further experimental study, based on a theory
describing the dependence of y-values between higher and lower levels. For the
present, we are content with estimations derived from the data. At least it has
been shown that the judgmental behavior of credit clerks can be described quite
well if this parameter is taken into account.

Finally, the complete hierarchy of creditworthiness is presented together with
the elaborated weighting system and the y values for each level of aggregation
(figure 16-16).

16.4 Conclusions

Our example analysis of the process of rating creditworthiness yields a criteria
structure that is concept oriented and self-explanatory. The y-model, which was
from the beginning designed to satisfy mathematical requirements as well as to
describe human aggregation behavior, proved most adequate with respect to prog-
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Figure 16-16. Concept hierarchy of creditworthiness together with individual
weights 0 and y-values for each level of aggregation.

nostic power. This class of operators is continuous, monotonic, injective, com
mutative, and in accordance with classical truth tables, which manifests their
relationship to formal logic and set theory. They aggregate partial judgments
such that the formal result of the aggregation ought to make them attractive for
empirically working scientists and useful for the practitioner.

Banking managers not only evaluate but also decide. In order to complete the
description of a decision process, we therefore had asked the managers to arrive
at a decision for each fictitious credit application. If the creditworthiness were an
attribute of the all-or-none type and all credit managers followed the same deci
sion-making process, then two homogenous blocks of credit decisions (one block
with 100% yes decisions and one block with 100% no decisions) would result.
The number of positive decisions, however, varied over the entire range from 45
to O. Obviously, there existed a considerable individual decision space.



17 FUTURE PERSPECTIVES

In the first nine chapters of this book, we covered the basic foundations of the
theory of fuzzy sets as they can be considered today in an undisputed fashion.
Many more concepts and theories could not be discussed, either because of space
limitations, because they cannot yet be considered ready for a textbook, or they
are too specific and advanced for the goal of this textbook. It was already men
tioned in the preface, that now-a-days more than 30,000 publications in the area
of fuzzy set theory and computational intelligence exist. It is obvious that they
cannot all be covered in such a textbook. I hope, however, that after studying this
book the reader will be in a position to read, understand and evaluate most of the
papers and books that are being published now. Hopefully the reader has also
obtained some feeling how and to what type of problems this technology can be
applied.

Fuzzy set theory is certainly not a philosopher's stone that solves all the prob
lems that confront us today. But it has considerable potential for practical as well
as for mathematical applications , the latter of which have not been discussed at
all in this book.

To indicate the scope of future applications of fuzzy set theory, we shall point
to some of the most relevant subject areas. Researchers have become more and
more conscious that we should be less certain about uncertainty than we have

H.-J. Zimmermann, Fuzzy Set Theory - and Its Applications
© Kluwer Academic Publishers 2001
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been in the past. The management of uncertainty-that is, uncertainty due to lack
of knowledge or evidence, due to an abundance of complexity and information,
or due to the fast and unpredictable development of scientific, political, social,
and other structures nowadays-will be of growing importance in the future.

In fact, in practice the "fuzzy epoch" has already begun. There already exist
quite a number of expert systems and expert-system shells that use fuzzy sets
either in the form of linguistic variables or in the inference process (see [Gupta
and Yamakawa 1988a]). Fuzzy computes were exhibited as early as 1987 in
Tokyo. Gupta and Yamakawa [l988a] provide a very good description of the
present state of development.

One of the advantages of fuzzy set theory is its extreme generality, which will
enable it to accommodate quite a number of the new developments necessary for
coping with existing and emerging problems and challenges . Some areas are
already well developed, such as possibility theory [Dubois and Prade 1988a],
fuzzy clustering, fuzzy control, fuzzy mathematical programming, etc. Other
areas, however, have still ample space for further development.

The area in which primarily fuzzy set theory is known and attractive to many
scientists, students and practitioners was certainly fuzzy control. Excellent books,
as, for instance, [Babuska 1988] and [Verbruggen et al. 1999] indicate extremely
well the present state of this area. Unluckily the attractiveness of this area has to
a large extent hidden the other potentials of fuzzy set theory. We hope that the
reader of this book has become aware of all the other and not yet exploited pos
sibilities to use this theory in many areas.

Considerably more research-formal as well as empirical-will be necessary
in order to cope with these challenges . Much of this research will only be possi
ble through interdisciplinary team efforts . Let us indicate some of the research
that is needed. Fuzzy set theory can be considered as a modeling language for
vague and complex formal and factual structures . So far, mainly the min-max
version of fuzzy set theory has been used and applied, even though many other
connectives, concepts, and operations have been suggested in the literature. Mem
bership functions generally are supposed "to be given". Therefore, much empir
ical research and good modeling effort is needed on connectives and on the
measurement of membership functions to be able to use fuzzy set theory ade
quately as a modeling language. Great opportunities , not yet exploited, exist in
the field of artificial intelligence. Most of the approaches and methods offered
there so far have been dichotomous. If artificial intelligence really wants to be
useful in capturing human thinking and perception, the phenomenon of uncer
tainty will have to be modeled much more adequately than has been done so far.
Here, of course, fuzzy set theory offers many different opportunities .

Very recently an even younger promising application area has emerged: that
of web-technology. Large masses of data and information are being made avail-
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able without improving the human capability of perceiving complex structures in
detail. Intelligent agents, data mining, etc. might help to bridge this gap and fuzzy
technology will undoubtedly find an almost yet untouched field of research and
application. Also new areas, such as ecology, nuclear engineering, etc., have
already shown to have large potentials for fuzzy sets.

Another (at least potential) strength of fuzzy set theory is its algorithmic, com
putational promise. The more we realize that there are problems-the reader
might, for instance, think of NP-complete problem structures, which are far too
complex for existing traditional approaches (combinatorial programming , etc.)
to cope with-the more the need for new computational avenues becomes
apparent.

In recent years fuzzy systems have been used to solve, for instance, efficiently
systems of differential equations (see [Bardossy 1996]) and one also finds some
other applications of that type in recent issues of fuzzy sets and systems.

In general, however, fuzzy set theory has not yet proved to be computation
ally able to solve large and complex problems efficiently. Reasons for this are
that for computation, either we still have to resort to traditional techniques (linear
programming, branch and bound, traditional inference) or the additional infor
mation contained in fuzzy set models makes computations excessively volumi
nous. Here prudent standardization (support fuzzy logic, etc.) as well as good
algorithmic combinations of heuristics and fuzzy set theory might offer some real
promise. In other words, research in the direction of fuzzy algorithms is also
urgently needed.

Decision analysis has since 1970 been one of the prominent application areas
of fuzzy set theory. In this comprehensive textbook only one chapter could be
dedicated to this area. More details can be found in my book "Fuzzy Sets, Deci
sion Making and Expert Systems" [1987, third printing 1993] and other books
and papers listed in the bibliography. It is hoped that further research efforts will
advance this area and help to close still existing gaps.



Abbreviations of Frequently Cited Journals

ECECSR

ElK
FJOR
FSS
JMAA
J.Op.Res.Soc.

Economic Computation and Economic Cybernetics Studies and
Research
Elektronische Informationsverarbeitung und Kybernetik
European Journal of Operational Research
Fuzzy Sets and Systems
Journal of Mathematics, Analysis and Applications
Journal of the Operational Research Society



Bibliography

Abd EI-Wahed, W.E, and Abo-Sinna, M.A. [2001] . A hybrid fuzzy-goal programming
approach to multiple objective decision making problems. FSS 119,71-85.

Ackoff, R. [1962]. Scientific Method: Optimising Applied Research Decisions. New York.
Adamo, J.M. [1980] . L.P.L. A fuzzy programming language: 1. Syntactic aspects. FSS 3,

151-179.
Adamo, J.M. [1980]. L.P.L. A fuzzy programming language: 2. Semantic aspects. FSS 3,

261-289.
Adamo, J.M. [1980]. Fuzzy decision trees . FSS 4,207-219.
Adamo, J.M. [1981]. Some applications of the L.PL language to combinatorial pro

gramming. FSS 6, 43-59.
Adlassnig, K.-P. [1980]. A fuzzy logical model of computer-assisted medical diagnosis.

Models Inform. Sci. 19, 141-148.
Adlassnig, K.-P. [1982]. A survey on medical diagnosis and fuzzy subsets. In Gupta and

Sanchez, 203-217.
Adlassnig, K.-P., and Kolarz , G. [1982]. CADIAG-2: Computer assisted medical diagno

sis using fuzzy subsets. In Gupta and Sanchez, 141-148.
Adlassnig, K.-P., and Kolarz, G., and Scheithauer, W. [1985] . Present state of the medical

expert system CADIAG-2. Med. Inform. 24, 13-20.
Albert, P. [1978] . The algebra of fuzzy logic . FSS 1,203-230.
Albrycht, J., Wiesniewski, H. (eds .). [1983] . Polish Symposium on Interval and Fuzzy

Mathematics . Poznan.
Als ina, C. [1985] . On a family of connectives for fuzzy sets . FSS 16, 231-235.
von Altrock, C. [1990] . Konzipierung eines Losungsverfahrens zur Produktionsplanung

und -steuerung in der chemischen Industrie. Master Thesis, Institute for OR, RWTH
University of Aachen, Germany.

von Altrock , c., Krause, B., and Zimmermann, H.-J. [1992]. Advanced fuzzy logic control
of a model car in extreme situations. FSS 48,41-52.

von Altrock [1993]. Fuzzy Logic, Band I , Technologie. Munich, Vienna.
von Altrock [1995]. Fuzzy Logic and Neuro Fuzzy Applications. Englewoods Cliffs.



484 FUZZY SET THEORY-AND ITS APPLICATIONS

Apostel, L. [1961]. Formal study of models. In Freudenthal, H. (ed.). The Concept and
the Role of the Model in Mathematics and Natural and Social Science . Dordrecht.

Antonsson, E.K., and Sebastian, H.-J. [1999]. Fuzzy Sets in Engineering Design. In
Zimmermann, H.-J. (edr.). [1999),57-117.

Aracil, J., Garcia-Cerezo, A., and Ollero, A. [1988). Stability analysis of fuzzy control
systems: A geometrical approach. In Kulikovsky et aI., 323-330.

Aracil, J., Ollero, A., and Garcia-Cerezo, A. [1989). Stability indices for the global analy
sis of expert control systems. IEEE Trans. Syst. Man Cybemet. 19(5),998-1007.

Aracil, J., Garcia-Cerezo , A., Barreiro, A., and Ollero, A. [1991). Design of expert fuzzy
controllers based on stability criteria. Proc. IFSA '91, Brussels.

Arikan, E, and GUngor, Z. [2001]. An application of fuzzy goal programming to a multi
objective project network problem. FSS 119,49-58.

Arrow, KJ. [1951). Social Choice and Individual Values. New York.
Asai, K., Tanaka, H., and Okuda, T. [1975). Decision making and its goal in a fuzzy envi

ronment. In Zadeh et al., 257-277.
Atanassov, K.T. [1986). Intuitonistic fuzzy sets. FSS 20,87-96.
Atanassov, K.T., and Stoeva, S. [1983]. Intuitonistic fuzzy sets. In Albrycht and

Wiesniewski, 23-26.
Atanassov, K.T., and Stoeva, S. [1984). Intuitonistic L-fuzzy sets. In Trappl, 539-540.
Aumann, RJ. [1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1-12.
Baas, M.S., and Kwakernaak, H. [1977). Rating and ranking of multiple-aspect alterna-

tives using fuzzy sets. Automatica 13, 47-58.
Babuska, R. [1998). Fuzzy modelling for control. Kluwer. Boston, Dordrecht, London.
Backer, E. [1978). Cluster analysis formalized as a process of fuzzy identification based

on fuzzy relations. Rep. IT-78-I5, Delft University.
Backer, E. [1978]. Cluster analysis by optimal decomposition of induced fuzzy sets. Diss.

Delft·
Baldwin, J.E [1979). A new approach to approximate reasoning using a fuzzy logic. FSS

2,309-325.
Baldwin, J.E [1981). Fuzzy logic and fuzzy reasoning. In Mamdani and Gaines, 133-148 .
Baldwin, J.E [1981]. Fuzzy logic knowledge basis and automated fuzzy reasoning. In

Lasker, 2959-2965.
Baldwin, J.E [1986]. Support logic programming. Int. J. Intell. Syst. 1, 73-104.
Baldwin, J.E [1987). Evidential support logic programming. FSS 24, 1-26.
Baldwin, J.E [1989). Combining evidences for evidential reasoning. ITRC-Report, Uni

versity of Bristol.
Baldwin, J.E , and Guild, N.C.E [1979). FUZLOG: A computer program for fuzzy rea

soning. Proc. 9th Int. Symp. MVL , Bath 1979, pp. 38-45.
Baldwin, J.E, and Guild, N.C.E [1980a). Feasible algorithms for approximate reasoning

using fuzzy logic. FSS 3,225-251.
Baldwin, J.E , and Guild, N.C.E [1980b]. Modelling controllers using fuzzy relations.

Kybernetes 9, 223-229.
Baldwin, J.E, and Pilsworth, B.W. [1979). Fuzzy truth definition of possibility measure

for decision classification. Int. J. Man-Machine Studies 2, 447-463.



