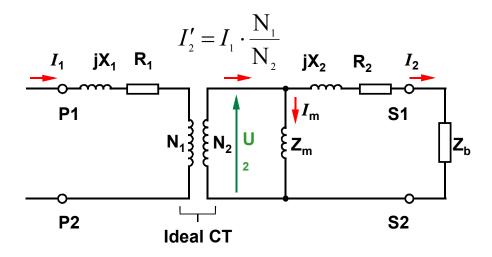


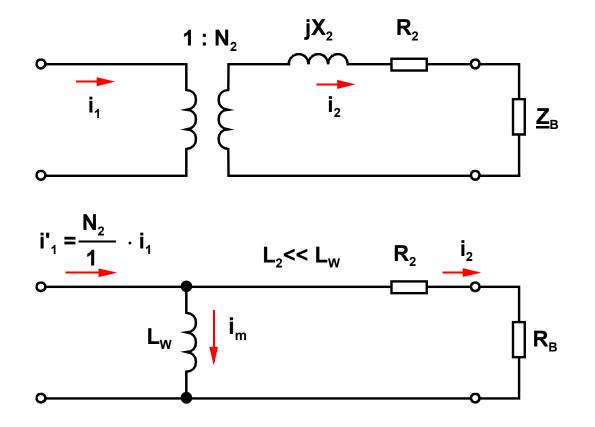
Basics of Current and Voltage Transformers


Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Page 241

2007-08

Equivalent current transformer circuit

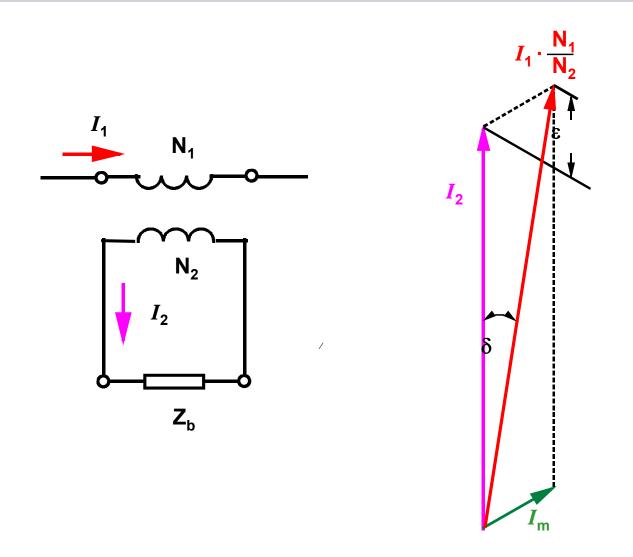

SIEMENS

- X₁ = Primary leakage reactance
- **R**₁ = Primary winding resistance
- X₂ = Secondary leakage reactance
- **Z**₀ = Magnetizing impedance
- **R**₂ = Secondary winding resistance
- Z_b = Secondary load
- Note: Normally the leakage fluxes X₁ and X₂ can be neglected

2007-08

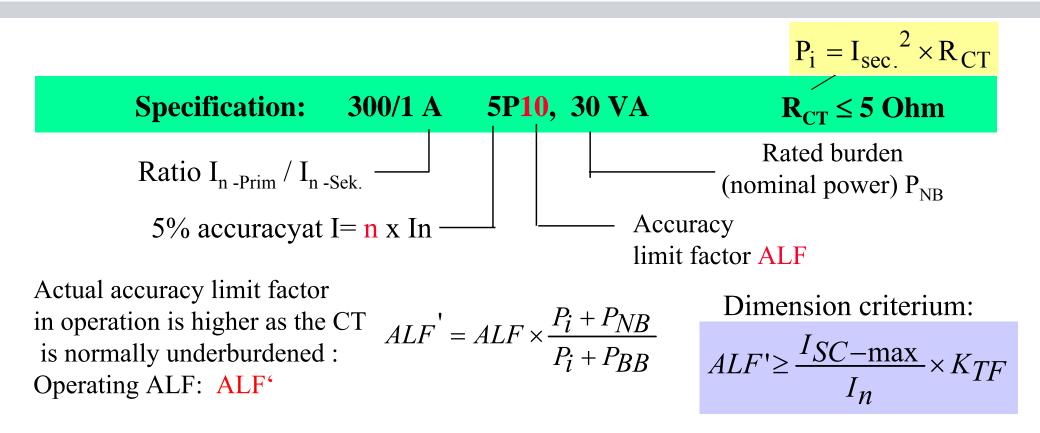
Current transformer, simplified equivalent circuit **SIEMENS**