BIBLIOGRAPHY 485

Baldwin, J.E, and Pilsworth, B.W. [1980] . Axiomatic approach to implication for approx
imate reasoning with fuzzy logic . FSS 3, 193-219.

Baldwin, J.E, and Pilsworth, B.W. [1982]. Dynamic programming for fuzzy systems with
fuzzy environment. J. Math. Anal. Appl. 85, 1-23.

Baldwin, J.E [1986] . Support logic programming. In Jones, A., Kaufmann, H., and
Zimmermann, H. (eds.), Fuzzy Sets Theory and Applications, Proc. NATO Advanced
Study Institute [1985]. Reidel , 133-171.

Baldwin , I.E [1987] . Evidential support logic programming. Fuzzy sets Syst. 14, 1-26.
Baldwin, I.E [1991] . Combining evidences for evidential reasoning. Int. J. Intell. Syst. 6,

1-40.
Baldwin, J.E [1992]. Fuzzy and probabilistic uncertainties. In Shapiro (ed.), Encyclope

dia ofAI, 2nd Edition. Wiley, 528-537.
Baldwin, J.E [1993] . Evidential support logic in Fril and case based reasoning. Int. J.

Intel/. Syst. 8(9), 939-960.
Baldwin , I.E, and Martin, T.P. [1993] . From fuzzy databases to an intelligent manual using

Fril. J. Intell. Inform. Syst. 2, 365-395.
Baldwin , J.E [1994]. Evidential logic rules from examples. EUFIT 94,91-96.
Baldwin, J.E, Martin, T.P., and Pilsworth , B.P. [1995] . Fril-s-Fuzzy Evidential Reasoning

in AI. Wiley & Sons.
Bandemer, H., and Nother, W. [1992] . Fuzzy Data Analysis. Dordrecht.
Banon, G. [1981] . Distinction between several subsets offuzzy measures. FSS 5,291-305.
Bardossy, A. [1996]. The use of fuzzy rules for the description of elements of the hydro-

logical cycle. Ecological Modelling 85 (1996) , 59-65.
Bardossy, A., Bogardi, I., and Duckstein, L. [1993] . Fuzzy nonlinear regression analys is

of close-response relationships. EJOR 66, 36--51.
Bardossy, A., Hagaman, R., Duckstein, L., and Bogardi, I. [1992]. Fuzzy least squares

regression theory and applications. In Kacprzyk, J., and Fedrizzi, M. (eds.) , Fuzzy
Regression Analys is. Warschau , 181-193.

Barr, A., and Feigenbaum, E.A. (eds.). [1981, 1982]. The Handbook of Artificial Intelli
gence. Los Altos , CA, 1981, vol. I ; 1982, vols . 2-3.

Bartolini , G., Casalino, G., Davioli , E, Mastretta, M., Minciardi , R., and Morten , E.
[1982] . Development of performance adaptive fuzzy controllers with applications to
continuous casting plants . In Trappelt, 721-728.

Behr, H. [1994] . Regelung einer Laufkatze durch Fuzzy Logik Control. In Zimmermann
and von Altrock, 169-177.

Bellman, R. [1957] . Dynamic Programming. Princeton.
Bellman , R., and Giertz , M. [1973]. On the analytic formalism of the theory offuzzy sets.

Inform. Sci. 5, 149-156.
Bellman, R., Kalaba , R., and Zadeh , L.A. [1966]. Abstraction and pattern classification.

J. Math. Anal. Appl. 13, 1-7.
Bellman, R., and Zadeh , L.A. [1970] . Decision-making in a fuzzy environment. Manage

ment Scie. 17, B-141-164.
Ben-Haim, Y., and E1ishakoff, I. [1990] . Convex Models of Uncertainty in Applied

Mechanics . Elsevier Science Publi shers, Amsterdam.



486 FUZZY SET THEORY-AND ITS APPLICATIONS

Bensana, E., Bel, G., and Dubois, D. [1988]. Opal: A multi-knowledge-based system for
industrial job-shop scheduling. Int. J. Product Res. 26, 795-819.

Benson, 1. [1986]. Prospector: An expert system for mineral exploration. In Mitra, 17-26 .
Berenji, H.R. [1992]. A reinforcement learning-based architecture for fuzzy logic control.

Int. J. A. R. 6, 267-292.
Berenji, H.R., and Khedar, P. [1992]. Learning and tuning fuzzy logic controllers. IEEE

Trans. Neural Networks 3, 1402-1407 .
Bezdek, lC. [1981]. Pattern Recognition with Fuzzy Objective Function Algorithms. New

York, London.
Bezdek, J.C. (ed.). [1987a]. Analysis of Fuzzy Information , vol. II. Artificial Intelligence

and Decision Systems . Boca Raton.
Bezdek, J.e. (ed.). [1987b]. Analysis of Fuzzy Information , vol. III. Applications in Engi

neering and Science . Boca Raton.
Bezdek, J.e. [1987c]. Partition structures: A tutorial. In Bezdek [1987b], 81-107.
Bezdek, J.C. (ed.). [1989]. The coming of age of fuzzy logic. Proc. 3rd IFSA Congress,

Seattle, 1989.
Bezdek, J.C., and Harris, lD. [1978]. Fuzzy partitions and relations. FSS I, 111-127.
Bezdek, lC., and Pal, S.K. (eds.). [1992]. Fuzzy Models for Pattern Recognition . New

York.
Blockley, OJ. [1979]. The role of fuzzy sets in civil engineering. FSS 2,267-278.
Blockley, OJ. [1980]. The Nature of Structural Design and Safety. Chichester.
Bock, H.-H. (ed.). [1979a]. Klassifikation und Erkenntnis III. Meisenheim/G1an.
Bock, H.-H. [1979b]. Clusteranalyse mit unscharfen Partitionen. In Bock [1979a],

137-163 .
Boender, e.G.E., Graan, de J.G., and Lootsma, EA . [1989]. Muiti-criteria decision analy

sis with fuzzy pairwise comparisons. FSS 29, 133-143 .
Bonissone, P.P., and Decker, K.S. [1986]. Selecting uncertainty calculi and granularity: An

experiment in trading-off precision and complexity. In Kanal and Lemmer [1986],
217-247.

Boose, J.H. [1989]. A survey of knowledge acquisition techniques and tools. Knowledge
Acquisition 1,3-37.

Bordogna, G., and Pasi, G. (eds.). [2000]. Recent Issues on Fuzzy Databases. Physica.
Heidelberg, New York.

Bortolan, G., and Degain, R. [1985]. A review of some methods for ranking fuzzy subsets.
FSS 15, 1-19 .

Bossel, H., Klaczko, S., and Mueller, N. (eds.). [1976]. Systems Theory in the Social Sci
ences. Basel, Stuttgart .

Bouchon-Meunier, B. [1998]. Aggregation and Fusion of Imperfect Information. Physica.
Heidelberg, New York.

Bouslama, E , and Ichikawa, A. [1992]. Application of limit fuzzy controllers to stability
analysis. FSS 49, 103-120.

Bowman, E.H. [1963]. Consistency and optimality in managerial decision making.
In Muth, J.E, and Thompson, G.L. (eds.), Industrial Scheduling. Englewood Cliffs,
NJ.



BIBLIOGRAPHY 487

Braae, M., and Rutherford , D.A. [1979]. Selection of parameters for a fuzzy logic con
troller. FSS 2, 185-199.

Brandt, H., Lahmann, H.-W., and Weber, R. [1996]. Quality control of saw blades based
on neural networks and laser vibration measurement. 2nd Int. Conf. on Vibration Mea
surements by Laser Techniques: Advances and Applications. SPIE-The International
Society for Optical Engineering. Vol. 2868, 119-124.

Brand, H.W. [1961]. The Fecundity ofMathematical Methods. Dordrecht.
Bretthauer, G., and Opitz, H.-P. [1994]. Stability of fuzzy systems- A survey. Proc. 2nd

Eur. Congress on Intelligent Technique s and Soft Computing, Aachen, 283-290.
Buchanan , B.G., et al. [1983]. Constructing an expert system. In Hayes-Roth et aI.,

127-168.
Buchanan, B., and Shortliffe, E. [1984]. Rule-Based Expert System s. Reading, MA.
Buckles, B., and Petry, E. [1982b]. Fuzzy databases and applications. In Gupta, M., and

Sanchez , E. (eds.). [1982]. Fuzzy Info rmat ion and Decision Processes. North-Holland,
Amsterdam.

Buckles, B., and Petry, F. [1982]. A fuzzy model for relational database s. FSS 7,213-226.
Buckley, J.J. [1984]. The multiple judge, multiple criteria ranking problem : A fuzzy set

approach . FSS 13, 25-38.
Buckley, J.J. [1988a]. Possibility and necessity in optimization . FSS 25, 1-13 .
Buckley, J.J. [1988b]. Possibilistic linear programming with triangular fuzzy numbers . FSS

26, 135-138.
Buckley, J.J. [1992]. Theory of the fuzzy controller: An introduction. FSS 51,249-258.
Campos, L., and Verdegay, lL. [1989]. Linear programming problems and ranking of

fuzzy numbers . FSS 32, 1-11.
Cao, H., and Chen, G. (1983). Some applications of fuzzy sets of meteorological fore

casting. FSS 9, 1-12.
Capocelli, R.M ., and de Luca, A. [1973]. Fuzzy sets and decision theory. Inform. Control

23, 446-473.
Carlsson, C., and Korhonen , P. [1986]. A parametric approach to fuzzy linear program

ming. FSS 20, 17-30.
Carlucci, D., and Donati , F. (1977). Fuzzy cluster of demand within a regional service

system. In Gupta, Saridis, and Gaines, 379-385.
Carnap , R. [1946] . Introduction to Semantics. Cambridge.
Carnap , R., and Stegmueller, W. [1959]. Induktive Logik und Wahrsch einlichkeit. Wien.
Cayrol, M., Farreny, H., and Prade, H. [1982]. Fuzzy pattern matching. Kybernetics 11,

103-106.
Chanas, S. [1982] . Fuzzy sets in few classical operational research problems. In Gupta

and Sanchez, 351-363.
Chanas, S. [1983]. Parametric programming in fuzzy linear programming. FSS 11,

243-251 .
Chanas, S. [1989]. Parametric techniques in fuzzy linear programm ing. In Verdegay and

Delgado, 105-116.
Chanas, S., and Kamburowski, J. [1981]. The use of fuzzy variables in PERT. FSS 5,

11-19 .



488 FUZZY SET THEORY-AND ITS APPLICATIONS

Chanas, S., Kolodziejczyk, w., and Machaj , A. [1984]. A fuzzy approach to the trans
portation problem. FSS 13, 211-221.

Chandhuri, B.B., and Magumder, D.D. [1982]. On membership evaluation in fuzzy sets.
In Gupta and Sanchez, 3-12.

Chang, S ., and Zadeh, L. [1972]. On fuzzy mapping and control. IEEE Trans . Syst . Man
Cybernet. 2, 30-34.

Chames , A., and Cooper, w.w. [1961]. Management Models and Industrial Applications
of Linear Programming. New York.

Chatterji, B.N. [1982]. Character recognition using fuzzy similarity relations. In Gupta
and Sanchez, 131-137.

Chen, P.-H., Lai, J.-H., and Lin, C.-T. [1998]. Application of fuzzy control to a road tunnel
ventilation system. FSS 100, 9-28.

Chung-Hoon Rhee, E, and Krishnapuram , R. [1993]. Fuzzy rule generation methods for
high-level computer vision. Fuzzy Sets Syst. 60, 245-258.

Ciobanu, Y., and Stoica, M. [1981]. Production scheduling in fuzzy conditions. Econ.
Comput. Econ. Cybernet. Stud. Res. 15,67-79.

Correa-Guzman , E.Y. [1984]. Erweiterung des unscharfen Iinearen Programmierens bei
Mehrfachzielsetzungen Anwendung auf Energieanalysen (M. Thesis Aachen 1984)
Juelich 1984.

Crestani, E , and Pasi, G. (eds.). [2000]. Soft Computing in Information Retrieval. Physica.
Heidelberg, New York.

Cronbach, L.J. [1950]. Further evidence on response sets and test design, Educ . Psychol.
Meas. 10,3-31 .

Czogala, E., and Pedrycz, W. [1981]. On identification in fuzzy systems and its applica
tions in control problems . FSS 6, 73-83.

Czogala, E., and Pedrycz , W. [1982]. Control problems in fuzzy systems. FSS 7, 257
273.

Czogala, E., and Zimmermann , H.-J. [1984a] . Some aspects of synthesis of probabilistic
controllers. FSS 13, 169-177.

Darzentas, J. [1987]. On fuzzy location models. In Kacprzyk and Orlovski , 328-341.
Dave, R.N. [1990]. Fuzzy shell-clustering and applications to circle detection in digital

images. Int. J. Gen. Syst . 16,343-355.
Dave, R.N., and Fu, T. [1994]. Robust shape detection using fuzzy clustering: practical

applications . Fuzzy Sets Syst . 65, 161-185.
Devedzic, G.B., and Pap, E. [1999]. Multicriteria-multistages linguistic evaluation and

ranking of machine tools . FSS 102, 451-461 .
Delgado, M., Verdegay, J.L., and Vila, M.A. [1989]. A general model for fuzzy linear pro

gramming . FSS 29,21-29.
Dempster, A.P. [1967]. Upper and lower probabilities induced by a multivalued mapping.

Ann. Math . Statist. 38, 325-339.
Diamond, P. [1993]. Least squares methods in fuzzy data analysis . In Lowen, R. (ed.),

Fuzzy Logic. Amsterdam, 407-416.
Diederich , G.w., Messick , S.J., and Tucker, L.R. [1957]. A general least squares solution

for successive intervals . Psy chometrika 22, 159-173.



BIBLIOGRAPHY 489

Dijkman, J.G., van Haeringen, I., and de Lange, SJ. [1981]. Fuzzy numbers. In Lasker,
2753-2756.

Dimitrescu, D. [1988]. Hierarchical pattern classification. FSS 28, 145-162.
Dishkant, H. [1981]. About membership function estimation . FSS 5, 141-147.
Dodson, C.T.J. [1981]. A new generalisation of graph theory. FSS 6,293-308.
Driankov, D., Hellendoorn, H., and Reinfrank, M. [1993]. An Introduction to Fuzzy

Control. Berlin , Heidelberg, New York.
Dombi, J [1982]. A general class of fuzzy operators, the De Morgan class of fuzzy oper

ators and fuzziness measures induced by fuzzy operators . FSS 8, 149-163.
Dubois, D. [1989]. Fuzzy knowledge in an artificial intelligence system for job- shop

scheduling . In Evans et al., 73-79.
Dubois, D., and Prade, H. [1979]. Fuzzy real algebra: Some results . FSS 2,327-348.
Dubois, D., and Prade, H. [1980a]. Fuzzy Sets and Systems : Theory and Applications . New

York, London, Tortonto.
Dubois, D., and Prade, H. [1980b]. Systems of linear fuzzy constraints . FSS 3,37-48.
Dubois, D., and Prade, H. [1980c]. New results about properties and semantics of fuzzy

set-theoretic operators . In Wang and Chang, 59-75.
Dubois, D., and Prade, H. [1982a]. A class of fuzzy measures based on triangular norms.

Int. J. Gen. Syst. 8,43-61.
Dubois, D., and Prade, H. [1982b]. Towards fuzzy differential calculus : Part 1, integra

tion of fuzzy mappings: Part 2, Integration of fuzzy intervals : Part 3, Differentiation.
FSS 8, 1-17, 105-116,225-233.

Dubois, D., and Prade, H. [1984]. Criteria aggregation and ranking of alternatives in
the framework of fuzzy set theory. In Zimmermann, Zadeh, and Gaines [1984],209
240.

Dubois, D., and Prade, H. [1985]. A review of fuzzy set aggregation connectives . Inform.
Sci. 36, 85-121 .

Dubois, D., and Prade, H. [1988a]. Possibility Theory, New York, London .
Dubois, D., and Prade, H. [1988b]. Processing of imprecision and uncertainty in expert

system reasoning models. In Ernst, Cil . [1988], 67-88.
Dubois, D., and Prade , H. [1989]. Fuzzy sets, probability and measurement. EJOR. 40,

135-154.
Dubois, D., and Prade, H. [1985a]. Evidence measures based on fuzzy information.

Automactica 21, 547-562.
Dubois, D., and Prade, H. [1985b]. A survey of set-functions for the assessment of evi

dence. In Kacprzyk, J., and Yager, R.R. (eds.). [1985]. Management Decision Support
Systems using Fuzzy Sets and Possibility Theory. KOIn.

Dumitru, V., and Luban, F. [1982]. Membership functions , some mathematic al program
ming models and production scheduling. FSS 8, 19-33 .

Dunn, J.C. [1974]. A fuzzy relative to the ISODATA process and its use in detecting
compact well-separated clusters . J. Cybernet. 3,310-313.

Dunn, J.e. [1977]. Indices of partition fuzziness and detection of clusters in large data
sets. In Gupta, Saridis, and Gaines, 271-284.

Dyer, J.S. [1972n3]. Interactive goal programming. Management Sci. 19,62-70.



490 FUZZY SET THEORY-AND ITS APPLICATIONS

Ernst , C.J. [1981] . An approach to management expert systems using fuzzy logic . In
Lasker, 2898-2905.

Ernst , C.J. (ed.). [1988]. Management Expert Systems. Workingham, Reading, Menlo Park,
New York.

Ernst, E. [1982] . Fahrplanerstellung und Umlaufdisposition im Containerschiffsverkehr
(Diss. Aachen) FrankfurtlM., Bern .

Esogbue, A.O., and Bellman, R.E. [1984] . Fuzzy dynamic programming and its exten 
sions. In Zimmermann et aI., 147-167.

Esogbue, A.O., and Elder, R.C. [1979]. Fuzzy sets and the modelling of physician deci
sion processes, Part I: The initial interview-Information gathering sessions . FSS 2,
279-291.

Esogbue , A.O., and Elder, R.C. [1983] . Measurement and valuation of a fuzzy mathe
matical model for medical diagnosis. FSS 10, 223-242.

Evans, G.w., Karwowsky, w., and Wilhelm, M.R. (eds.). [1989] . Applications of Futzy
Set Methodolog ies in Industrial Engineering. Elsevier.

Fabian, C., and Stoica, M. [1984] . Fuzzy integer programming. In Zimmermann et aI.
[1984], 123-132.

Famili , A., Shen, W.-M., Weber, R, and Simoudis E. [1997]. Data preprocessing and intel
ligent data analysis. Intelligent Data Anal. I (I).

Fei, J., and Jawahir, LS. [1992] . A fuzzy knowledge-based system for predicting surface
roughness in finish turning . Proc. Conf. on Fuu.y Systems, San Diego, 899-906.

Fieschi, M., Joubert, M., Fieschi, D., Soula, G., and Roux, M. [1982]. SPHINX, An inter
active system for medical diagnosis aids. In Gupta and Sanchez, 269-275.

Fiksel, J. [1981] . Applications of fuzzy set and possibility theory to system s management.
In Lasker, 2966-2973.

Fochem, M., Joentgen, A. , and Geropp, B. [1997]. Automatic antifriction bearing diagno
sis with fuzzy-logic and neural networks. Proc. ESIT. Aachen, 19-24.

Fochem, M., Wischnewski, P., and Hofmeier, R. [1997] . Quality control systems on
the production line of tape deck chassis using self organizing feature maps. Proc.
I" European Symp. on Applications of Intelligent Technologies (ESIT 97). Aachen,
9-13.

Fogliardi, R. [1997] . Fuzzy identification of noisy electric motors on the production line.
Proc. EUFlT '97. Aachen , 1755-1759.

Ford, N. [1987] . How Machines Think. Chichester, New York, Brisbane, Toronto,
Singapore.

Fordon , W.A., and Bezdek, J.C. [1979] . The application of fuzzy set theory to medical
diagnosis. In Gupta, Ragade, and Yager, 445-461 .

Fordyce, K., Norden, P., and Sullivan, G. [1989]. Artificial intelligence and the manage
ment science practitioner: One definition of knowledge-based expert systems . Inter
faces 19,66-70.

Freeling, A.N.S. [1984]. Possibilities versus fuzzy probabilities-two alternative decision
aids. In Zimmermann et aI., 67-82.

Freksa , Ch. [1982] . Linguistic description of human judgments in experts systems and in
the "soft" sciences. In Gupta and Sanchez, 297-306.



BIBLIOGRAPHY 491

Fu, K.S., Ishizuka, M., and Yao, J.T.P. [1982]. Application of fuzzy sets in earthquake
engineering. In Yager, 504-518.

Gaines, B.R. [1975]. Multivalued logics and fuzzy reasoning. BCS AISB Summer School,
Cambridge.

Gasos, J., and Rosetti, A. [1999]. Uncertainty representation for mobile robots: percep
tion, modeling and navigation in unknown environments. FSS 107, 1-24 .

Geropp, B. [1995]. Schwingungsdiagnose an Wiilzlagern mit Hilfe der Huellkurven-
analyse. Dissertation RWTH Aachen.

Giles, R. [1976]. Lukasiewicz logic and fuzzy theory. Int. J. Man-Mach, Stud. 8,313-327.
Giles, R. [1979]. A formal system for fuzzy reasoning. FSS 2,233-257.
Giles, R. [1980]. A computer program for fuzzy reasoning . FSS 4,221-234.
Giles, R. [1981]. Lukasiewicz logic and fuzzy set theory. In Mamdani and Gaines,

117-131.
Glover, E, and Greenberg, H.J. [1989]. New approaches for heuristic search: A bilateral

linkage with artificial intelligence. EJOR 39, 119-130 .
Goguen, J.A. [1967]. L-fuzzy sets. JMAA 18, 145-174.
Goguen, lA. [1969]. The logic of inexact concepts. Synthese 19, 325-373.
Goguen, J.A., Jr. [1981]. Concept representation in natural and artificial languages:

Axioms, extensions and applications for fuzzy sets. In: Mamdani and Gasines, 67-115.
Goodman, I.R., and Nguyen, H.T. [1985]. Uncertainty Models for Knowledgebased

Systems. Amsterdam, New York, Oxford.
Goodman, I.R., and Nguyen, H.T. [1985]. Uncertainty Models for Knowledgebased

Systems. North Holland.
Gordon, J., and Shortliffe, E.H. [1984]. The Dempster-Shafer theory of evidence. In

Buchanan and Shortliffe, 272-292.
Gottwald, S. [1979a]. Set theory for fuzzy sets of higher level. FSS 2,125-151.
Gottwald, S. [1979b]. A note on measures of fuzziness. ElK 15, 221-223.
Gottwald, S. [1980]. Fuzzy propositional logics. FSS 3, 181-192.
Grabisch, M. [1998]. Fuzzy integral as a flexible and interpretable tool of aggrgation. In

Bouchon-Meunier (edr.). [1998],51-72.
Graham, I., and Jones, P.L. [1988]. Expert Systems: Knowledge , Uncertainty and Deci

sion. London. New York.
Gu, T., and Dubuisson, B. [1990]. Similarity of classes and fuzzy clustering. FSS 34,

213-221.
Guo, G.-R., Yu, W-X., and Zhang, W [1990]. An intelligence recognition method of ship

targets. Fuzzy Sets Syst. 36, 27-36.
Gupta, M.M., and Sanchez, E. (eds.). [1982]. Approximate Reasoning in Decision Analy

sis. Amsterdam, New York, Oxford.
Gupta, M.M., Ragade, R.K., Yager, R.R. (eds.). [1979]. Advances in Fuzzy Set Theory and

Applications. Amsterdam. New York, Oxford.
Gupta, M.M., Saridis, G.N., and Gaines, B.R. (eds.). [1977]. Fuzzy Automata and Deci

sion Processes. Amsterdam. New York.
Gupta, M.M., and Yamakawa, T. (eds.). [1988a]. Fuzzy Computing Theory, Hardware, and

Applications. Amsterdam, New York, Oxford, Tokyo.



492 FUZZY SET THEORY-AND ITS APPLICATIONS

Gupta, M.M., and Yamakawa, T. (eds.). [1988b]. Fuzzy Logic in Knowledge-Based
Systems, Decision and Control. Amsterdam, New York.

Hajnal, M., and Koczy, L.T. [1982]. Classification of textures by vectorial fuzzy sets. In
Gupta and Sanchez, 157-164.

Hamacher, H. [1978]. Uber logische Aggregationen nicht-binar expliziter Entschei
dungskriterien. FrankfurtlMain.

Hamacher, H., Leberling H., and Zimmerman, H.-J. [1978]. Sensitivity analysis in fuzzy
linear programming. FSS 1, 269-281.

Hammerbacher, J.M., and Yager, R.R. [1981]. The personalization of security: An appli-
cation of fuzzy set theory. FSS 5, 1-9 .

Harmon, P., and King, D. [1985]. Expert Systems. New York, Chichester, Toronto.
Harre, R. [1967]. An Introduction to the Logic of Sciences . London, Melbourne, Toronto.
Harre, R. [1972]. The Philosophies ofScience. London. Oxford, New York.
Hartley, J. [1984]. FMS at Work. Bedford (UK).
Hax, A.c., and Majluf, N.S. [1984]. Strategic Management: An Integrative Perspective .

Englewood Cliffs.
Hayes-Roth, F., Waterman, D.A., and Lenat, D.B. (eds.). [1983]. Building Expert Systems.