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI


Page 243

2007-08

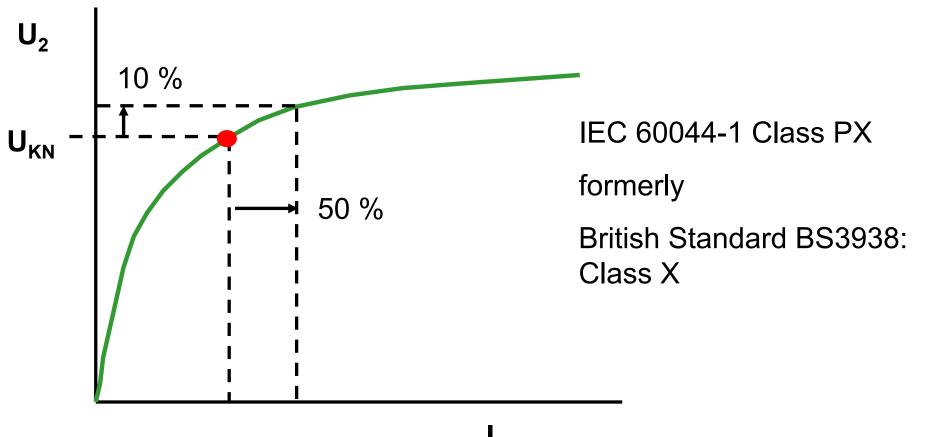
Current transformer:


Phase displacement (δ) and current ratio error (ϵ)

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

SIEMENS

CT classes to IEC 60044-1: 5P or 10P



 K_{TF} (over-dimensioning factor) considers the single sided CT over-magnetising due to the d.c. component in short circuit current I_{SC} .

K_{TF} values required in practice depend on relay type and design. Recommendations are provided by manufacturers (see Application Guides)

2007-08

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

SIEMENS

Page 246

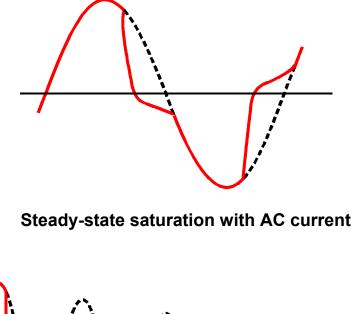
2007-08

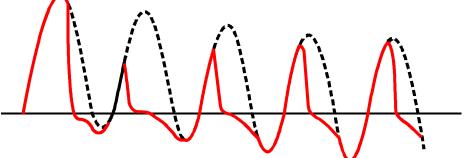
Current transformer, Standard for steady-state performance

IEC 60044-1 specifies the following classes:

Accuracy class	Current error at nominal current (In)	Angle error δ at rated current In	Total error at n x In (rated accuracy limit)
5P	±1%	± 60 minutes	5 %
10P	± 5%		10 %

Current transformers, Standard for transient performance

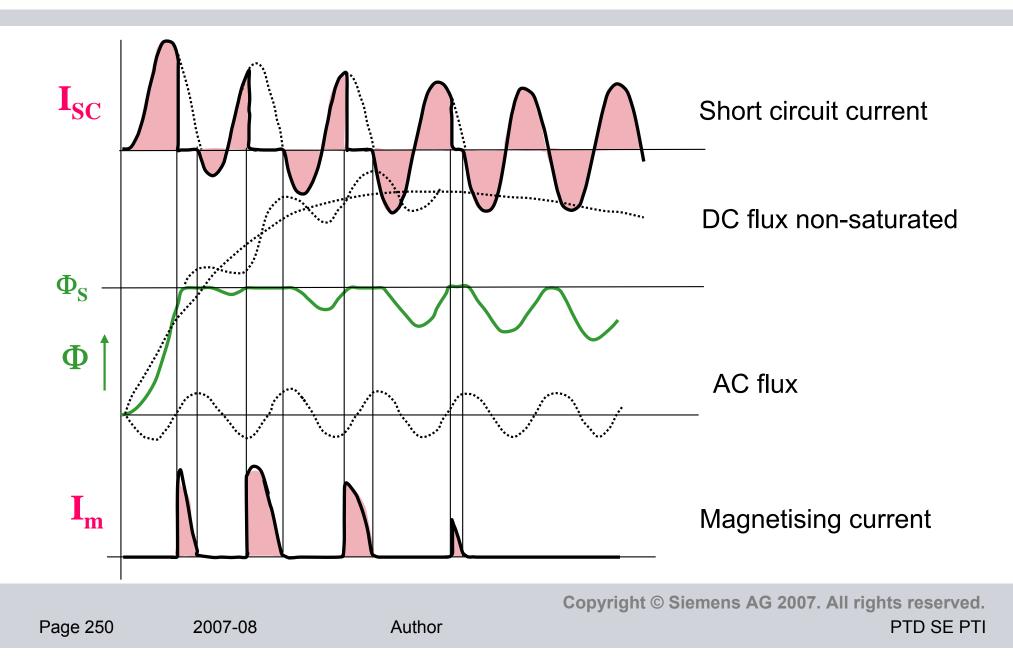

IEC 60044-6 specifies four classes:


Class	Error at rated current		Maximum error at rated accuracy limit	Remanence
	Ratio error	Angle error	· · · · · · · · · · · · · · · · · · ·	
TPX (closed iron core)	± 0,5 %	\pm 30 min	$\hat{\varepsilon} \leq 10\%$	no limit
TPY with anti-remanence air gap	± 1,0 %	\pm 30 min	$\hat{\varepsilon} \leq 10\%$	< 10 %
TPZ linear core	± 1,0 %	\pm 180 \pm 18 min	$\hat{\varepsilon} \le 10\%$ (a.c. current only)	negligible
TPS closed iron core	Special version for high impedance protection (Knee point voltage, internal secondary resistance)		No limit	

Page 248

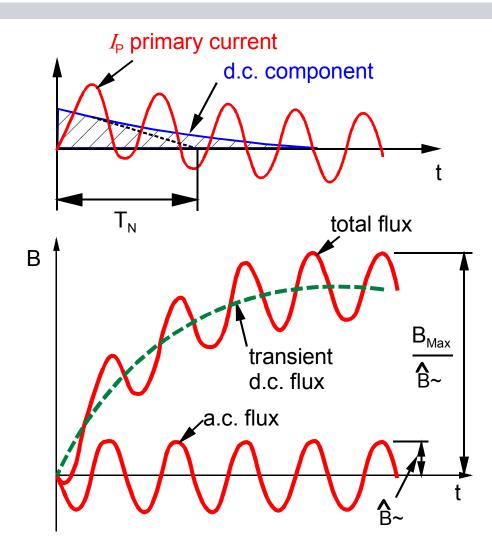
Current transformer saturation

SIEMENS


Transient saturation with offset current

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

2007-08



Transient CT saturation due to DC component

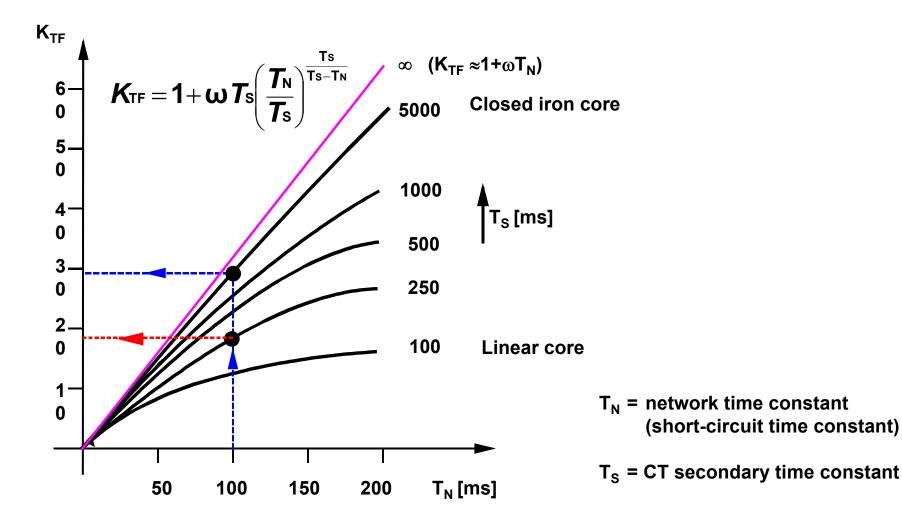
SIEMENS

Course of CT-flux during off-set short-circuit current

$$\frac{B}{\hat{B}_{z}} = 1 + \frac{\omega \cdot T_{N} \cdot T_{S}}{T_{N} - T_{S}} (e^{-\frac{t}{TN}} - e^{-\frac{t}{TS}})$$

$$\frac{B_{\text{Max}}}{B \sim} = 1 + \omega \cdot T_{\text{S}} \cdot \left(\frac{T_{\text{N}}}{T_{\text{S}}}\right)^{\frac{\text{TS}}{\text{TS}-\text{TN}}}$$