London, Amsterdam .
Helson. H. (1964]. Adaption-Ievel Theory. New York.
Hersh, H.M., Caramazza , A., and Brownell, H.H. [1979]. Effects of context on fuzzy mem

bership functions . In Gupta et aI. 389-408.
Higashi, M., and Klir, GJ. [1982]. Measures of uncertainty and information based on pos

sibility distributions. Int. J. Gen. Syst. 9, 43-58.
Hintz, G.w., and Zimmermann , H.-J. [1989]. A method to control flexible manufacturing

systems. EJOR 321-334.
Hirota, K. [1981]. Concepts of probabilistic sets. FSS 5,31-46.
Hirota, K. [1993]. Industrial Applications ofFuzzy Technology. Tokyo, Berlin, Heidelberg.
Hisdal, E. [1978]. Conditional possibilities independence and noninteraction . FSS 1,

283-297.
Holmblad, L.P., and Ostergaard, J.J. [1982]. Control of cement kiln by fuzzy logic. In

Gupta and Sanchez, 389-400.
Holt, C.c., Modigliani, F., Muth, J.F., and Simon, H. [1960]. Planning Production, Inven

tories and Workforce. New York.
Holtz, M., and Desonki, Dr. [1981]. Fuzzy-Model fur Instandhaltung . Unscharfe Modell

bildung und Steuerung IV, 54-62, Karl-Marx-Stadt.
Hopf, J., and Klawonn, F. [1993]. Selbstlernende Fuzzy-Controller auf der Basis genetis

cher Algorithmen. 1.01-Workshop Fuzzy-Systeme.
Hsu, H.-M., and Wang, w.-P. [2001]. Possibilistic programming in production planning of

assemble-to-order environments. FSS 119 [2001], 59-70.
Hudson, D.L., and Cohen, M.E. [1988]. Fuzzy logic in a medical expert system. In Gupta

and Yamakawa [1988a], 273-284.
Hughes, G.E., and Cresswell, MJ. [1968]. An Introduction to Modal Logic . London.
Huntsberger, T.L., and Ajjmarangsee, P. [1990]. Parallel self-organizing feature maps for

unsupervised pattern recognition. Int. J. Gen. Syst. 16,357-372.



BIBLIOGRAPHY 493

Hwang, Ch.-L., and Masud, A.S.M. [1979]. Multiple Objective Decision Making
Methods and Applications. Berlin, Heidelberg, New York.

Hwang, Ch.-L., and Yoon, K [1981]. Multiple Attribute Decision Making . Berlin, Hei
delberg, New York.

Hwang, G.-C., and Lin, S.-C. [1992]. A stability approach to fuzzy control design for non
linear systems. FSS 48, 279-287.

Inform, N.N. [1995]. Fuzzy Tech 4.1, Reference Manual; Users Manual, Inform Aachen
1995.

Ishibuchi, H., and Tanaka, H. [1992]. Fuzzy regression analysis using neural networks.
Fuzzy Sets Syst. 50, 257-265.

Ishizuka, M., Fu, KS., and Yao, J.T.P. [1982]. A rule-based inference with fuzzy set for
structural damage assessment. In Gupta and Sanchez, 261-275.

Ismail, M.A. [1988]. Soft clustering: Algorithms and validity of solutions. In Gupta and
Yamakawa [1988a], 445-471.

Jain, R. [1976]. Tolerance analysis using fuzzy sets. Int. J. Syst. Sci. 7(12), 1393
1401.

Jain, R., and Nagel, H.H. [1977]. Analysing a real world scene sequence using fuzziness.
Proc. IEEE Conf. Decision Control, 1367-1372.

Jamison, KD., and Lodwick, WA. [2001]. Fuzzy linear programming using a penalty
method. FSS II9, 97-110.

Jamshidi, M., Vadiee, N., and Ross, T.-J. (eds.). [1993]. Fuzzy Logic and Control. Engle
wood Cliffs, NJ.

Jardine, N., and Sibson, R. [1971]. Mathematical Taxonomy. New York.
Jensen, J.H. [1976]. Application for Fuzzy Logic Control. Techn. Univ. of Denmark,

Lyngby.
Jones, C.H. [1967]. Parametric production planning. Management Sci. 13,843-866.
Joentgen, A., Mikenina, L., Weber, R., and Zimmermann, H.-J. [1999]. Dynamic fuzzy

data analysis based on similarity between functions. FSS 105, 8I-90.
Jones, J.D., and Hua, Y. [1998]. A fuzzy knowledge base to support routine engineering

design. FSS 98, 267-278.
Kacprzyk, J. [1983]. Multistage Decision Making and Fuzziness. Kdln ,
Kacprzyk, J., and OrIovski, S.A. (eds.). [1987]. Optimization Models Using Fuzzy Sets

and Possibility Theory. Dodrecht, Boston.
Kacprzyk, J., and Staniewski, P. [1982]. Long-term inventory policy-making through fuzzy

decision-making models. FSS 8, 1I7-132.
Kacprzyk, J., and Yager,R.R. (eds.). [1985]. Management Decision support Systems Using

Fuzzy Sets and Possibility Theory. Kdln ,
Kacprzyk, J., and Fedrizzi, M. [1992]. Fuzzy Regression Analysis . Warschau.
Kanal, L.N., and Lemmer, J.E (eds.). [1986]. Uncertainty in Artificial Intelligence .

Amsterdam.
Kandel, A., and Lee, S.c. [1979]. Fuzzy Switching and Automata. New York.
Kandel, A. [1982]. Fuzzy Techniques in Pattern Recognition . New York, Toronto,

Singapore.
Kandel, A. [1986]. Fuzzy Mathematical Techniques with Applications. Reading, MA.



494 FUZZY SET THEORY-AND ITS APPLICATIONS

Kandel, A., and Byatt, w.J. [1978] . Fuzzy sets, fuzzy algebra, and fuzzy statistics. Proc.
IEEE 66, 1619-1637.

Kandel, A., and Langholz, G. (edtrs.) [1992]. Hybrid Architectures for Intelligent Systems .
CRC Press, Boca Raton .

Kastner, J.K., and Hong, S.J. [1984] . A review of expert systems. EJOR 18,285-292.
Kaufmann, A. [1975]. Introduction to the Theory ofFuzzy Subsets , vol. 1.New York, San

Francisco, London.
Kaufmann, A., and Gupta, M.M. [1988]. Fuzzy Mathematical Models in Engineering and

Management Science. Amsterdam, New York.
Keeney, R.L., and Raiffa, H. [1976]. Decisions with Multiple Objectives . New York, Santa

Barbara, London.
Kickert, W.J.M. [1978] . Fuzzy Theories on Decision-making. Leiden, Boston, London.
Kickert, W.J.M. [1979] . Towards analysis of linguistic modelling. FSS 2,293-307.
Kickert, W.J.M., and Mamdani, E.H. [1978] . Analysis of a fuzzy logic controller. FSS 1,

29-44.
Kickert, W.J.M., and Van Nauta Lemke, H.R. [1976] . Application of a fuzzy controller in

a warm water plant. Automatica 12,301-308.
Kiendl, H., and RUger, J.J . [1993] . Verfahren zum Entwurf und Stabilitatsnachweis

von Regelungssystemen mit Fuzzy-Reglern. Automatisierungstechnik 41(5), 138
144.

Kim, lS., and Cho, H.S. [1994]. A fuzzy logic and neural network approach to boundary
detection for noisy imagery. Fuzzy Sets Syst. 65, 141-161.

Kim, K.H., and Roush, EW. [1982]. Fuzzy flows in networks. FSS 8, 35-38 .
King, P.Y., and Mamdani, E.J. [1977] . The application of fuzzy control systems to indus

trial processes. In Gupta et aI., 321-330.
King, R.E. , and Karonis, EC. [1988]. Multi-level expert control of a large-scale industrial

process. In Gupta and Yamakawa [1988a], 323-340.
Klein, R.L., and Methlie, L.B . [1995]. Knowledge-Based Decision Support Systems. 2nd

Ed. Wiley, Chichester.
Klement, E.P. [1981]. On the relationship between different notions of fuzzy measures . In

Lasker, 2837-2842.
Klement, E.P., and Schwyhla, W. [1982]. Correspondence between fuzzy measures and

classical measures. FSS 7,57-70.
Klement, E.PI, Mesiar, R., and Pap, E. (eds.). [2000] . Triangular Norms. Dodrecht, Boston,

London.
Kling, R. [1973]. Fuzzy planner: Reasoning with inexact concepts in a procedural

problem-solving language. J. Cybernet . 3, 1-16.
Klir, G.J. [1987] . Where to we stand on measures of uncertainty, ambiguity, fuzziness, and

the like? FSS 24, 141-160.
Klir, G.J., and Folger, T.A. [1988]. Fuzzy Sets, Uncertainty, and Information. Englewood

Cliffs.
Kno, R.I., and Cohen P.H. [1998] . Manufacturing process control through integration of

neural networks and fuzzy model. FSS 98 [1998], 15-31.
Knopfmacher, J. [1975] . On measures of fuzziness. JMAA 49, 529-534.



BIBLI OGRAPHY 495

Kokawa, M. [1982]. Heuristic approach to pump operations using multi-valued logic. In
Gupta and Sanchez, 415-422.

Kolmogoroff, A. [1950]. Foundation of Probability. New York.
Konopasek, M., and Jayaraman, S. [1984]. Expert systems for personal computers. Byte,

137- 154.
Koonth, WG.L., Narenda, P.M., and Fukunaga, K. [1975]. A branch and bound cluster

ing algorithm. IEEE Trans. Comput. C24, 908- 915.
Koopman, B.O. [1940]. The axioms and algebra of intuitive probability. Ann. Math. 4 1,

269-292.
Kosko, B. [1992] . Neural Networks and Fuzzy Systems. Englewood Cliffs.
Krarup , J., and Pruzan, P.M. [1983]. The simple plant location problem: Survey and

synthesis. EJOR 12, 36--81.
Krishnapuram, R. [1993]. Fuzzy clustering methods in computer vision. Proc. EUFIT '93,

Aachen, 720-730.
Krishnapurarn, R., and Keller, J.M. [1993]. A possibili stic approach to clustering. IEEE

Trans. Fuzzy Syst. 1, 98-110.
Kruse, R., Gerhardt, J., and Klawonn, F. [1994] . Foundations of Fuzzy Systems. 1. Wiley,

Chichester.
Kuhn, H.W , and Tucker, A.W [1951]. Nonlinear programming. Proc. 2nd Berkeley Symp.

Math. Stat. Prob. 481-492.
Kulikovsky, C.A ., Huber, R.M., and Ferrate, G.A. (eds .). [1988]. A.I. Expert Systems and

Languages in Modelling and Simulation. Amsterdam.
Kuncheva, L.I. [1994]. Pattern recognition with a model of fuzzy neuron using degree of

consensus. Fuzzy Sets Syst. 66, 24 1-250.
Kuz'min, V.B. [1981a]. A parametric approach to descript ion of linguistic values of vari

ables and hedges. FSS 6,27-41.
Kuz' min, V.B. [1981b]. Corrections to "A parametri c approach to descript ion of

linguistic values of variables and hedges" (erratum). FSS 6, 205.
van Laarhoven , P.J.M., and Pedrycz, W. [1983]. A fuzzy extension of Saaty 's priority

theory. FSS 11, 229-24 1.
Langari, G., and Tomizuka, M. [1990]. Stabilit y of fuzzy linguistic control systems. Proc.

IEEE Conf. Decision and Control, Hawaii, 2185-2190.
Larsen, P.M. [1981]. Industrial applications of fuzzy logic control. In Mamdani and

Gaines, 335- 343.
Lasker, G.E. (ed.). [1981]. Applied Systems and Cybernetics, vol. VI. New York, Oxford ,

Toronto.
Lee, C.c. [1990] . Fuzzy logic in control systems: Fuzzy logic controller- Parts I and II.

IEEE Trans. Syst. Man Cybernet. 20(2), 404-435.
Lee, M., and Tagaki, H. [1993]. Integrating design stages of fuzzy systems using

genetic algorithms. Proc. IEEE Int. Conf. on Fuzzy Systems, San Francisco, 612
617.

Lee, S.c. [1975]. Fuzzy neural networks. Math. Biosci. 23, 151-177.
Lesmo, L., Saitta , L., and Torassa, P. [1982]. Learnin g of fuzzy production rules for

medical diagnosis. In Gupta and Sanchez [1982], 249-260.



496 FUZZY SET THEORY-AND ITS APPLICATIONS

Levner, E., Meyzin, L., and Ptuskin, A. [1998]. Periodic Scheduling in a transporting robot
under incomplete input data: a fuzzy approach . FSS 98, 255-266.

Li, B. [1996]. Defuzzificatton Strategy and Defuzzification Analysis. Diss . RWTH Aachen.
Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., and Lederberg, J. [1980]. Applications

ofArtificial Intelligence for Organic Chemistry: The DENDRAL Project. New York.
Lipp, H.P. [1981]. Anwendung eines Fuzzy Petri Netzes zur Bestimmung instationarer

Steuervorgange in komplexen Produktionssystemen. Unscharfe Modellbildung und
Steuerung IV, 63-81 Karl-Marx-Stadt.

Little, J.D.C. [1970]. Models and managers: The concept of a decision calculus .
Management Sci. 16, B-446-458.

Loo, S.G. [1977]. Measures of fuzziness . Cybernetica 20, 201-210.
Lowen, R. [1978]. On fuzzy complements. Inform . Sci. 14, 107-113.
de Luca, A., and Termini, S. [1972]. A definition of a nonprobabilistic entropy in the setting

of fuzzy sets theory. Inform . Control 20, 301-312.
Luhandjula, M.K. [1982] . Compensatory operators in fuzzy linear programming with

multiple objectives . FSS 8, 245-252.
Luhandjula, M.K. [1984] . Fuzzy approaches for multiple objective linear fractional

optimization. FSS 13, 11-24.
Luhandjula, M.K. [1986] . On possibilistic linear programming. FSS 18, 15-30.
Luhandjula, M.K. [1987] . Multiple objective programming problems with possibilistic

coefficients. FSS 21, 135-145.
Ma Jiliang [1989]. A Bibliography of Fuzzy Systems. Beijing.
Mamdani, E.H. [1977a]. Application of fuzzy logic to approximate reasoning . IEEE Trans.

Comput. 26, 1182-11 91.
Mamdani , E.H. [1977b] . Applications of fuzzy set theory to control systems. In Gupta

et al., 77-88.
Mamdani , E.H. [1981]. Advances in the linguistic synthesis of fuzzy controllers . In

Mamdani and Gaines, 325-334.
Mamdani, E.H., and Assilian , S. [1975]. An experiment in linguistic synthesis with a fuzzy

logic controller. Int. J. Man-Machine Studies 7, 1-13 .
Mamdani, E.H., and Assilian, S. [1981]. An experiment in linguistic synthesis with a fuzzy

logic controller. Mamdani and Gaines [1981], 311-323.
Mamdani, E.H., and Gaines , G.R. (eds.). [198 1]. Fuzzy Reasoning and Its Applications.

London, New York, Toronto.
Mamdani , E.H., Ostergaard, J.J., and Lembessis, E. [1984]. Use of fuzzy logic for

implementing rule-based control of industrial processes. In Zimmermann et al., 429
445.

Manes, E.G. [1982]. A class of fuzzy theories . JMAA 85,409-451.
McDermott, 1. [1982]. R I : A rule-based configurer of computer systems . Artif. Intell . 19,

39-88.
Meier, W., Weber, R., and Zimmermann, H.-J. [1944] . Fuzzy data analysis-Methods and

industrial applicat ions . Fuzzy Sets Syst. 61, 19-28.
Menger, K. [1942]. Statistical metrics . Proc. Nat . Acad. USA 8,535-537.
MIT [1997]. Data Engine 2.1 Manual. Aachen.



BIBLIOGRAPHY 497

Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (eds.). [1986]. Machine Learning: An
Artificial Intelligence Approach, vol. II. Los Altos, Ca.

Michalski, RS., and Chilausky, RL. [1981]. Knowledge acquisition by encoding expert
rules versus computer induction from examples : A case study involving soybean
pathology. In Mamdani and Gaines, 247-271.

Minsky, M.A. [1975]. A framework for representing knowledge. In Winston, 221-242.
Mitra, G. (ed.). [1986]. Computer Assisted Decision Making .Amsterdam, New York, Oxford.
Mitra, G. (ed.). [1988]. Mathematical Models for Decision Support. Berlin, Heidelberg,

New York, London, Paris, Tokyo.
Miyamoto, S., Yasunobu, S., and Ihara, H. [1987]. Predictive fuzzy control and its appli

cation to automatic train operation systems. In Bezdek [1987a], 59-68.
Miyamoto, S. [1990]. Fuzzy Sets in Information Retrieved and Cluster Analysis.

Dordrecht.
Mizumoto, M. [1981, 1982]. Fuzzy sets and their operations . Inform. Control 48, 30-48;

50, 160-174.
Mizumoto, M. [1989]. Pictorial representations of fuzzy connectives, Part I: cases of

T-nonns, T-cononns and averaging operators. FSS 31,217-242.
Mizumoto, M., Fukami, S., and Tanaka, K. [1979]. Some methods of fuzzy reasoning. In

Gupta et al., 117-136.
Mizumoto, M., and Tanaka, K. [1976]. Some properties of fuzzy sets of type 2. Inform.

Control 31, 312-340.
Mizumoto, M., and Zimmermann, H.-J. [1982]. Comparison of fuzzy reasoning methods.

FSS 8, 253-283.
Moon, RE., Jordanow, S., Perez, A., and Turksen, LB. [1977]. Medical diagnostic system

with human-like reasoning capability. In Shires, H.B., Wolf, H. (eds.), Medinfo 77.
Amsterdam-New York, 115-119.

Morik, K. (ed.). [1989]. Knowledge Representation and Organization in Machine Learn
ing. Berlin, Heidelberg.

Mufioz-Rodriguez, D., and Cattennole, KiW, [1987]. Multiple criteria for hand-off in
cellular mobile radio. lEE Proc. 134, 85-88.

Murakami, S., and Maeda, H. [1983]. Fuzzy decision analysis on the development of
centralized regional energy control systems. In Sanchez and Gupta, 353-358.

Murayama, Y., Terano, T., Masui, S., and Akiyama, N. [1985]. Optimizing control of a
diesel engine. In Sugeno [1985a], 63-72.

Murofushi, T., and Sugeno, M. [1989]. An interpretation offuzzy measures and the choquet
integral as an integral with respect to a fuzzy measure. FSS 29, 201-227.

Nagel, E. [1969]. The Structure of Science. London.
Nahmias, S. [1979]. Fuzzy variables. FSS I, 97-110.
Nauck, D., Klawonn, E, and Kruse, R [1994]. Neuronale Netze und Fuzzy-Systeme.

Braunschweig.
Negoita, c.Y. [1985]. Expert Systems and Fuzzy Systems . Menlo Park, Reading, London,

Amsterdam.
Negoita, C.V., Minoiu, S., and Stan, E. [1976]. On considering imprecision in dynamic

linear programming . ECECSR 3, 83-95.



498 FUZZY SET THEORY-AND ITS APPLICATIONS

Negoita, C.V., and Ralescu, D.A. [1975] . Application of Fuzzy Sets to Systems Analysis.
Basel, Stuttgart.

Nguyen , H.T. [1978] . On conditional possibility distributions. FSS I, 299-309.
Nguyen, H.T. [1979]. Some mathematical tools for linguistic probabilities. FSS 2, 53

65.
Nguyen, H.T. [1981] . On the possibilistic approach to the analys is of evidence. In Lasker,

2959-2965.
Nilsson, N.J. [1980] . Principles ofArtificial Intelligence. Palo Alto.
Norwich, A.M ., and Turksen, LN. [1981]. Measurement and scaling of membership func

tions . In Lasker, 2851-2858.
Norwich , A.M., and Turksen, LB. [1984] . A model for the measurement of membership

and consequences of its empirical implementation. FSS 12, 1-25.
Oh Eigeartaigh, M. [1982] . A fuzzy transportation algorithm. FSS 8, 235-243.
Ono, H., Ohnishi, T., and Terada, Y. [1989]. Combustion control of refuse incineration

plant by fuzzy logic . FSS 32, 193-206.
Orlovsky, S.A. [1977] . On programming with fuzzy constraint sets . Kybernetes 6,

197-201.
Orlovsky, S.A. [1980]. On formalization of a general fuzzy mathematical problem. FSS

3,311-321.
Orlovsky, S.A. [1985] . Mathematical programming problems with fuzzy parameters. In

Kacprzyk and Yager [1985], 136-145.
Ostergaard, J.J. [1977]. Fuzzy logic control of a heat exchanger process. In Gupta et al.

[1977],285-320.
Ovchinnikov, S.V., and Ozernoy, V.M. [1988]. Using fuzzy binary relations for identify

ing noninferior decision alternatives. FSS 25,21-32.
Ozawa, J., and Yamada, K. [1994]. Answering to conceptional queries. Proc. Of the Third

IEEE Int. Conf. on Fuzzy Systems. Orlando, 319-324.
Pawlak , Z. [1982] . Rough sets. Int. J. Inform. Comput. Sci. 11(5),341-356.
Pawlak, Z. [1985] . Rough sets. FSS 17,99-102.
Pawlak, Z., Wong, S.K.M ., and Ziarko, W. [1988]. Rough sets: Probabilistic versus deter

ministic approach. Int. J. Man-Machine Stud. 29,81-95.
Pedrycz, W. [1982] . Fuzzy Control and Fuzzy Systems . Delft.
Pedrycz, W. [1983] . Some applicational aspects of fuzzy relational equations in systems

analysis. In Gupta and Sanchez, 125-132.
Pedrycz, W. [1989] . Fuzzy Control and Fuzzy Systems. New York, Chichester, Toronto .
Pedrycz, W. [1993] . Fuzzy Control and Fuzzy Systems, 2nd , extended, edition. New York,

Chichester, Toronto.
Peng, X.-T., Liu, S.-M., Yamakawa, T., Wang, P., and Liu , X. [1988] . Self-regulating PID

controllers and its applications to a temperature controlling process . In Gupta and
Yamakawa [1988a], 355-364.

Peters , G. [1994]. Fuzzy linear regression with fuzzy intervals. Fuzzy Sets Syst. 63, 45
45 .

Petry, EE. [1996] . Fuzzy Data Bases: Principles and Applications. Kluwer. Boston,
Dordrecht, London.



BIBLIOGRAPHY 499

Pfeilsticker, A. [1981]. The systems approach and fuzzy set theory bridging the gap
between mathematical and language-oriented economists . FSS 6, 209-233.

Pfluger, N., Yen, 1., and Langari, R. [1992]. A defuzzification strategy for a fuzzy logic
controller employing prohibitive information in command formulation. Proc. IEEE Int .
Con! Fuzzy Syst., San Diego, CA, 717-723.

Pons, 0., Vila, M.A., and Kacprzyk, J. (eds.). [2000]. Knowledge management in fuzzy
databases . Physica. Heidelberg, New York.

Popper, K. [1959]. The Logic ofScientific Discovery . London 1959.
Prade, H.M. [1977]. Ordonnancement et temps Reel. Diss. Toulouse.
Prade, H.M. [1979]. Using fuzzy set theory in a scheduling problem: A case study. FSS 2,

153-165.
Prade, H.M. [1980a]. An outline of fuzzy or possibilistic models for queuing systems. In

Wang and Chang, 47-154.
Prade, H.M. [1980b]. Operations research with fuzzy data. In Wang and Chang, 155-169.
Prade, H. [1985]. A computational approach to approximate and plausible reasoning with

applications to expert systems. IEEE Trans on Patt. And Mach. Intellig. 7, 260-282.
Procyk, T.J., and Mamdani, E.H. [1979]. A linguistic self-organizing process controller,

Automatica 15, 15-30 .
Pun, L. [1977]. Use of fuzzy formalism in problems with various degrees of subjectivity.

In Gupta et aI., 357-378.
Puri, M.L., and Ralescu, D. [1982]. A possibility measure is not a fuzzy measure (short

communication) . FSS 7, 311-313 .
Ralston, P.A.S., and Ward, T.L. [1989]. Fuzzy control of industrial processes. In Evans

et aI., 29-45.
Ramik, J., and Rimanek, J. [1985]. Inequality relation between fuzzy numbers and its use

in fuzzy optimization. FSS 16, 123-138 .
Ramik, J., and Rimanek, J. [1989]. The linear programming problem with vaguely for

mulated relations of coefficients. In Verdegay and Delgado, 177-194.
Rao, J.R., Tiwari, R.N., and Mohanty, B.K. [1988]. A preference structure on aspiration

levels in a goal programming problem-A fuzzy approach. FSS 25, 175-182 .
Ray, K.S., and Majunder, D.D. [1984]. Application of the circle criteria for stability analy

sis of linear SISO and MIMO systems associated with fuzzy logic controller. IEEE
Trans. Syst. Man Cybernet. 14(2), 345-349.

Rijckaert, M.J., Debroey, V., and Bogaerts, W. [1988]. Expert systems: The state of the
art. In Mitra, 487-517.

Rinks, D.B. [1981]. A heuristic approach to aggregate production scheduling using lin
guistic variables. In Lasker, 2877-2883.

Rinks, D.B. [1982a]. The performance of fuzzy algorithm models for aggregate planning
and differing cost structures. In Gupta and Sanchez, 267-278.

Rinks, D.B. [1982b]. A heuristic approach to aggregate production scheduling using lin-
guistic variables: Methodology and application. In Yager, 562-581.

Rivett, H.P. [1972]. Principles ofModel Building. London, New York, Toronto.
Rodabaugh, S.E. [1981]. Fuzzy arithmetic and fuzzy topology. In Lasker, 2803-2807.
Rodabaugh, S.E. [1982]. Fuzzy addition in the L-fuzzy real line. FSS 8, 39-52.



500 FUZZY SET THEORY-AND ITS APPLICATIONS

Rodder, w., and Zimmermann, H.-J. [1980] . Duality in fuzzy linear programming. In
AV. Fiacco and K.O. Kortanek (eds.), Extremal Methods and Systems Analysis. Berlin,
Heidelberg , New York, 415-429.

Rommclfanger, H., Hanuschek, R., and Wolf, J. [1989]. Linear programming with fuzzy
objectives. FSS 29, 31-48.

Rosenfeld , •• [1975]. A fuzzy graph . In Zadeh et al., 77-96.
Roubens, M. [1978]. Pattern classification problems and fuzzy sets. FSS 1, 239-253.
Ruan, D. [1990]. A critical study of widely used fuzzy implication operations and their

inference on the inference rules in fuzzy expert systems. Ph.D. thesis, Gent.
Rumelhart, D.E., and McClelland, J.L. [1988]. Parallel distributed processing . 8th ed. MIT

Press. Cambridge MA.
Runklcr, T.A [1996]. Automatische Selektion signifikanter scharfer Werte in unscharfen

regelbasierten Systemen der Informations- und Automatisierungstechnik. VDI-Veriag,
DUsseldorf [1996].