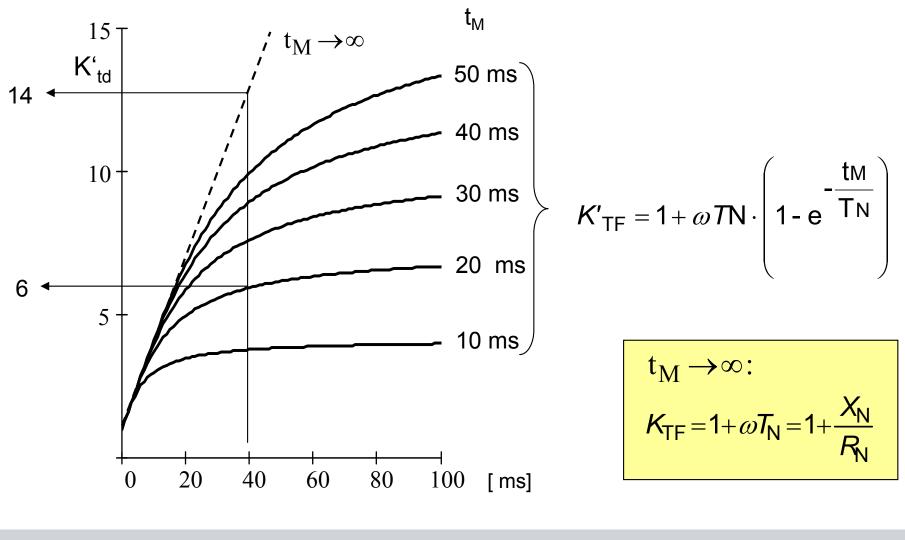
$$t_{\rm BMax} = \frac{T_{\rm N} \cdot T_{\rm S}}{T_{\rm S} - T_{\rm N}} \cdot \ln \frac{T_{\rm S}}{T_{\rm N}}$$


$$T_{\rm s} = \frac{L_{\rm w}}{R_{\rm i} + R_{\rm B}} = \frac{1}{\omega \cdot \tan \delta}$$

For 50 Hz:
$$T_{s} = \frac{10900}{\delta_{[min]}} [ms]$$

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

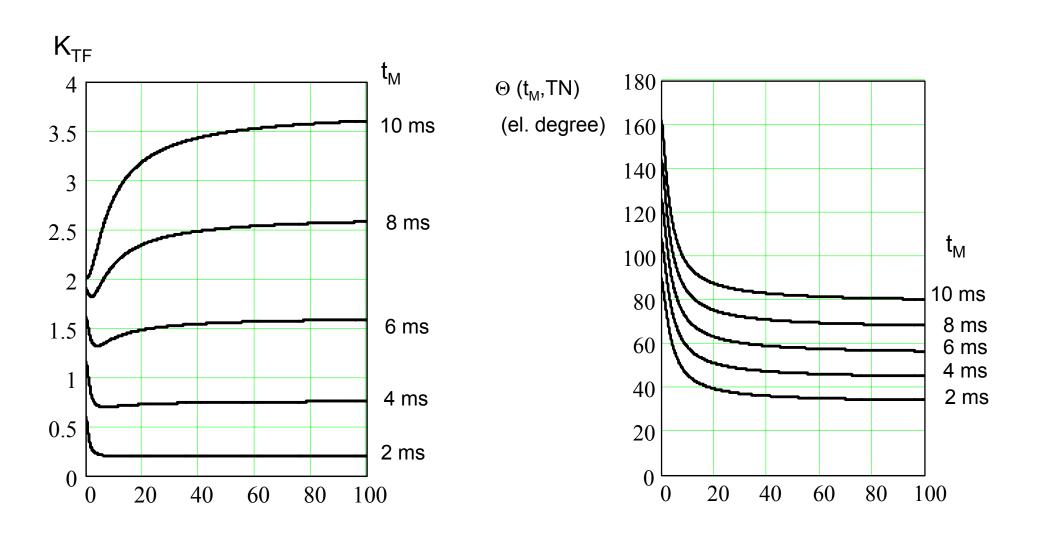
SIEMENS


CT transient over-dimensioning factor K_{TF}

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

2007-08

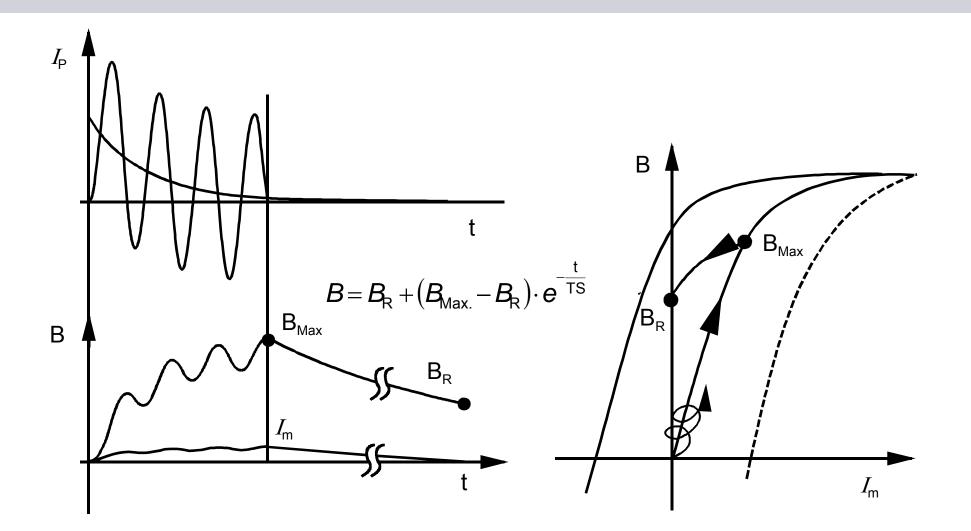
CT with closed iron core, Over-dimensioning factor K_{TF} ' for specified time to saturation (t_M)



Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

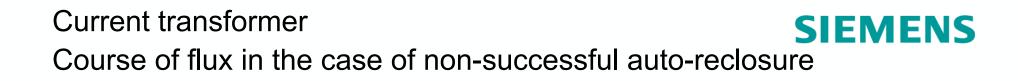
2007-08

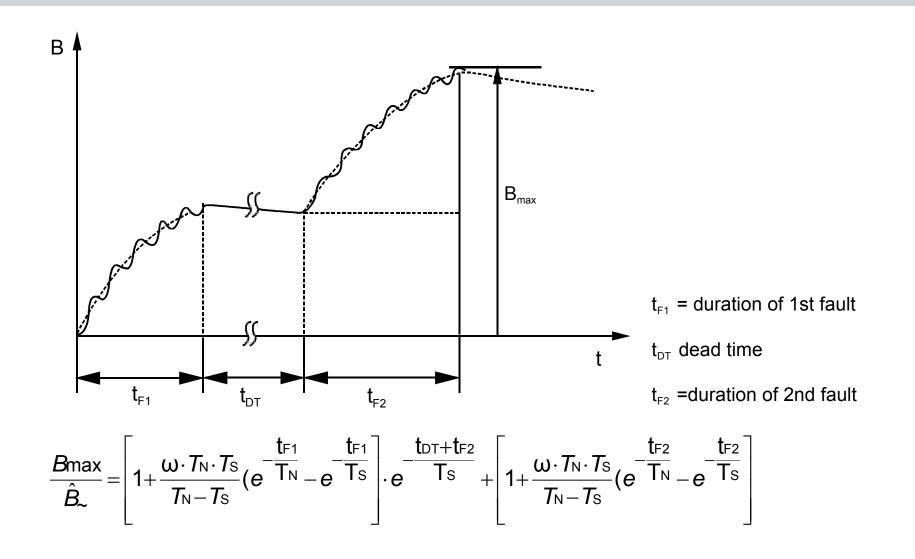
CT over-dimensioning factor $K_{TF}(t_M, T_N)$ in the case of short time to saturation (t_M)


Copyright © Siemens AG 2007. All rights reserved. TRTD STA STI

Page 254

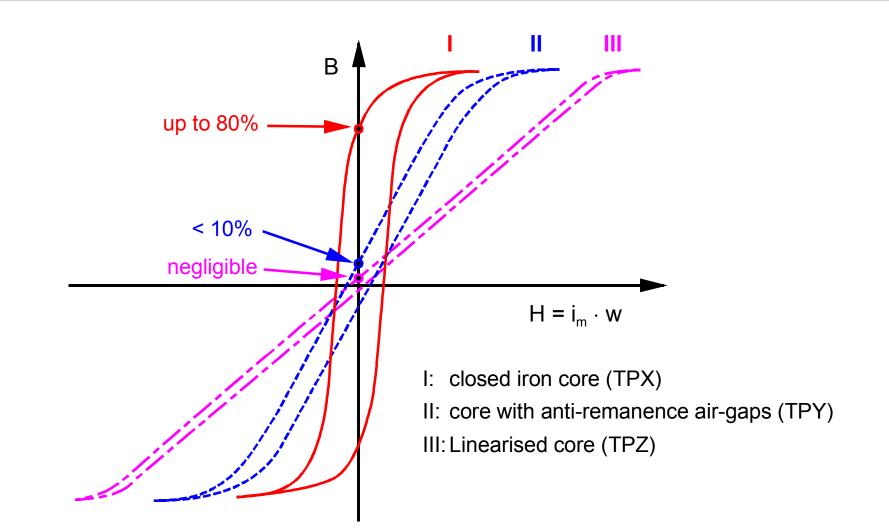
 $2007-08 T_N$ in ms


Current transformer magnetising and de-magnetising



Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

2007-08

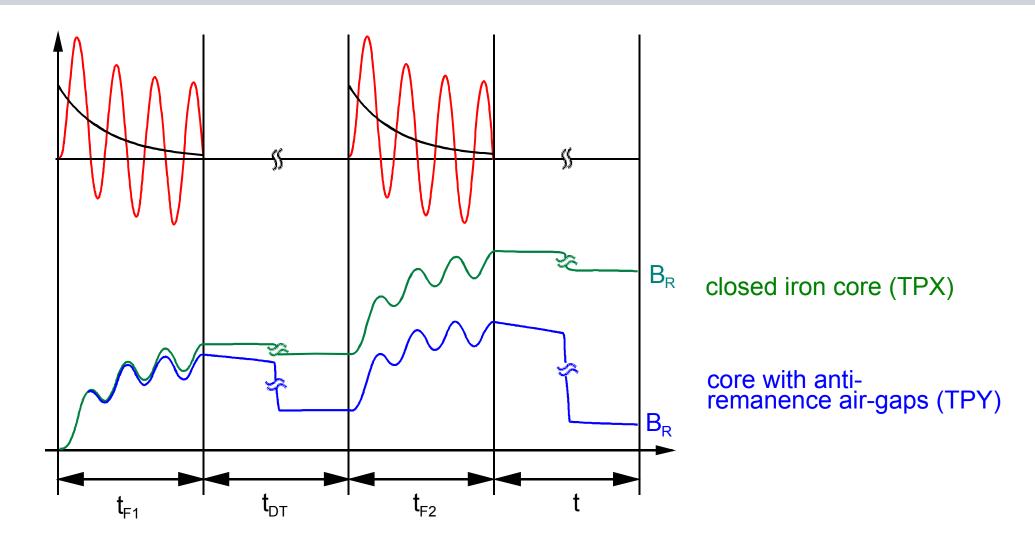


Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

2007-08

Current transformer magnetising curve and point of remanence

SIEMENS



Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Page 257

2007-08

Current transformers TPX und TPY Course of the flux with non-successful auto-reclosure

SIEMENS

2007-08

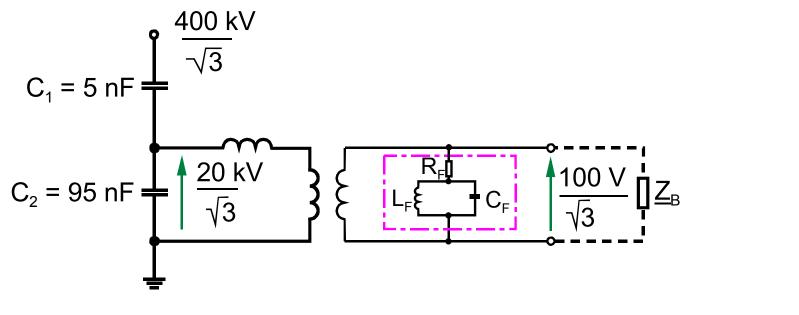
SIEMENS

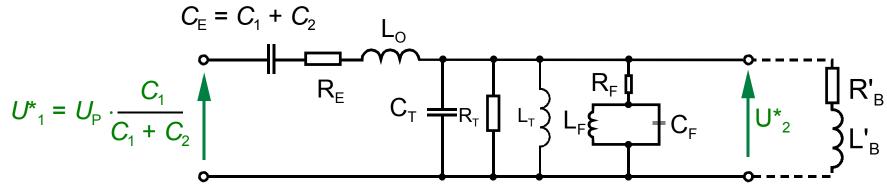
Standards of voltage transformers

VT classes to IEC 60044-2

Class	Permissible error at 0.05 $\cdot U_{_{N}}$ and 1.0 \cdot $U_{_{N}}$		
designation	Voltage error F_{U}	Angle error δ	
3P	± 3.0 %	120 minutes	
5P	± 6.0 %	240 minutes	

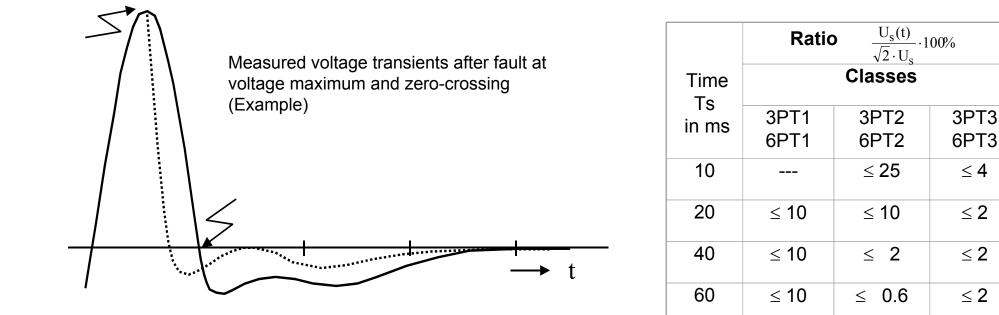
All 3P and 5P protection CTs must additionally comply with one of the below VT metering classes!