Runkler, T.A, and Glesner, M. [1993]. Defuzzification with improved static and dynamic
behavior: extended center of area. Proc. Of I" Europ. Congr. on Fuzzy and Int. Tech
nologies . Aachen [1993], 845-851.

Runkler, T.A., and Glesner, M. [1994]. Defuzzification and ranking in the context of
membership , value semantics, rule modality, and measurement theory. Proc. Of 2nd

Europ. Congr. on Int. Techniques and Soft Computing . Aachen , 1206-1210.
Ruspini, E. [1969]. A new approach to fuzzy clustering. Inform. Control 15,22-32.
Ruspini , E. [1973]. New experimental results in fuzzy clustering . Inform. Sci. 6, 273-284.
Ruspini, E. [1982]. Recent develpments in fuzzy clustering. In Yager, 133-147.
Russell , B. [1923]. Vagueness. Australasian J. Psychol. Philos. I, 84-92.
Saaty, Th.L. [1978]. Exploring the interface between hierarchie s, multiple objectives and

fuzzy sets. FSS 1,57-68.
Sakawa, M., and Yano, H. [1987]. An interactive satisficing method for multi-objective

nonlinear programming problems with fuzzy parameters . In Kacprzyk and Oriovski ,
258-271.

Sakawa, M., and Nishizaki, I. [2001]. Interactive fuzzy programming for two-level linear
fractional programming problems . FSS 119, 31-40.

Sanchez, E. [1979]. Medical diagnosis and composite fuzzy relations . In Gupta, Ragada,
and Yager, 437-444.

Sanchez, E., Gouvernet, J., Bartolin, R., and Voran, L. [1982]. Lingu istic approach in fuzzy
logic of W.H.O. classification of dyslipoproteinemias. In Yager, 522-588.

Sanchez, E., and Gupta, M.M. [1983]. Fuzzy Information, Knowledge Representation, and
Decision Analysis. New York.

Schefe, P. [1981]. On foundations of reasoning with uncertain facts and vague concepts .
In Mamdani and Gaines, 189-216.

Schneider, D. [1979]. MeBbarkeit subjektiver Wahrscheinlichkeiten als Erscheinungs
formen der UngewiBheit. Zeitschrift f ur betriebswirtschaftliche Forschung 31, 89
122.

Schwartz, J. [1962]. The pernicious influence of mathematic s in science . In Nagel, Suppes,
and Tarski Logic Methodology and Philosophy of Science. Stanford.



BIBLIOGRAPHY 501

Schweizer, B., and Sklar, A. [1961] . Associative function s and statistical triangle inequal
ities . Publ. Math. Debrecen 8, 169-186.

Scott, L.L. [1980] . Neces sary and sufficient conditions for the values of a function of fuzzy
variables to lie in a specified subinterval of [0, I]. In Wang and Chang, 35-47.

Sengupta, A., Pal, T.K., and Chakraborty, D. [2001] . Interpretation of inequality constraints
involving interval coefficients and a solution to interval linear programming. FSS 119,
129-138.

Shafer, G.A . [1976]. A Mathematical Theory of Evidence. Princeton.
Shao , S.Y., and Wu, W.M. [1990]. A method of graph and fuzzy techniques for Chinese

characters recognition. Fuzzy Sets Syst. 36,97-102.
Shenoi, S., Shenoi, K., and Melton, A. [1991]. Contexts and abstract information

processing . Proc. Of the Fourth Int. Con! On Ind. Engineering Applications ofArt.
Intel. And Expert Systems. Kanai, Hawaii, 44-50.

Silverman, B.G. (ed .). [1987] . Expert Systems for Business. Reading, MA .
Silvert, W. [1979] . Symmetric summation: A clas s of operations on fuzzy sets . IEEE Trans.

Syst. Man Cybemet. 9, 657-659.
Skala, H.J. [1978] . On many -valued logics, fuzzy sets, fuzzy logics and their applications.

FSS, 1, 129-149.
Slowinski, R. (edr.). [1998] . Fuzzy sets in decision analysis, operations research and

statistics. Kluwer. Boston, London, Dordrecht.
Smets, P. [1982] . Probabilty of a fuzzy event: An axiomatic approach. FSS 7, 153-164.
Smets, Ph., and Magrez, P. [1987]. Implication in fuzzy logic . Int. J. Appl. Reas. I, 1987,

327-347.
Smithson, M. [1987] . Fuzzy Set Analysis for Behavioral and Social Sciences. New York.
Sneath, P.H.A., and Sokal , R. [1973] . Numerical Taxonomy. San Francisco.
Sommer, G. [1981]. Fuzzy inventory scheduling. In Lasker, 3052-3060.
SpieB, M. [1989]. Syllogistic Inference under Uncertainty. Munchen, Weinheim.
Stamp, 1. [1975] . Quoted by White [1975] .
Starr, M.K. (ed .). [1965]. Executive Readings in Management Science. New York, London.
Stein, W.E. [1980] . Optimal stopping in a fuzzy environment. FSS 3,253-259.
Sticha, P.J., Weiss, J.J., and Donemn, M.L. [1979] . Evaluation and integration of impre

cise informatior. Final Technical Report PR 79-21-90, Deci sions & Designs, Inc ., Suite
600,8400 Westpark Drive , P.O. Box 907, McLean, VA 22101 , 1979.

Stoica, M., and Serban, R. [1983]. Fuzzy algorithms for production programming.
ECECSR 18, 55-63.

Sugeno, M. [1972]. Fuzzy measures and fuzzy integrals. Trans. S.I.C.E. 8(2).
Sugeno, M. [1977]. Fuzzy measures and fuzzy integrals-A survey. In Gupta, Saridis, and

Gaine s, 89-102.
Sugeno, M. (ed .). [1985a) . Industrial Applications of Fuzzy Control. Amsterdam, New

York.
Sugeno, M. [1985b]. An introductory survey of fuzzy control. Inform. Sci. 36,59-83.
Sugeno, M., Murofushi, T., Mori , T., Tatematsu, T., and Tanaka, J. [1989] . Fuzzy algo 

rithmic control of a model car by oral instructions. FSS 32,207-219.
Sugeno M., and Nishida, M. [1985] . Fuzzy control of model car. FSS 16, 103-113.



502 FUZZY SET THEORY-AND ITS APPLICATIONS

Suppes, P. [1969]. Meaning and uses of models. In H. Freudenthal (ed.) [1969], The
Concept and Role of the Model in Mathematics and Natural and Social Sciences .
London.

Symonds, a.H. [1965]. The Institute of Management Sciences: Progress report. In Starr,
376-389.

Tanaka, H., and Asai, K. [1984]. Fuzzy linear programming problems with fuzzy numbers.
FSS 13, 1-10.

Tanaka, H., Ishihashi, H., and Asai, K. [1985]. Fuzzy decision in linear programming prob
lems with trapezoid fuzzy parameters. In Kacprzyk and Yager, 146-154.

Tanaka, H., Ishihashi, H., and Asai, K. [1986]. A value of information in FLP problems
via sensitivity analysis. FSS 18, 119-129.

Tanaka, H. [1987]. Fuzzy data analysis by possibility linear models. Fuzzy Sets Syst. 24,
363-375.

Tanaka, K., and Sugeno, M. [1992]. Stability analysis and design offuzzy control systems.
FSS 45, 135-156.

Tang, J., Wang, D., and Fung, R.Y.K. [2001]. Formulation of general possibilistic linear
fractional programming problems for complex industrial systems. FSS 119,41-48.

Tatzagi, T., and Sugeno, M. [1983]. Derivation of fuzzy control rules from human opera
tor's control actions. IFAC Symp. Fuzzy Information, Knowledge Representation and
Decision Analysis, Marseille.

Taubert, W.H. [1967]. A search decision rule for the aggregate scheduling problem
Management Sci. 13,343-359.

Teichrow, J., Horstkotte, E., and Togai, M. [1989]. The fuzzy-C compiler : A software tool
for producing protable fuzzy expert systems. In Bezdek, 708-711 .

Thole, U., Zimmermann, H.-J., and Zysno, P. [1979]. On the suitability of minimum and
product operators for the intersection of fuzzy sets. FSS 2, 167-180.

Thurstone, L.L. [1927]. A law of comparative judgment. Psychol . Rev. 34,273-286.
Tiwari, R.N., Dharmar, J.R., and Rao, J.R. [1987]. Fuzzy goal programming-An addi

tive model. FSS 24, 27-34.
Tobi, T., Hanafusa, T., Ito, S., and Kashiwagi, N. [1989]. Application of fuzzy control

system to coke oven gas cooling plant. In Bezdek, 16-22 .
Togai InfraLogic Inc. [1989]. Fuzzy-C Development System User 's Manual Release 2.0.

Irvine, CA.
Tong, R.M. [1977].Acontrol engineering review offuzzy systems.Automatica 13,559-569.
Tong, R.M. [1978]. Synthesis of models for industrial processes-some recent results. Int.

J. Gen. Syst. 4, 143-162.
Tong, R.M. [1984]. A retrospective view of fuzzy control systems. FSS 14, 199-210 .
Tong, R.M., and Bonissone, P.P. [1979]. Linguistic decision analysis using fuzzy. In

Zimmermann, et al. (edtrs) [1984]323-334.
Trappelt, R. (ed.). [1982]. Cybernetics and Systems Research. Amsterdam.
Trappl, R. (ed.). [1984]. Cyberneti cs and Systems Research . Amsterdam, 539-540.
Tsao, E.C.-K., Bezdek, J.e., and Pal, N.R. [1994]. Fuzzy Kohonen clustering networks.

Pattern Recog. 27(5), 757-764.
Turban, E. [1988]. Decision Support and Expert Systems . 2nd Edit. Macmillan, New York.



BIBLIOGRAPHY 503

Umbers, LG., and King , P.Y. [1981]. An analysis of human deci sion making in cement
kiln control and the implementations for automation. In Mamdani and Gaines,
369-380.

Van Leekwijck, w., and Kerre , E.E. [1999] . Defu zzification criteria and classification. FSS
108, 159-178.

Verbruggen, H.B., Zimmermann, H.-J., and Babuska, R. (eds .). [1999] . Fuzzy Algorithms
for Control. Kluwer. Boston, Dordrecht, London.

Verdegay, J.-L., and Delgado, M. (eds .). [1989] . The Interface between Artificial Intelli
gence and Operations Research in Fuzzy Environment. Koln .

Verhagen , C.J.D.M . [1975] . Some general remarks about pattern recognition : its defini
tion ; its rel ationship with other disciplines. J. Pattern Recogn. 8(3) , 109-116.

Vila, M.A., and Delgado, M. [1983] . On medical diagnosis using possibility measures.
FSS 10, 211-222.

Wakam i, N., and Terai, H. [1993] . Application of fuzzy theory to home appliances. In
Hirota, 283-310.

Wang, P.-Z. [1982] . Fuzzy contactability and fuz zy variables. FSS 8, 81-92.
Wang, P.P., and Chang, S.K. (eds .). [1980]. Fuzzy Sets-Theory and Applications to Policy

Analysis and Information Systems. New York. London, 59-75.
Wang, J. [2001] . Ranking engineering design concepts using a fuzzy outranking prefer

ence model. FSS 119, 161-170.
Wang, P.Z., Ostermark, R., Alex, R., and Tan, S.H. [2001] . A fuzzy linear basi s algorithm

for nonlinear separable programming problems. FSS 119, 21-30.
Watada, J., Fu, K.S ., and Yao, J.T.P. [1984] . Linguistic assessment of structural damage.

Rep. CE-SIR-84-30, Purdue.
Watada , J., Tanaka, H., and Asai , K. [1982] . A heuristic method of hierarchical clustering

for fuzzy intrasitive relations. In Yager, 148-166.
Waterman , D.A. [1986]. A Guide to Expert Systems . Reading, Menlo Park , Wokingham,

Amsterdam.
Weber, R., Werners, B., and Zimmermann, H.-J . [1990]. Planning models for research and

development. EJOR 48(2), forthcoming.
Weber, R., Wischnewski, P., and Fochem, M. [1997]. Classifier design using intelligent

technologies and integration into the production line of household appliances. Proc .
EUFIT ' 97, Aachen, 1749-1754.

Weiss, S.M ., and Kulikowski, c.x. [1981]. Expert consultation systems: The EXPERT
and CASNET projects. In Machine Intelligence, Infotech State of the Art Report 9,
No.3.

Wenstop, F. [1980]. Quantitative analysis with linguistic values. FSS 4,99-115.
Werners, B. [1984] . Interaktive Entscheidungsunterstiazung durch einjiexibles mathema

tisches Programmierungssystem. Miinchen.
Werners, B. [1987 a] . An interactive fuzzy programming system. FSS 23, 131-147.
Werners, B. [1987b]. Interactive multiple objective programming subject to flexible

constraints. EJOR 342-349.
Werners, B. [1988] . Aggregation models in mathematical programming. In Mitra,

295-319.



504 FUZZY SET THEORY-AND ITS APPLICATIONS

Whalen, T., Schott, B., Hall , N.G., and Ganoe, F. [1987]. Fuzzy knowledge in rule-based
systems. In Silverman, 99-119.

White , DJ. [1975]. Decision Methodology. London, New York.
Whiter, A.M. [1983] . PFL: Pi-fuzzy logic . A practical fuzzy logic. In Shortdeskription

Systems Des . Ltd., Hampshire.
Wiedey, G., and Zimmermann, H.-J. [1978]. Media selection and fuzzy linear program

ming, J. Oper. Res. Soc. 29, 1071-1084.
Wierzchon, S.T. [1982] . Applications of fuzzy decision-making theory to coping with ill

defined problems. FSS 7, 1-18.
Windham, M.P. [1981] . Cluster validity for fuzzy clustering algorithms. FSS 5, 177-185.
Windham, M.P. [1982] . Cluster validity for the fuzzy C-means clustering algorithm. IEEE

Trans. PAMI4, 358.
Windham, M.P. [1983] . Geometrical fuzzy clustering algorithms. FSS 10, 271-279.
Winston, P.H. (ed.) . [1975] . The Psychology of Computer Vision. New York.
Witte, E. [1968] . Phasen-Theorem und Organisation komplexer Entscheidungen. Zeitschr.

f. betriebsw. Forschung, 625.
Wolfram , S. [1993]. Mathematica, A System for Doing Mathematics by Computer. Second

Edition, Addison-Wesley Publishing Company.
Yager, R.R. [1978] . Fuzzy decision making including unequal objectives. FSS 1, 87-95.
Yager, R.R. [1979] . On the measure of fuzziness and negation part I: Membership in the

unit interval. Int. J. Gen. Syst. 5,221-229.
Yager, R.R. [1980] . On a general class of fuzzy connectives. FSS 4, 235-242.
Yager, R.R . (ed.). [1982] . Fuzzy Set and Possibility Theory. New York, Oxford, Toronto .
Yager, R.R . [1984] . A repre sentation ofthe probability of fuzzy subsets. FSS 13,273-283.
Yager, R.R. [1988] . On ordered weighted averaging aggregation operators in multi

criteria decision making. IEEE Trans. Systems , Man & Cabem. 18, 183-190.
Yager, R.R. [1993] . Families of OWA operators. FSS 59, 125-148.
Yager, R.R. [1996]. Knowledge-based defuzzification. FSS 80, 177-185.
Yager, R.R., and Kacprzyk, J. (eds .). [1997] . The Ordered Weighted Averaging Operators:

Theory and Applications . Kluwer, Boston.
Yager, R.R. , and Filev, D.P. [1994] . Essentials ofFuzzy Modeling and Control . New York.
Yagishita, 0 ., Itoh, 0 ., and Sugeno, M. [1985]. Application offuzzy reasoning to the water

purification process. In Sugeno , 19-40.
Yasunobu, S., and Miyamoto, S. [1985] . Automatic train operation system by predictive

fuzzy control. In Sugeno [1985b], 1-18.
Yasunobu, S., and Miamoto, S. [1985]. Automatic train operation by predictive fuzzy

control. In Sugeno [1985], 1-18.
Yazenin, A.V. [1987] . Fuzzy and stochastic programming. FSS 22, 171-180.
Yeh, R.T., and Bang, S.Y. [1975]. Fuzzy relat ions, fuzzy graphs and their applications to

clustering analysis. In Zadeh et al., 125-150.
Zadeh, L.A . [1965]. Fuzzy sets. Inform. Control 8, 338-353.
Zadeh , L.A. [1968] . Probability measures of fuzzy events. JMAA 23,421-427.
Zadeh , L.A. [1969] . Fuzzy algorithms. Inform. Control 19, 94-102.
Zadeh , L.A. [1971] . Similarity relations and fuzzy orderings. Inform. Sci. 3, 177-206.



BIBLI OGRAPHY 505

Zadeh, L.A. [1972]. On fuzzy algorithms. Memorandum UCBIERL M 325, Berkeley.
Zadeh, L.A. [l973a]. The concept of a linguistic variable and its application to approxi

mate reasoning. Memorandum ERL-M 41l , Berkeley, October 1973.
Zadeh, L.A. [1973b]. Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. Syst. Man Cybemet. 3, 28-44.
Zadeh, L.A. [1977]. Fuzzy sets and their application to pattern recognition and clustering

analysis. In Classification and Clustering. New York, San Francisco, London, 251
299.

Zadeh, L.A. [1978]. Fuzzy sets as a basis for a theory of possibility. FSS 1, 3-28.
Zadeh, L.A. [l98Ia] . PRUF-A meaning representation language for natural languages.

In Mamdani and Gaines, 1- 66.
Zadeh, L.A. [198Ib]. Possibility theory and soft data analysis. In Cobb, L., and Thrall ,

R.M. (eds.) . Mathematical Frontiers of the Social and Policy Sciences. Boulder, CO,
69- 129.

Zadeh, L.A. [198Ic]. Test-score semantics for natural languages and meaning representa
tion via PRUF. Techn. Note 247, SRI.

Zadeh, L.A. [1983a]. The role of fuzzy logic in the management of uncertainty in expert
systems. FSS II , 199-227.

Zadeh, L.A. [1983b]. A computational approach to fuzzy quantifiers in natural languages.
Comput. Math. Appl. 9, 149-184.

Zadeh, L.A. [1984]. A computational theory of dispositions. ERL rep., UCB, Berkeley.
Zadeh, L.A., Fu, K.S., Tanaka, K., and Shimura, M. (eds.). [1975]. Fuzzy Sets and Their

Applications to Cognitive and Decision Processes. New York, London.
Zeisig, G., Wagenknecht, M., and Hartmann, K. [1984]. Synthesis of distillation trains

with heat integration by a combined fuzzy and graphical approach. FSS 12, 103-II5.
Zernankova-Leech, M., and Kandel, A. [1984]. Fuzzy Relational Data Bases-A Key to

Expert Systems. KOIn.
Zimmermann, H.-J. [1976]. Description and optimization of fuzzy systems. Int. J. Gen.

Syst. 2,209-2 15.
Zimmermann, H.-J. [1978]. Fuzzy programming and linear programming with several

objective functions. FSS 1, 45-55.
Zimmermann, H.-J. [1980]. Testability and meaning of mathematical models in social sci

ences. In Math. Modelling I, 123-139.
Zimmermann, H.-J. [1983a]. Fuzzy mathematical programming. Comput. Oper. Res. 10,

291-298.
Zimmermann, H.-J. [I9 83b]. Using fuzzy sets in operational research. EJOR 13,201-216.
Zimmermann, H.-J. [1987]. Fuzzy Sets, Decision Making, and Expert Systems. Boston,

Dordrecht, Lancaster.
Zimmermann, H.-J. [1988]. Fuzzy sets theory-and inference mechanism. In Mitra,

727-741.
Zimmermann, H.-J. [1989]. Strategic planning, operations research and knowledge based

systems. In Verdegay and Delgado, 253- 274.
Zimmermann, H.-J., and Pollatschek, M.A. [1984]. Fuzzy 0-1 Programs. In Zimmermann,

Zadeh, and Gaines, 133-146.



506 FUZZY SET THEORY-AND ITS APPLICATIONS

Zimmermann, H.-I. , Zadeh, L.A., and Gaines, B.R. (eds.). [1984]. Fuzzy Sets and Deci
sion Analysis. Amsterdam, New York, Oxford.

Zimmermann, H.-I., and Zysno, P. [1980]. Latent connectives in human decision making.
FSS 4,37-51.

Zimmermann, H.-J., and Zysno, P. [1982]. Zugehorigkeitsfunktionen unscharfer Mengen
(DFG-Forschungsbericht).

Zimmermann, H.-J., and Zysno, P. [1983]. Decisions and evaluation s by hierarchical
aggregation of information. FSS 10, 243-266.

Zimmermann, H.-J. [1994] . Hybrid approaches for fuzzy data analysis and configuration
using genetic algorithms and evolutionary methods . In Zurada, Marks II, and
Robinson (eds.), Computational Intelligence-Imitation Life. New York, 364-370.

Zimmermann, H.-J., and von Altrock, C. (eds.). [1994]. Fuzzy Logic, Band 2, Anwendun
gen. Munich, Vienna.

Zimmermann, H.-J. (edr.). [1999]. Practical applications offuzzy technologies. Kluwer,
Boston, London, Dordrecht.

Zimmermann, H.-J. [2000] . An application-oriented view of modeling uncertainty. EJOR
122, 190-199.



Index

acoustic quality control application, 323-326
aggregate production and inventory planning

application, 411-417
aggregation operators

Ordered Weight Averaging (OWA), 39-43
research on, 463-474
selection criteria, 43-44

algebraic operations, 28-29, 59-68
algebraic product, 29
algebraic sum, 28
a-level set, 14
and operator, 152

compensatory, 37-39
fuzzy, 36-37

antisymmetric relation, 80
applications, 244-255, 371-442

acoustical quality control, 323-326
CARDIAG-2, 206-210
cement kiln control, 249-255
crane control, 244-245
diesel engine control, 248-249
discrete location problem (DLP), 390-393
engineering, 373-389
ESP, 213-220
expert systems, 203-220
features, 372
FRIL, 181- 182
inventory control, 426-431
linguistic description of human judgments,

203-206
logistics, 393-401
maintenance management, 322-323

management, 374, 389-440
marketing, 432-440
model car control, 246-248
scheduling, 401-426
SPERIL 1,210-213

approximate reasoning, 156-160, 194
approximation spaces, 27
AQUINAS, 188
artificial neural nets (ANNs), 304-306
associativity, 79
attributes, 278
averaging operators , 29, 36-39

backward chaining, 191
balance property, 237
basic probability assignment, 197
Bayes inversion theorem, 195
belief function, 197
Boolean linguistic variables, 148
Boolean logic, 149-150, 156
bounded difference, 28-29
bounded sum, 28
butterfly clustering, 285-289

CADIAG-2, 206-210
cardinality, 16
Cartesian product, 28
cement kiln control application, 249-255
center of area (COA) strategy, 234-235
center of gravity (COO) strategy, 234
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chain rule of differentiation, 108
classical (crisp) set, 11
classical functions , 94
classroom scheduling application, 419

426
closed property, 237
clustering, 281-302

clusters, defined, 284
customer segmentation application,

432-433
fuzzy c-means algorithm, 294
graph-theoretic method, 284
hierarchical method, 281-282
methods, 281-296
objective-function methods, 284
validity, 296-302

c-means algorithm, 284, 293
commutativity, 102-103
cornpactification, 7
compensatory and operator, 37-39
complement, 52

membership function of, 17
type 2 fuzzy sets, 58

compositional rule of inference , 159-
160

computational units, 226
conditional possibility distribution, 127
condition width, 242
connected nodes, 85
constraint-based analysis (CBA) module,

402-403
continuity property, 238
controid strategy, 234
control. see fuzzy logic control (FLC)
convexity, 14-15
course scheduling application, 419-426
crane control application , 244-245
credibility measure, 197
crisp c-partition , 289
crisp linear order, 88
crispness, 1
crisp 2-partitions, 289
crossover point, 146
cross point, 241
cross point level, 241
cross point ratio, 241
cross point value, 241
cycles, 85
cylindrical extensions, 75-76

INDEX

data, quality of, 450-451
data analysis (FDA), 277-328. see also

clustering ; dynamic data analysis
algorithmic approaches, 280, 281-302
applications, 322-326
goal, 277-278
knowledge-based approaches, 280,

302-304
methods, 279-306
neural net approaches , 280, 304-306
process, 278-279
tools, 317-321

databases, 265-275
crisp, fuzzy queries in, 268-275
fuzzy relational, 266-268

DataEngine, 318-321
data mining. see data analysis
data preprocessing, 313, 317-318
decision making, 329-369

constraint, 330, 331
decision defined, 329, 333-335, 342-343,

465
dynamic programming , 348-352
linear programming , 336-348
multicriteria analysis, 352-365
objective function, 330, 331

decision-support (DS) module, 403-404
decision support systems (DSSs), 185
declarative knowledge, 188
decreasing operations, 60-61
defuzzification modules, 226
defuzzification strategies, 180,232-239

center of area (COA), 234-235
controid, 234
extreme value, 233
properties , 237-238
scale levels, 237

degree of compatibility . see membership
function

degree of truth. see membership function
derivatives, 107
diesel engine control application, 248-249
differentiation, fuzzy, 107-108
discrete location problem (DLP), 390-393
dynamic data analysis, 306-316

approaches, 313-316
bank customers application, 435
data analysis trajectory handling, 314-316
function similarity, 307-313
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gear boxes, 381
preprocessing trajectory handling, 313
problem description, 306-307

dynamic programming, 348-352

edge of graph, 85
efficiency, 449
efficient solutions, 353
electronic data processing (EDP), 185
engine control application, 248-249
engineering applications, 373-389

gear boxes, 381-389
machine tools , 375-380

entropy, 49-50
Epistemic logic, 151
equality property, 238
ESP, 213-220
expert systems, 7, 185-222

applications , 203-220, 40 1-404
characteristics, 187-188
definition, 188
frames, 190-192, 203
job shop scheduling application , 401-404
linguistic description application , 203-206
medical diagnosis application, 206-210
production rules, 190, 202
semantic nets, 190
strategic planning application , 213-220
structural damage assessment application,