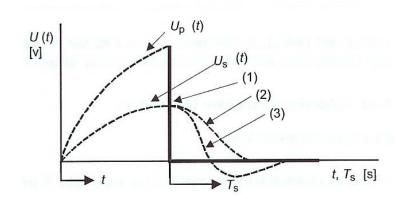

VT classes for measurement IEC 60044-2


Class designation	Permissible voltage error in % at 1.0 · U _N	Permissible angle error in minutes at 1.0·U _N
0.1	0.1	5
0.2	0.2	10
0.5	0.5	20
1	1	30
3	3	Not determined

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Capacitive voltage transformer, Equivalent circuit




Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Page 260

Transient performance of CVTs, Recommendations acc. to IEC 60044-5

- U_P(t) Primary voltage
- U_s(t) Secondary voltage
- (1) Fault inception
- (2) Aperiodic damping of $U_s(t)$
- (3) Periodic damping of $U_{s}(t)$

Recommendations to IEC 60044-5

 \leq

0.2

≤ **2**

≤ **10**

90

2007-08

CT dimensioning

 $K_{OD} = K_{TF}$

SIEMENS

$$ALF' = ALF \cdot \frac{P_{i} + P_{BN}}{P_{i} + P_{B}} = ALF \cdot \frac{R_{CT} + R_{BN}}{R_{CT} + R_{B}}$$

rated CT burden: P_{BN} internal burden of the CT: $P_i = R_i \cdot I_{2N}^2$

 $ALF = ALF' \cdot \frac{P_{\rm I} + P_{\rm B}}{P_{\rm I} + P_{\rm BN}} = ALF' \cdot \frac{R_{\rm CT} + R_{\rm B}}{R_{\rm CT} + R_{\rm BN}}$

Actual connected burden : $P_{\rm B} = R_{\rm B} \cdot I_{2N}^{2}$ $R_{\rm B} = R_{l} + R_{\rm R} =$ burden resistance $R_{l} =$ resistance of connecting cables $R_{\rm R} =$ burden resistance of the relay

	т	_
with	$ALF' \ge K_{OD} \cdot \frac{I_K}{I_N}$	Th
VVILII	$V \Gamma I = V O D \cdot \frac{I}{I}$	
	^{1}N	

2007-08

$$K_{OD} \geq K_{TF} \cdot K_{\text{Re}m}$$

 $K_{\text{Rem}} = \frac{1}{1 - \frac{\% \text{Remanence}}{100}}$

Page 262

Theory:

No saturation
for the total
short-circuit duration:
$$K'_{TF} = \frac{B_{Max}}{\hat{B}_{2}} = 1 + \omega T_{N} = 1 + \frac{X_{N}}{R_{N}}$$
No saturation for
the specified time t_M:
$$K''_{TF} = \left[1 + \frac{\omega \cdot T_{N} \cdot T_{S}}{T_{N} - T_{S}} \left(e^{-\frac{t_{M}}{T_{N}}} - e^{-\frac{t_{M}}{T_{S}}}\right]$$

Practice:

Author

Remanence only considered in extra high voltage systems (EHV) K_{TF} -values acc. to relay manufacturers' guides

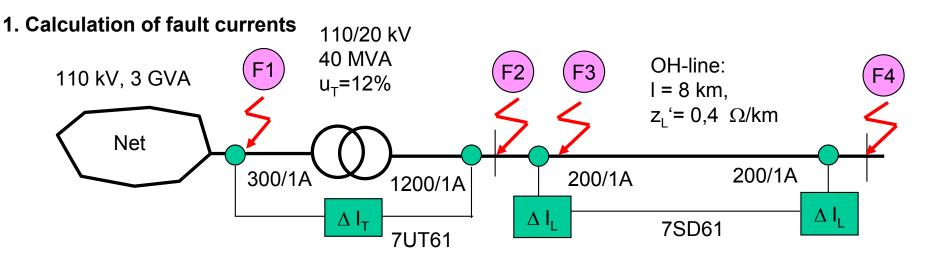
Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

SIEMENS Practical CT requirements Transient over-dimensioning factors K_{TF} (AR not considered)

Distance 7SA6 and 7SA522

Fault atbalance point: $K_{TF} \ge 5$ $K_{TF} \ge 2$ (≥ 1 if $T_N < 30$ ms)

Overcurrent 7SJ56


 $ALF' \ge I >>_{setting} / I_N$, at least 20

Close-in fault:

	Internal fault	External fault
Transformer Differential 7UT6	KTF≥ 0.75 (Saturation free time ≥ 4 ms)	KTF \geq 1.2 (Saturation free time \geq 5 ms)
Line differential 7SD61	KTF≥ 0.5 (Saturation free time ≥ 3 ms)	KTF≥ 1.2 (Saturation free time \ge 5 ms)
Bus differential 7SS52	KTF≥ 0.5 (Saturation free time \ge 3 ms)	KTF≥ 0.5 (Saturation free time \ge 3 ms)

CT dimensioning for Example differential protection (1)

Impedances related to 110 kV:

Impedances related to 20 kV:

Net:
$$Z_N = \frac{U_N^2 [kV^2]}{S_{SC}''[MVA]} = \frac{110^2}{3000} = 4.03 \ \Omega$$
 Net: $Z_N = \frac{U_N^2 [kV^2]}{S_{SC}''[MVA]} = \frac{20^2}{3000} = 0.13 \ \Omega$
Transf.: $Z_T = \frac{U_N^2 [kV^2]}{P_{N-T}[MVA]} \cdot \frac{u_T [\%]}{100} = \frac{110^2}{40} \cdot \frac{12\%}{100} = 36.3 \ \Omega$ Transf.: $Z_T = \frac{U_N^2 [kV^2]}{P_{N-T}[MVA]} \cdot \frac{u_T [\%]}{100} = \frac{20^2}{40} \cdot \frac{12\%}{100} = 1.2 \ \Omega$
Line: $Z_L = l[km] \cdot z_L' [\Omega/km] = 8 \cdot 0, 4 = 3, 2 \ \Omega$

Copyright © Siemens AG 2007. All rights reserved.

PTD SE PTI

Page 264

SIEMENS

CT dimensioning for Example differential protection (2)

F1
$$I_{F1} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N} = \frac{1.1 \cdot 110 \text{kV} / \sqrt{3}}{4.03\Omega} = 17.3 \text{ kA}$$
 F3 $I_{F3} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T} = \frac{1.1 \cdot 20 \text{kV} / \sqrt{3}}{0.13\Omega + 1.2\Omega} = 9.55 \text{ kA}$
F2 $I_{F2} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T} = \frac{1.1 \cdot 110 \text{kV} / \sqrt{3}}{4.03\Omega + 36.3\Omega} = 1.73 \text{ kA}$ F4 $I_{F4} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T + Z_L} = \frac{1.1 \cdot 20 \text{kV} / \sqrt{3}}{0.13\Omega + 1.2\Omega + 3.2\Omega} = 2.8 \text{ kA}$

Dimensioning of the 110 kV CTs for the transformer differential protection:

Manufacturer recommends for relay 7UT61:

The saturation free time of **3** ms corresponds to $K_{TF} \ge 0.75$ See diagram, page 59

Criterion 1) therefore reads:

$$ALF' \ge K_{TF} \cdot \frac{I_{F1}}{I_N} = 0,75 \cdot \frac{17300}{300} = 43$$

1) Saturation free time \geq 4ms for internal faults

2) Over-dimensioning factor $K_{TF} \ge 1,2$ for through flowing currents (external faults)

For criterion 2) we get:

$$ALF' \ge K_{TF} \cdot \frac{I_{F2}}{I_N} = 1, 2 \cdot \frac{1730}{300} = 7$$

The 110 kV CTs must be dimensioned according to criterion 1).

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

Page 265

2007-08

CT dimensioning for Example differential protection (3)

We try to use a CT type: 300/1, 10 VA, 5P?, internal burden 2 VA.

$$ALF \ge \frac{P_i + P_{operation}}{P_i + P_{rated}} \cdot ALF' = \frac{2 + 2.5}{2 + 10} \cdot 43 = 16.1 \quad \text{(Connected burden estimated to about 2.5 VA)}$$

Chosen, with a security margin : 300 /1 A, 5P20, 10 VA, $R_2 \le 2$ Ohm ($P_i \le 2VA$)

Specification of the CTs at the 20 kV side of the transformer:

It is good relaying practice to choose the same dimensioning as for the CTs on the 110 kV side:

1200/1, 10 VA, 5P20, $R_2 \le 2$ Ohm ($P_1 \le 2VA$)

Dimensioning of the 20 kV CTs for line protection:

For relay 7SD61, it is required:

 1') Saturation free time ≥ 3ms for internal faults
 2') Over-dimensioning factor K_{TF} ≥ 1.2 for through flowing currents (external faults)

The saturation free time of **3** ms corresponds to $K_{TF} \ge 0.5$ See diagram, page 59

Criterion 1') therefore reads:

ALF' $\geq K_{TF} \cdot \frac{I_{F3}}{I_N} = 0.5 \cdot \frac{9550}{200} = 24$

For criterion 2') we get:

$$ALF' \ge K_{TF} \cdot \frac{I_{F4}}{I_N} = 1.2 \cdot \frac{2800}{200} = 16.8$$

The 20 kV line CTs must be dimensioned according to criterion 1').

Copyright © Siemens AG 2007. All rights reserved. PTD SE PTI

CT dimensioning for Example differential protection (4)

For the 20 kV line we have considered the CT type: 200/5 A, 5 VA, 5P?, internal burden ca. 1 VA

$$ALF \ge \frac{P_i + P_{operation}}{P_i + P_{rated}} \cdot ALF' = \frac{1+1}{1+5} \cdot 24 = 8$$
 (Connected burden about 1 VA)

Specification of line CTs:

We choose the next higher standard accuracy limit factor ALF=10 : Herewith, we can specify: CT Type TPX, 200/5 A, 5 VA, 5P10, $R_2 \le 0.04$ Ohm ($P_i \le 1$ VA)