210-213
techniques, 189-192
uncertainty modeling in, 193-203

extended addition, 62
extended division, 63-64
extended product, 62-63
extended subtraction, 63
extension principle

definition, 55-56
LR-representation of fuzzy sets, 64-68
operations, 61-64
set-theoretic operations defined by, 56-59

extreme value strategy, 233

factual models, 448, 449-453
falsity, 146, 149
fast Fourier transformation (FFr), 317
FE-count, 200-201
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FG-count, 200
filter methods , 317
first projection , 74
FL-count , 200
flexible manufacturing systems (FMSs) control

application, 405-411
forbidden zones, 235
forests, 85
formal models, 448
forward chaining, 191
frames, 190-192, 203
Fril, 169-182

applications, 181-182
inference for single rule, 175-176
inference methods, 172-175
least prejudiced distribution and learning,

179-181
meta rules, 172
multiple rules, 176-177
point semantic unification, 177-179
rules, 170-172

functional fuzzy c-means algorithm (FFCM),
314--316,381

functions
classical , 94
differentiation of, 107-108
fuzzy, 93-99
integration of, 99-106

fuzziness, 3-4, 49-52
fuzzy and operator, 36-37
fuzzy clustering . see clustering
fuzzy c-means algorithm (FCM), 294, 299-300,

320,433
fuzzy controllers, 226-228

applications, 244--255
decision parameters, 228
defuzzification strategies, 232-239
design parameters, 240-243
fuzzy sets, 240-242
Mamdani, 227, 228-231, 241
scaling factors, 240
self-organizing, 243
self-tuning, 243
Sugeno controller, 239-240
types, 228-240

fuzzy c-partition, 290
fuzzy differentiation, 107-108
fuzzy domains, 94
fuzzy dynamic programming, 348-352
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fuzzy functions, 93-95
differentiation of, 107-108
extrema of, 95-99
integration of, 99-106

fuzzy graphs , 83-85
fuzzy intervals, 66
fuzzy Kohonen network , 321
fuzzy languages , 160-169
fuzzy linear ordering, 88
fuzzy linear programming (FLP), 336-348

with crisp objection function, 342-348
flexible manufacturing systems control

application, 405
logistics application, 398-40I
symmetric, 337-342

fuzzy logic, 151-153, 194
fuzzy logic control (FLC), 223-264 . see also

fuzzy controllers
adaptive , 243-244
automatic control , 225-226
extensions, 262
origin, 223-225
purpose, 223-224
rules, 242-243
stability, 257-262
tools, 255

fuzzy maximum, 96-99
fuzzy measures, 47-49
fuzzy multicriteria analysis, 352-365
fuzzy number s, 59

LR-type , 64-66
positive, 59
triangular, 59

fuzzy order relation , 88
fuzzy partial order relation, 88
fuzzy preorder relation , 88
fuzzy production rules, 190, 202
fuzzy quantifiers, 200
fuzzy relational databases , 266-268
fuzzy relations, 71-83, 86-89

compositions of, 76-79
cylindrical extension, 75-76
definition, 71, 73
intersection, 73-74
projections, 74-75
properties, 79-83
types, 86-89
union, 73-74

fuzzy restrictions, 123

INDEX

Fuzzy Rule Base, 319
fuzzy sets

core, 233
definition , 11-13
design parameters , 240-242
fuzzy functions on, 93-95
LR-representation, 64-68
operations for, 16-20,27-44,56-59
possibility distributions and, 122-126
support for, 14
types, 23-27

fuzzy set theory, 5-8
advantages, 478
applications, 371-442
future perspectives, 477-479
goals of, 6-8
research in, 443-475

fuzzy shell clustering (FSC) algorithm,
299-300

fuzzy singleton property, 237
fuzzy subgraphs, 84
fuzzy TECH, 255

gearboxes, fault detection in, 381-389
generalized modus ponens , 158-159
good implication operators, 158
grade of membership . see membership

function
graphs , fuzzy, 83-85
graph-theoretic clustering method, 284

Hamacher-operators, 32-34
hierarchical clustering method , 281-282
HMMS-model, 411, 412, 414, 416
horizontal movement property, 237

implication operators , 152, 157-159
imprecision, 6
increasing operations, 60-61
indiscernibility, 27
indistinguishability, 27
inference engine, 191, 193
input matching, 202
instructor scheduling application , 419

426
integrals, 100-101
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integration of fuzzy functions, 99-106
over crisp interval , 100-103
over fuzzy interval, 103-106
properties of integrals, 101-103

intersection
Dubois and Prade definition, 34--35
of fuzzy relations, 73-74
Hamacher definition, 33
membership function of, 16
t-norms, 29, 30
type 2 fuzzy sets, 57-58
Yager definition, 34

intersection-min-operator, 465-468
interval-information, 117
interval semantic unification, 173
intuitonistic fuzzy sets (lFS), 25-27
inventory control applications, 426-431
inventory planning applications, 411-417

Jeffrey's rule of inference , 173-174, 175
job shop scheduling application, 401-404

kiln control application, 249-255
knowledge acquisition model, 188
knowledge base , 188-189
Kohonen feature map, 320
Kolmogoroff''s probability, 3, 135-136
Koopman 's probability, 3, 135-136

languages , fuzzy , 160-169
laws, 446
least prejudiced distribution, 179-181
left width, 240
length of path, 85
L-fuzzy set, 25
linear programming. see fuzzy linear

programming
linguistic approximation, 154
linguistic hedge , 147
linguistic information, 117-118
linguistic modeling

description, 203-206
evaluation, machine tools , 375-380

linguistic state space, 258
linguistic trajectory, 259
linguistic truth tables , 153-155
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linguistic variables, 141-149
Boolean, 148
definition, 142

logic
Boolean , 149-150, 156
Epistemic, 151
fuzzy, 151- 153
Lukasiewicz, 155
Modal, 150-151
predicate calculus , 151

logical consistency, 449
logistics applications , 393-401

fuzzy linear programming, 398-401
transportation, 393-398

lower probability, 195, 196, 197
LR-representation of fuzzy sets, 64

68
Lukasiewicz logic, 155

machine tools, linguistic evaluation and
ranking, 375-380

maintenance
management application, 322-323
scheduling application, 418-419

Mamdani controller, 227, 228-231
management applications, 374, 389-

440
inventory control , 426-431
location, 390-393
logistics, 393-40I
maintenance, 322-323
marketing, 432-440
scheduling, 401-426

marketing applications, 432-440
customer behavior , 433-440
customer segmentation, banking and finance,

432-433
mass assignment theory, 173, 180
matching , 201-203
max-av composition, 76, 77-79, 83
max-* composition, 76
maximizing sets, 95-96, 345
max-min composition

definition, 76
properties, 79-83

max-prod composition, 76, 77-79, 83
measure of belief, 197
measure of plausibility, 197
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measures of fuzzines s, 49-52
distance between fuzzy set and complement,

51
entropy as, 49-50
Yager definition, 51

membership function s, 12, 16
complement, 17
condition width, 242
intersection , 16
left width, 240
modal/peak value, 240
range, 12
research on, 453-463
right width, 240
union, 17

membership functions of objective function,
346-347

Modal logic, 150--151
modal value, 240
model car control application, 246-248
models

classification of, 448
definition, 444-446, 447
operation s research , 447--449
testing, 449--453
theory relationship to, 446
Type A-membership model , 454-456
Type B-membership model , 456--463

modifiers, 147
modus ponens, 150, 156
monotony property, 237
mth power, 28
It-length of path, 85
Multi Attribute Decision Making (MADM),

352,359-365
Baas and Kwakemaak model, 362-365
stages, 359
Yager model , 360--362

multi criteria analysis, 232
multicriteri a analysis, 352-365
multidimens ional functions, 312-313
multilayer perceptron, 319
Multi Objective Decision Making (MODM),

352,353-359

necessity measures, 128, 198
negative fuzzy numbers, 59--60
normalized rule bases, 255

INDEX

not operator, 152
numerical information, 117

objective-function clustering methods , 284
objects, 278
operations, 27-44

algebraic, 28-29, 59-68
fuzzy logic , 149, 151
implication, 152, 157-159
logical, 152
properties, 60-61
research on, 463-474
selection criteria for, 43-44
set-theoretic, 16-20, 29--43
for type 2 fuzzy sets, 56-59

optimal compromise solutions, 353-354
optimal decisions, 95
optima l values of the objective function , 343
Ordered Weighted Averaging (OWA) operators,

39-43
or operator, 152
output matching , 202

particularization, 162
partition coefficient , 297
partition entropy, 297-298
paths, 85
pattern recognition. see data analysi s
peak value, 240
perfect fuzzy order relation, 88
perfectly antisymmetric relation, 80--81
petrochemical plants mainten ance management,

322-323
plausibility measure, 197
plausible reasoning, 156-160
point semantic unification , 177-179
pointwise similarity, 311-312
positive fuzzy numbers, 59-60
possibili stic c-means algorithm (peM), 301
possibility distribution, 122-123, 124, 132, 161
possibility measures, 48, 126-128, 198
possibility/probability consistency principle,

126-127
possibility theory, 122-129, 151

fuzzy sets and distribution, 122-126
necessity measures , 128
possibility measures, 126-128
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probability compared, 133-138
qualification, 194, 198-199

predicate calculus, 151
prescriptive models , 448
probabilistic set A, 25
probabilistic sum, 28
probability measures, 136
probability of fuzzy events, 129-133

definition, 130, 131
as fuzzy set, 131-133
possibility compared , 133-138
qualification, 194-198
as scalar, 129-131

procedural knowledge, 188
production planning and control (PPC), 405
production rules , 190, 202
properties

binary operations, 6~1
defuzzification strategies , 237-238
extended operations, 62-63
factual models, 449
integrals of fuzzy functions, 101-103
max-min composition, 79-83

proportion exponent, 298
PRUF (Possibilistic Relational Universal

Fuzzy), 160--169
translation rules , 163-169
Type I rules, 164-165
Type II rules, 165-166
Type III rules, 167
Type IV rules , 167-169

quantification, 199-201

reflexivity, 79-80
relational assignment equation, 123
relational databases, 266-268
relative cardinality, 16
relaxation, 7
research,443-475

on aggregators, 463--474
laws in, 446
on membership functions, 453--463
models in, 443--446, 447--453
theories in, 446

right width, 240
rough sets, 27
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scheduling applications, 401--426
aggregate production and inventory planning,

411-417
courses, instructors and classrooms, 419--426
flexible manufacturing systems (FMS)

control, 405-411
job shop scheduling, 401-404
maintenance scheduling, 418-419

second projection, 74
semantic nets, 190
semantic rule, 142
set-theoretic operations, 16-20, 29--43

averaging , 36-39
Ordered Weight Averaging (OWA), 39-43
t-conorms, 30--36
t-norms,30

shape functions, 64
similarity of functions, 307-313

multi-dimensional functions, 312-313
pointwise , 311-312
structural, 307-311

similarity relation, 87-88
similarity trees, 87
simple plant location model (SPLP), 390
s-norms, 30--36
SPERIL I, 210--213
stochastic fuzzy model, 24
stochastic uncertainty, 3
strength of path, 85
strong a-cut, 14
strong a-level set, 14
strong vertical translation property, 238
structural similarity, 307-311
structured variables , 147
subgraphs, fuzzy, 84
Sugeno controller, 239-240
support logic programming, 169
support of fuzzy set, 14
symbolic information, 118
symmetry, 80--82, 241-242

t-conorm property, 238
t-conorms (triangular conorms), 29, 30--36
terms, 142
theories , 446
theory of evidence , 195
t-norm property, 238
t-norms (triangular norms), 29, 30
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total fuzzy order relation, 88
total projection, 74
transitivity, 82-83
transportation application, 393-398
trees, 85
truth, 145-146, 149
truth of proposition, 131
truth qualification, 194
truth tables, 149-150

fuzzy, 154-1 55
linguistic, 153-155

truth values, 149, 151, 156
Type A-membership model, 454-456
Type B-membership model, 456--463
type 2 fuzzy sets

definition, 24
operations for, 56-59

type m fuzzy sets, 24

uncertainty
causes, 113, 114-116
definition, 4-5, 114
descriptions of, 113
measures of, 112
theories, 120

uncertainty modeling, 6-7, 111-13 8
application-oriented, 111-1 22
expert systems, 193-203
information available and, 117- 118
matching, 20 1-203

INDEX

methods, 118-11 9
possibility qualification, 194, 198-199
possibility theory, 122-1 29, 133-138, 151
probabili ty qualification, 194-198
probability theory, 129- 138
quantification, 199-201
as transformer of information, 119-120
uncerta in phenomena and, 120--122

union, 468--474
Dubois and Prade definition, 35
of fuzzy relations, 73-74
Hamacher definition, 33-34
member ship function of, 17
t-conorms, 29, 30--36
type 2 fuzzy sets, 57
Yager definition , 34

unitary possibility distribut ion function , 161
unit possibility distribution, 161
university scheduling application, 419--426
upper probabilit y, 195, 196, 197
usefulness, 449

vagueness, 1- 3
variable of higher order, 141
variables, linguistic, 122, 14 1-149
variance criterion, 291-292
vector-maximum problem, 353

Yager-operators, 34


